1
|
Hernández Rodríguez MY, Biswas DD, Slyne AD, Lee J, Scarrow E, Abdelbarr SM, Daniels H, O’Halloran KD, Ferreira LF, Gersbach CA, ElMallah MK. Respiratory pathology in the mdx/utrn -/- mouse: A murine model for Duchenne Muscular Dystrophy (DMD). PLoS One 2025; 20:e0316295. [PMID: 39919154 PMCID: PMC11805407 DOI: 10.1371/journal.pone.0316295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/09/2024] [Indexed: 02/09/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked devastating disease caused by a lack of dystrophin which results in progressive muscle weakness. As muscle weakness progresses, respiratory insufficiency and hypoventilation result in significant morbidity and mortality. The most studied DMD mouse model- the mdx mouse- has a milder respiratory phenotype compared to humans, likely due to compensatory overexpression of utrophin. mdx/utrn-/- mice lack both dystrophin and utrophin proteins. These mice have an early onset of muscular dystrophy, severe muscle weakness, and premature death, but the respiratory pathophysiology is unclear. The objective of this study is to characterize the respiratory pathophysiology and histopathology using whole body plethysmography to measure breathing and metabolism, diaphragm muscle functional analysis, histology, and immunohistochemistry. The mdx/utrn-/- mice have significant respiratory and metabolic deficits with respiratory insufficiency and hypoventilation when exposed to hypoxia and hypercarbia as early as 6 weeks of age. They also have significant diaphragmatic weakness and disrupted diaphragmatic structural pathology. The mdx/utrn-/- mice display respiratory dysfunction that mimics the DMD phenotype and therefore can provide a useful model to study the impact of novel therapies on respiratory function for DMD.
Collapse
Affiliation(s)
- Marán Y. Hernández Rodríguez
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University, Durham, North Carolina, United States of America
| | - Debolina D. Biswas
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University, Durham, North Carolina, United States of America
| | - Aoife D. Slyne
- Department of Physiology, University College Cork, Cork, Ireland
| | - Jane Lee
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University, Durham, North Carolina, United States of America
| | - Evelyn Scarrow
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University, Durham, North Carolina, United States of America
| | - Sarra M. Abdelbarr
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University, Durham, North Carolina, United States of America
| | - Heather Daniels
- Center for Advanced Genomic Technologies, Duke University, Durham, North Carolina, United States of America
| | | | - Leonardo F. Ferreira
- Department of Orthopedic Surgery, Duke University, Durham, North Carolina, United States of America
| | - Charles A. Gersbach
- Center for Advanced Genomic Technologies, Duke University, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Hospital, Durham, North Carolina, United States of America
| | - Mai K. ElMallah
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
2
|
Roger AL, Biswas DD, Huston ML, Le D, Bailey AM, Pucci LA, Shi Y, Robinson-Hamm J, Gersbach CA, ElMallah MK. Respiratory characterization of a humanized Duchenne muscular dystrophy mouse model. Respir Physiol Neurobiol 2024; 326:104282. [PMID: 38782084 PMCID: PMC11472894 DOI: 10.1016/j.resp.2024.104282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Duchenne muscular dystrophy (DMD) is the most common X-linked disease. DMD is caused by a lack of dystrophin, a critical structural protein in striated muscle. Dystrophin deficiency leads to inflammation, fibrosis, and muscle atrophy. Boys with DMD have progressive muscle weakness within the diaphragm that results in respiratory failure in the 2nd or 3rd decade of life. The most common DMD mouse model - the mdx mouse - is not sufficient for evaluating genetic medicines that specifically target the human DMD (hDMD) gene sequence. Therefore, a novel transgenic mouse carrying the hDMD gene with an exon 52 deletion was created (hDMDΔ52;mdx). We characterized the respiratory function and pathology in this model using whole body plethysmography, histology, and immunohistochemistry. At 6-months-old, hDMDΔ52;mdx mice have reduced maximal respiration, neuromuscular junction pathology, and fibrosis throughout the diaphragm, which worsens at 12-months-old. In conclusion, the hDMDΔ52;mdx exhibits moderate respiratory pathology, and serves as a relevant animal model to study the impact of novel genetic therapies, including gene editing, on respiratory function.
Collapse
Affiliation(s)
- Angela L Roger
- Department of Pediatrics, Duke University, Durham, NC, USA
| | | | | | - Davina Le
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Aidan M Bailey
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Logan A Pucci
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Yihan Shi
- Department of Pediatrics, Duke University, Durham, NC, USA
| | | | | | - Mai K ElMallah
- Department of Pediatrics, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Zhou A, Zhang W, Ge X, Liu Q, Luo F, Xu S, Hu W, Lu Y. Characterizing genetic variation on the Z chromosome in Schistosoma japonicum reveals host-parasite co-evolution. Parasit Vectors 2024; 17:207. [PMID: 38720339 PMCID: PMC11080191 DOI: 10.1186/s13071-024-06250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/18/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Schistosomiasis is a neglected tropical disease that afflicts millions of people worldwide; it is caused by Schistosoma, the only dioecious flukes with ZW systems. Schistosoma japonicum is endemic to Asia; the Z chromosome of S. japonicum comprises one-quarter of the entire genome. Detection of positive selection using resequencing data to understand adaptive evolution has been applied to a variety of pathogens, including S. japonicum. However, the contribution of the Z chromosome to evolution and adaptation is often neglected. METHODS We obtained 1,077,526 high-quality SNPs on the Z chromosome in 72 S. japonicum using re-sequencing data publicly. To examine the faster Z effect, we compared the sequence divergence of S. japonicum with two closely related species, Schistosoma haematobium and S. mansoni. Genetic diversity was compared between the Z chromosome and autosomes in S. japonicum by calculating the nucleotide diversity (π) and Dxy values. Population structure was also assessed based on PCA and structure analysis. Besides, we employed multiple methods including Tajima's D, FST, iHS, XP-EHH, and CMS to detect positive selection signals on the Z chromosome. Further RNAi knockdown experiments were performed to investigate the potential biological functions of the candidate genes. RESULTS Our study found that the Z chromosome of S. japonicum showed faster evolution and more pronounced genetic divergence than autosomes, although the effect may be smaller than the variation among genes. Compared with autosomes, the Z chromosome in S. japonicum had a more pronounced genetic divergence of sub-populations. Notably, we identified a set of candidate genes associated with host-parasite co-evolution. In particular, LCAT exhibited significant selection signals within the Taiwan population. Further RNA interference experiments suggested that LCAT is necessary for S. japonicum survival and propagation in the definitive host. In addition, we identified several genes related to the specificity of the intermediate host in the C-M population, including Rab6 and VCP, which are involved in adaptive immune evasion to the host. CONCLUSIONS Our study provides valuable insights into the adaptive evolution of the Z chromosome in S. japonicum and further advances our understanding of the co-evolution of this medically important parasite and its hosts.
