1
|
László JF, Hernádi L. Whole body static magnetic field exposure increases thermal nociceptive threshold in the snail, Helix pomatia. ACTA BIOLOGICA HUNGARICA 2012; 63:441-52. [PMID: 23134601 DOI: 10.1556/abiol.63.2012.4.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the effect of homogeneous and inhomogeneous static magnetic field (SMF) exposure on the thermal nociceptive threshold of snail in the hot plate test (43 °C). Both homogeneous (hSMF) and inhomogeneous (iSMF) SMF increased the thermo-nociceptive threshold: 40.2%, 29.2%, or 41.7% after an exposure of 20, 30, or 40 min hSMF by p < 0.001, p < 0.0001, or p < 0.001, and 32.7% or 46.2% after an exposure of 20 or 40 min iSMF by p < 0.05 or p < 0.0001. These results suggest that SMF has an antinociceptive effect in snail. On the other hand, naloxone as an atypical opioid antagonist in an amount of 1 μg/g was found to significantly decrease the thermo-nociceptive threshold (41.9% by p < 0.002), which could be antagonized by hSMF exposure implying that hSMF exerts its antinociceptive effect partly via opioid receptors.
Collapse
Affiliation(s)
- J F László
- Department of Applied Mathematics and Probability Theory, University of Debrecen, Kassai út 26 H-4028 Debrecen, Hungary.
| | | |
Collapse
|
2
|
Rőszer T, Bánfalvi G. FMRFamide-related peptides: anti-opiate transmitters acting in apoptosis. Peptides 2012; 34:177-85. [PMID: 21524675 DOI: 10.1016/j.peptides.2011.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 04/04/2011] [Accepted: 04/07/2011] [Indexed: 01/10/2023]
Abstract
Members of the FMRFamide-related peptide (FaRP) family are neurotransmitters, hormone-like substances and tumor suppressor peptides. In mammals, FaRPs are considered as anti-opiate peptides due to their ability to inhibit opioid signaling. Some FaRPs are asserted to attenuate opiate tolerance. A recently developed chimeric FaRP (Met-enkephalin-FMRFa) mimics the analgesic effects of opiates without the development of opiate-dependence, displaying a future therapeutical potential in pain reduction. In this review we support the notion, that opiates and representative members of the FaRP family show overlapping effects on apoptosis. Binding of FaRPs to opioid receptors or to their own receptors (G-protein linked membrane receptors and acid-sensing ion channels) evokes or suppresses cell death, in a cell- and receptor-type manner. With the dramatically increasing incidence of opiate abuse and addiction, understanding of opioid-induced cell death, and in this context FaRPs will deserve growing attention.
Collapse
Affiliation(s)
- Tamás Rőszer
- Department of Microbial Biotechnology & Cell Biology, University of Debrecen, Debrecen, Hungary.
| | | |
Collapse
|
3
|
Abstract
Morphine biosynthesis in relatively simple and complex integrated animal systems has been demonstrated. Key enzymes in the biosynthetic pathway have also been identified, that is, CYP2D6 and COMT. Endogenous morphine appears to exert highly selective actions via novel mu opiate receptor subtypes, that is, mu3,-4, which are coupled to constitutive nitric oxide release, exerting general yet specific down regulatory actions in various animal tissues. The pivotal role of dopamine as a chemical intermediate in the morphine biosynthetic pathway in plants establishes a functional basis for its expansion into an essential role as the progenitor catecholamine signaling molecule underlying neural and neuroendocrine transmission across diverse animal phyla. In invertebrate neural systems, dopamine serves as the preeminent catecholamine signaling molecule, with the emergence and limited utilization of norepinephrine in newly defined adaptational chemical circuits required by a rapidly expanding set of physiological demands, that is, motor and motivational networks. In vertebrates epinephrine, emerges as the major end of the catecholamine synthetic pathway consistent with a newly incorporated regulatory modification. Given the striking similarities between the enzymatic steps in the morphine biosynthetic pathway and those driving the evolutionary adaptation of catecholamine chemical species to accommodate an expansion of interactive but distinct signaling systems, it is our overall contention that the evolutionary emergence of catecholamine systems required conservation and selective "retrofit" of specific enzyme activities, that is, COMT, drawn from cellular morphine expression. Our compelling hypothesis promises to initiate the reexamination of clinical studies, adding new information and treatment modalities in biomedicine.
