1
|
2R,4R-APDC, a Metabotropic Glutamate Receptor Agonist, Reduced Neuronal Apoptosis by Upregulating MicroRNA-128 in a Rat Model After Seizures. Neurochem Res 2018; 43:591-599. [DOI: 10.1007/s11064-017-2453-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/09/2017] [Accepted: 12/11/2017] [Indexed: 02/08/2023]
|
2
|
Reiner A, Wang HB, Del Mar N, Sakata K, Yoo W, Deng YP. BDNF may play a differential role in the protective effect of the mGluR2/3 agonist LY379268 on striatal projection neurons in R6/2 Huntington's disease mice. Brain Res 2012; 1473:161-72. [PMID: 22820300 DOI: 10.1016/j.brainres.2012.07.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 07/04/2012] [Accepted: 07/12/2012] [Indexed: 10/28/2022]
Abstract
We have found that daily subcutaneous injection with a maximum tolerated dose (MTD) of the mGluR2/3 agonist LY379268 (20mg/kg) beginning at 4 weeks dramatically improves the phenotype in R6/2 mice. For example, we observed normalization of motor function in distance traveled, speed, the infrequency of pauses, and the ability to locomote in a straight line, and a rescue of a 15-20% striatal neuron loss at 10 weeks. As acute LY379268 treatment is known to increase cortical BDNF production, and BDNF is known to be beneficial for striatal neurons, we investigated if the benefit of daily LY379268 in R6/2 mice for striatal projection neurons was associated with increases in corticostriatal BDNF, with assessments done at 10 weeks of age after daily MTD treatment since the fourth week of life. We found that LY379268 increased BDNF expression in layer 5 neurons in motor cortex, which project to striatum, partly rescued a preferential loss of enkephalinergic striatal neurons, and enhanced substance P (SP) expression by SP striatal projection neurons. The enhanced survival of enkephalinergic striatal neurons was correlated with the cortical BDNF increase, but the enhanced SP expression by SP striatal neurons was not. Thus, LY379268 may protect the two main striatal projection neuron types by different mechanisms, enkephalinergic neurons by the trophic benefit of BDNF, and SP neurons by a mechanism not involving BDNF. The SP neuron benefit may perhaps instead involve the anti-excitotoxic action of mGluR2/3 receptor agonists.
Collapse
Affiliation(s)
- A Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, 855 Monroe Ave, Memphis, TN 38163, USA.
| | | | | | | | | | | |
Collapse
|
3
|
Tucker B, Olson JE. Glutamate receptor-mediated taurine release from the hippocampus during oxidative stress. J Biomed Sci 2010; 17 Suppl 1:S10. [PMID: 20804584 PMCID: PMC2994387 DOI: 10.1186/1423-0127-17-s1-s10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Hippocampal slices swell and release taurine during oxidative stress. The influence of cellular signalling pathways on this process is unclear. Glutamate signalling can facilitate volume regulation in other CNS preparations. Therefore, we hypothesize activation of taurine release by oxidative stress results from tissue swelling and is coupled to activation of glutamate receptors. Methods Rat hippocampi were incubated at room temperature for 2 hr in artificial cerebrospinal fluid (aCSF) equilibrated with 95% O2 plus 5% CO2. For some slices, 1 mM taurine was added to the aCSF to maintain normal tissue taurine content. Slices then were perfused with aCSF at 35° C and baseline data recorded before 2 mM H2O2 was added. For some studies, mannitol or inhibitors of glutamate receptors or the volume-regulated anion channel (VRAC) were added before and during H2O2 treatment. The intensity of light transmitted through the slice (the intrinsic optical signal, IOS) was determined at 1-min intervals. Samples of perfusate were collected at 2-min intervals and amino acid contents determined by HPLC. Data were analyzed by repeated measures ANOVA and post hoc Dunnett’s test with significance indicated for p<0.05. Results IOS of slices prepared without taurine treatment increased significantly by 3.3±1.3% (mean±SEM) during oxidative stress. Little taurine was detected in the perfusate of these slices and the rate of taurine efflux did not change during H2O2 exposure. The α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate antagonist, 25 µM CNQX, but not the N-methyl-D-aspartate (NMDA) receptor antagonist, 10 µM MK-801, inhibited the increase in IOS during H2O2 treatment. Taurine-treated slices exposed to H2O2 showed no change in IOS; however, taurine efflux increased by 335±178%. When these slices were perfused with hypertonic aCSF (350 mOsm) or exposed to the VRAC inhibitor, 20 µM DCPIB, no increase in the taurine efflux rate was observed during H2O2 exposure. Taurine-treated slices perfused with 10 µM MK-801 during H2O2 exposure showed a 4.6±1.9% increase in IOS but no increase in the taurine efflux rate. Conclusions Taurine efflux via VRAC is critical for volume regulation of hippocampal slices exposed to oxidative stress. This increased taurine efflux does not result from direct activation of the taurine release pathway by H2O2. NMDA receptor activation plays an important role in taurine release during oxidative stress.