Collapse
Affiliation(s)
- An Zhou
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xueling Ge
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qi Liu
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China
| | - Fang Luo
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Sokolova AV, Domnina AP, Mikhailov VM. Accumulation of Dystrophin-Positive Muscle Fibers and Improvement of Neuromuscular Junctions in mdx Mouse Muscles after Bone Marrow Transplantation under Different Conditions. Int J Mol Sci 2023; 24:ijms24108892. [PMID: 37240237 DOI: 10.3390/ijms24108892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscular disorder caused by mutations in the dystrophin gene. It leads to respiratory and cardiac failure and premature death at a young age. Although recent studies have greatly deepened the understanding of the primary and secondary pathogenetic mechanisms of DMD, an effective treatment remains elusive. In recent decades, stem cells have emerged as a novel therapeutic product for a variety of diseases. In this study, we investigated nonmyeloablative bone marrow cell (BMC) transplantation as a method of cell therapy for DMD in an mdx mouse model. By using BMC transplantation from GFP-positive mice, we confirmed that BMCs participate in the muscle restoration of mdx mice. We analyzed both syngeneic and allogeneic BMC transplantation under different conditions. Our data indicated that 3 Gy X-ray irradiation with subsequent BMC transplantation improved dystrophin synthesis and the structure of striated muscle fibers (SMFs) in mdx mice as well as decreasing the death rate of SMFs. In addition, we observed the normalization of neuromuscular junctions (NMJs) in mdx mice after nonmyeloablative BMC transplantation. In conclusion, we demonstrated that nonmyeloablative BMC transplantation could be considered a method for DMD treatment.
Collapse
Affiliation(s)
| | - Alisa P Domnina
- Institute of Cytology, Russian Academy of Sciences, 194064 Saint-Petersburg, Russia
| | | |
Collapse
|
5
|
Dubuisson N, Versele R, Planchon C, Selvais CM, Noel L, Abou-Samra M, Davis-López de Carrizosa MA. Histological Methods to Assess Skeletal Muscle Degeneration and Regeneration in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:16080. [PMID: 36555721 PMCID: PMC9786356 DOI: 10.3390/ijms232416080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive disease caused by the loss of function of the protein dystrophin. This protein contributes to the stabilisation of striated cells during contraction, as it anchors the cytoskeleton with components of the extracellular matrix through the dystrophin-associated protein complex (DAPC). Moreover, absence of the functional protein affects the expression and function of proteins within the DAPC, leading to molecular events responsible for myofibre damage, muscle weakening, disability and, eventually, premature death. Presently, there is no cure for DMD, but different treatments help manage some of the symptoms. Advances in genetic and exon-skipping therapies are the most promising intervention, the safety and efficiency of which are tested in animal models. In addition to in vivo functional tests, ex vivo molecular evaluation aids assess to what extent the therapy has contributed to the regenerative process. In this regard, the later advances in microscopy and image acquisition systems and the current expansion of antibodies for immunohistological evaluation together with the development of different spectrum fluorescent dyes have made histology a crucial tool. Nevertheless, the complexity of the molecular events that take place in dystrophic muscles, together with the rise of a multitude of markers for each of the phases of the process, makes the histological assessment a challenging task. Therefore, here, we summarise and explain the rationale behind different histological techniques used in the literature to assess degeneration and regeneration in the field of dystrophinopathies, focusing especially on those related to DMD.
Collapse
Affiliation(s)
- Nicolas Dubuisson
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
- Neuromuscular Reference Center, Cliniques Universitaires Saint-Luc (CUSL), Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Romain Versele
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Chloé Planchon
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Camille M. Selvais
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Laurence Noel
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Michel Abou-Samra
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - María A. Davis-López de Carrizosa
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
6
|
Pharmacological inhibition of HDAC6 improves muscle phenotypes in dystrophin-deficient mice by downregulating TGF-β via Smad3 acetylation. Nat Commun 2022; 13:7108. [PMID: 36402791 PMCID: PMC9675748 DOI: 10.1038/s41467-022-34831-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022] Open
Abstract
The absence of dystrophin in Duchenne muscular dystrophy disrupts the dystrophin-associated glycoprotein complex resulting in skeletal muscle fiber fragility and atrophy, associated with fibrosis as well as microtubule and neuromuscular junction disorganization. The specific, non-conventional cytoplasmic histone deacetylase 6 (HDAC6) was recently shown to regulate acetylcholine receptor distribution and muscle atrophy. Here, we report that administration of the HDAC6 selective inhibitor tubastatin A to the Duchenne muscular dystrophy, mdx mouse model increases muscle strength, improves microtubule, neuromuscular junction, and dystrophin-associated glycoprotein complex organization, and reduces muscle atrophy and fibrosis. Interestingly, we found that the beneficial effects of HDAC6 inhibition involve the downregulation of transforming growth factor beta signaling. By increasing Smad3 acetylation in the cytoplasm, HDAC6 inhibition reduces Smad2/3 phosphorylation, nuclear translocation, and transcriptional activity. These findings provide in vivo evidence that Smad3 is a new target of HDAC6 and implicate HDAC6 as a potential therapeutic target in Duchenne muscular dystrophy.
Collapse
|
7
|
Morotti M, Gaeta A, Limatola C, Catalano M, Di Castro MA, Grassi F. Early Developmental Changes of Muscle Acetylcholine Receptors Are Little Influenced by Dystrophin Absence in mdx Mouse. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111861. [PMID: 36430996 PMCID: PMC9696329 DOI: 10.3390/life12111861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Dystrophin is a cytoskeletal protein contributing to the organization of the neuromuscular junction. In Duchenne muscular dystrophy, due to dystrophin absence, the distribution of endplate acetylcholine receptors (AChRs) becomes disorganized. It is still debated whether this is due to the absence of dystrophin or to the repeated damage/regeneration cycles typical of dystrophic muscle. We addressed this controversy studying the endplate in the first 3 postnatal weeks, when muscle damage in dystrophic (mdx) mice is minimal. By synaptic and extra-synaptic patch-clamp recordings in acutely dissociated mdx and wt muscle fibers, we recorded unitary events due to openings of AChR-channels containing the γ and ε subunit. We also examined AChR distribution at the endplate by immunofluorescence assays. No differences between wt and mdx fibers were found in the γ/ε switch, nor in the AChR organization at the endplates up to 21 postnatal days. Conversely, we detected a delayed appearance and disappearance of patches with high channel opening frequency in mdx fibers. Our data emphasize that the innervation-dependent γ/ε switch and AChR organization in the endplate are not affected by the absence of dystrophin, while extra-synaptic AChR cluster formation and disassembly could be differentially regulated in mdx mice.
Collapse
Affiliation(s)
- Marta Morotti
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandro Gaeta
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Cristina Limatola
- Laboratory Affiliated to Istituto Pasteur Italia, Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Amalia Di Castro
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Grassi
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
8
|
Stefano MED, Ferretti V, Mozzetta C. Synaptic alterations as a neurodevelopmental trait of Duchenne muscular dystrophy. Neurobiol Dis 2022; 168:105718. [PMID: 35390481 DOI: 10.1016/j.nbd.2022.105718] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023] Open
Abstract
Dystrophinopaties, e.g., Duchenne muscular dystrophy (DMD), Becker muscular dystrophy and X-linked dilated cardiomyopathy are inherited neuromuscular diseases, characterized by progressive muscular degeneration, which however associate with a significant impact on general system physiology. The more severe is the pathology and its diversified manifestations, the heavier are its effects on organs, systems, and tissues other than muscles (skeletal, cardiac and smooth muscles). All dystrophinopaties are characterized by mutations in a single gene located on the X chromosome encoding dystrophin (Dp427) and its shorter isoforms, but DMD is the most devasting: muscular degenerations manifests within the first 4 years of life, progressively affecting motility and other muscular functions, and leads to a fatal outcome between the 20s and 40s. To date, after years of studies on both DMD patients and animal models of the disease, it has been clearly demonstrated that a significant percentage of DMD patients are also afflicted by cognitive, neurological, and autonomic disorders, of varying degree of severity. The anatomical correlates underlying neural functional damages are established during embryonic development and the early stages of postnatal life, when brain circuits, sensory and motor connections are still maturing. The impact of the absence of Dp427 on the development, differentiation, and consolidation of specific cerebral circuits (hippocampus, cerebellum, prefrontal cortex, amygdala) is significant, and amplified by the frequent lack of one or more of its lower molecular mass isoforms. The most relevant aspect, which characterizes DMD-associated neurological disorders, is based on morpho-functional alterations of selective synaptic connections within the affected brain areas. This pathological feature correlates neurological conditions of DMD to other severe neurological disorders, such as schizophrenia, epilepsy and autistic spectrum disorders, among others. This review discusses the organization and the role of the dystrophin-dystroglycan complex in muscles and neurons, focusing on the neurological aspect of DMD and on the most relevant morphological and functional synaptic alterations, in both central and autonomic nervous systems, described in the pathology and its animal models.
