1
|
Mussina K, Toktarkhanova D, Filchakova O. Nicotinic Acetylcholine Receptors of PC12 Cells. Cell Mol Neurobiol 2021; 41:17-29. [PMID: 32335772 PMCID: PMC11448595 DOI: 10.1007/s10571-020-00846-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) have gained much attention in the scientific community since they play a significant role in multiple physiological and pathophysiological processes. Multiple approaches to study the receptors exist, with characterization of the receptors' functionality at a single cellular level using cell culturing being one of them. Derived from an adrenal medulla tumor, PC12 cells express nicotinic receptor subunits and form functional nicotinic receptors. Thus, the cells offer a convenient environment to address questions related to the functionality of the receptors. The review summarizes the findings on nicotinic receptors' expression and functions which were conducted using PC12 cells. Specific focus is given to α3-containing receptors as well as α7 receptor. Critical evaluation of findings is provided alongside insights into what can still be learned about nAChRs, using PC12 cells.
Collapse
Affiliation(s)
- Kamilla Mussina
- Biology Department, School of Sciences and Humanities, Nazarbayev University, NurSultan, Republic of Kazakhstan
| | - Dana Toktarkhanova
- Biology Department, School of Sciences and Humanities, Nazarbayev University, NurSultan, Republic of Kazakhstan
| | - Olena Filchakova
- Biology Department, School of Sciences and Humanities, Nazarbayev University, NurSultan, Republic of Kazakhstan.
| |
Collapse
|
2
|
Miller DR, Khoshbouei H, Garai S, Cantwell LN, Stokes C, Thakur G, Papke RL. Allosterically Potentiated α7 Nicotinic Acetylcholine Receptors: Reduced Calcium Permeability and Current-Independent Control of Intracellular Calcium. Mol Pharmacol 2020; 98:695-709. [PMID: 33020143 PMCID: PMC7662531 DOI: 10.1124/molpharm.120.000012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/10/2020] [Indexed: 11/22/2022] Open
Abstract
The currents of α7 nicotinic acetylcholine receptors activated by acetylcholine (ACh) are brief. The channel has high permeability to calcium relative to monovalent cations and shows inward rectification. It has been previously noted that in the presence of positive allosteric modulators (PAMs), currents through the channels of α7 receptors differ from normal α7 currents both in sensitivity to specific channel blockers and their current-voltage (I-V) relationships, no longer showing inward rectification. Linear I-V functions are often associated with channels lacking calcium permeability, so we measured the I-V functions of α7 receptors activated by ACh when PAMs were bound to the allosteric binding site in the transmembrane domain. Currents were recorded in chloride-free Ringer's solution with low or high concentrations of extracellular calcium to determine the magnitude of the reversal potential shift in the two conditions as well as the I-V relationships. ACh-evoked currents potentiated by the allosteric agonist-PAMs (ago-PAMs) (3aR,4S,9bS)-4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide (GAT107) and 3-(3,4-difluorophenyl)-N-(1-(6-(4-(pyridin-2-yl)piperazin-1-yl)pyrazin-2-yl)ethyl)propenamide (B-973B) showed reduced inward rectification and calcium-dependent reversal potential shifts decreased by 80%, and 50%, respectively, compared with currents activated by ACh alone, indicative of reduced calcium permeability. Currents potentiated by 3a,4,5,9b-tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide were also linear and showed no calcium-dependent reversal potential shifts. The ago-PAMs GAT-107 and B-973B stimulated increases in intracellular calcium in stably transfected HEK293 cells. However, these calcium signals were delayed relative to channel activation produced by these agents and were insensitive to the channel blocker mecamylamine. Our results indicate that, although allosterically activated α7 nicotinic ACh receptor may affect intracellular calcium levels, such effects are not likely due to large channel-dependent calcium influx. SIGNIFICANCE STATEMENT: Positive allosteric modulators (PAMs) of α7 nicotinic acetylcholine receptor can increase channel activation by two or more orders of magnitude, raising the concern that, due to the relatively high calcium permeability of α7 receptors activated by acetylcholine alone, such efficacious PAMs may have cytotoxic side effects. We show that PAMs alter the ion conduction pathway and, in general, reduce the calcium permeability of the channels. This supports the hypothesis that α7 effects on intracellular calcium may be independent of channel-mediated calcium influx.
Collapse
Affiliation(s)
- Douglas R Miller
- Departments of Neuroscience (D.R.M., H.K.) and Pharmacology and Therapeutics (C.S., R.L.P.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., L.N.C., G.T.)
| | - Habibeh Khoshbouei
- Departments of Neuroscience (D.R.M., H.K.) and Pharmacology and Therapeutics (C.S., R.L.P.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., L.N.C., G.T.)
| | - Sumanta Garai
- Departments of Neuroscience (D.R.M., H.K.) and Pharmacology and Therapeutics (C.S., R.L.P.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., L.N.C., G.T.)
| | - Lucas N Cantwell
- Departments of Neuroscience (D.R.M., H.K.) and Pharmacology and Therapeutics (C.S., R.L.P.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., L.N.C., G.T.)
| | - Clare Stokes
- Departments of Neuroscience (D.R.M., H.K.) and Pharmacology and Therapeutics (C.S., R.L.P.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., L.N.C., G.T.)
| | - Ganesh Thakur
- Departments of Neuroscience (D.R.M., H.K.) and Pharmacology and Therapeutics (C.S., R.L.P.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., L.N.C., G.T.)
| | - Roger L Papke
- Departments of Neuroscience (D.R.M., H.K.) and Pharmacology and Therapeutics (C.S., R.L.P.), University of Florida, Gainesville, Florida; and Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts (S.G., L.N.C., G.T.)
| |
Collapse
|
3
|
Gaidhani N, Kem WR, Uteshev VV. Spleen is not required for therapeutic effects of 4OH-GTS-21, a selective α7 nAChR agonist, in the sub-acute phase of ischemic stroke in rats. Brain Res 2020; 1751:147196. [PMID: 33159972 DOI: 10.1016/j.brainres.2020.147196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/15/2022]
Abstract
Acute ischemic stroke (AIS) causes both central and peripheral inflammation, while activation of α7 nicotinic acetylcholine receptors (nAChRs) provides both central and peripheral anti-inflammatory and anti-apoptotic effects. Here, we provide evidence that 4OH-GTS-21, a selective α7 agonist, produces its therapeutic effects via primarily central sites of action because 4OH-GTS-21 was found equally effective in splenectomized and non-spenectomized rats in the sub-acute phase of ischemic stroke (≤1 week). However, the spleen may boost the therapeutic efficacy of 4OH-GTS-21 in certain behavioral tasks as our data also indicated. In our tests, AIS was modeled by transient middle cerebral artery occlusion (tMCAO). Splenectomy was done 2 weeks before tMCAO. We determined that: 1) Daily 4OH-GTS-21 treatments for 7 days after tMCAO significantly reduced neurological deficits and brain injury in both splenectomized and non-spelenectomized rats demonstrating that the spleen is not required for therapeutic benefits of 4OH-GTS-21; 2) The effects of 4OH-GTS-21 in the adhesive sticker removal test were significantly weaker in splenectomized animals suggesting that the spleen boosts the efficacy of 4OH-GTS-21 in the first week after tMCAO; and 3) Ischemic brain injury was not significantly affected by splenectomy in both vehicle-treated and 4OH-GTS-21-treated animals. These data support the hypothesis that the therapeutic efficacy of sub-chronic (≤1 week) 4OH-GTS-21 primarily originates from central sites of action. These results validate brain availability as a critical factor for developing novel α7 ligands for AIS.
Collapse
Affiliation(s)
- Nikhil Gaidhani
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States
| | - William R Kem
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, United States
| | - Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States.
| |
Collapse
|
4
|
Papke RL, Lindstrom JM. Nicotinic acetylcholine receptors: Conventional and unconventional ligands and signaling. Neuropharmacology 2020; 168:108021. [PMID: 32146229 PMCID: PMC7610230 DOI: 10.1016/j.neuropharm.2020.108021] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/05/2020] [Accepted: 02/25/2020] [Indexed: 12/28/2022]
Abstract
Postsynaptic nAChRs in the peripheral nervous system are critical for neuromuscular and autonomic neurotransmission. Pre- and peri-synaptic nAChRs in the brain modulate neurotransmission and are responsible for the addictive effects of nicotine. Subtypes of nAChRs in lymphocytes and non-synaptic locations may modulate inflammation and other cellular functions. All AChRs that function as ligand-gated ion channels are formed from five homologous subunits organized to form a central cation channel whose opening is regulated by ACh bound at extracellular subunit interfaces. nAChR subtype subunit composition can range from α7 homomers to α4β2α6β2β3 heteromers. Subtypes differ in affinities for ACh and other agonists like nicotine and in efficiencies with which their channels are opened and desensitized. Subtypes also differ in affinities for antagonists and for positive and negative allosteric modulators. Some agonists are "silent" with respect to channel opening, and AChRs may be able to signal metabotropic pathways by releasing G-proteins independent of channel opening. Electrophysiological studies that can resolve single-channel openings and molecular genetic approaches have allowed characterization of the structures of ligand binding sites, the cation channel, and the linkages between them, as well as the organization of AChR subunits and their contributions to function. Crystallography and cryo-electron-microscopy are providing increasing insights into the structures and functions of AChRs. However, much remains to be learned about both AChR structure and function, the in vivo functional roles of some AChR subtypes, and the development of better pharmacological tools directed at AChRs to treat addiction, pain, inflammation, and other medically important issues. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, P.O. Box 100267, Gainesville, FL, 32610-0267, USA.
| | - Jon M Lindstrom
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
McConnell DD, Carr SB, Litofsky NS. Potential effects of nicotine on glioblastoma and chemoradiotherapy: a review. Expert Rev Neurother 2019; 19:545-555. [PMID: 31092064 DOI: 10.1080/14737175.2019.1617701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: Glioblastoma multiforme (GBM) has a poor prognosis despite maximal surgical resection with subsequent multi-modal radiation and chemotherapy. Use of tobacco products following diagnosis and during the period of treatment for non-neural tumors detrimentally affects treatment and prognosis. Approximately, 16-28% of patients with glioblastoma continue to smoke after diagnosis and during treatment. The literature is sparse for information-pertaining effects of smoking and nicotine on GBM treatment and prognosis. Areas covered: This review discusses cellular pathways involved in GBM progression that might be affected by nicotine, as well as how nicotine may contribute to resistance to treatment. Similarities of GBM pathways to those in non-neural tumors are investigated for potential effects by nicotine. English language papers were identified using PubMed, Medline and Scopus databases using a combination of keywords including but not limited to the following: nicotine, vaping, tobacco, e-cigarettes, smoking, vaping AND glioblastoma or brain cancer OR/AND temozolomide, carmustine, methotrexate, procarbazine, lomustine, vincristine, and neural tumor cell lines. Expert opinion: Understanding the impact of nicotine on treatment and resistance to chemotherapeutics should allow physicians to educate their patients with GBM with evidence-based recommendations about the effects of continuing to use nicotine-containing products after diagnosis and during treatment.