Collapse
|
4
|
Pryor SC, Nieto F, Henry S, Sarfo J. The effect of opiates and opiate antagonists on heat latency response in the parasitic nematode Ascaris suum. Life Sci 2007; 80:1650-5. [PMID: 17363006 DOI: 10.1016/j.lfs.2007.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 01/03/2007] [Accepted: 01/06/2007] [Indexed: 11/30/2022]
Abstract
The effects of the opiates morphine and morphine-6-glucuronide (M6G), the mu opioid receptor specific antagonist D-Phe-Cys-Tyr-D-Trp-Om-Thr-Pen-Thr-NH(2) (CTOP), and the general opiate antagonist naloxone on the latency of response to thermal stimulation were determined in the parasitic nematode Ascaris suum. Thermal detection and avoidance behaviors of the worms were evaluated with a tail flick analgesia meter using a modification of a technique employed for nociception experiments in rodents. Morphine and M6G were shown to have a dose dependent analgesic effect on A. suum's latency of response to heat with morphine being the most potent. The analgesic effect of morphine was reversed by naloxone but not CTOP. Neither naloxone nor CTOP was able to block the analgesia of M6G. CTOP but not naloxone had significant analgesic effects on its own. These findings are generally consistent with previous results on the effects of opiates and nitric oxide release from A. suum tissue. Apparently these nematodes possess opioid receptors that effect nociception.
Collapse
Affiliation(s)
- Stephen C Pryor
- Neuroscience Research Institute, State University of New York at Old Westbury, Old Westbury, NY 11568, USA.
| | | | | | | |
Collapse
|
5
|
Zhu W, Mantione KJ, Shen L, Lee B, Stefano GB. Norlaudanosoline and nicotine increase endogenous ganglionic morphine levels: nicotine addiction. Cell Mol Neurobiol 2006; 26:1037-45. [PMID: 16645895 PMCID: PMC11520596 DOI: 10.1007/s10571-006-9021-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 11/11/2005] [Indexed: 11/26/2022]
Abstract
1. Given the presence of morphine, its metabolites and precursors, e.g., norlaudanosoline, in mammalian and invertebrate tissues, it became important to determine if exposing normal excised ganglia to norlaudanosoline would result in increasing endogenous morphine levels. 2. Mytilus edulis pedal ganglia contain 2.2 +/- 0.41 ng/g wet weight morphine as determined by high pressure liquid chromatography coupled to electrochemical detection and radioimmunoassay. 3. Incubation of M. edulis pedal ganglia with norlaudanosoline, a morphine precursor, resulted in a concentration- and time-dependent statistical increase in endogenous morphine levels (6.9 +/- 1.24 ng/g). 4. Injection of animals with nicotine also increased endogenous morphine levels in a manner that was antagonized by atropine, suggesting that nicotine addiction may be related to altering endogenous morphine levels in mammals. 5. We surmise that norlaudanosoline is being converted to morphine, demonstrating that invertebrate neural tissue can synthesize morphine.