Collapse
Affiliation(s)
- Maria Egle De Stefano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy; Center for Research in Neurobiology Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy.
| | - Valentina Ferretti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy; Center for Research in Neurobiology Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy
| | - Chiara Mozzetta
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy c/o Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
9
|
Ganassi M, Zammit PS. Involvement of muscle satellite cell dysfunction in neuromuscular disorders: Expanding the portfolio of satellite cell-opathies. Eur J Transl Myol 2022; 32:10064. [PMID: 35302338 PMCID: PMC8992676 DOI: 10.4081/ejtm.2022.10064] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/11/2022] [Indexed: 12/03/2022] Open
Abstract
Neuromuscular disorders are a heterogeneous group of acquired or hereditary conditions that affect striated muscle function. The resulting decrease in muscle strength and motility irreversibly impacts quality of life. In addition to directly affecting skeletal muscle, pathogenesis can also arise from dysfunctional crosstalk between nerves and muscles, and may include cardiac impairment. Muscular weakness is often progressive and paralleled by continuous decline in the ability of skeletal muscle to functionally adapt and regenerate. Normally, the skeletal muscle resident stem cells, named satellite cells, ensure tissue homeostasis by providing myoblasts for growth, maintenance, repair and regeneration. We recently defined 'Satellite Cell-opathies' as those inherited neuromuscular conditions presenting satellite cell dysfunction in muscular dystrophies and myopathies (doi:10.1016/j.yexcr.2021.112906). Here, we expand the portfolio of Satellite Cell-opathies by evaluating the potential impairment of satellite cell function across all 16 categories of neuromuscular disorders, including those with mainly neurogenic and cardiac involvement. We explore the expression dynamics of myopathogenes, genes whose mutation leads to skeletal muscle pathogenesis, using transcriptomic analysis. This revealed that 45% of myopathogenes are differentially expressed during early satellite cell activation (0 - 5 hours). Of these 271 myopathogenes, 83 respond to Pax7, a master regulator of satellite cells. Our analysis suggests possible perturbation of satellite cell function in many neuromuscular disorders across all categories, including those where skeletal muscle pathology is not predominant. This characterisation further aids understanding of pathomechanisms and informs on development of prognostic and diagnostic tools, and ultimately, new therapeutics.
Collapse
Affiliation(s)
- Massimo Ganassi
- King's College London, Randall Centre for Cell and Molecular Biophysics, Guy's Campus, London.
| | - Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, Guy's Campus, London.
| |
Collapse
|
10
|
Fralish Z, Lotz EM, Chavez T, Khodabukus A, Bursac N. Neuromuscular Development and Disease: Learning From in vitro and in vivo Models. Front Cell Dev Biol 2021; 9:764732. [PMID: 34778273 PMCID: PMC8579029 DOI: 10.3389/fcell.2021.764732] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
The neuromuscular junction (NMJ) is a specialized cholinergic synaptic interface between a motor neuron and a skeletal muscle fiber that translates presynaptic electrical impulses into motor function. NMJ formation and maintenance require tightly regulated signaling and cellular communication among motor neurons, myogenic cells, and Schwann cells. Neuromuscular diseases (NMDs) can result in loss of NMJ function and motor input leading to paralysis or even death. Although small animal models have been instrumental in advancing our understanding of the NMJ structure and function, the complexities of studying this multi-tissue system in vivo and poor clinical outcomes of candidate therapies developed in small animal models has driven the need for in vitro models of functional human NMJ to complement animal studies. In this review, we discuss prevailing models of NMDs and highlight the current progress and ongoing challenges in developing human iPSC-derived (hiPSC) 3D cell culture models of functional NMJs. We first review in vivo development of motor neurons, skeletal muscle, Schwann cells, and the NMJ alongside current methods for directing the differentiation of relevant cell types from hiPSCs. We further compare the efficacy of modeling NMDs in animals and human cell culture systems in the context of five NMDs: amyotrophic lateral sclerosis, myasthenia gravis, Duchenne muscular dystrophy, myotonic dystrophy, and Pompe disease. Finally, we discuss further work necessary for hiPSC-derived NMJ models to function as effective personalized NMD platforms.
Collapse
Affiliation(s)
| | | | | | | | - Nenad Bursac
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
11
|
The Neuromuscular Junction: Roles in Aging and Neuromuscular Disease. Int J Mol Sci 2021; 22:ijms22158058. [PMID: 34360831 PMCID: PMC8347593 DOI: 10.3390/ijms22158058] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
The neuromuscular junction (NMJ) is a specialized synapse that bridges the motor neuron and the skeletal muscle fiber and is crucial for conversion of electrical impulses originating in the motor neuron to action potentials in the muscle fiber. The consideration of contributing factors to skeletal muscle injury, muscular dystrophy and sarcopenia cannot be restricted only to processes intrinsic to the muscle, as data show that these conditions incur denervation-like findings, such as fragmented NMJ morphology and corresponding functional changes in neuromuscular transmission. Primary defects in the NMJ also influence functional loss in motor neuron disease, congenital myasthenic syndromes and myasthenia gravis, resulting in skeletal muscle weakness and heightened fatigue. Such findings underscore the role that the NMJ plays in neuromuscular performance. Regardless of cause or effect, functional denervation is now an accepted consequence of sarcopenia and muscle disease. In this short review, we provide an overview of the pathologic etiology, symptoms, and therapeutic strategies related to the NMJ. In particular, we examine the role of the NMJ as a disease modifier and a potential therapeutic target in neuromuscular injury and disease.
Collapse
|
12
|
Dong X, Hui T, Chen J, Yu Z, Ren D, Zou S, Wang S, Fei E, Jiao H, Lai X. Metformin Increases Sarcolemma Integrity and Ameliorates Neuromuscular Deficits in a Murine Model of Duchenne Muscular Dystrophy. Front Physiol 2021; 12:642908. [PMID: 34012406 PMCID: PMC8126699 DOI: 10.3389/fphys.2021.642908] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disease characterized by progressive muscle weakness and wasting. Stimulation of AMP-activated protein kinase (AMPK) has been demonstrated to increase muscle function and protect muscle against damage in dystrophic mice. Metformin is a widely used anti-hyperglycemic drug and has been shown to be an indirect activator of AMPK. Based on these findings, we sought to determine the effects of metformin on neuromuscular deficits in mdx murine model of DMD. In this study, we found metformin treatment increased muscle strength accompanied by elevated twitch and tetanic force of tibialis anterior (TA) muscle in mdx mice. Immunofluorescence and electron microscopy analysis of metformin-treated mdx muscles revealed an improvement in muscle fiber membrane integrity. Electrophysiological studies showed the amplitude of miniature endplate potentials (mEPP) was increased in treated mice, indicating metformin also improved neuromuscular transmission of the mdx mice. Analysis of mRNA and protein levels from muscles of treated mice showed an upregulation of AMPK phosphorylation and dystrophin-glycoprotein complex protein expression. In conclusion, metformin can indeed improve muscle function and diminish neuromuscular deficits in mdx mice, suggesting its potential use as a therapeutic drug in DMD patients.