Collapse
Affiliation(s)
- Brian Tucker
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| | | |
Collapse
|
4
|
Ureshino RP, Bertoncini CR, Fernandes MJS, Abdalla FMF, Porto CS, Hsu YT, Lopes GS, Smaili SS. Alterations in calcium signaling and a decrease in Bcl-2 expression: possible correlation with apoptosis in aged striatum. J Neurosci Res 2010; 88:438-47. [PMID: 19774672 DOI: 10.1002/jnr.22214] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aging is a multifaceted process associated with various functional and structural deficits that might be evolved in degenerative diseases. It has been shown that neurodegenerative disorders are associated with alterations in Ca(2+) homeostasis. Thus, in the present work, we have investigated Ca(2+) signaling and apoptosis in aged striatum. Our results show that glutamate and NMDA evoke a greater Ca(2+) rise in striatum slices from aged animals. However, this difference is not present when glutamate is tested in the absence of external Ca(2+). Immunostaining of glutamate receptors shows that only NMDA receptors (NR1) are increased in the striatum of aged rats. Increases in mitochondrial Ca(2+) content and in the reactive oxygen species levels were also observed in aged animals, which could be associated with tissue vulnerability. In addition, a decrease in the Bcl-2 protein expression and an enhancement in apoptosis were also present in aged striatum. Together the results indicate that, in aged animals, alterations in Ca(2+) handling coupled to an increase in ROS accumulation and a decrease in the prosurvival protein Bcl-2 may contribute to apoptosis induction and cell death in rat striatum.
Collapse
Affiliation(s)
- R P Ureshino
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
5
|
The dual role of calcium as messenger and stressor in cell damage, death, and survival. Int J Cell Biol 2010; 2010:546163. [PMID: 20300548 PMCID: PMC2838366 DOI: 10.1155/2010/546163] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/15/2009] [Accepted: 01/06/2010] [Indexed: 02/07/2023] Open
Abstract
Ca(2+) is an important second messenger participating in many cellular activities; when physicochemical insults deregulate its delicate homeostasis, it acts as an intrinsic stressor, producing/increasing cell damage. Damage elicits both repair and death responses; intriguingly, in those responses Ca(2+) also participates as second messenger. This delineates a dual role for Ca(2+) in cell stress, making difficult to separate the different and multiple mechanisms required for Ca(2+)-mediated control of cell survival and apoptosis. Here we attempt to disentangle the two scenarios, examining on the one side, the events implicated in deregulated Ca(2+) toxicity and the mechanisms through which this elicits reparative or death pathways; on the other, reviewing the role of Ca(2+) as a messenger in the transduction of these same signaling events.