Collapse
Affiliation(s)
- Diane D McConnell
- a Division of Neurological Surgery , University of Missouri School of Medicine , Columbia , MO , USA
| | - Steven B Carr
- a Division of Neurological Surgery , University of Missouri School of Medicine , Columbia , MO , USA
| | - N Scott Litofsky
- a Division of Neurological Surgery , University of Missouri School of Medicine , Columbia , MO , USA
| |
Collapse
|
6
|
Gaidhani N, Uteshev VV. Treatment duration affects cytoprotective efficacy of positive allosteric modulation of α7 nAChRs after focal ischemia in rats. Pharmacol Res 2018; 136:121-132. [PMID: 30205140 PMCID: PMC6218269 DOI: 10.1016/j.phrs.2018.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/22/2018] [Accepted: 09/02/2018] [Indexed: 12/30/2022]
Abstract
To minimize irreversible brain injury after acute ischemic stroke (AIS), the time to treatment (i.e., treatment delay) should be minimized. However, thus far, all cytoprotective clinical trials have failed. Analysis of literature identified short treatment durations (≤72 h) as a common motif among completed cytoprotective clinical trials. Here, we argue that short cytoprotective regimens even if given early after AIS may only slow down the evolution of ischemic brain injury and fail to deliver sustained long-term solutions leading to relapses that may be misinterpreted for conceptual failure of cytoprotection. In this randomized blinded study, we used young adult male rats subjected to transient 90 min suture middle cerebral artery occlusion (MCAO) and treated with acute vs. sub-chronic regimens of PNU120596, a prototypical positive allosteric modulator of α7 nicotinic acetylcholine receptors with anti-inflammatory cytoprotective properties to test the hypothesis that insufficient treatment durations may reduce therapeutic benefits of otherwise efficacious cytoprotectants after AIS. A single acute treatment 90 min after MCAO significantly reduced brain injury and neurological deficits 24 h later, but these effects vanished 72 h after MCAO. These relapses were avoided by utilizing sub-chronic treatments. Thus, extending treatment duration augments therapeutic efficacy of PNU120596 after MCAO. Furthermore, sub-chronic treatments could offset the negative effects of prolonged treatment delays in cases where the acute treatment window after MCAO was left unexploited. We conclude that a combination of short treatment delays and prolonged treatment durations may be required to maximize therapeutic effects of PNU120596, reduce relapses and ensure sustained therapeutic efficacy after AIS. Similar concepts may hold for other cytoprotectants including those that failed in clinical trials.
Collapse
Affiliation(s)
- Nikhil Gaidhani
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States
| | - Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States.
| |
Collapse
|
7
|
Alpha7 nicotinic acetylcholine receptor-specific agonist DMXBA (GTS-21) attenuates Aβ accumulation through suppression of neuronal γ-secretase activity and promotion of microglial amyloid-β phagocytosis and ameliorates cognitive impairment in a mouse model of Alzheimer's disease. Neurobiol Aging 2018; 62:197-209. [DOI: 10.1016/j.neurobiolaging.2017.10.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 09/30/2017] [Accepted: 10/26/2017] [Indexed: 01/04/2023]
|
8
|
Happ DF, Tasker RA. Effects of α7 Nicotinic Receptor Activation on Cell Survival in Rat Organotypic Hippocampal Slice Cultures. Neurotox Res 2017; 33:887-895. [DOI: 10.1007/s12640-017-9854-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 11/28/2022]
|
9
|
Physiological and pathological processes of synaptic plasticity and memory in drug discovery: Do not forget the dose-response curve. Eur J Pharmacol 2017; 817:59-70. [DOI: 10.1016/j.ejphar.2017.05.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/20/2017] [Accepted: 05/30/2017] [Indexed: 01/24/2023]
|
10
|
Post-Munson DJ, Pieschl RL, Molski TF, Graef JD, Hendricson AW, Knox RJ, McDonald IM, Olson RE, Macor JE, Weed MR, Bristow LJ, Kiss L, Ahlijanian MK, Herrington J. B-973, a novel piperazine positive allosteric modulator of the α7 nicotinic acetylcholine receptor. Eur J Pharmacol 2017; 799:16-25. [PMID: 28132910 DOI: 10.1016/j.ejphar.2017.01.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 11/18/2022]
Abstract
The alpha7 (α7) nicotinic acetylcholine receptor is a therapeutic target for cognitive disorders. Here we describe 3-(3,4-difluorophenyl)-N-(1-(6-(4-(pyridin-2-yl)piperazin-1-yl)pyrazin-2-yl)ethyl)propanamide (B-973), a novel piperazine-containing molecule that acts as a positive allosteric modulator of the α7 receptor. We characterize the action of B-973 on the α7 receptor using electrophysiology and radioligand binding. At 0.1mM acetylcholine, 1μM B-973 potentiated peak acetylcholine-induced currents 6-fold relative to maximal acetylcholine (3mM) and slowed channel desensitization, resulting in a 6900-fold increase in charge transfer. The EC50 of B-973 was approximately 0.3μM at acetylcholine concentrations ranging from 0.03 to 3mM. At a concentration of 1μM, B-973 shifted the acetylcholine EC50 of peak currents from 0.30mM in control to 0.007mM. B-973 slowed channel deactivation upon acetylcholine removal (τ=50s) and increased the affinity of the α7 agonist [3H]A-585539. In the absence of exogenously added acetylcholine, application of B-973 at concentrations >1μM induced large methyllycaconitine-sensitive currents, suggesting B-973 can function as an Ago-PAM at high concentrations. B-973 will be a useful probe for investigating the biological consequences of increasing α7 receptor activity through allosteric modulation.
Collapse
Affiliation(s)
- Debra J Post-Munson
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Rick L Pieschl
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Thaddeus F Molski
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - John D Graef
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Adam W Hendricson
- Lead Discovery and Optimization, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Ronald J Knox
- Lead Discovery and Optimization, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Ivar M McDonald
- Discovery Chemistry, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Richard E Olson
- Discovery Chemistry, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - John E Macor
- Discovery Chemistry, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Michael R Weed
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Linda J Bristow
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Laszlo Kiss
- Lead Discovery and Optimization, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - Michael K Ahlijanian
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA
| | - James Herrington
- Discovery Biology, Bristol-Myers Squibb, Inc., 5 Research Parkway, Wallingford, CT 06492 USA.
| |
Collapse
|
11
|
Cholinergic Protection in Ischemic Brain Injury. SPRINGER SERIES IN TRANSLATIONAL STROKE RESEARCH 2017. [DOI: 10.1007/978-3-319-45345-3_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Sun F, Johnson SR, Jin K, Uteshev VV. Boosting Endogenous Resistance of Brain to Ischemia. Mol Neurobiol 2016; 54:2045-2059. [PMID: 26910820 DOI: 10.1007/s12035-016-9796-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 02/16/2016] [Indexed: 12/22/2022]
Abstract
Most survivors of ischemic stroke remain physically disabled and require prolonged rehabilitation. However, some stroke victims achieve a full neurological recovery suggesting that the human brain can defend itself against ischemic injury, but the protective mechanisms are unknown. This study used selective pharmacological agents and a rat model of cerebral ischemic stroke to detect endogenous brain protective mechanisms that require activation of α7 nicotinic acetylcholine receptors (nAChRs). This endogenous protection was found to be (1) limited to less severe injuries; (2) significantly augmented by intranasal administration of a positive allosteric modulator of α7 nAChRs, significantly reducing brain injury and neurological deficits after more severe ischemic injuries; and (3) reduced by inhibition of calcium/calmodulin-dependent kinase-II. The physiological role of α7 nAChRs remains largely unknown. The therapeutic activation of α7 nAChRs after cerebral ischemia may serve as an important physiological responsibility of these ubiquitous receptors and holds a significant translational potential.
Collapse
Affiliation(s)
- Fen Sun
- Institute for Healthy Aging, Center for Neuroscience Discovery, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | | | - Kunlin Jin
- Institute for Healthy Aging, Center for Neuroscience Discovery, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Victor V Uteshev
- Institute for Healthy Aging, Center for Neuroscience Discovery, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA.
| |
Collapse
|
13
|
Quik M, Zhang D, McGregor M, Bordia T. Alpha7 nicotinic receptors as therapeutic targets for Parkinson's disease. Biochem Pharmacol 2015; 97:399-407. [PMID: 26093062 PMCID: PMC4600450 DOI: 10.1016/j.bcp.2015.06.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/11/2015] [Indexed: 11/25/2022]
Abstract
Accumulating evidence suggests that CNS α7 nicotinic acetylcholine receptors (nAChRs) are important targets for the development of therapeutic approaches for Parkinson's disease. This progressive neurodegenerative disorder is characterized by debilitating motor deficits, as well as autonomic problems, cognitive declines, changes in affect and sleep disturbances. Currently l-dopa is the gold standard treatment for Parkinson's disease motor problems, particularly in the early disease stages. However, it does not improve the other symptoms, nor does it reduce the inevitable disease progression. Novel therapeutic strategies for Parkinson's disease are therefore critical. Extensive pre-clinical work using a wide variety of experimental models shows that nicotine and nAChR agonists protect against damage to nigrostriatal and other neuronal cells. This observation suggests that nicotine and/or nAChR agonists may be useful as disease modifying agents. Additionally, studies in several parkinsonian animal models including nonhuman primates show that nicotine reduces l-dopa-induced dyskinesias, a side effect of l-dopa therapy that may be as incapacitating as Parkinson's disease itself. Work with subtype selective nAChR agonists indicate that α7 nAChRs are involved in mediating both the neuroprotective and antidyskinetic effects, thus offering a targeted strategy with optimal beneficial effects and minimal adverse responses. Here, we review studies demonstrating a role for α7 nAChRs in protection against neurodegenerative effects and for the reduction of l-dopa-induced dyskinesias. Altogether, this work suggests that α7 nAChRs may be useful targets for reducing Parkinson's disease progression and for the management of the dyskinesias that arise with l-dopa therapy.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, CA 94025, USA.
| | - Danhui Zhang
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, CA 94025, USA
| | - Matthew McGregor
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, CA 94025, USA
| | - Tanuja Bordia
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, CA 94025, USA
| |
Collapse
|
14
|
Bertrand D, Lee CHL, Flood D, Marger F, Donnelly-Roberts D. Therapeutic Potential of α7 Nicotinic Acetylcholine Receptors. Pharmacol Rev 2015; 67:1025-73. [PMID: 26419447 DOI: 10.1124/pr.113.008581] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Progress in the fields of neuroscience and molecular biology has identified the forebrain cholinergic system as being important in many higher order brain functions. Further analysis of the genes encoding the nicotinic acetylcholine receptors (nAChRs) has highlighted, in particular, the role of α7 nAChRs in these higher order brain functions as evidenced by their peculiar physiologic and pharmacological properties. As this receptor has gained the attention of scientists from academia and industry, our knowledge of its roles in various brain and bodily functions has increased immensely. We have also seen the development of small molecules that have further refined our understanding of the roles of α7 nAChRs, and these molecules have begun to be tested in clinical trials for several indications. Although a large body of data has confirmed a role of α7 nAChRs in cognition, the translation of small molecules affecting α7 nAChRs into therapeutics has to date only progressed to the stage of testing in clinical trials. Notably, however, most recent human genetic and biochemical studies are further underscoring the crucial role of α7 nAChRs and associated genes in multiple organ systems and disease states. The aim of this review is to discuss our current knowledge of α7 nAChRs and their relevance as a target in specific functional systems and disease states.