Collapse
Affiliation(s)
- Xia Dong
- School of Basic Medical Sciences, Nanchang University, Nanchang, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China
| | - Tiankun Hui
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Jie Chen
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Zheng Yu
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China
| | - Dongyan Ren
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Suqi Zou
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Shunqi Wang
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Erkang Fei
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Huifeng Jiao
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Xinsheng Lai
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Mournetas V, Massouridès E, Dupont JB, Kornobis E, Polvèche H, Jarrige M, Dorval ARL, Gosselin MRF, Manousopoulou A, Garbis SD, Górecki DC, Pinset C. Myogenesis modelled by human pluripotent stem cells: a multi-omic study of Duchenne myopathy early onset. J Cachexia Sarcopenia Muscle 2021; 12:209-232. [PMID: 33586340 PMCID: PMC7890274 DOI: 10.1002/jcsm.12665] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/25/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) causes severe disability of children and death of young men, with an incidence of approximately 1/5000 male births. Symptoms appear in early childhood, with a diagnosis made mostly around 4 years old, a time where the amount of muscle damage is already significant, preventing early therapeutic interventions that could be more efficient at halting disease progression. In the meantime, the precise moment at which disease phenotypes arise-even asymptomatically-is still unknown. Thus, there is a critical need to better define DMD onset as well as its first manifestations, which could help identify early disease biomarkers and novel therapeutic targets. METHODS We have used both human tissue-derived myoblasts and human induced pluripotent stem cells (hiPSCs) from DMD patients to model skeletal myogenesis and compared their differentiation dynamics with that of healthy control cells by a comprehensive multi-omic analysis at seven time points. Results were strengthened with the analysis of isogenic CRISPR-edited human embryonic stem cells and through comparisons against published transcriptomic and proteomic datasets from human DMD muscles. The study was completed with DMD knockdown/rescue experiments in hiPSC-derived skeletal muscle progenitor cells and adenosine triphosphate measurement in hiPSC-derived myotubes. RESULTS Transcriptome and miRnome comparisons combined with protein analyses demonstrated that hiPSC differentiation (i) leads to embryonic/foetal myotubes that mimic described DMD phenotypes at the differentiation endpoint and (ii) homogeneously and robustly recapitulates key developmental steps-mesoderm, somite, and skeletal muscle. Starting at the somite stage, DMD dysregulations concerned almost 10% of the transcriptome. These include mitochondrial genes whose dysregulations escalate during differentiation. We also describe fibrosis as an intrinsic feature of DMD skeletal muscle cells that begins early during myogenesis. All the omics data are available online for exploration through a graphical interface at https://muscle-dmd.omics.ovh/. CONCLUSIONS Our data argue for an early developmental manifestation of DMD whose onset is triggered before the entry into the skeletal muscle compartment, data leading to a necessary reconsideration of dystrophin roles during muscle development. This hiPSC model of skeletal muscle differentiation offers the possibility to explore these functions as well as find earlier DMD biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - Etienne Kornobis
- Biomics, C2RT, Institut Pasteur, Paris, France.,Hub de Bioinformatique et Biostatistique - Département BiologieComputationnelle, Paris, France
| | | | | | | | - Maxime R F Gosselin
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Antigoni Manousopoulou
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Spiros D Garbis
- Unit for Cancer Sciences, Centre for Proteomics Research, Institute for Life Sciences, University of Southampton, Southampton, UK.,Proteas Bioanalytics Inc., BioLabs at The Lundquist Institute, Torrance, CA, USA
| | - Dariusz C Górecki
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.,Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | | |
Collapse
|
14
|
Ng SY, Ljubicic V. Recent insights into neuromuscular junction biology in Duchenne muscular dystrophy: Impacts, challenges, and opportunities. EBioMedicine 2020; 61:103032. [PMID: 33039707 PMCID: PMC7648118 DOI: 10.1016/j.ebiom.2020.103032] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/28/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common and relentless form of muscular dystrophy. The pleiotropic effects of dystrophin deficiency include remarkable impacts on neuromuscular junction (NMJ) structure and function. Some of these alterations contribute to the severe muscle wasting and weakness that distinguish DMD, while others attempt to compensate for them. Experimental approaches that correct NMJ biology in pre-clinical models of DMD attenuate disease progression and improve functional outcomes, which suggests that targeting the NMJ may be an effective therapeutic strategy for DMD patients. The objectives of this review are to 1) survey the distinctions in NMJ structure, function, and gene expression in the dystrophic context as compared to the healthy condition, and 2) summarize the efforts, opportunities and challenges to correct NMJ biology in DMD. This information will expand our basic understanding of neuromuscular biology and may be useful for designing novel NMJ-targeted drug or behavioural strategies to mitigate the dystrophic pathology and other disorders of the neuromuscular system.
Collapse
Affiliation(s)
- Sean Y Ng
- Department of Kinesiology, McMaster University, Hamilton L8S 4L8, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton L8S 4L8, Ontario, Canada.
| |
Collapse
|
15
|
Lovering RM, Iyer SR, Edwards B, Davies KE. Alterations of neuromuscular junctions in Duchenne muscular dystrophy. Neurosci Lett 2020; 737:135304. [PMID: 32818587 DOI: 10.1016/j.neulet.2020.135304] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022]
Abstract
The focus of this review is on Duchenne muscular dystrophy (DMD), which is caused by the absence of the protein dystrophin and is characterized as a neuromuscular disease in which muscle weakness, increased susceptibility to muscle injury, and inadequate repair appear to underlie the pathology. Considerable attention has been dedicated to studying muscle fiber damage, but data show that both human patients and animal models for DMD present with fragmented neuromuscular junction (NMJ) morphology. In addition to pre- and post-synaptic abnormalities, studies indicate increased susceptibility of the NMJ to contraction-induced injury, with corresponding functional changes in neuromuscular transmission and nerve-evoked electromyographic activity. Such findings suggest that alterations in the NMJ of dystrophic muscle may play a role in muscle weakness via impairment of neuromuscular transmission. Further work is needed to fully understand the role of the NMJ in the weakness, susceptibility to injury, and progressive wasting associated with DMD.
Collapse
Affiliation(s)
- Richard M Lovering
- Departments of Orthopaedics and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA; University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Shama R Iyer
- Departments of Orthopaedics and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Benjamin Edwards
- MDUK Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Kay E Davies
- MDUK Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Xu S, Tang S, Li X, Iyer SR, Lovering RM. Abnormalities in Brain and Muscle Microstructure and Neurochemistry of the DMD Rat Measured by in vivo Diffusion Tensor Imaging and High Resolution Localized 1H MRS. Front Neurosci 2020; 14:739. [PMID: 32760246 PMCID: PMC7372970 DOI: 10.3389/fnins.2020.00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/22/2020] [Indexed: 12/03/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disorder caused by the lack of dystrophin with progressive degeneration of skeletal muscles. Most studies regarding DMD understandably focus on muscle, but dystrophin is also expressed in the central nervous system, potentially resulting in cognitive and behavioral changes. Animal models are being used for developing more comprehensive neuromonitoring protocols and clinical image acquisition procedures. The recently developed DMD rat is an animal model that parallels the progressive muscle wasting seen in DMD. Here, we studied the brain and temporalis muscle structure and neurochemistry of wild type (WT) and dystrophic (DMD) rats using magnetic resonance imaging and spectroscopy. Both structural and neurochemistry alterations were observed in the DMD rat brain and the temporalis muscle. There was a decrease in absolute brain volume (WT = 1579 mm3; DMD = 1501 mm3; p = 0.039, Cohen’s d = 1.867), but not normalized (WT = 4.27; DMD = 4.02; p = 0.306) brain volume. Diffusion tensor imaging (DTI) revealed structural alterations in the DMD temporalis muscle, with increased mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). In the DMD rat thalamus, DTI revealed an increase in fractional anisotropy (FA) and a decrease in RD. Smaller normalized brain volume correlated to severity of muscle dystrophy (r = −0.975). Neurochemical changes in the DMD rat brain included increased GABA and NAA in the prefrontal cortex, and GABA in the hippocampus. Such findings could indicate disturbed motor and sensory signaling, resulting in a dysfunctional GABAergic neurotransmission, and an unstable osmoregulation in the dystrophin-null brain.