Collapse
Affiliation(s)
- Wei Zhu
- Neuroscience Research Institute, State University of New York, College at Old Westbury, P.O. Box 210, Old Westbury, New York 11568 USA
| | - Kirk J. Mantione
- Neuroscience Research Institute, State University of New York, College at Old Westbury, P.O. Box 210, Old Westbury, New York 11568 USA
| | - Lihua Shen
- Neuroscience Research Institute, State University of New York, College at Old Westbury, P.O. Box 210, Old Westbury, New York 11568 USA
| | - Brian Lee
- Neuroscience Research Institute, State University of New York, College at Old Westbury, P.O. Box 210, Old Westbury, New York 11568 USA
| | - George B. Stefano
- Neuroscience Research Institute, State University of New York, College at Old Westbury, P.O. Box 210, Old Westbury, New York 11568 USA
| |
Collapse
|
6
|
Goumon Y, Muller A, Glattard E, Marban C, Gasnier C, Strub JM, Chasserot-Golaz S, Rohr O, Stefano GB, Welters ID, Van Dorsselaer A, Schoentgen F, Aunis D, Metz-Boutigue MH. Identification of morphine-6-glucuronide in chromaffin cell secretory granules. J Biol Chem 2006; 281:8082-9. [PMID: 16434406 DOI: 10.1074/jbc.m502298200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report for the first time that morphine-6-glucuronide, a highly analgesic morphine-derived molecule, is present in adrenal chromaffin granules and secreted from chromaffin cells upon stimulation. We also demonstrate that phosphatidylethanolamine-binding protein (alternatively named Raf-1 kinase inhibitor protein or RKIP) acts as an endogenous morphine-6-glucuronide-binding protein. An UDP-glucuronosyltransferase 2B-like enzyme, described to transform morphine into morphine-6-glucuronide, has been immunodetected in the chromaffin granule matrix, and morphine-6-glucuronide de novo synthesis has been characterized, demonstrating the possible involvement of intragranular UDP-glucuronosyltransferase 2B-like enzyme in morphine-6-glucuronide metabolism. Once secreted into the circulation, morphine-6-glucuronide may mediate several systemic actions (e.g. on immune cells) based on its affinity for mu-opioid receptors. These activities could be facilitated by phosphatidylethanolamine-binding protein (PEBP), acting as a molecular shield and preventing morphine-6-glucuronide from rapid clearance. Taken together, our data represent an important observation on the role of morphine-6-glucuronide as a new endocrine factor.
Collapse
Affiliation(s)
- Yannick Goumon
- Physiopathologie du Système Nerveux, INSERM U575, 67084 Strasbourg, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Peruzzi E, Fontana G, Sonetti D. Presence and role of nitric oxide in the central nervous system of the freshwater snail Planorbarius corneus: possible implication in neuron–microglia communication. Brain Res 2004; 1005:9-20. [PMID: 15044059 DOI: 10.1016/j.brainres.2003.12.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2003] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to investigate the involvement of nitric oxide (NO) as a messenger molecule in neuron-microglia communication in the central nervous system (CNS) of the freshwater snail Planorbarius corneus. The presence of both neuronal (nNOS) and inducible nitric oxide synthase (iNOS) was studied using NADPH-diaphorase (NADPH-d) histochemistry and NOS immunocytochemistry. The experiments were performed on whole ganglia and cultured microglial cells after different activation modalities, such as treatment with lipopolysaccharide and adenosine triphosphate and/or maintaining ganglia in culture medium till 7 days. In sections, nNOS immunoreactivity was found only in neurons and nNOS-positive elements were less numerous than NADPH-d-positive ones, with which they partially overlapped. The iNOS immunoreactivity was observed only after activation, in both nerve and microglial cells. We also found that the number of iNOS-immunoreactive neurons and microglia varied, depending on the activation modalities. In microglial cell cultures, iNOS was expressed in the first generation of cells only after activation, whereas a second generation, proliferated after ganglia activation, expressed iNOS even in the unstimulated condition.