Collapse
Affiliation(s)
- Daniel Bertrand
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Chih-Hung L Lee
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Dorothy Flood
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Fabrice Marger
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Diana Donnelly-Roberts
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| |
Collapse
|
15
|
Guerra-Álvarez M, Moreno-Ortega AJ, Navarro E, Fernández-Morales JC, Egea J, López MG, Cano-Abad MF. Positive allosteric modulation of alpha-7 nicotinic receptors promotes cell death by inducing Ca(2+) release from the endoplasmic reticulum. J Neurochem 2015; 133:309-19. [PMID: 25650007 DOI: 10.1111/jnc.13049] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 12/11/2022]
Abstract
Positive allosteric modulation of α7 isoform of nicotinic acetylcholine receptors (α7-nAChRs) is emerging as a promising therapeutic approach for central nervous system disorders such as schizophrenia or Alzheimer's disease. However, its effect on Ca(2+) signaling and cell viability remains controversial. This study focuses on how the type II positive allosteric modulator (PAM II) PNU120596 affects intracellular Ca(2+) signaling and cell viability. We used human SH-SY5Y neuroblastoma cells overexpressing α7-nAChRs (α7-SH) and their control (C-SH). We monitored cytoplasmic and endoplasmic reticulum (ER) Ca(2+) with Fura-2 and the genetically encoded cameleon targeting the ER, respectively. Nicotinic inward currents were measured using patch-clamp techniques. Viability was assessed using methylthiazolyl blue tetrazolium bromide or propidium iodide staining. We observed that in the presence of a nicotinic agonist, PNU120596 (i) reduced viability of α7-SH but not of C-SH cells; (ii) significantly increased inward nicotinic currents and cytosolic Ca(2+) concentration; (iii) released Ca(2+) from the ER by a Ca(2+) -induced Ca(2+) release mechanism only in α7-SH cells; (iv) was cytotoxic in rat organotypic hippocampal slice cultures; and, lastly, all these effects were prevented by selective blockade of α7-nAChRs, ryanodine receptors, or IP3 receptors. In conclusion, positive allosteric modulation of α7-nAChRs with the PAM II PNU120596 can lead to dysregulation of ER Ca(2+) , overloading of intracellular Ca(2+) , and neuronal cell death. This study focuses on how the type II positive allosteric modulator PNU120596 (PAM II PNU12) affects intracellular Ca(2+) signaling and cell viability. Using SH-SY5Y neuroblastoma cells overexpressing α7-nAChRs (α7-SH) and their control (C-SH), we find that PAM of α7-nAChRs with PNU120596: (i) increases inward calcium current (ICa ) and cytosolic Ca(2+) concentration ([Ca(2+) ]cyt ); (ii) releases Ca(2+) from the ER ([Ca(2+) ]ER ) by a Ca(2+) -induced Ca(2+) release mechanism; and (iv) reduces cell viability. These findings were corroborated in rat hippocampal organotypic cultures. [Ca(2+) ]cyt , cytosolic Ca(2+) concentration; [Ca(2+) ]ER , endoplasmic reticulum Ca(2+) concentration; α7 nAChR, α7 isoform of nicotinic acetylcholine receptors; α7-SH, SH-SY5Y stably overexpressing α7 nAChRs cells; C-SH, control SH-SY5Y cells; Nic, nicotine; PNU12, PNU120596.
Collapse
Affiliation(s)
- María Guerra-Álvarez
- Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
High therapeutic potential of positive allosteric modulation of α7 nAChRs in a rat model of traumatic brain injury: proof-of-concept. Brain Res Bull 2015; 112:35-41. [PMID: 25647232 DOI: 10.1016/j.brainresbull.2015.01.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/15/2015] [Accepted: 01/23/2015] [Indexed: 12/25/2022]
Abstract
There are currently no clinically efficacious drug therapies to treat brain damage secondary to traumatic brain injury (TBI). In this proof-of-concept study, we used a controlled cortical impact model of TBI in young adult rats to explore a novel promising approach that utilizes PNU-120596, a previously reported highly selective Type-II positive allosteric modulator (α7-PAM) of α7 nicotinic acetylcholine receptors (nAChRs). α7-PAMs enhance and prolong α7 nAChR activation, but do not activate α7 nAChRs when administered without an agonist. The rational basis for the use of an α7-PAM as a post-TBI treatment is tripartite and arises from: (1) the intrinsic ability of brain injury to elevate extracellular levels of choline (a ubiquitous cell membrane-building material and a selective endogenous agonist of α7 nAChRs) due to the breakdown of cell membranes near the site and time of injury; (2) the ubiquitous expression of functional α7 nAChRs in neuronal and glial/immune brain cells; and (3) the potent neuroprotective and anti-inflammatory effects of α7 nAChR activation. Therefore, both neuroprotective and anti-inflammatory effects can be achieved post-TBI by targeting only a single player (i.e., the α7 nAChR) using α7-PAMs to enhance the activation of α7 nAChRs by injury-elevated extracellular choline. Our data support this hypothesis and demonstrate that subcutaneous administration of PNU-120596 post-TBI in young adult rats significantly reduces both brain cell damage and reactive gliosis. Therefore, our results introduce post-TBI systemic administration of α7-PAMs as a promising therapeutic intervention that could significantly restrict brain injury post-TBI and facilitate recovery of TBI patients.
Collapse
|
17
|
Uteshev VV. The therapeutic promise of positive allosteric modulation of nicotinic receptors. Eur J Pharmacol 2014; 727:181-5. [PMID: 24530419 DOI: 10.1016/j.ejphar.2014.01.072] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/17/2014] [Accepted: 01/24/2014] [Indexed: 12/11/2022]
Abstract
In the central nervous system, deficits in cholinergic neurotransmission correlate with decreased attention and cognitive impairment, while stimulation of neuronal nicotinic acetylcholine receptors improves attention, cognitive performance and neuronal resistance to injury as well as produces robust analgesic and anti-inflammatory effects. The rational basis for the therapeutic use of orthosteric agonists and positive allosteric modulators (PAMs) of nicotinic receptors arises from the finding that functional nicotinic receptors are ubiquitously expressed in neuronal and non-neuronal tissues including brain regions highly vulnerable to traumatic and ischemic types of injury (e.g., cortex and hippocampus). Moreover, functional nicotinic receptors do not vanish in age-, disease- and trauma-related neuropathologies, but their expression and/or activation levels decline in a subunit- and brain region-specific manner. Therefore, augmenting the endogenous cholinergic tone by nicotinic agents is possible and may offset neurological impairments associated with cholinergic hypofunction. Importantly, because neuronal damage elevates extracellular levels of choline (a selective agonist of α7 nicotinic acetylcholine receptors) near the site of injury, α7-PAM-based treatments may augment pathology-activated α7-dependent auto-therapies where and when they are most needed (i.e., in the penumbra, post-injury). Thus, nicotinic-PAM-based treatments are expected to augment the endogenous cholinergic tone in a spatially and temporally restricted manner creating the potential for differential efficacy and improved safety as compared to exogenous orthosteric nicotinic agonists that activate nicotinic receptors indiscriminately. In this review, I will summarize the existing trends in therapeutic applications of nicotinic PAMs.
Collapse
Affiliation(s)
- Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
18
|
Kalappa BI, Sun F, Johnson SR, Jin K, Uteshev VV. A positive allosteric modulator of α7 nAChRs augments neuroprotective effects of endogenous nicotinic agonists in cerebral ischaemia. Br J Pharmacol 2014; 169:1862-78. [PMID: 23713819 DOI: 10.1111/bph.12247] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/08/2013] [Accepted: 05/16/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of α7 nicotinic acetylcholine receptors (nAChRs) can be neuroprotective. However, endogenous choline and ACh have not been regarded as potent neuroprotective agents because physiological levels of choline/ACh do not produce neuroprotective levels of α7 activation. This limitation may be overcome by the use of type-II positive allosteric modulators (PAMs-II) of α7 nAChRs, such as 1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-methylisoxazol-3-yl)-urea (PNU-120596). This proof-of-concept study presents a novel neuroprotective paradigm that converts endogenous choline/ACh into potent neuroprotective agents in cerebral ischaemia by inhibiting α7 nAChR desensitization using PNU-120596. EXPERIMENTAL APPROACH An electrophysiological ex vivo cell injury assay (to quantify the susceptibility of hippocampal neurons to acute injury by complete oxygen and glucose deprivation; COGD) and an in vivo middle cerebral artery occlusion model of ischaemia were used in rats. KEY RESULTS Choline (20-200 μM) in the presence, but not absence of 1 μM PNU-120596 significantly delayed anoxic depolarization/injury of hippocampal CA1 pyramidal neurons, but not CA1 stratum radiatum interneurons, subjected to COGD in acute hippocampal slices and these effects were blocked by 20 nM methyllycaconitine, a selective α7 antagonist, thus, activation of α7 nAChRs was required. PNU-120596 alone was ineffective ex vivo. In in vivo experiments, both pre- and post-ischaemia treatments with PNU-120596 (30 mg·kg(-1) , s.c. and 1 mg·kg(-1) , i.v., respectively) significantly reduced the cortical/subcortical infarct volume caused by transient focal cerebral ischaemia. PNU-120596 (1 mg·kg(-1) , i.v., 30 min post-ischaemia) remained neuroprotective in rats subjected to a choline-deficient diet for 14 days prior to experiments. CONCLUSIONS AND IMPLICATIONS PNU-120596 and possibly other PAMs-II significantly improved neuronal survival in cerebral ischaemia by augmenting neuroprotective effects of endogenous choline/ACh.