Collapse
Affiliation(s)
- Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shiyu Tang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Xin Li
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Implications of increased S100β and Tau5 proteins in dystrophic nerves of two mdx mouse models for Duchenne muscular dystrophy. Mol Cell Neurosci 2020; 105:103484. [DOI: 10.1016/j.mcn.2020.103484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/25/2020] [Indexed: 12/31/2022] Open
|
18
|
The role of the dystrophin glycoprotein complex on the neuromuscular system. Neurosci Lett 2020; 722:134833. [DOI: 10.1016/j.neulet.2020.134833] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/26/2022]
|
19
|
Gajendran N. The root cause of Duchenne muscular dystrophy is the lack of dystrophin in smooth muscle of blood vessels rather than in skeletal muscle per se. F1000Res 2018. [DOI: 10.12688/f1000research.15889.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background:The dystrophin protein is part of the dystrophin associated protein complex (DAPC) linking the intracellular actin cytoskeleton to the extracellular matrix. Mutations in the dystrophin gene cause Duchenne and Becker muscular dystrophy (D/BMD). Neuronal nitric oxide synthase associates with dystrophin in the DAPC to generate the vasodilator nitric oxide (NO). Systemic dystrophin deficiency, such as in D/BMD, results in muscle ischemia, injury and fatigue during exercise as dystrophin is lacking, affecting NO production and hence vasodilation. The role of neuregulin 1 (NRG) signaling through the epidermal growth factor family of receptors ERBB2 and ERBB4 in skeletal muscle has been controversial, but it was shown to phosphorylate α-dystrobrevin 1 (α-DB1), a component of the DAPC. The aim of this investigation was to determine whether NRG signaling had a functional role in muscular dystrophy.Methods:Primary myoblasts (muscle cells) were isolated from conditional knock-out mice containing lox P flanked ERBB2 and ERBB4 receptors, immortalized and exposed to Cre recombinase to obtainErbb2/4double knock-out (dKO) myoblasts where NRG signaling would be eliminated. Myotubes, thein vitroequivalent of muscle fibers, formed by fusion of the lox P flankedErbb2/4myoblasts as well as theErbb2/4dKO myoblasts were then used to identify changes in dystrophin expression.Results:Elimination of NRG signaling resulted in the absence of dystrophin demonstrating that it is essential for dystrophin expression. However, unlike the DMD mouse model mdx, with systemic dystrophin deficiency, lack of dystrophin in skeletal muscles ofErbb2/4dKO mice did not result in muscular dystrophy. In these mice, ERBB2/4, and thus dystrophin, is still expressed in the smooth muscle of blood vessels allowing normal blood flow through vasodilation during exercise.Conclusions:Dystrophin deficiency in smooth muscle of blood vessels, rather than in skeletal muscle, is the main cause of disease progression in DMD.
Collapse
|
20
|
Haddix SG, Lee YI, Kornegay JN, Thompson WJ. Cycles of myofiber degeneration and regeneration lead to remodeling of the neuromuscular junction in two mammalian models of Duchenne muscular dystrophy. PLoS One 2018; 13:e0205926. [PMID: 30379896 PMCID: PMC6209224 DOI: 10.1371/journal.pone.0205926] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/03/2018] [Indexed: 12/02/2022] Open
Abstract
Mice lacking the sarcolemmal protein dystrophin, designated mdx, have been widely used as a model of Duchenne muscular dystrophy. Dystrophic mdx mice as they mature develop notable morphological abnormalities to their neuromuscular junctions, the peripheral cholinergic synapses responsible for activating muscle fibers. Most obviously the acetylcholine receptor aggregates are fragmented into small non-continuous, islands. This contrasts with wild type mice whose acetylcholine receptor aggregates are continuous and pretzel-shaped in appearance. We show here that these abnormalities in mdx mice are also present in a canine model of Duchenne muscular dystrophy and provide additional evidence to support the hypothesis that NMJ remodeling occurs due to myofiber degeneration and regeneration. Using a method to investigate synaptic AChR replacement, we show that neuromuscular junction remodeling in mdx animals is caused by muscle fiber degeneration and regeneration at the synaptic site and is mimicked by deliberate myofiber injury in wild type mice. Importantly, the innervating motor axon plays a crucial role in directing the remodeling of the neuromuscular junction in dystrophy, as has been recorded in aging and deliberate muscle fiber injury in wild type mice. The remodeling occurs repetitively through the life of the animal and the changes in junctions become greater with age.
Collapse
Affiliation(s)
- Seth G. Haddix
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| | - Young il Lee
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Joe N. Kornegay
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Wesley J. Thompson
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
21
|
Pratt SJP, Iyer SR, Shah SB, Lovering RM. Imaging Analysis of the Neuromuscular Junction in Dystrophic Muscle. Methods Mol Biol 2018; 1687:57-72. [PMID: 29067656 DOI: 10.1007/978-1-4939-7374-3_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Duchenne muscular dystrophy (DMD), caused by the absence of the protein dystrophin, is characterized as a neuromuscular disease in which muscle weakness, increased susceptibility to muscle injury, and inadequate repair appear to underlie the pathology. Considerable attention has been dedicated to studying muscle fiber damage, but there is little information to determine if damage from contraction-induced injury also occurs at or near the nerve terminal axon. Interestingly, both human patients and the mouse model for DMD (the mdx mouse) present fragmented neuromuscular junction (NMJ) morphology. Studies of mdx mice have revealed presynaptic and postsynaptic abnormalities, nerve terminal discontinuity, as well as increased susceptibility of the NMJ to contraction-induced injury with corresponding functional changes in neuromuscular transmission and nerve-evoked electromyography. Focusing on the NMJ as a contributor to functional deficits in the muscle represents a paradigm shift from the more prevalent myocentric perspectives. Further studies are needed to determine the extent to which the nerve-muscle interaction is disrupted in DMD and the role of the NMJ in the dystrophic progression. This chapter lists the tools needed for nerve terminal and NMJ structural analysis using fluorescence imaging, and provides a step-by-step outline for how to stain, image, and analyze the NMJ in skeletal muscle, with specific attention to mdx muscle.
Collapse
Affiliation(s)
- Stephen J P Pratt
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore School of Medicine, Baltimore, MD, USA
| | - Shama R Iyer
- Department of Orthopaedics, University of Maryland, Baltimore School of Medicine, 100 Penn St., AHB, Room 540, Baltimore, MD, 21201, USA
| | - Sameer B Shah
- Departments of Orthopaedic Surgery and Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Research Division, Veterans Administration San Diego Healthcare System, San Diego, CA, 92121, USA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland, Baltimore School of Medicine, 100 Penn St., AHB, Room 540, Baltimore, MD, 21201, USA.