Collapse
|
6
|
Gerdjikov TV, Beninger RJ. Place preference induced by nucleus accumbens amphetamine is impaired by local blockade of Group II metabotropic glutamate receptors in rats. BMC Neurosci 2006; 7:43. [PMID: 16734896 PMCID: PMC1501036 DOI: 10.1186/1471-2202-7-43] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2006] [Accepted: 05/30/2006] [Indexed: 11/10/2022] Open
Abstract
Background The nucleus accumbens (NAc) plays a critical role in amphetamine-produced conditioned place preference (CPP). In previous studies, NAc basal and amphetamine-produced DA transmission was altered by Group II mGluR agents. We tested whether NAc amphetamine CPP depends on Group II mGluR transmission. Results NAc injections (0.5 μl/side) of the Group II mGluR antagonist (2 S)- a-ethylglutamic acid (EGLU: 0.01–0.8 μg but not 0.001 μg) impaired CPP. The drug did not block the acute locomotor effect of amphetamine. Conclusion Results suggest that Group II mGluRs may be necessary for the establishment of NAc amphetamine-produced CPP. These receptors may also mediate other forms of reward-related learning dependent on this structure.
Collapse
Affiliation(s)
- Todor V Gerdjikov
- Department of Psychology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Richard J Beninger
- Department of Psychology, Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Psychiatry, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
7
|
Mela F, Marti M, Fiorentini C, Missale C, Morari M. Group-II metabotropic glutamate receptors negatively modulate NMDA transmission at striatal cholinergic terminals: Role of P/Q-type high voltage activated Ca++ channels and endogenous dopamine. Mol Cell Neurosci 2006; 31:284-92. [PMID: 16249096 DOI: 10.1016/j.mcn.2005.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 09/21/2005] [Accepted: 09/26/2005] [Indexed: 11/27/2022] Open
Abstract
Striatal cholinergic nerve terminals express functional group-II metabotropic (mGlu) and NMDA glutamate receptors. To investigate whether these receptors interact to regulate ACh release, LY354740 (a group-II mGlu receptor agonist) and NMDA were co-applied in striatal synaptosomes and slices. LY354740 prevented the NMDA-evoked [3H]-choline release from synaptosomes and ACh release from slices. In synaptosomes, this modulation was prevented by omega-agatoxin IVA, suggesting that it was mediated by P/Q-type high voltage activated Ca++ channels. In slices, LY341495 (a group-II mGlu receptor antagonist) enhanced the NMDA-induced ACh release, suggesting that group-II mGlu receptor activation by endogenous glutamate inhibits NMDA transmission. Co-immunoprecipitation studies excluded direct group-II mGlu-NMDA receptor interactions. Finally, group-II mGlu negative modulation of NMDA transmission was abolished in dopamine-depleted synaptosomes and slices, suggesting that it relied on endogenous dopamine. We conclude that group-II mGlu receptors attenuate NMDA inputs at striatal cholinergic terminals via Ca++ channel modulation and dopamine-sensitive pathways.
Collapse
Affiliation(s)
- Flora Mela
- Section of Pharmacology, and Neuroscience Center, Department of Experimental and Clinical Medicine, University of Ferrara, via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | | | | | | | | |
Collapse
|
8
|
Folbergrová J, Druga R, Otáhal J, Haugvicová R, Mares P, Kubová H. Seizures induced in immature rats by homocysteic acid and the associated brain damage are prevented by group II metabotropic glutamate receptor agonist (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate. Exp Neurol 2005; 192:420-36. [PMID: 15755559 DOI: 10.1016/j.expneurol.2004.12.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 11/20/2004] [Accepted: 12/28/2004] [Indexed: 11/24/2022]
Abstract
The present study has examined the anticonvulsant and neuroprotective effect of group II metabotropic glutamate receptor (mGluR) agonist (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (2R,4R-APDC) in the model of seizures induced in immature 12-day-old rats by bilateral intracerebroventricular infusion of dl-homocysteic acid (DL-HCA, 600 nmol/side). For biochemical analyses, rat pups were sacrificed during generalized clonic-tonic seizures, approximately 45-50 min after infusion. Comparable time intervals were used for sacrificing the pups which had received 2R,4R-APDC. Low doses of 2R,4R-APDC (0.05 nmol/side) provided a pronounced anticonvulsant effect which was abolished by pretreatment with a selective group II mGluR antagonist LY341495. Generalized clonic-tonic seizures were completely suppressed and cortical energy metabolite changes which normally accompany these seizures were either normalized (decrease of glucose and glycogen) or markedly reduced (an accumulation of lactate). EEG recordings support the marked anticonvulsant effect of 2R,4R-APDC, nevertheless, this was only partial. In spite of the absence of obvious motor phenomena, isolated spikes or even short periods of partial ictal activity could be observed. Isolated spikes could also be seen in some animals after application of 2R,4R-APDC alone, reflecting most likely subclinical proconvulsant activity of this agonist. The neuroprotective effect of 2R,4R-APDC was evaluated after 24 h and 6 days of survival following DL-HCA-induced seizures. Massive neuronal degeneration, as revealed by Fluoro-Jade B staining, was observed in a number of brain regions following infusion of DL-HCA alone (seizure group), whereas 2R,4R-APDC pretreatment provided substantial neuroprotection. The present findings support the possibility that group II mGluRs are a promising target for a novel approach to treating epilepsy.