Collapse
Affiliation(s)
- Bopanna I Kalappa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | | | | | | | | |
Collapse
|
19
|
Sun F, Jin K, Uteshev VV. A type-II positive allosteric modulator of α7 nAChRs reduces brain injury and improves neurological function after focal cerebral ischemia in rats. PLoS One 2013; 8:e73581. [PMID: 23951360 PMCID: PMC3739732 DOI: 10.1371/journal.pone.0073581] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/26/2013] [Indexed: 11/19/2022] Open
Abstract
In the absence of clinically-efficacious therapies for ischemic stroke there is a critical need for development of new therapeutic concepts and approaches for prevention of brain injury secondary to cerebral ischemia. This study tests the hypothesis that administration of PNU-120596, a type-II positive allosteric modulator (PAM-II) of α7 nicotinic acetylcholine receptors (nAChRs), as long as 6 hours after the onset of focal cerebral ischemia significantly reduces brain injury and neurological deficits in an animal model of ischemic stroke. Focal cerebral ischemia was induced by a transient (90 min) middle cerebral artery occlusion (MCAO). Animals were then subdivided into two groups and injected intravenously (i.v.) 6 hours post-MCAO with either 1 mg/kg PNU-120596 (treated group) or vehicle only (untreated group). Measurements of cerebral infarct volumes and neurological behavioral tests were performed 24 hrs post-MCAO. PNU-120596 significantly reduced cerebral infarct volume and improved neurological function as evidenced by the results of Bederson, rolling cylinder and ladder rung walking tests. These results forecast a high therapeutic potential for PAMs-II as effective recruiters and activators of endogenous α7 nAChR-dependent cholinergic pathways to reduce brain injury and improve neurological function after cerebral ischemic stroke.
Collapse
Affiliation(s)
- Fen Sun
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, Fort Worth, TX, United States of America
| | - Kunlin Jin
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, Fort Worth, TX, United States of America
| | - Victor V. Uteshev
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, Fort Worth, TX, United States of America
- * E-mail:
| |
Collapse
|
20
|
Suzuki S, Kawamata J, Matsushita T, Matsumura A, Hisahara S, Takata K, Kitamura Y, Kem W, Shimohama S. 3-[(2,4-dimethoxy)benzylidene]-anabaseine dihydrochloride protects against 6-hydroxydopamine-induced parkinsonian neurodegeneration through α7 nicotinic acetylcholine receptor stimulation in rats. J Neurosci Res 2012; 91:462-71. [DOI: 10.1002/jnr.23160] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/28/2012] [Accepted: 09/28/2012] [Indexed: 12/12/2022]
|
21
|
Williams DK, Peng C, Kimbrell MR, Papke RL. Intrinsically low open probability of α7 nicotinic acetylcholine receptors can be overcome by positive allosteric modulation and serum factors leading to the generation of excitotoxic currents at physiological temperatures. Mol Pharmacol 2012; 82:746-59. [PMID: 22828799 PMCID: PMC3463224 DOI: 10.1124/mol.112.080317] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/24/2012] [Indexed: 01/23/2023] Open
Abstract
α7 nicotinic acetylcholine receptors (nAChRs) have been a puzzle since their discovery in brain and non-neuronal tissues. Maximal transient probability of an α7 nAChR being open with rapid agonist applications is only 0.002. The concentration dependence of α7 responses measured from transfected cells and Xenopus laevis oocytes shows the same disparity in potency estimations for peak currents and net charge, despite being studied at 1000-fold different time scales. In both cases the EC₅₀ was approximately 10-fold lower for net charge than for peak currents. The equivalence of the data obtained at such disparate time scales indicates that desensitization of α7 is nearly instantaneous. At high levels of agonist occupancy, the receptor is preferentially converted to a ligand-bound nonconducting state, which can be destabilized by the positive allosteric modulator N-(5-chloro-2,4-dimethoxyphenyl)-N'-(5-methyl-3-isoxazolyl)-urea (PNU-120596). Such currents can be sufficiently large to be cytotoxic to the α7-expressing cells. Both the potentiating effect of PNU-120596 and the associated cytotoxicity have a high temperature dependence that can be compensated for by serum factors. Therefore, despite reduced potentiation at body temperatures, use of type II positive allosteric modulators may put cells that naturally express high levels of α7 nAChRs, such as neurons in the hippocampus and hypothalamus, at risk. With a low intrinsic open probability and high propensity toward the induction of nonconducting ligand-bound states, it is likely that the well documented regulation of signal transduction pathways by α7 nAChRs in cells such as those that regulate inflammation may be independent of ion channel activation and associated with the nonconducting conformational states.
Collapse
Affiliation(s)
- Dustin K Williams
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, Florida, USA
| | | | | | | |
Collapse
|
22
|
Uteshev VV. Somatic integration of single ion channel responses of α7 nicotinic acetylcholine receptors enhanced by PNU-120596. PLoS One 2012; 7:e32951. [PMID: 22479351 PMCID: PMC3316542 DOI: 10.1371/journal.pone.0032951] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/02/2012] [Indexed: 11/18/2022] Open
Abstract
Positive allosteric modulators of highly Ca2+-permeable α7 nicotinic acetylcholine receptors, such as PNU-120596, may become useful therapeutic tools supporting neuronal survival and function. However, despite promising results, the initial optimism has been tempered by the concerns for cytotoxicity. The same concentration of a given nicotinic agent can be neuroprotective, ineffective or neurotoxic due to differences in the expression of α7 receptors and susceptibility to Ca2+ influx among various subtypes of neurons. Resolution of these concerns may require an ability to reliably detect, evaluate and optimize the extent of α7 somatic ionic influx, a key determinant of the likelihood of neuronal survival and function. In the presence of PNU-120596 and physiological choline (∼10 µM), the activity of individual α7 channels can be detected in whole-cell recordings as step-like current/voltage deviations. However, the extent of α7 somatic influx remains elusive because the activity of individual α7 channels may not be integrated across the entire soma, instead affecting only specific subdomains located in the channel vicinity. Such a compartmentalization may obstruct detection and integration of α7 currents, causing an underestimation of α7 activity. By contrast, if step-like α7 currents are integrated across the soma, then a reliable quantification of α7 influx in whole-cell recordings is possible and could provide a rational basis for optimization of conditions that support survival of α7-expressing neurons. This approach can be used to directly correlate α7 single-channel activity to neuronal function. In this study, somatic dual-patch recordings were conducted using large hypothalamic and hippocampal neurons in acute coronal rat brain slices. The results demonstrate that the membrane electrotonic properties do not impede somatic signaling, allowing reliable estimates of somatic ionic and Ca2+ influx through α7 channels, while the somatic space-clamp error is minimal (∼0.01 mV/µm). These research efforts could benefit optimization of potential α7-PAM-based therapies.
Collapse
Affiliation(s)
- Victor V Uteshev
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America.
| |
Collapse
|
23
|
Scerri C, Stewart CA, Balfour DJK, Breen KC. Nicotine modifies in vivo and in vitro rat hippocampal amyloid precursor protein processing in young but not old rats. Neurosci Lett 2012; 514:22-6. [PMID: 22381398 DOI: 10.1016/j.neulet.2012.02.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/08/2012] [Accepted: 02/13/2012] [Indexed: 11/30/2022]
Abstract
Previous studies have shown that administration of nicotine modifies the expression and secretion of amyloid precursor protein (APP) in various cell lines. The present study investigated the extent to which chronic subcutaneous nicotine administration influences APP levels and processing in cerebral cortex, striatum and hippocampus of young and old rat brains. The results showed that constant nicotine infusion (0.25 or 4.00mg/kg/day) increased the levels of particulate APP (APPp) but not secreted APP (APPs) in the hippocampus of young rats in vivo. This response to nicotine was not observed in the striatum or cerebral cortex of young rats or in any of the brain regions examined in old animals. Subsequent in vitro analysis demonstrated that nicotine enhanced the release of APPs from hippocampal slice preparations and that this increase was attenuated by mecamylamine, a non-selective nicotinic acetylcholine receptor (nAChR) antagonist. The in vitro effect of nicotine on APPs was age-related, being only detected from hippocampal slices derived from the young but not the older animals. These results suggest that nicotine modulates APP expression and secretion in the hippocampus and that the responses observed to the drug are age-dependent being only detected in younger rats.
Collapse
Affiliation(s)
- Charles Scerri
- Division of Neuroscience, Medical Research Institute, University of Dundee, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK.
| | | | | | | |
Collapse
|
24
|
Uteshev VV. α7 nicotinic ACh receptors as a ligand-gated source of Ca(2+) ions: the search for a Ca(2+) optimum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:603-38. [PMID: 22453962 DOI: 10.1007/978-94-007-2888-2_27] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The spatiotemporal distribution of cytosolic Ca(2+) ions is a key determinant of neuronal behavior and survival. Distinct sources of Ca(2+) ions including ligand- and voltage-gated Ca(2+) channels contribute to intracellular Ca(2+) homeostasis. Many normal physiological and therapeutic neuronal functions are Ca(2+)-dependent, however an excess of cytosolic Ca(2+) or a lack of the appropriate balance between Ca(2+) entry and clearance may destroy cellular integrity and cause cellular death. Therefore, the existence of optimal spatiotemporal patterns of cytosolic Ca(2+) elevations and thus, optimal activation of ligand- and voltage-gated Ca(2+) ion channels are postulated to benefit neuronal function and survival. Alpha7 nicotinic -acetylcholine receptors (nAChRs) are highly permeable to Ca(2+) ions and play an important role in modulation of neurotransmitter release, gene expression and neuroprotection in a variety of neuronal and non-neuronal cells. In this review, the focus is placed on α7 nAChR-mediated currents and Ca(2+) influx and how this source of Ca(2+) entry compares to NMDA receptors in supporting cytosolic Ca(2+) homeostasis, neuronal function and survival.
Collapse
Affiliation(s)
- Victor V Uteshev
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA.
| |
Collapse
|
25
|
Williams DK, Wang J, Papke RL. Investigation of the molecular mechanism of the α7 nicotinic acetylcholine receptor positive allosteric modulator PNU-120596 provides evidence for two distinct desensitized states. Mol Pharmacol 2011; 80:1013-32. [PMID: 21885620 PMCID: PMC3228536 DOI: 10.1124/mol.111.074302] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/01/2011] [Indexed: 12/11/2022] Open
Abstract
Although α7 nicotinic acetylcholine receptors are considered potentially important therapeutic targets, the development of selective agonists has been stymied by the α7 receptor's intrinsically low probability of opening (P(open)) and the concern that an agonist-based therapeutic approach would disrupt endogenous cholinergic function. Development of α7 positive allosteric modulators (PAMs) holds promise of avoiding both issues. N-(5-Chloro-2,4-dimethoxyphenyl)-N'-(5-methyl-3-isoxazolyl)-urea (PNU-120596) is one of the most effective α7 PAMs, with a mechanism associated, at least in part, with the destabilization of desensitized states. We studied the mechanism of PNU-120596 potentiation of α7 receptors expressed in Xenopus laevis oocytes and outside-out patches from BOSC 23 cells. We identify two forms of α7 desensitization: one is destabilized by PNU-120596 (D(s)), and the other is induced by strong episodes of activation and is stable in the presence of the PAM (D(i)). Our characterization of prolonged bursts of single-channel currents that occur with PNU-120596 provide a remarkable contrast to the behavior of the channels in the absence of the PAM. Individual channels that avoid the D(i) state show a 100,000-fold increase in P(open) compared with receptors in the nonpotentiated state. In the presence of PNU-120596, balance between D(s) and D(i) is dynamically regulated by both agonist and PAM binding, with maximal ion channel activity at intermediate levels of binding to both classes of sites. In the presence of high agonist concentrations, competitive antagonists may have the effect of shifting the balance in favor of D(s) and increasing ion channel currents.