- Department of Physiology, University of Maryland, Baltimore School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
22
|
Valencia AP, Iyer SR, Spangenburg EE, Gilotra MN, Lovering RM. Impaired contractile function of the supraspinatus in the acute period following a rotator cuff tear. BMC Musculoskelet Disord 2017; 18:436. [PMID: 29121906 PMCID: PMC5679320 DOI: 10.1186/s12891-017-1789-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/26/2017] [Indexed: 01/16/2023] Open
Abstract
Background Rotator cuff (RTC) tears are a common clinical problem resulting in adverse changes to the muscle, but there is limited information comparing histopathology to contractile function. This study assessed supraspinatus force and susceptibility to injury in the rat model of RTC tear, and compared these functional changes to histopathology of the muscle. Methods Unilateral RTC tears were induced in male rats via tenotomy of the supraspinatus and infraspinatus. Maximal tetanic force and susceptibility to injury of the supraspinatus muscle were measured in vivo at day 2 and day 15 after tenotomy. Supraspinatus muscles were weighed and harvested for histologic analysis of the neuromuscular junction (NMJ), intramuscular lipid, and collagen. Results Tenotomy resulted in eventual atrophy and weakness. Despite no loss in muscle mass at day 2 there was a 30% reduction in contractile force, and a decrease in NMJ continuity and size. Reduced force persisted at day 15, a time point when muscle atrophy was evident but NMJ morphology was restored. At day 15, torn muscles had decreased collagen-packing density and were also more susceptible to contraction-induced injury. Conclusion Muscle size and histopathology are not direct indicators of overall RTC contractile health. Changes in NMJ morphology and collagen organization were associated with changes in contractile function and thus may play a role in response to injury. Although our findings are limited to the acute phase after a RTC tear, the most salient finding is that RTC tenotomy results in increased susceptibility to injury of the supraspinatus.
Collapse
Affiliation(s)
- Ana P Valencia
- Department of Orthopaedics, University of Maryland School of Medicine, AHB, Rm 540, 100 Penn St., Baltimore, MD, 21201, USA.,Department of Kinesiology, University of Maryland School of Public Health, College Park, USA
| | - Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, AHB, Rm 540, 100 Penn St., Baltimore, MD, 21201, USA
| | - Espen E Spangenburg
- Department of Physiology, East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, USA
| | - Mohit N Gilotra
- Department of Orthopaedics, University of Maryland School of Medicine, AHB, Rm 540, 100 Penn St., Baltimore, MD, 21201, USA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, AHB, Rm 540, 100 Penn St., Baltimore, MD, 21201, USA.
| |
Collapse
|
23
|
Amancio GDCS, Grabe-Guimarães A, Haikel D, Moreau J, Barcellos NMS, Lacampagne A, Matecki S, Cazorla O. Effect of pyridostigmine on in vivo and in vitro respiratory muscle of mdx mice. Respir Physiol Neurobiol 2017. [PMID: 28624507 DOI: 10.1016/j.resp.2017.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The current work was conducted to verify the contribution of neuromuscular transmission defects at the neuromuscular junction to Duchenne Muscular Dystrophy disease progression and respiratory dysfunction. We tested pyridostigmine and pyridostigmine encapsulated in liposomes (liposomal PYR), an acetylcholinesterase inhibitor to improve muscular contraction on respiratory muscle function in mdx mice at different ages. We evaluated in vivo with the whole-body plethysmography, the ventilatory response to hypercapnia, and measured in vitro diaphragm strength in each group. Compared to C57BL10 mice, only 17 and 22 month-old mdx presented blunted ventilatory response, under normocapnia and hypercapnia. Free pyridostigmine (1mg/kg) was toxic to mdx mice, unlike liposomal PYR, which did not show any side effect, confirming that the encapsulation in liposomes is effective in reducing the toxic effects of this drug. Treatment with liposomal PYR, either acute or chronic, did not show any beneficial effect on respiratory function of this DMD experimental model. The encapsulation in liposomes is effective to abolish toxic effects of drugs.
Collapse
Affiliation(s)
- Gabriela de Cássia Sousa Amancio
- Laboratory of Experimental Pharmacology, CiPharma, Pharmacy School, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Andrea Grabe-Guimarães
- Laboratory of Experimental Pharmacology, CiPharma, Pharmacy School, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| | - Dridi Haikel
- PHYMEDEXP, INSERM U1046, CNRS UMR9214, Université de Montpellier, CHRU Montpellier, Montpellier, France
| | - Johan Moreau
- PHYMEDEXP, INSERM U1046, CNRS UMR9214, Université de Montpellier, CHRU Montpellier, Montpellier, France
| | - Neila Marcia Silva Barcellos
- Laboratory of Experimental Pharmacology, CiPharma, Pharmacy School, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Alain Lacampagne
- PHYMEDEXP, INSERM U1046, CNRS UMR9214, Université de Montpellier, CHRU Montpellier, Montpellier, France
| | - Stefan Matecki
- PHYMEDEXP, INSERM U1046, CNRS UMR9214, Université de Montpellier, CHRU Montpellier, Montpellier, France
| | - Olivier Cazorla
- PHYMEDEXP, INSERM U1046, CNRS UMR9214, Université de Montpellier, CHRU Montpellier, Montpellier, France
| |
Collapse
|
24
|
Hughes DC, Marcotte GR, Marshall AG, West DWD, Baehr LM, Wallace MA, Saleh PM, Bodine SC, Baar K. Age-related Differences in Dystrophin: Impact on Force Transfer Proteins, Membrane Integrity, and Neuromuscular Junction Stability. J Gerontol A Biol Sci Med Sci 2017; 72:640-648. [PMID: 27382038 DOI: 10.1093/gerona/glw109] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/27/2016] [Indexed: 11/13/2022] Open
Abstract
The loss of muscle strength with age has been studied from the perspective of a decline in muscle mass and neuromuscular junction (NMJ) stability. A third potential factor is force transmission. The purpose of this study was to determine the changes in the force transfer apparatus within aging muscle and the impact on membrane integrity and NMJ stability. We measured an age-related loss of dystrophin protein that was greatest in the flexor muscles. The loss of dystrophin protein occurred despite a twofold increase in dystrophin mRNA. Importantly, this disparity could be explained by the four- to fivefold upregulation of the dystromir miR-31. To compensate for the loss of dystrophin protein, aged muscle contained increased α-sarcoglycan, syntrophin, sarcospan, laminin, β1-integrin, desmuslin, and the Z-line proteins α-actinin and desmin. In spite of the adaptive increase in other force transfer proteins, over the 48 hours following lengthening contractions, the old muscles showed more signs of impaired membrane integrity (fourfold increase in immunoglobulin G-positive fibers and 70% greater dysferlin mRNA) and NMJ instability (14- to 96-fold increases in Runx1, AchRδ, and myogenin mRNA). Overall, these data suggest that age-dependent alterations in dystrophin leave the muscle membrane and NMJ more susceptible to contraction-induced damage even before changes in muscle mass are obvious.