Collapse
Affiliation(s)
- Elisa Peruzzi
- Department of Animal Biology, University of Modena and Reggio Emilia, Via Campi 213/D, I-41100 Modena, Italy.
| | | | | |
Collapse
|
8
|
Zhu W, Ma Y, Cadet P, Yu D, Bilfinger TV, Bianchi E, Stefano GB. Presence of reticuline in rat brain: a pathway for morphine biosynthesis. ACTA ACUST UNITED AC 2003; 117:83-90. [PMID: 14499484 DOI: 10.1016/s0169-328x(03)00323-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We demonstrate the presence of reticuline, an isoquinoline alkaloid that was purified and identified in the rat brain. This was achieved by high-performance liquid chromatography coupled with electrochemical detection. This material was finally identified by nano-electrospray ionization quadrupole time-of-flight tandem mass spectrometry. The expression of this tetrahydroisoquinoline alkaloid in rat brain is at 12.7+/-5.4 ng/g wet tissue. Furthermore, rat chow, rat small and large intestine and bacteria cultured from these tissues did not contain either morphine or reticuline, eliminating the possibility of contamination or an exogenous source of these compounds. This finding adds information which suggests that morphine biosynthesis may occur in rat neural tissues, and that its biosynthesis pathway may be similar to that reported in the poppy plant.
Collapse
Affiliation(s)
- Wei Zhu
- Neuroscience Research Institute, State University of New York, College at Old Westbury, Old Westbury, NY 11568, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Cadet P, Zhu W, Mantione KJ, Baggerman G, Stefano GB. Cold stress alters Mytilus edulis pedal ganglia expression of mu opiate receptor transcripts determined by real-time RT-PCR and morphine levels. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 99:26-33. [PMID: 11869805 DOI: 10.1016/s0169-328x(01)00342-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Previous pharmacological, biochemical and molecular evidence prove that mu-subtype opiate receptors and opiate alkaloids, i.e. morphine, are present in the ganglionic nervous system of the mollusk Mytilus edulis (bivalve). We now present molecular evidence on the effect of rapid temperature changes on mu opiate receptor expression and morphine levels. Using primers, a labeled Taq-Man probe derived from the human neuronal mu1 opiate receptor, and real-time RT-PCR to measure the expression of mu transcripts from Mytilus pedal ganglia, we observe, in animals placed in cold water from room temperature, an enhanced morphine and morphine 6 glucuronide level in addition to a decrease in mu opiate receptor gene expression. This study provides further evidence that mu-type opiate receptors and morphine are expressed in mollusk ganglia and appear to be involved in physiological processes responding to thermal stress.
Collapse
Affiliation(s)
- Patrick Cadet
- Neuroscience Research Institute, State University of New York, College at Old Westbury, Old Westbury, NY 11568-0210, USA
| | | | | | | | | |
Collapse
|
10
|
Thorndyke MC, Carnevali MDC. Regeneration neurohormones and growth factors in echinoderms. CAN J ZOOL 2001. [DOI: 10.1139/z00-214] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There has been much recent interest in the presence and biological functions of growth regulators in invertebrates. In spite of the different distribution patterns of these molecules in different phyla (from molluscs, insects, and annelids to echinoderms and tunicates), they seem always to be extensively involved in developmental processes, both embryonic and regenerative. Echinoderms are well known for their striking regenerative potential and many can completely regenerate arms that, for example, are lost following self-induced or traumatic amputation. Thus, they provide a valuable experimental model for the study of regenerative processes from the macroscopic to the molecular level. In crinoids as well as probably all ophiuroids, regeneration is rapid and occurs by means of a mechanism that involves blastema formation, known as epimorphosis, where the new tissues arise from undifferentiated cells. In asteroids, morphallaxis is the mechanism employed, replacement cells being derived from existing tissues following differentiation and (or) transdifferentiation. This paper focuses on the possible contribution of neurohormones and growth factors during both repair and regenerative processes. Three different classes of regulatory molecules are proposed as plausible candidates for growth-promoting factors in regeneration: neurotransmitters (monoamines), neuropeptides (substance P, SALMFamides 1 and 2), and growth-factor-like molecules (TGF-β (transforming growth factor β), NGF (nerve growth factor), RGF-2 (basic fibroblast growth factor)).