Collapse
Affiliation(s)
- Dustin K Williams
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610-0267, USA
| | | | | |
Collapse
|
26
|
Williams DK, Wang J, Papke RL. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations. Biochem Pharmacol 2011; 82:915-30. [PMID: 21575610 DOI: 10.1016/j.bcp.2011.05.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 11/16/2022]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high-affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues.
Collapse
Affiliation(s)
- Dustin K Williams
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL Neurocypres, United States
| | | | | |
Collapse
|
27
|
Williams DK, Stokes C, Horenstein NA, Papke RL. The effective opening of nicotinic acetylcholine receptors with single agonist binding sites. J Gen Physiol 2011; 137:369-84. [PMID: 21444659 PMCID: PMC3068282 DOI: 10.1085/jgp.201010587] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 02/17/2011] [Indexed: 11/20/2022] Open
Abstract
We have identified a means by which agonist-evoked responses of nicotinic receptors can be conditionally eliminated. Modification of α7L119C mutants by the sulfhydryl reagent 2-aminoethyl methanethiosulfonate (MTSEA) reduces responses to acetylcholine (ACh) by more than 97%, whereas corresponding mutations in muscle-type receptors produce effects that depend on the specific subunits mutated and ACh concentration. We coexpressed α7L119C subunits with pseudo wild-type α7C116S subunits, as well as ACh-insensitive α7Y188F subunits with wild-type α7 subunits in Xenopus laevis oocytes using varying ratios of cRNA. When mutant α7 cRNA was coinjected at a 5:1 ratio with wild-type cRNA, net charge responses to 300 µM ACh were retained by α7L119C-containing mutants after MTSEA modification and by the ACh-insensitive Y188F-containing mutants, even though the expected number of ACh-sensitive wild-type binding sites would on average be fewer than two per receptor. Responses of muscle-type receptors with one MTSEA-sensitive subunit were reduced at low ACh concentrations, but much less of an effect was observed when ACh concentrations were high (1 mM), indicating that saturation of a single binding site with agonist can evoke strong activation of nicotinic ACh receptors. Single-channel patch clamp analysis revealed that the burst durations of fetal wild-type and α1β1γδL121C receptors were equivalent until the α1β1γδL121C mutants were exposed to MTSEA, after which the majority (81%) of bursts were brief (≤2 ms). The longest duration events of the receptors modified at only one binding site were similar to the long bursts of native receptors traditionally associated with the activation of receptors with two sites containing bound agonists.
Collapse
Affiliation(s)
- Dustin K. Williams
- Department of Pharmacology and Therapeutics, and Department of Chemistry, University of Florida, Gainesville, FL 32610
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, and Department of Chemistry, University of Florida, Gainesville, FL 32610
| | - Nicole A. Horenstein
- Department of Pharmacology and Therapeutics, and Department of Chemistry, University of Florida, Gainesville, FL 32610
| | - Roger L. Papke
- Department of Pharmacology and Therapeutics, and Department of Chemistry, University of Florida, Gainesville, FL 32610
| |
Collapse
|
28
|
Wang J, Horenstein NA, Stokes C, Papke RL. Tethered agonist analogs as site-specific probes for domains of the human α7 nicotinic acetylcholine receptor that differentially regulate activation and desensitization. Mol Pharmacol 2010; 78:1012-25. [PMID: 20823218 PMCID: PMC2993465 DOI: 10.1124/mol.110.066662] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 09/02/2010] [Indexed: 11/22/2022] Open
Abstract
Homomeric α7 nicotinic acetylcholine receptors represent an important and complex pharmaceutical target. They can be activated by structurally diverse agonists and are highly likely to enter and remain in desensitized states at rates determined by the structures of the agonists. To identify structural elements regulating this function, we introduced reactive cysteines into the α7 ligand-binding domain allowing us to bind sulfhydryl-reactive (SH) agonist analogs or control reagents onto specific positions in the ligand binding domain. We identified four α7 mutants (S36C, L38C, W55C, and L119C) in which the tethering of the SH reagents blocked further acetylcholine-evoked activation of the receptor. However, after selective reaction with SH agonist analogs, the type II allosteric modulator N-(5-chloro-2,4-dimethoxyphenyl)-N'-(5-methyl-3-isoxazolyl-3-isoxazolyl)-urea (PNU-120596) could reactivate L119C and W55C mutants and receptors with a reduced or modified C-loop. Modified S36C and L38C mutants were insensitive to reactivation by PNU-120596, whether they were reacted with agonist analogs or alternative SH reagents. Molecular modeling showed that in the W55C and L119C mutants, the ammonium pharmacophore of the agonist analog methanethiosulfonate-ethyltrimethylammonium would be in a similar but nonidentical position underneath the C-loop. The orientation assumed by the ligand tethered to 119C was approximately 3-fold more sensitive to PNU-120596 than the alternative pose at 55C. Our results support the hypothesis that a single ligand can bind within the receptor in different ways and, depending on the specific binding pose, may variously promote activation or desensitization, or, alternatively, function as a competitive antagonist. This insight may provide a new approach for drug development.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Pharmacology and Therapeutics University of Florida, Gainesville, FL 32610-0267, USA
| | | | | | | |
Collapse
|
29
|
Activation of functional α7-containing nAChRs in hippocampal CA1 pyramidal neurons by physiological levels of choline in the presence of PNU-120596. PLoS One 2010; 5:e13964. [PMID: 21103043 PMCID: PMC2980465 DOI: 10.1371/journal.pone.0013964] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 10/22/2010] [Indexed: 01/18/2023] Open
Abstract
Background The level of expression of functional α7-containing nicotinic acetylcholine receptors (nAChRs) in hippocampal CA1 pyramidal neurons is believed to be very low compared to hippocampal CA1 interneurons, and for many years this expression was largely overlooked. However, high densities of expression of functional α7-containing nAChRs in CA1 pyramidal neurons may not be necessary for triggering important cellular and network functions, especially if activation of α7-containing nAChRs occurs in the presence of positive allosteric modulators such as PNU-120596. Methodology/Principal Findings An approach previously developed for α7-containing nAChRs expressed in tuberomammillary neurons was applied to investigate functional CA1 pyramidal α7-containing nAChRs using rat coronal hippocampal slices and patch-clamp electrophysiology. The majority (∼71%) of tested CA1 pyramidal neurons expressed low densities of functional α7-containing nAChRs as evidenced by small whole-cell responses to choline, a selective endogenous agonist of α7 nAChRs. These responses were potentiated by PNU-120596, a novel positive allosteric modulator of α7 nAChRs. The density of functional α7-containing nAChRs expressed in CA1 pyramidal neurons (and thus, the normalized net effect of activation, i.e., response net charge per unit of membrane capacitance per unit of time) was estimated to be ∼5% of the density observed in CA1 interneurons. The results of this study demonstrate that despite low levels of expression of functional pyramidal α7-containing nAChRs, physiological levels of choline (∼10 µM) are sufficient to activate these receptors and transiently depolarize and even excite CA1 pyramidal neurons in the presence of PNU-120596. The observed effects are possible because in the presence of 10 µM choline and 1–5 µM PNU-120596, a single opening of an individual pyramidal α7-containing nAChR ion channel appears to transiently depolarize (∼4 mV) the entire pyramidal neuron and occasionally trigger action potentials. Conclusions 1) The majority of hippocampal CA1 pyramidal neurons express functional α7-containing nAChRs. In the absence of PNU-120596, a positive allosteric modulator of α7 nAChRs, a lack of responsiveness of some hippocampal CA1 pyramidal neurons to focal application of 0.5–1 mM choline does not imply a lack of expression of functional α7-containing nAChRs in these neurons. Rather, it may indicate a lack of detection of α7-containing nAChR-mediated currents by patch-clamp electrophysiology. 2) PNU-120596 can serve as a powerful tool for detection and enhancement of responsiveness of low densities of functional α7-containing nAChRs such as those present in hippocampal CA1 pyramidal neurons. 3) In the presence of PNU-120596, physiological concentrations of choline activate functional CA1 pyramidal α7-containing nAChRs and produce step-like currents that cause repetitive step-like depolarizations, occasionally triggering bursts of action potentials in CA1 pyramidal neurons. Therefore, the results of this study suggest that in the presence of PNU-120596 and possibly other positive allosteric modulators, endogenous choline may persistently activate CA1 pyramidal α7-containing nAChRs, enhance the excitability of CA1 pyramidal neurons and thus act as a potent therapeutic agent with potential neuroprotective and cognition-enhancing properties.
Collapse
|
30
|
Paulo JA, Brucker WJ, Hawrot E. Proteomic analysis of an alpha7 nicotinic acetylcholine receptor interactome. J Proteome Res 2009; 8:1849-58. [PMID: 19714875 DOI: 10.1021/pr800731z] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The alpha7 nicotinic acetylcholine receptor (nAChR) is well established as the principal high-affinity alpha-bungarotoxin-binding protein in the mammalian brain. We isolated carbachol-sensitive alpha-bungarotoxin-binding complexes from total mouse brain tissue by affinity immobilization followed by selective elution, and these proteins were fractionated by SDS-PAGE. The proteins in subdivided gel lane segments were tryptically digested, and the resulting peptides were analyzed by standard mass spectrometry. We identified 55 proteins in wild-type samples that were not present in comparable brain samples from alpha7 nAChR knockout mice that had been processed in a parallel fashion. Many of these 55 proteins are novel proteomic candidates for interaction partners of the alpha7 nAChR, and many are associated with multiple signaling pathways that may be implicated in alpha7 function in the central nervous system. The newly identified potential protein interactions, together with the general methodology that we introduce for alpha-bungarotoxin-binding protein complexes, form a new platform for many interesting follow-up studies aimed at elucidating the physiological role of neuronal alpha7 nAChRs.