Collapse
Affiliation(s)
| | | | - Andrea G Marshall
- Department of Neurobiology, Physiology and Behavior and.,Department of Physiology and Membrane Biology, University of California, Davis.,VA Northern California Health Care System, Mather
| | - Daniel W D West
- Department of Physiology and Membrane Biology, University of California, Davis.,VA Northern California Health Care System, Mather
| | - Leslie M Baehr
- Department of Physiology and Membrane Biology, University of California, Davis.,VA Northern California Health Care System, Mather
| | | | | | - Sue C Bodine
- Department of Neurobiology, Physiology and Behavior and.,Department of Physiology and Membrane Biology, University of California, Davis.,VA Northern California Health Care System, Mather
| | - Keith Baar
- Department of Neurobiology, Physiology and Behavior and.,Department of Physiology and Membrane Biology, University of California, Davis.,VA Northern California Health Care System, Mather
| |
Collapse
|
25
|
Jones RA, Reich CD, Dissanayake KN, Kristmundsdottir F, Findlater GS, Ribchester RR, Simmen MW, Gillingwater TH. NMJ-morph reveals principal components of synaptic morphology influencing structure-function relationships at the neuromuscular junction. Open Biol 2016; 6:160240. [PMID: 27927794 PMCID: PMC5204123 DOI: 10.1098/rsob.160240] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/09/2016] [Indexed: 01/10/2023] Open
Abstract
The ability to form synapses is one of the fundamental properties required by the mammalian nervous system to generate network connectivity. Structural and functional diversity among synaptic populations is a key hallmark of network diversity, and yet we know comparatively little about the morphological principles that govern variability in the size, shape and strength of synapses. Using the mouse neuromuscular junction (NMJ) as an experimentally accessible model synapse, we report on the development of a robust, standardized methodology to facilitate comparative morphometric analysis of synapses ('NMJ-morph'). We used NMJ-morph to generate baseline morphological reference data for 21 separate pre- and post-synaptic variables from 2160 individual NMJs belonging to nine anatomically distinct populations of synapses, revealing systematic differences in NMJ morphology between defined synaptic populations. Principal components analysis revealed that overall NMJ size and the degree of synaptic fragmentation, alongside pre-synaptic axon diameter, were the most critical parameters in defining synaptic morphology. 'Average' synaptic morphology was remarkably conserved between comparable synapses from the left and right sides of the body. Systematic differences in synaptic morphology predicted corresponding differences in synaptic function that were supported by physiological recordings, confirming the robust relationship between synaptic size and strength.
Collapse
Affiliation(s)
- Ross A Jones
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Old Medical School, Teviot Place, Edinburgh EH8 9XD, UK
- Centre for Integrative Physiology, University of Edinburgh, Old Medical School, Teviot Place, Edinburgh EH8 9XD, UK
- Anatomy, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Old Medical School, Teviot Place, Edinburgh EH8 9XD, UK
| | - Caitlan D Reich
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Old Medical School, Teviot Place, Edinburgh EH8 9XD, UK
- Centre for Integrative Physiology, University of Edinburgh, Old Medical School, Teviot Place, Edinburgh EH8 9XD, UK
- Anatomy, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Old Medical School, Teviot Place, Edinburgh EH8 9XD, UK
| | - Kosala N Dissanayake
- Centre for Integrative Physiology, University of Edinburgh, Old Medical School, Teviot Place, Edinburgh EH8 9XD, UK
| | - Fanney Kristmundsdottir
- Anatomy, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Old Medical School, Teviot Place, Edinburgh EH8 9XD, UK
| | - Gordon S Findlater
- Anatomy, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Old Medical School, Teviot Place, Edinburgh EH8 9XD, UK
| | - Richard R Ribchester
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Old Medical School, Teviot Place, Edinburgh EH8 9XD, UK
- Centre for Integrative Physiology, University of Edinburgh, Old Medical School, Teviot Place, Edinburgh EH8 9XD, UK
| | - Martin W Simmen
- Centre for Integrative Physiology, University of Edinburgh, Old Medical School, Teviot Place, Edinburgh EH8 9XD, UK
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Old Medical School, Teviot Place, Edinburgh EH8 9XD, UK
- Centre for Integrative Physiology, University of Edinburgh, Old Medical School, Teviot Place, Edinburgh EH8 9XD, UK
- Anatomy, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Old Medical School, Teviot Place, Edinburgh EH8 9XD, UK
| |
Collapse
|
26
|
Poort JE, Rheuben MB, Breedlove SM, Jordan CL. Neuromuscular junctions are pathological but not denervated in two mouse models of spinal bulbar muscular atrophy. Hum Mol Genet 2016; 25:3768-3783. [PMID: 27493028 DOI: 10.1093/hmg/ddw222] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 06/15/2016] [Accepted: 07/04/2016] [Indexed: 12/21/2022] Open
Abstract
Spinal bulbar muscular atrophy (SBMA) is a progressive, late onset neuromuscular disease causing motor dysfunction in men. While the morphology of the neuromuscular junction (NMJ) is typically affected by neuromuscular disease, whether NMJs in SBMA are similarly affected by disease is not known. Such information will shed light on whether defective NMJs might contribute to the loss of motor function and represent a potential therapeutic target for treating symptoms of SBMA. To address this gap in information, the morphology of NMJs was examined in two mouse models of SBMA, a myogenic model that overexpresses wildtype androgen receptor (AR) exclusively in muscle fibres and a knockin (KI) model expressing a humanized mutant AR gene. The tripartite motor synapse consisting of motor nerve terminal, terminal Schwann cells (tSCs) and postsynaptic specialization were visualized and analysed using confocal microscopy. Counter to expectation, we found no evidence of denervation in either model, but junctions in both models show pathological fragmentation and an abnormal synaptophysin distribution consistent with functionally weak synapses. Neurofilament accumulations were observed only in the myogenic model, even though axonal transport dysfunction is characteristic of both models. The ultrastructure of NMJs revealed additional pathology, including deficits in docked vesicles presynaptically, wider synaptic clefts, and simpler secondary folds postsynaptically. The observed pathology of NMJs in diseased SBMA mice is likely the morphological correlates of defects in synaptic function which may underlie motor impairments associated with SBMA.
Collapse
Affiliation(s)
| | - Mary B Rheuben
- Neuroscience Program, Michigan State University, MI, USA
| | | | | |
Collapse
|
27
|
Pratt SJP, Valencia AP, Le GK, Shah SB, Lovering RM. Pre- and postsynaptic changes in the neuromuscular junction in dystrophic mice. Front Physiol 2015; 6:252. [PMID: 26441672 PMCID: PMC4563167 DOI: 10.3389/fphys.2015.00252] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/28/2015] [Indexed: 01/05/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disease in which weakness, increased susceptibility to muscle injury, and inadequate repair appear to underlie the pathology. While most attention has focused within the muscle fiber, we recently demonstrated in mdx mice (murine model for DMD) significant morphologic alterations at the motor endplate of the neuromuscular junction (NMJ) and corresponding NMJ transmission failure after injury. Here we extend these initial observations at the motor endplate to gain insight into the pre- vs. postsynaptic morphology, as well as the subsynaptic nuclei in healthy (WT) vs. mdx mice. We quantified the discontinuity and branching of the terminal nerve in adult mice. We report mdx- and age-dependent changes for discontinuity and an increase in branching when compared to WT. To examine mdx- and age-dependent changes in the relative localization of pre- and postsynaptic structures, we calculated NMJ occupancy, defined as the ratio of the footprint occupied by presynaptic vesicles vs. that of the underlying motor endplate. The normally congruent coupling between presynaptic and postsynaptic morphology was altered in mdx mice, independent of age. Finally we found an almost two-fold increase in the number of nuclei and an increase in density (nuclei/area) underlying the NMJ. These outcomes suggest substantial remodeling of the NMJ during dystrophic progression. This remodeling reflects plasticity in both pre- and postsynaptic contributors to NMJ structure, and thus perhaps also NM transmission and muscle function.