Collapse
Affiliation(s)
- Jaroslava Folbergrová
- Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic.
| | | | | | | | | | | |
Collapse
|
9
|
Baskys A, Blaabjerg M. Understanding regulation of nerve cell death by mGluRs as a method for development of successful neuroprotective strategies. J Neurol Sci 2005; 229-230:201-9. [PMID: 15760640 DOI: 10.1016/j.jns.2004.11.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A common cause of nerve cell death often leading to vascular dementia is ischemic stroke. Attempts to develop clinically effective stroke treatment and prevention strategies based on pharmacological manipulations of a single mechanism have not led to clinical success. Analysis of clinical neuroprotection trials suggests that combination treatments may be more effective. To identify optimal components for such treatment, N-methyl-d-aspartate receptor (NMDAR) activation-induced cell death in organotypic hippocampal preparations was studied as a model of neurodegeneration that occurs in association with stroke or vascular dementia. Pharmacological manipulation of metabotropic glutamate receptors mGluR1 and 5 resulted in significant reduction of nerve cell susceptibility to NMDA-induced injury, suggesting that these receptors may function as physiological regulators of neuronal vulnerability. cDNA microarray analysis of over 1000 brain-related genes performed after the neuroprotective activation of group I metabotropic glutamate receptors (mGluRs) revealed a complex pattern of activation and inactivation of seemingly unrelated genes responsible for regulation of neuronal excitability, inflammation, cell death pathways, cell adhesion and transcriptional activation. Combined pharmacological targeting of these processes may provide basis for clinical trials of effective neuroprotective compounds.
Collapse
Affiliation(s)
- Andrius Baskys
- 06/116 VA Health Care System MIRECC, 5901 E. 7th street, Long Beach, CA 90822, USA.
| | | |
Collapse
|
10
|
Lu Y, Rubel EW. Activation of metabotropic glutamate receptors inhibits high-voltage-gated calcium channel currents of chicken nucleus magnocellularis neurons. J Neurophysiol 2004; 93:1418-28. [PMID: 15371493 DOI: 10.1152/jn.00659.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Using whole cell patch-clamp recordings, we pharmacologically characterized the voltage-gated Ca2+ channel (VGCC) currents of chicken nucleus magnocellularis (NM) neurons using barium as the charge carrier. NM neurons possessed both low- and high-voltage-activated Ca2+ channel currents (HVA I(Ba2+)). The N-type channel blocker (omega-conotoxin-GVIA) inhibited more than half of the total HVA I(Ba2+), whereas blockers of L- and P/Q-type channels each inhibited a small fraction of the current. Metabotropic glutamate receptor (mGluR)-mediated modulation of the HVA I(Ba2+) was examined by bath application of glutamate (100 microM), which inhibited the HVA I(Ba2+) by an average of 16%. The inhibitory effect was dose dependent and was partially blocked by omega-conotoxin-GVIA, indicating that mGluRs modulate N and other type HVA I(Ba2+). The nonspecific mGluR agonist, (1S,3R)-1-aminocyclopentane-1,3-dicarbosylic acid (1S,3R-ACPD), mimicked the inhibitory effect of glutamate on HVA I(Ba2+). Group I-III mGluR agonists showed inhibition of the HVA current with the most potent being the group III agonist L(+)-2-amino-4-phosphonobutyric acid. 1S,3R-ACPD (200 microM) had no effect on K+ or Na+ currents. The firing properties of NM neurons were also not altered by 1S,3R-ACPD. We propose that the inhibition of VGCC currents by mGluRs limits depolarization-induced Ca2+ entry into these highly active NM neurons and regulates their Ca2+ homeostasis.