Collapse
Affiliation(s)
- Joao A Paulo
- Graduate Program in Molecular Biology, Cell Biology and Biochemistry and Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
31
|
Bitner RS, Nikkel AL, Markosyan S, Otte S, Puttfarcken P, Gopalakrishnan M. Selective α7 nicotinic acetylcholine receptor activation regulates glycogen synthase kinase3β and decreases tau phosphorylation in vivo. Brain Res 2009; 1265:65-74. [DOI: 10.1016/j.brainres.2009.01.069] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 01/23/2009] [Accepted: 01/31/2009] [Indexed: 11/27/2022]
|
32
|
Nicotinic receptor agonists and antagonists increase sAPPα secretion and decrease Aβ levels in vitro. Neurochem Int 2009; 54:237-44. [DOI: 10.1016/j.neuint.2008.12.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 11/19/2008] [Accepted: 12/02/2008] [Indexed: 02/01/2023]
|
33
|
Buckingham SD, Jones AK, Brown LA, Sattelle DB. Nicotinic acetylcholine receptor signalling: roles in Alzheimer's disease and amyloid neuroprotection. Pharmacol Rev 2009; 61:39-61. [PMID: 19293145 PMCID: PMC2830120 DOI: 10.1124/pr.108.000562] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD), the major contributor to dementia in the elderly, involves accumulation in the brain of extracellular plaques containing the beta-amyloid protein (Abeta) and intracellular neurofibrillary tangles of hyperphosphorylated tau protein. AD is also characterized by a loss of neurons, particularly those expressing nicotinic acetylcholine receptors (nAChRs), thereby leading to a reduction in nAChR numbers. The Abeta(1-42) protein, which is toxic to neurons, is critical to the onset and progression of AD. The discovery of new drug therapies for AD is likely to be accelerated by an improved understanding of the mechanisms whereby Abeta causes neuronal death. We examine the evidence for a role in Abeta(1-42) toxicity of nAChRs; paradoxically, nAChRs can also protect neurons when activated by nicotinic ligands. Abeta peptides and nicotine differentially activate several intracellular signaling pathways, including the phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene homolog pathway, the extracellular signal-regulated kinase/mitogen-activated protein kinase, and JAK-2/STAT-3 pathways. These pathways control cell death or survival and the secretion of Abeta peptides. We propose that understanding the differential activation of these pathways by nicotine and/or Abeta(1-42) may offer the prospect of new routes to therapy for AD.
Collapse
Affiliation(s)
- Steven D Buckingham
- Medical Research Council Functional Genomics Unit, Department of Physiology Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK, OX1 3QX
| | | | | | | |
Collapse
|
34
|
Toledano A, Alvarez MI, Caballero I, Carmona P, De Miguel E. Immunohistochemical increase in cyclooxygenase-2 without apoptosis in different brain areas of subchronic nicotine- and D-amphetamine-treated rats. J Neural Transm (Vienna) 2008; 115:1093-108. [PMID: 18351285 DOI: 10.1007/s00702-008-0040-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 02/26/2008] [Indexed: 11/25/2022]
Abstract
Cyclooxygenase-2 (COX-2) upregulation has been related to both neurodegeneration and physiological processes. To clarify whether nicotine-induced upregulation of COX-2 occurs, and to analyse its significance, a comparative immunohistochemical and Western blot study was performed on the frontoparietal cortex, hippocampus and cerebellar cortex of rats treated (14 days) with nicotine, D(+)amphetamine (0.35 and 1.16 mg free base/kg/day, respectively), or both drugs simultaneously. None of these treatments promoted neuronal apoptosis. Lipid peroxidation increased in the hippocampus of the nicotine-treated rats and in all the brain regions examined in the D(+)amphetamine rats, but not in the double-treated animals. Both molecules increased the COX-2 content (as determined by the number of immunopositive neurons and the intensity of their immunodeposits) in an area-, layer- and neuron type-dependent manner, in all brain regions in which a large number of COX-2 immunopositive neurons were observed in controls (the somatosensory cortical areas, CA-1, CA-3, the gyrus dentatus, the ectorhinal/perirhinal areas, and the gyrus cingularis). No increase was seen in the motor cortical areas, while a reduction was recorded in the cerebellar cortex; these regions had only a few immunopositive neurons in controls. Western blot analysis revealed a 50-80% increase in COX-2 in the brain cortex and hippocampus of nicotine-treated rats, and similar increases (150-200%) in the cortex of the D(+)amphetamine- and nicotine + D(+)amphetamine-treated rats. Nicotine-induced upregulation of COX-2 seems to be related to neuronal plasticity rather than neurodegeneration. Nicotine agonists might be useful in the treatment of cognitive disorders.
Collapse
Affiliation(s)
- A Toledano
- Instituto Cajal, CSIC, Avda. Dr. Arce 37, 28002, Madrid, Spain.
| | | | | | | | | |
Collapse
|
35
|
Carmona P, Rodríguez-Casado A, Alvarez I, de Miguel E, Toledano A. FTIR microspectroscopic analysis of the effects of certain drugs on oxidative stress and brain protein structure. Biopolymers 2008; 89:548-54. [DOI: 10.1002/bip.20944] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Buccafusco JJ, Terry AV, Decker MW, Gopalakrishnan M. Profile of nicotinic acetylcholine receptor agonists ABT-594 and A-582941, with differential subtype selectivity, on delayed matching accuracy by young monkeys. Biochem Pharmacol 2007; 74:1202-11. [PMID: 17706609 DOI: 10.1016/j.bcp.2007.07.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/10/2007] [Accepted: 07/10/2007] [Indexed: 01/16/2023]
Abstract
ABT-594 and A-582941 are high affinity neuronal nicotinic acetylcholine receptor agonists with differential selectivity for the alpha4beta2 and the alpha7 subtypes, respectively. This study was designed to determine whether either compound, like nicotine also possesses cognitive-enhancing ability. The compounds were administered by intramuscular injection to young adult Rhesus monkeys trained to perform two versions of a computer-assisted delayed matching-to-sample (DMTS) task. ABT-594 (0.115-3.7 microg/kg) significantly improved DMTS accuracies, shifting the retention curve (accuracy-delay relationship) to the right in a parallel fashion. DMTS accuracy also was maintained during the sessions initiated 24h after compound administration. Because task accuracy was improved during short delay trials, a separate study was performed in which non-predictable distractors were inserted within the DMTS format to impair accuracy. The 0.115 microg/kg dose of ABT-594 almost completely reversed distractor-impaired performance associated with short delay trials. The alpha7 nAChR agonist, A-582941 (1.14-38 microg/kg) also significantly improved DMTS accuracies. The compound produced a significant improvement during long delay trials. The effect was twice as robust for long delay as compared with short delay trials and A-582941 was not as effective as ABT-594 in improving short delay trial accuracy. A-582941 also failed to sustain task improvement during sessions run 24h after dosing. These data are consistent with the ability of subtype-preferring nicotinic receptor agonists to enhance specific components of working memory and cognitive function, and they suggest that differential subtype selectivity could result in varied pharmacological response profiles.
Collapse
Affiliation(s)
- Jerry J Buccafusco
- Department of Pharmacology and Toxicology, Alzheimer's Research Center, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | |
Collapse
|
37
|
Egea J, Rosa AO, Cuadrado A, García AG, López MG. Nicotinic receptor activation by epibatidine induces heme oxygenase-1 and protects chromaffin cells against oxidative stress. J Neurochem 2007; 102:1842-1852. [PMID: 17540012 DOI: 10.1111/j.1471-4159.2007.04665.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation of neuronal nicotinic acetylcholine receptors (nAChR) provides neuroprotection against different toxic stimuli that often lead to overproduction of reactive oxygen species (ROS) and cell death. ROS production has been related with disease progression in several neurodegenerative pathologies such as Alzheimer's or Parkinson's diseases. In this context, we investigated here if the exposure of bovine chromaffin cells to the potent nAChR agonist epibatidine protected against rotenone (30 micromol/L) plus oligomycin (10 micromol/L) (rot/oligo) toxicity, an in vitro model of mitochondrial ROS production. Epibatidine induced a concentration- and time-dependent protection, which was maximal at 3 mumol/L after 24 h. Pre-incubation with dantrolene (100 micromol/L) (a blocker of the ryanodine receptor channel), chelerythrine (1 micromol/L) (a protein kinase C inhibitor), or PD98059 (50 micromol/L) (a MEK inhibitor), aborted epibatidine-elicited cytoprotection. Mitochondrial depolarization, ROS, and caspase 3 active produced by rot/oligo were also prevented by epibatidine. Epibatidine doubled the amount of heme oxygenase-1 (HO-1), a critical cell defence enzyme against oxidative stress. Furthermore, the HO-1 inhibitor Sn(IV) protoporphyrin IX dichloride reversed the epibatidine protecting effects and HO-1 inducer Co (III) protoporphyrin IX dichloride exhibited neuroprotective effects by itself. The results of this study point to HO-1 as the cytoprotective target of nAChR activation through the following pathway: endoplasmic reticulum Ca(2+)-induced Ca(2+)-release activates the protein kinase C/extracellular regulated kinase/HO-1 axis to mitigate mitochondrial depolarization and ROS production. This study provides a mechanistic insight on how nAChR activation translates into an antioxidant and antiapoptotic signal through up-regulation of HO-1.
Collapse
Affiliation(s)
- Javier Egea
- Intituto Teofilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, SpainDepartamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, SpainServicio de Farmacología Clínica and Instituto Universitario de Investigación Gerontológica y metabólica, Hospital Universitario de la Princesa, Madrid, Spain
| | - Angelo O Rosa
- Intituto Teofilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, SpainDepartamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, SpainServicio de Farmacología Clínica and Instituto Universitario de Investigación Gerontológica y metabólica, Hospital Universitario de la Princesa, Madrid, Spain
| | - Antonio Cuadrado
- Intituto Teofilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, SpainDepartamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, SpainServicio de Farmacología Clínica and Instituto Universitario de Investigación Gerontológica y metabólica, Hospital Universitario de la Princesa, Madrid, Spain
| | - Antonio G García
- Intituto Teofilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, SpainDepartamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, SpainServicio de Farmacología Clínica and Instituto Universitario de Investigación Gerontológica y metabólica, Hospital Universitario de la Princesa, Madrid, Spain
| | - Manuela G López
- Intituto Teofilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, SpainDepartamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, SpainServicio de Farmacología Clínica and Instituto Universitario de Investigación Gerontológica y metabólica, Hospital Universitario de la Princesa, Madrid, Spain
| |
Collapse
|
38
|
Lopez-Hernandez G, Placzek AN, Thinschmidt JS, Lestage P, Trocme-Thibierge C, Morain P, Papke RL. Partial agonist and neuromodulatory activity of S 24795 for alpha7 nAChR responses of hippocampal interneurons. Neuropharmacology 2007; 53:134-44. [PMID: 17544457 DOI: 10.1016/j.neuropharm.2007.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/09/2007] [Accepted: 04/18/2007] [Indexed: 11/29/2022]
Abstract
S 24795 evoked methyllycaconitine-sensitive inward currents in voltage-clamped hippocampal interneurons with maximum amplitude about 14% that of ACh-evoked responses. Experiments with rat alpha7 receptors expressed in Xenopus oocytes confirmed that S 24795 is a partial agonist of alpha7 nAChR with an EC(50) of 34+/-11 microM and I(max) of approximately 10% relative to ACh. When 60 microM ACh was co-applied to alpha7-expressing oocytes along with increasing concentrations of S 24795, there was a progressive decrease in response compared to the responses to 60 microM ACh alone (IC(50) 45+/-9 microM). The positive allosteric modulator 5-hydroxyindole potentiated ACh- and S 24795-evoked responses of alpha7 receptors in both oocytes and hippocampal interneurons. In hippocampal slice experiments, depending on the ACh concentrations in the application pipette and the ratio of ACh to S 24795, co-application of S 24795 with ACh variously increased, decreased, or had no effect on responses, compared to ACh alone. In order to estimate the effective dilution factor for the pressure application experiments, we tested alpha7 receptors in oocytes with ACh alone and in co-application with S 24795 at the same ratios as in the slice experiments, but at varying dilution factors. The pattern of interaction seen in the slice experiments was most closely matched under the conditions of a 3:100 dilution, suggesting that the pipette solution was diluted approximately 30-fold at the site of action. This dilution factor was consistent with the potency of ACh and S 24795 in the oocyte expression system (EC(50)s approximately 30 microM).