Collapse
|
11
|
Zhu W, Baggerman G, Goumon Y, Casares F, Brownawell B, Stefano GB. Presence of morphine and morphine-6-glucuronide in the marine mollusk Mytilus edulis ganglia determined by GC/MS and Q-TOF-MS. Starvation increases opiate alkaloid levels. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 88:155-60. [PMID: 11295241 DOI: 10.1016/s0169-328x(01)00048-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Morphine and morphine-6-glucuronide, a morphine metabolite, have been identified and quantified in Mytilus edulis pedal ganglia at a level of 2.67+/-0.44 and 0.98+/-0.14 ng/ganglia, respectively by high performance liquid chromatography coupled to electrochemical detection. These opiate alkaloids were further identified by both gas-chromatography mass spectrometry and nanoflow electrospray ionization double quadrupole orthogonal acceleration Time of Flight mass spectrometry. In animals that were starved, the morphine level rose to 6.38+/-0.88 ng/ganglion and the morphine 6-glucoronide rose to a level of 23.0+/-3.2 ng/ganglion after 30 days. These studies demonstrate that opiate alkaloids are present as naturally occurring signal molecules whose levels respond to stress, i.e., starvation. Opiate alkaloids were not found in the animal's incubation media or food, demonstrating their synthesis occurred in the respective tissue. These new method of opiate alkaloid detection, conclusively proves that morphine and morphine-6-glucuronide are present in animal tissues.
Collapse
Affiliation(s)
- W Zhu
- Neuroscience Research Institute, State University of New York, College at Old Westbury, Old Westbury, NY 11568, USA
| | | | | | | | | | | |
Collapse
|
12
|
Goumon Y, Casares F, Zhu W, Stefano GB. The presence of morphine in ganglionic tissues of Modiolus deminissus: a highly sensitive method of quantitation for morphine and its derivatives. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 86:184-8. [PMID: 11165385 DOI: 10.1016/s0169-328x(00)00132-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Morphine and morphine-6-glucuronide, a morphine metabolite, have been identified and quantified in Modiolus deminissus pedal ganglia at a level of 2.41 and 0.95 ng/ganglia, respectively. These opiate alkaloids are normally found at low concentrations in invertebrate and vertebrate tissues, including neural. Given this problem, we also describe a new opiate extraction protocol as well as a high-performance liquid chromatography purification procedure that can separate and quantify morphine and its derivatives at sub-nanogram concentrations. Furthermore, both morphine and morphine-6-glucuronide were identified in this mollusk's pedal ganglia by mass spectrometry analysis.
Collapse
Affiliation(s)
- Y Goumon
- Neuroscience Research Institute, State University of New York, College at Old Westbury, Old Westbury, NY 11568, USA
| | | | | | | |
Collapse
|
13
|
Abstract
This paper is the twenty-second installment of the annual review of research concerning the opiate system. It summarizes papers published during 1999 that studied the behavioral effects of the opiate peptides and antagonists, excluding the purely analgesic effects, although stress-induced analgesia is included. The specific topics covered this year include stress; tolerance and dependence; learning, memory, and reward; eating and drinking; alcohol and other drugs of abuse; sexual activity, pregnancy, and development; mental illness and mood; seizures and other neurologic disorders; electrical-related activity; general activity and locomotion; gastrointestinal, renal, and hepatic function; cardiovascular responses; respiration and thermoregulation; and immunologic responses.
Collapse
Affiliation(s)
- A L Vaccarino
- Department of Psychology, University of New Orleans, New Orleans, LA 70148, USA.
| | | |
Collapse
|
14
|
Abstract
During the course of evolution, invertebrates and vertebrates have kept in common similar signaling molecules e.g. neuropeptides, opiates etc... Complete hormonal-enzymatic systems such as the opioid-opiate-cannabinoid systems have been found in both nervous central and immune systems of these animals. These signaling molecules can be found free in blood circulation and act as immunomodulators. The present review is focused on peptides derived from the opioid proopiomelanocortin precursor, the opiates and the endocannabinoids, which are very powerful immunosuppressors, and example models of the bidirectional communications between the endocrine and the immune systems. Parasites use these immunosuppressors with magnificence in their crosstalk with their host.