Collapse
Affiliation(s)
- Yong Lu
- Virginia Merrill Bloedel Hearing Research Center and Department of Otolaryngology-Head and Neck Surgery, University of Washington, Box 357923, Seattle, WA 98195, USA
| | | |
Collapse
|
11
|
Stover JF, Sakowitz OW, Beyer TF, Dohse NK, Kroppenstedt SN, Thomale UW, Schaser KD, Unterberg AW. Effects of LY379268, a selective group II metabotropic glutamate receptor agonist on EEG activity, cortical perfusion, tissue damage, and cortical glutamate, glucose, and lactate levels in brain-injured rats. J Neurotrauma 2003; 20:315-26. [PMID: 12866811 DOI: 10.1089/089771503765172273] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Activating presynaptic group II metabotropic glutamate (mGlu II) receptors reduces synaptic glutamate release. Attenuating glutamatergic transmission without blocking ionotropic glutamate receptors, thus avoiding unfavorable psychomimetic side effects, makes mGlu II receptor agonists a promising target in treating brain-injured patients. Neuroprotective effects of LY379268 were investigated in rats following controlled cortical impact injury (CCI). At 30 min after CCI, rats received a single intraperitoneal injection of LY379268 (10 mg/kg/body weight) or NaCl. Changes in EEG activity and pericontusional cortical perfusion were determined before trauma, at 4, 24, and 48 h, and 7 days after CCI. Brain edema and contusion volume were determined at 24 h and 7 days after CCI, respectively. Before brain removal pericontusional cortical glutamate, glucose, and lactate were measured via microdialysis. During the early period following CCI, EEG activity and cortical perfusion were significantly reduced in rats receiving LY379268. At 7 days, cortical perfusion was significantly increased in rats treated with LY379268, while EEG activity was depressed as in control rats. While brain edema remained unchanged at 24 h, cortical contusion was significantly decreased by 56% at 7 days after CCI. Cortical glutamate, glucose, and lactate were not influenced. Significant reductions in EEG activity and contusion volume by LY379268 do not appear mediated by attenuated excitotoxicity and energetic impairment. Overall, an additional decrease in cortical perfusion seems to interfere with the anti-edematous potential of LY379268 during the early period following CCI, while an increase in perfusion in LY379268-treated rats at 7 days might contribute to tissue protection.
Collapse
Affiliation(s)
- John F Stover
- Department of Neurosurgery, Charité-Virchow Medical Center, Humboldt-University Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The overactivation of glutamate receptors is a major cause of Ca(2+) overload in cells, potentially leading to cell damage and death. There is an abundance of agents and mechanisms by which glutamate receptor activation can be prevented or modulated in order to control these effects. They include the well-established, competitive and non-competitive antagonists at the N-methyl-D-aspartate (NMDA) receptors and modulators of desensitisation of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors. More recently, it has emerged that some compounds can act selectively at different subunits of glutamate receptors, allowing a differential blockade of subtypes. It is also becoming clear that a number of endogenous compounds, including purines, can modify glutamate receptor sensitivity. The kynurenine pathway is an alternative but distinct pathway to the generation of glutamate receptor ligands. The products of tryptophan metabolism via the kynurenine pathway include both quinolinic acid, a selective agonist at NMDA receptors, and kynurenic acid, an antagonist at several glutamate receptor subtypes. The levels of these metabolites change as a result of the activation of inflammatory processes and immune-competent cells, and may have a significant impact on Ca(2+) fluxes and neuronal damage. Drugs which target some of these various sites and processes, or which change the balance between the excitotoxin quinolinic acid and the neuroprotective kynurenic acid, could also have potential as neuroprotective drugs.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Biomedical and Life Sciences Division of Neuroscience and Biomed. System, West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
13
|