Collapse
Affiliation(s)
- Gretchen Lopez-Hernandez
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Hu M, Schurdak ME, Puttfarcken PS, El Kouhen R, Gopalakrishnan M, Li J. High content screen microscopy analysis of A beta 1-42-induced neurite outgrowth reduction in rat primary cortical neurons: neuroprotective effects of alpha 7 neuronal nicotinic acetylcholine receptor ligands. Brain Res 2007; 1151:227-35. [PMID: 17449017 DOI: 10.1016/j.brainres.2007.03.051] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 03/05/2007] [Accepted: 03/06/2007] [Indexed: 12/14/2022]
Abstract
beta-Amyloid peptide 1-42 (A beta(1-42)) is generated from amyloid precursor protein (APP) and associated with neurodegeneration in Alzheimer's disease (AD). A beta(1-42) has been shown to be cytotoxic when incubated with cultured neurons. However, APP transgenic mice over-expressing A beta(1-42) do not show substantial loss of neurons, despite deficits in learning and memory. It is thus emerging that A beta(1-42)-induced memory deficits may involve subtler neuronal alternations leading to synaptic deficits, prior to frank neurodegeneration in AD brains. In this study, high content screen (HCS) microscopy, an advanced high-throughput cellular image processing and analysis technique, was utilized in establishing an in vitro model of A beta(1-42)-induced neurotoxicity utilizing rat neonatal primary cortical cells. Neurite outgrowth was found to be significantly reduced by A beta(1-42) (300 nM to 30 microM), but not by the scrambled control peptide control, in a time- and concentration-dependent manner. In contrast, no reduction in the total number of neurons was observed. The A beta(1-42)-induced reduction of neurite outgrowth was attenuated by the NMDA receptor antagonist memantine and the alpha 7 nicotinic acetylcholine receptor (nAChR) selective agonist PNU-282987. Interestingly, the alpha 7 nAChR antagonist methyllycaconitine also significantly prevented reduction in A beta(1-42)-induced neurite outgrowth. The observed neuroprotective effects could arise either from interference of A beta(1-42) interactions with alpha 7 nAChRs or by modification of receptor-mediated signaling pathways. Our studies demonstrate that reduction of neurite outgrowth may serve as a model representing A beta(1-42)-mediated neuritic and synaptic toxicity, which, in combination of HCS, provides a high-throughput cell-based assay that can be used to evaluate compounds with neuroprotective properties in neurons.
Collapse
Affiliation(s)
- Min Hu
- Neuroscience Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064-6125, USA
| | | | | | | | | | | |
Collapse
|
40
|
Janhunen S, Ahtee L. Differential nicotinic regulation of the nigrostriatal and mesolimbic dopaminergic pathways: implications for drug development. Neurosci Biobehav Rev 2006; 31:287-314. [PMID: 17141870 DOI: 10.1016/j.neubiorev.2006.09.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 09/10/2006] [Accepted: 09/18/2006] [Indexed: 01/21/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) modulate dopaminergic function. Discovery of their multiplicity has lead to the search for subtype-selective nAChR agonists that might be therapeutically beneficial in diseases linked to brain dopaminergic pathways. The regulation and responses of the nigrostriatal and mesolimbic dopaminergic pathways are often similar, but some differences do exist. The cerebral distribution and characteristics of various nAChR subtypes differ between nigrostriatal and mesolimbic dopaminergic pathways. Comparison of nicotine and epibatidine, two nAChR agonists whose relative affinities for various nAChR subtypes differ, revealed differences in the nAChR-mediated regulation of dopaminergic activation between these dopamine systems. Nicotine preferentially stimulates the mesolimbic pathway, whereas epibatidine's stimulatory effect falls on the nigrostriatal pathway. Thus, it may be possible to stimulate the nigrostriatal pathway with selective nAChR agonists that do not significantly affect the mesolimbic pathway, and thus lack addictive properties. Furthermore, dopamine uptake inhibition revealed a novel inhibitory effect of epibatidine on accumbal dopamine release, which could form a basis for novel antipsychotics that could alleviate the elevated accumbal dopaminergic tone found in schizophrenia during the active psychotic state. Different regulation of nigrostriatal and mesolimbic dopaminergic pathways by nAChRs could be an important basis for developing novel drugs for treatment of Parkinson's disease and schizophrenia.
Collapse
Affiliation(s)
- Sanna Janhunen
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5), Helsinki, FIN-00014, Finland.
| | | |
Collapse
|
41
|
Arredondo J, Chernyavsky AI, Jolkovsky DL, Pinkerton KE, Grando SA. Receptor-mediated tobacco toxicity: cooperation of the Ras/Raf-1/MEK1/ERK and JAK-2/STAT-3 pathways downstream of alpha7 nicotinic receptor in oral keratinocytes. FASEB J 2006; 20:2093-101. [PMID: 17012261 DOI: 10.1096/fj.06-6191com] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of tobacco products is associated with an increased incidence of periodontal disease, poor response to periodontal therapy, and a high risk for developing head and neck cancer. Nicotine and tobacco-derived nitrosamines have been shown to exhibit their pathobiologic effects due in part to activation of the nicotinic acetylcholine (ACh) receptors (nAChRs), mainly alpha7 nAChR, expressed by oral keratinocytes (KCs). This study was designed to gain mechanistic insight into alpha7-mediated morbidity of tobacco products in the oral cavity. We investigated the signaling pathways downstream of alpha7 nAChR in monolayers of oral KCs exposed for 24 h to aged and diluted sidestream cigarette smoke (ADSS) or an equivalent concentration of pure nicotine. By both real-time polymerase chain reaction (PCR) and In-cell Western, the KCs stimulated with ADSS or nicotine showed multifold increases of STAT-3. These effects could be completely blocked or significantly (P<0.05) diminished if the cells were pretreated with the alpha7 antagonist alpha-bungarotoxin (alphaBTX) or transfected with anti-alpha7 small interfering RNA (siRNA-alpha7). The use of pathway inhibitors revealed that signaling through the Ras/Raf-1/MEK1/ERK steps mediated alpha7-dependent up-regulation of STAT-3. Targeted mutation of the alpha7 gene prevented ERK1/2 activation by nicotine. Using the gel mobility shift assay, we demonstrated that an increased protein binding activity of STAT-3 caused by ADSS or pure nicotine was mediated by janus-activated kinase (JAK)-2. Activation of JAK-2/STAT-3 pathway could be prevented by alphaBTX or siRNA-alpha7. Thus, nuclear transactivation of STAT-3 in KCs exposed to tobacco products is mediated via intracellular signaling downstream from alpha7, which proceeds via two complementary pathways. The Ras/Raf-1/MEK1/ERK cascade culminates in up-regulated expression of the gene encoding STAT-3, whereas recruitment and activation of tyrosine kinase JAK-2 phosphorylates it. Elucidation of this novel mechanism of nicotine-dependent nuclear transactivation of STAT-3 identifies oral alpha7 nAChR as a promising molecular target to prevent, reverse, or retard tobacco-related periodontal disease and progression of head and neck cancer by receptor inhibitors.
Collapse
Affiliation(s)
- Juan Arredondo
- Department of Dermatology, University of California Davis, Sacramento, CA, USA
| | | | | | | | | |
Collapse
|
42
|
Hogg RC, Bertrand D. Partial agonists as therapeutic agents at neuronal nicotinic acetylcholine receptors. Biochem Pharmacol 2006; 73:459-68. [PMID: 16979139 DOI: 10.1016/j.bcp.2006.08.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 08/04/2006] [Accepted: 08/10/2006] [Indexed: 11/30/2022]
Abstract
Improved understanding of how brain function is altered in neurodegenerative disease states, pain and conditions, such as schizophrenia and attention deficit disorder, has highlighted the role of nicotinic acetylcholine receptors (nAChRs) in these conditions and identified them as promising therapeutic targets. nAChRs are widely expressed throughout the peripheral and central nervous system, and this widespread nature underlines the need for new ligands with different selectivities and pharmacological profiles if we are to avoid the adverse side effects associated with many of the nAChR modulators currently identified. Partial agonists have the unique property of being able to act both as agonists or antagonists depending on the concentration of endogenous neurotransmitter. Moreover, the agonist action of partial agonists has a 'ceiling' effect, giving them a large safety margin and making them an attractive proposition for therapeutic molecules. Partial agonists of nAChRs are currently being developed as a nicotine replacement therapy for smoking cessation and for the treatment of a number of neurological diseases associated with a loss of cholinergic function. This commentary will discuss the pharmacological properties of partial agonists and review recent research developments in the field of partial agonists acting at nicotinic receptors.
Collapse
Affiliation(s)
- Ron C Hogg
- Department of Neurosciences, Medical Faculty, CMU, 1 rue Michel Servet, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|
43
|
Mudo G, Belluardo N, Fuxe K. Nicotinic receptor agonists as neuroprotective/neurotrophic drugs. Progress in molecular mechanisms. J Neural Transm (Vienna) 2006; 114:135-47. [PMID: 16906354 DOI: 10.1007/s00702-006-0561-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 07/11/2006] [Indexed: 11/29/2022]
Abstract
In the present work we reviewed recent advances concerning neuroprotective/neurotrophic effects of acute or chronic nicotine exposure, and the signalling pathways mediating these effects, including mechanisms implicated in nicotine addiction and nAChR desensitization. Experimental and clinical data largely indicate long-lasting effects of nicotine and nicotinic agonists that imply a neuroprotective/neurotrophic role of nAChR activation, involving mainly alpha7 and alpha4beta2 nAChR subtypes, as evidenced using selective nAChR agonists. Compounds interacting with neuronal nAChRs have the potential to be neuroprotective and treatment with nAChR agonists elicits long-lasting neurotrophic effects, e.g. improvement of cognitive performance in a variety of behavioural tests in rats, monkeys and humans. Nicotine addiction, which is mediated by interaction with nACh receptors, is believed to involve the modification of signalling cascades that modulate synaptic plasticity and gene expression. Desensitization, in addition to protecting cells from uncontrolled excitation, is recently considered as a form of signal plasticity. nAChR can generate these longe-lasting effects by elaboration of complex intracellular signals that mediate medium to long-term events crucial for neuronal maintenance, survival and regeneration. Although a comprehensive survey of the gene-based molecular mechanisms that underlie nicotine effects has yet not been performed a growing amount of data is beginning to improve our understanding of signalling mechanisms that lead to neurotrophic/neuroprotective responses. Evidence for an involvement of the fibroblast growth factor-2 gene in nAChR mechanisms mediating neuronal survival, trophism and plasticity has been obtained. However, more work is needed to establish the mechanisms involved in the effects of nicotinic receptor subtype activation from cognition-enhancing and neurotrophic effects to smoking behaviour and to determine more precisely the therapeutic objectives in potential nicotinic drug treatments of neurodegenerative diseases.