Collapse
Affiliation(s)
- M Salzet
- Laboratoire d'Endocrinologie des Annélides, UPRES-A CNRS 8017, SN3, Université des Sciences et Technologies de Lille, 59655 Cédex, Villeneuve d'Ascq, France.
| |
Collapse
|
15
|
Stefano GB, Goumon Y, Casares F, Cadet P, Fricchione GL, Rialas C, Peter D, Sonetti D, Guarna M, Welters ID, Bianchi E. Endogenous morphine. Trends Neurosci 2000; 23:436-42. [PMID: 10941194 DOI: 10.1016/s0166-2236(00)01611-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is now well accepted that endogenous morphine is present in animals, both in invertebrates and vertebrates. It is a key signaling molecule that plays an important role in downregulating physiological responses, such as those in the immune system, including immune elements in the CNS. It has been demonstrated that a specific mu-opiate-receptor subtype, mu3, mediates these downregulatory effects through release of NO. This article examines morphine as an endogenous signaling molecule, in terms of its role in neural and immune regulation.
Collapse
Affiliation(s)
- G B Stefano
- Neuroscience Research Institute, State University of New York at Old Westbury, NY 11568, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Goumon Y, Casares F, Pryor S, Ferguson L, Brownawell B, Cadet P, Rialas CM, Welters ID, Sonetti D, Stefano GB. Ascaris suum, an intestinal parasite, produces morphine. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:339-43. [PMID: 10861070 DOI: 10.4049/jimmunol.165.1.339] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The parasitic worm Ascaris suum contains the opiate alkaloid morphine as determined by HPLC coupled to electrochemical detection and by gas chromatography/mass spectrometry. The level of this material is 1168 +/- 278 ng/g worm wet weight. Furthermore, Ascaris maintained for 5 days contained a significant amount of morphine, as did their medium, demonstrating their ability to synthesize the opiate alkaloid. To determine whether the morphine was active, we exposed human monocytes to the material, and they immediately released nitric oxide in a naloxone-reversible manner. The anatomic distribution of morphine immunoreactivity reveals that the material is in the subcuticle layers and in the animals' nerve chords. Furthermore, as determined by RT-PCR, Ascaris does not express the transcript of the neuronal mu receptor. Failure to demonstrate the expression of this opioid receptor, as well as the morphine-like tissue localization in Ascaris, suggests that the endogenous morphine is intended for secretion into the microenvironment.
Collapse
Affiliation(s)
- Y Goumon
- Neuroscience Research Institute, State University of New York, Old Westbury, NY 11568, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Gastropod research is providing many insights into mechanisms of neural regeneration. These observations were made possible by the pioneering work of individuals who described the nervous systems of gastropods, mapped prominent neurons and determined their roles and connections, and developed the techniques for culturing them. This information has allowed questions about injury responses, target selection, and pathway cues to be explored at the level of individually identified neurons. Because of gastropod studies, more is known about axon sealing, growth cone formation and behavior, signals that travel from the site of axotomy to the soma, and the second messengers that are activated there. The responses in neurons and non-neuronal cells during neural development and injury are coordinated by chemical messenger systems that are highly conserved, including neurotransmitters, cytokines, and neurotrophins. The nervous system is modified in learning paradigms by some of the same messenger systems activated by injury, because learning and injury both challenge neurons to change. The conservation of basic mechanisms that coordinate neuronal plasticity allows us to approach basic questions in relatively simple nervous systems with reasonable confidence that the findings will be relevant for other nervous systems, including possible applications to the mammalian nervous system.