12-hydroxyeicosatetrenoate (12-HETE) attenuates AMPA receptor-mediated neurotoxicity: evidence for a G-protein-coupled HETE receptor. J Neurosci 2002. [PMID: 11756509 DOI: 10.1523/jneurosci.22-01-00257.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
12-hydroxyeicosatetraenoic acid (12-HETE) is a neuromodulator that is synthesized during ischemia. Its neuronal effects include attenuation of calcium influx and glutamate release as well as inhibition of AMPA receptor (AMPA-R) activation. Because 12-HETE reduces ischemic injury in the heart, we examined whether it can also reduce neuronal excitotoxicity. When treated with 12-(S)HETE, cortical neuron cultures subjected to AMPA-R-mediated glutamate toxicity suffered up to 40% less damage than untreated cultures. The protective effect of 12-(S)HETE was concentration-dependent (EC50 = 88 nm) and stereostructurally selective. Maximal protection was conferred by 300 nm 12-(S)HETE; 300 nm 15-(S)HETE was similarly protective, but 300 nm 5-(S)HETE was less effective. The chiral isomer 12-(R)HETE offered no protection; neither did arachidonic acid or 12-(S)hydroperoxyeicosatetraenoic acid. Excitotoxicity was calcium-dependent, and 12-(S)HETE was demonstrated to protect by inactivating N and L (but not P) calcium channels via a pertussis toxin-sensitive mechanism. Calcium imaging demonstrated that 12-(S)HETE also attenuates glutamate-induced calcium influx into neurons via a pertussis toxin-sensitive mechanism, suggesting that it acts via a G-protein-coupled receptor. In addition, 12-(S)HETE stimulates GTPgammaS binding (indicating G-protein activation) and inhibits adenylate cyclase in forskolin-stimulated cultures over the same concentration range as it exerts its anti-excitotoxic and calcium-influx attenuating effects. These studies demonstrate that 12-(S)HETE can protect neurons from excitotoxicity by activating a G(i/o)-protein-coupled receptor, which limits calcium influx through voltage-gated channels.
Collapse
|
14
|
Moldrich RX, Giardina SF, Beart PM. Group II mGlu receptor agonists fail to protect against various neurotoxic insults induced in murine cortical, striatal and cerebellar granular pure neuronal cultures. Neuropharmacology 2001; 41:19-31. [PMID: 11445182 DOI: 10.1016/s0028-3908(01)00045-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since group II metabotropic glutamate (mGlu) receptors are a potential target for the amelioration of neuronal injury, we evaluated the ability of group II mGlu receptor agonists to attenuate toxicity induced by various insults in cortical, striatal and cerebellar granular (CGCs) pure neuronal cultures. The three cultures, when maintained under serum-free, anti-oxidant rich conditions for up to 13 days in vitro (div) were shown by immunocytochemistry to contain a maximum of 2-7% glia. At 6, 9 and 13 div a graded pattern of injury to cortical and striatal cultures was achieved with either hydrogen peroxide (60-110 microM), staurosporine (1 microM), N-methyl-D-aspartate (NMDA, 70 microM), alpha-amino-3-hydroxy-methylisoxazole-4-propionate (AMPA, 100 microM) or kainate (100 microM) over either 4, 24 or 48 h. CGCs were similarly exposed to low K(+) (5.4 mM KCl). Cell viability was examined via phase-contrast microscopy and assessed by a 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay. Treatment with group II mGlu receptor agonists (1-300 microM), 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate ((2R,4R)-APDC), (2S,1'S,2'S)-2-(carboxycyclopropyl)glycine (L-CCG-I), (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) and N-acetylaspartylglutamate (NAAG) failed to attenuate the toxicity. Pretreatment of cultures with the agonists and treatment following acute insult also failed to attenuate toxicity. Further investigations demonstrated the presence of second messenger activation whereby (2R,4R)-APDC reduced forskolin-stimulated production of cAMP in each culture. Thus, despite receptor coupling to intracellular signaling cascades, and regardless of culture development, agonist concentration, extent and mode of injury, group II mGlu receptor agonists were unable to protect against injury induced in cortical, striatal and cerebellar granular pure neuronal cultures. This result is in contrast to mixed cultures of neurones and glia and implies an important role for glia in the neuroprotective effects of group II mGlu receptor agonists.