Collapse
Affiliation(s)
- G Mudo
- Department of Experimental Medicine, Section of Human Physiology, University of Palermo, Palermo, Italy.
| | | | | |
Collapse
|
44
|
Abstract
Desensitization is an intriguing characteristic of ligand-gated channels, whereby a decrease or loss of biological response occurs following prolonged or repetitive stimulation. Nicotinic acetylcholine receptors (nAChRs), as a member of transmitter gated ion channels family, also can be desensitized by continuous or repeated exposure to agonist. Desensitization of nicotinic receptors can occur as a result of extended nicotine exposure during smoking or prolonged acetylcholine when treatment of Alzheimer's disease (AD) with cholinesterase inhibitors, or anticholinesterase agent poisoning. Studies from our lab have shown that nAChRs desensitization is not a nonfunctional state and we proposed that desensitized nAChRs could increase sensitivity of brain muscarinic receptor to its agonists. Here, we will review the regulation of nicotinic receptor desensitization and discuss the important biological function of desensitized nicotinic receptors in light of our previous studies. These studies provide the critical information for understanding the importance of nicotinic receptors desensitization in both normal physiological processing and in various disease states.
Collapse
Affiliation(s)
- Hai Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China.
| | | |
Collapse
|
45
|
De Rosa MJ, Esandi MDC, Garelli A, Rayes D, Bouzat C. Relationship between α7 nAChR and apoptosis in human lymphocytes. J Neuroimmunol 2005; 160:154-61. [PMID: 15710468 DOI: 10.1016/j.jneuroim.2004.11.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 10/04/2004] [Accepted: 11/15/2004] [Indexed: 11/26/2022]
Abstract
The presence of nicotinic receptors (nAChRs) in blood cells has been demonstrated. However, little is known about their functional roles. We have detected mRNA of alpha7 nAChR in peripheral human lymphocytes and determined that its expression is highly variable among individuals and within the same individual at different times. Upregulation of alpha7 is systematically observed after incubation of lymphocytes with nicotine or alpha-bungarotoxin. In addition, the incubation with these drugs decreases the percentage of apoptotic cells induced by the exposure to cortisol. Our results suggest that alpha7 nAChRs are involved in the modulation of cortisol-induced apoptosis.
Collapse
Affiliation(s)
- María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, UNS-CONICET, Camino La Carrindanga Km 7, B8000FWB Bahía Blanca, Argentina
| | | | | | | | | |
Collapse
|
46
|
Uteshev VV, Knot HJ. Somatic Ca2+ dynamics in response to choline-mediated excitation in histaminergic tuberomammillary neurons. Neuroscience 2005; 134:133-43. [PMID: 15963649 DOI: 10.1016/j.neuroscience.2005.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2005] [Revised: 02/28/2005] [Accepted: 03/11/2005] [Indexed: 11/20/2022]
Abstract
Histaminergic tuberomammillary (TM) neurons of the posterior hypothalamus have been implicated in cognition, alertness and sleep-wakefulness cycles. Spontaneous firing of TM neurons has been associated with histamine release and wakefulness. The expression of alpha7 nicotinic acetylcholine receptors (nAChRs) in TM neurons suggests a role for endogenous choline and for nicotinic drugs in the regulation of intracellular Ca(2+) metabolism, normal TM neuronal activity and histamine release. First, we established the link between TM neuronal spontaneous firing frequency and cytosolic free Ca(2+) concentration ([Ca(2+)](i)). A strong correlation was observed: an onset of spontaneous firing (3-4Hz) was accompanied by a 20-fold increase in [Ca(2+)](i) from 56+/-18 nM to 1.0+/-0.6 microM. The same range of firing frequencies has been observed in TM neurons in vivo and is associated with wakefulness. Secondly, choline-induced activation of alpha7 nAChRs did not elevate [Ca(2+)](i) directly, i.e. in the absence of high-threshold voltage-gated Ca(2+) channel (HVGCC) activation. Cd(2+) (200 microM) completely blocked all Ca(2+) signals, but inhibited only 37+/-16% of alpha7 nAChR-mediated currents. Thirdly, the responsiveness of [Ca(2+)](i) to choline-mediated excitation was inhibited by hyperpolarization and enhanced by depolarization, sensitizing [Ca(2+)](i) at membrane voltages associated with normal TM neuronal activity. These properties of [Ca(2+)](i) define the ability of TM neurons to translate cholinergic stimuli of identical strengths into different cytosolic Ca(2+) effects, providing the physiological substrate for state-specific modulation of incoming cholinergic information and would be expected to play a very important role in determining activity profiles of TM neurons exposed to elevated concentrations of cholinergic agents, such as choline and nicotine.
Collapse
Affiliation(s)
- V V Uteshev
- Department of Pharmacology and Therapeutics, University of Florida, Box 100267 JHMHSC, SW 1600 Archer Road, Gainesville, Florida 32610-0267, USA.
| | | |
Collapse
|
47
|
Sun X, Liu Y, Hu G, Wang H. Activities of cAMP-dependent protein kinase and protein kinase C are modulated by desensitized nicotinic receptors in the rat brain. Neurosci Lett 2004; 367:19-22. [PMID: 15308289 DOI: 10.1016/j.neulet.2004.05.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 04/19/2004] [Accepted: 05/18/2004] [Indexed: 11/19/2022]
Abstract
When rats were treated with different dosages of nicotine, nicotinic acetylcholine receptors (nAChRs) were observed in activated, sub-acute desensitized, acute desensitized, and chronic desensitized states. The activities of cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) were assayed in the respective rat brains. The results showed that the activities of PKA and PKC could not be modified when brain nAChRs were in an activated state. However, the activities of PKA and PKC decreased when brain nAChRs were in a sub-acute state, an acute state or a chronic desensitized state induced by repeated administration of nicotine. These results suggest that desensitized nAChRs in the rat brain can inhibit the activities of PKA and PKC, which may be responsible for nicotine dependence.
Collapse
Affiliation(s)
- Xiulan Sun
- Beijing Institute of Pharmcology and Toxicology, Beijing 100850, PR China
| | | | | | | |
Collapse
|
48
|
Garrido R, King-Pospisil K, Son KW, Hennig B, Toborek M. Nicotine upregulates nerve growth factor expression and prevents apoptosis of cultured spinal cord neurons. Neurosci Res 2004; 47:349-55. [PMID: 14568117 DOI: 10.1016/s0168-0102(03)00222-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Modulation of neurotrophic factor expression may constitute an important part of neuroprotective effects of nicotine. Therefore, the effects of nicotine on expression of nerve growth factor (NGF) and its receptor, tyrosine receptor kinase A (trkA), were studied in cultured spinal cord neurons treated with arachidonic acid. Because injury to spinal cord is associated with elevated levels of arachidonic acid, this cell culture system has been developed in our laboratory as an in vitro model of neuronal injury in spinal cord trauma. Treatment with nicotine markedly upregulated NGF mRNA and protein expression in spinal cord neurons. In addition, a 12h treatment with nicotine increased mRNA levels of trkA. Both nicotine and exogenous NGF inhibited arachidonic acid induced apoptosis of spinal cord neurons. However, the blockage of the trkA receptor prevented nicotine-mediated anti-apoptotic effects. The present results indicate that increased expression of NGF may be an important element of the neuroprotective effects of nicotine in injured spinal cord neurons.
Collapse
Affiliation(s)
- Rosario Garrido
- Department of Surgery, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
49
|
Fucile S, Renzi M, Lauro C, Limatola C, Ciotti T, Eusebi F. Nicotinic cholinergic stimulation promotes survival and reduces motility of cultured rat cerebellar granule cells. Neuroscience 2004; 127:53-61. [PMID: 15219668 DOI: 10.1016/j.neuroscience.2004.04.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2004] [Indexed: 01/03/2023]
Abstract
Despite many studies on the functional expression of neuronal nicotinic acetylcholine receptors (nAChRs), an exhaustive description of the long-term effects of nicotine (Nic) stimulation in cerebellar granules is still far to be completed. For this reason, we addressed the experiments stimulating cultured cerebellar granule neurons (CGN) with Nic, focusing on the effects on cell motility and survival. Using electrophysiological and Ca(2+)-fluorescence techniques, we found a subset of rat CGN that responded to Nic by inward whole cell currents and by short-delay Ca(2+) transients. These responses were mediated through both homomeric and heteromeric nAChRs, as assessed by their sensitivity to alpha-bungarotoxin (alpha-BTX), dihydro-beta-erythroidine (DHbetaE), methyllicaconitine (MLA) and 5-hydroxyindole (5OH-indole). Once established the expression of alpha-BTX-sensitive and insensitive nAChRs and their ability to trigger Ca(2+) responses in CGN, we aimed at investigating their possible role on cell survival and motility. We demonstrate that Nic stimulation significantly increases the survival of CGN exposed to the apoptosis-promoting low K(+) medium. This anti-apoptotic effect is likely mediated through alpha7* nAChRs since we found that it was mimicked by choline, was insensitive to DHbetaE and was fully inhibited by alpha-BTX. Furthermore, we report that Nic negatively modulates CGN motility, reducing the basal cell movement through a pored membrane by the activation of alpha-BTX-insensitive nAChRs. We conclude that CGN express various types of nAChRs, which are differently involved in regulating Nic-mediated modulation of cell survival and migration, and we suggest potential regulatory roles for cholinergic receptors during cerebellar development.
Collapse
Affiliation(s)
- S Fucile
- Istituto Pasteur Fondazione Cenci-Bolognetti and Dipartimento di Fisiologia Umana e Farmacologia, Centro di Eccellenza Biologia e Medicina Molecolare, Università di Roma La Sapienza, P. le Aldo Moro 5, I-00185 Roma, Italy.
| | | | | | | | | | | |
Collapse
|
50
|
Nicotinic acetylcholine receptors in the nervous system. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s1569-2558(03)32012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|