Collapse
Affiliation(s)
- S B Moffett
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA.
| |
Collapse
|
18
|
Goumon Y, Stefano GB. Identification of morphine in the rat adrenal gland. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 77:267-9. [PMID: 10837921 DOI: 10.1016/s0169-328x(00)00056-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Morphine was identified in rat adrenal extracts by reverse-phase HPLC, following liquid and solid extraction. All experiments were carefully performed to prevent exogenous morphine contamination. The morphine extracted from adrenal tissue (105.31 ng/g of wet adrenal gland) was identical to that of a morphine internal standard. The morphine corresponding HPLC fractions were further analyzed by gas chromatography-mass spectrometry and found to be identical to synthetic morphine. The study conclusively proves morphine is endogenous to the rat adrenal gland.
Collapse
Affiliation(s)
- Y Goumon
- Neuroscience Research Institute, State University of New York, College at Old Westbury, Old Westbury, NY 11568, USA
| | | |
Collapse
|
19
|
Laurent V, Salzet B, Verger-Bocquet M, Bernet F, Salzet M. Morphine-like substance in leech ganglia. Evidence and immune modulation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2354-61. [PMID: 10759861 DOI: 10.1046/j.1432-1327.2000.01239.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Binding experiments followed by measurement of nitric oxide release revealed an opiate alkaloid high affinity receptor with no affinity to opioids, representing a new mu-subtype receptor in the brain of the leech Theromyzon tessulatum. In addition, evidence of morphine-like substances was found in immunocytochemical studies and HPLC coupled to electrochemical detection (500 mV and 0.02 Hz). Based on previous evidence of the involvement of morphine as an immune response inhibitor, we demonstrate that in leech ganglia injection of lipopolysaccharide (LPS; a potent immunostimulatory agent derived from bacteria) provoked an increase in the level of ganglionic morphine-like substances after a prolonged latency period of 24 h (from 2.4 +/- 1.1 pmol per ganglion to 78 +/- 12.3 pmol per ganglion; P < 0.005; LPS injected 1 microg x mL-1); this effect is both concentration- and time-dependent. Finally, we have demonstrated that morphine, after binding to its own receptor, inhibits leech immunocyte activation through adenylate cyclase inhibition and nitric oxide release. This report confirms that morphine is an evolutionarily stable potent immunomodulator.
Collapse
Affiliation(s)
- V Laurent
- Laboratoire d'Endocrinologie des annélides, UPRESA 8017 CNRS, SN3, Université des Sciences et Technologie de Lille, France
| | | | | | | | | |
Collapse
|
20
|
Cadet P, Stefano GB. Mytilus edulis pedal ganglia express mu opiate receptor transcripts exhibiting high sequence identity with human neuronal mu1. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 74:242-6. [PMID: 10640698 DOI: 10.1016/s0169-328x(99)00287-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Previous pharmacological and biochemical evidence suggests that mu-subtype opiate receptors are expressed in the mollusk Mytilus edulis (Bivalve), including the organism's ganglia. In this study, we present molecular evidence of mu opiate receptor expression. Using primers derived from the human neuronal mu1 opiate receptor, we used reverse transcription-polymerase chain reaction (RT-PCR) to detect expression of mu transcripts from Mytilus pedal ganglia. Sequence analysis of the RT-PCR products revealed 95% identity with the neuronal human mu1 receptor. Furthermore, interleukin-1 and morphine exposure to excised pedal ganglia resulted in up- and down-regulation of the mu receptor transcripts, respectively. This study provides molecular evidence that mu-type opiate receptors are expressed in molluscan ganglia, suggesting that they first appear in invertebrate organisms and are retained during evolution.
Collapse
Affiliation(s)
- P Cadet
- Neuroscience Research Institute, State University of New York, College at Old Westbury, Old Westbury, NY 11568-0210, USA
| | | |
Collapse
|