Collapse
Affiliation(s)
- R X Moldrich
- Department of Pharmacology, Monash University, PO Box 13E, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
15
|
Hampson AJ, Grimaldi M. Cannabinoid receptor activation and elevated cyclic AMP reduce glutamate neurotoxicity. Eur J Neurosci 2001; 13:1529-36. [PMID: 11328347 DOI: 10.1046/j.0953-816x.2001.01536.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cannabinoid receptor activation in vivo reduces ischemic injury, a phenomenon that has not been successfully reproduced in vitro. Because cyclic adenosine monophosphate (cAMP) levels are radically elevated during ischemic reperfusion, but cannabinoid receptor activation reduces cAMP levels, we hypothesized that cannabinoids might prevent in vitro glutamate toxicity if reperfusion was simulated by cAMP supplementation after glutamate removal. Although neuronal cultures were unaffected by the single addition of either cannabinoid or dibutyryl cAMP (dbcAMP), glutamate toxicity was reduced by 20% when cannabinoid was present during glutamate exposure and either dbcAMP or forskolin was added after glutamate removal. Further studies revealed that cannabinoid receptor activation reduces glutamate toxicity by attenuating calcium influx through N- and P/Q-type calcium channels. The effect of glutamate exposure on neuronal cAMP levels was also examined. Glutamate exposure significantly reduced neuronal cAMP levels, although suppression was even greater when cannabinoid was present. Because neurological outcome after ischemia is poor when cAMP levels during reperfusion are low, it is hypothesized that cAMP elevation after glutamate exposure may offset excitotoxic and/or cannabinoid receptor-induced cAMP depletion. Cannabinoids protect against ischemic injury in vivo, but only reduce toxicity in vitro when cAMP levels are elevated, possibly suggesting that cAMP elevation during reperfusion reduces brain injury by off-setting the effect of Gi/o protein-coupled systems on adenylate cyclase.
Collapse
Affiliation(s)
- A J Hampson
- Laboratory of Cellular and Molecular Regulation, NIMH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
16
|
Schumacher TB, Beck H, Steffens R, Blümcke I, Schramm J, Elger CE, Steinhäuser C. Modulation of calcium channels by group I and group II metabotropic glutamate receptors in dentate gyrus neurons from patients with temporal lobe epilepsy. Epilepsia 2000; 41:1249-58. [PMID: 11051119 DOI: 10.1111/j.1528-1157.2000.tb04602.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Metabotropic glutamate receptors (mGluRs) might be promising new drug targets for the treatment of epilepsy because the expression of certain mGluRs is regulated in epilepsy and because activation of mGluRs results in distinctive anti- and proconvulsant effects. Therefore, we examined how mGluR activation modulates high-voltage-activated (HVA) Ca2+ channels. METHODS Whole-cell patch-clamp recordings were obtained from granule cells and interneuron-like cells acutely isolated from the dentate gyrus of patients with pharmacoresistent temporal lobe epilepsy. RESULTS Agonists selective for either group I or group II mGluRs rapidly and reversibly reduced HVA currents in most dentate gyrus cells. These modulatory effects were inhibited by the respective group I and group II mGluR antagonists. The specific Ca2+ channel antagonists nifedipine and omega-conotoxin GVIA potently occluded the effects of group I and II mGluR agonists, respectively, indicating that group I mGluRs acted on L-type channels and group II mGluRs affected N-type channels. About two thirds of the responsive neurons were sensitive either to group I or group II mGluRs, whereas a minority of cells showed effects to agonists of both groups, indicating a variable mGluR expression pattern. CONCLUSIONS Group I and group II mGluRs are expressed in human dentate gyrus neurons and modulate L- and N-type HVA channels, respectively. The data shed light on the possible cellular sequelae of the mGluR1 upregulation observed in human epileptic dentate gyrus as well as on possible mGluR-mediated anticonvulsant mechanisms.
Collapse
|