Collapse
Affiliation(s)
- Stephen J P Pratt
- Department of Orthopaedics, University of Maryland School of Medicine Baltimore, MD, USA
| | - Ana P Valencia
- Department of Orthopaedics, University of Maryland School of Medicine Baltimore, MD, USA ; Department of Kinesiology, University of Maryland School of Public Health College Park, MD, USA
| | - Gloribel K Le
- Department of Orthopaedics, University of Maryland School of Medicine Baltimore, MD, USA
| | - Sameer B Shah
- Departments of Orthopaedic Surgery and Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|
28
|
Xu S, Shi D, Pratt SJP, Zhu W, Marshall A, Lovering RM. Abnormalities in brain structure and biochemistry associated with mdx mice measured by in vivo MRI and high resolution localized (1)H MRS. Neuromuscul Disord 2015; 25:764-72. [PMID: 26236031 DOI: 10.1016/j.nmd.2015.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 06/21/2015] [Accepted: 07/06/2015] [Indexed: 01/16/2023]
Abstract
Duchenne muscular dystrophy (DMD), an X-linked disorder caused by the lack of dystrophin, is characterized by the progressive wasting of skeletal muscles. To date, what is known about dystrophin function is derived from studies of dystrophin-deficient animals, with the most common model being the mdx mouse. Most studies on patients with DMD and in mdx mice have focused on skeletal muscle and the development of therapies to reverse, or at least slow, the severe muscle wasting and progressive degeneration. However, dystrophin is also expressed in the CNS. Both mdx mice and patients with DMD can have cognitive and behavioral changes, but studies in the dystrophic brain are limited. We examined the brain structure and metabolites of mature wild type (WT) and mdx mice using magnetic resonance imaging and spectroscopy (MRI/MRS). Both structural and metabolic alterations were observed in the mdx brain. Enlarged lateral ventricles were detected in mdx mice when compared to WT. Diffusion tensor imaging (DTI) revealed elevations in diffusion diffusivities in the prefrontal cortex and a reduction of fractional anisotropy in the hippocampus. Metabolic changes included elevations in phosphocholine and glutathione, and a reduction in γ-aminobutyric acid in the hippocampus. In addition, an elevation in taurine was observed in the prefrontal cortex. Such findings indicate a regional structural change, altered cellular antioxidant defenses, a dysfunction of GABAergic neurotransmission, and a perturbed osmoregulation in the brain lacking dystrophin.
Collapse
Affiliation(s)
- Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Da Shi
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Stephen J P Pratt
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Wenjun Zhu
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Andrew Marshall
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Richard M Lovering
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
29
|
Gigliotti D, Leiter JRS, Macek B, Davidson MJ, MacDonald PB, Anderson JE. Atrophy, inducible satellite cell activation, and possible denervation of supraspinatus muscle in injured human rotator-cuff muscle. Am J Physiol Cell Physiol 2015; 309:C383-91. [PMID: 26135801 DOI: 10.1152/ajpcell.00143.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/29/2015] [Indexed: 12/17/2022]
Abstract
The high frequency of poor outcome and chronic pain after surgical repair of shoulder rotator-cuff injury (RCI) prompted this study to explore the potential to amplify muscle regeneration using nitric oxide (NO)-based treatment. After preoperative magnetic resonance imaging (MRI), biopsies of supraspinatus and ipsilateral deltoid (as a control) were collected during reparative surgery for RCI. Muscle fiber diameter, the pattern of neuromuscular junctions observed with alpha-bungarotoxin staining, and the γ:ε subunit ratio of acetylcholine receptors in Western blots were examined in tandem with experiments to determine the in vitro responsiveness of muscle satellite cells to activation (indicated by uptake of bromodeoxyuridine, BrdU) by the NO-donor drug, isosorbide dinitrate (ISDN). Consistent with MRI findings of supraspinatus atrophy (reduced occupation ratio and tangent sign), fiber diameter was lower in supraspinatus than in deltoid. ISDN induced a significant increase over baseline (up to 1.8-fold), in the proportion of BrdU+ (activated) Pax7+ satellite cells in supraspinatus, but not in deltoid, after 40 h in culture. The novel application of denervation indices revealed a trend for supraspinatus muscle to have a higher γ:ε subunit ratio than deltoid (P = 0.13); this ratio inversely with both occupancy ratio (P < 0.05) and the proportion of clusters at neuromuscular junctions (P = 0.05). Results implicate possible supraspinatus denervation in RCI and suggest NO-donor treatment has potential to promote growth in atrophic supraspinatus muscle after RCI and improve functional outcome.
Collapse
Affiliation(s)
- Deanna Gigliotti
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Bryce Macek
- College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael J Davidson
- Department of Radiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter B MacDonald
- Section of Orthopedics, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada; and
| | - Judy E Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada;
| |
Collapse
|
30
|
Pratt SJP, Shah SB, Ward CW, Kerr JP, Stains JP, Lovering RM. Recovery of altered neuromuscular junction morphology and muscle function in mdx mice after injury. Cell Mol Life Sci 2014; 72:153-64. [PMID: 24947322 PMCID: PMC4282693 DOI: 10.1007/s00018-014-1663-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/14/2014] [Accepted: 06/02/2014] [Indexed: 12/02/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disease in which weakness, increased susceptibility to muscle injury, and inadequate repair underlie the pathology. While most attention has focused within the muscle fiber, we recently demonstrated significant alterations in the neuromuscular junction (NMJ) morphology and resulting neuromuscular transmission failure (NTF) 24 h after injury in mdx mice (murine model for DMD). Here we determine the contribution of NMJ morphology and NTF to the recovery of muscle contractile function post-injury. NMJ morphology and NTF rates were assessed day 0 (immediately after injury) and days 1, 7, 14 and 21 after quadriceps injury. Eccentric injury of the quadriceps resulted in a significant loss of maximal torque in both WT (39 ± 6 %) and mdx (76 ± 8 %) with a full recovery in WT by day 7 and in mdx by day 21. Post-injury alterations in NMJ morphology and NTF were found only in mdx, were limited to days 0 and 1, and were independent of changes in MuSK or AChR expression. Such early changes at the NMJ after injury are consistent with mechanical disruption rather than newly forming NMJs. Furthermore, we show that the dense microtubule network that underlies the NMJ is significantly reduced and disorganized in mdx compared to WT. These structural changes at the NMJ may play a role in the increased NMJ disruption and the exaggerated loss of nerve-evoked muscle force seen after injury to dystrophic muscles.
Collapse
Affiliation(s)
- Stephen J. P. Pratt
- Department of Orthopaedics, University of Maryland School of Medicine, 100 Penn St. AHB, Room 540, Baltimore, MD 21201 USA
| | - Sameer B. Shah
- Department of Orthopaedic Surgery and Bioengineering, University of California, San Diego, USA
| | | | - Jaclyn P. Kerr
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | - Joseph P. Stains
- Department of Orthopaedics, University of Maryland School of Medicine, 100 Penn St. AHB, Room 540, Baltimore, MD 21201 USA
| | - Richard M. Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, 100 Penn St. AHB, Room 540, Baltimore, MD 21201 USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
31
|
Pratt SJP, Shah SB, Ward CW, Inacio MP, Stains JP, Lovering RM. Effects of in vivo injury on the neuromuscular junction in healthy and dystrophic muscles. J Physiol 2012; 591:559-70. [PMID: 23109110 DOI: 10.1113/jphysiol.2012.241679] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The most common and severe form of muscular dystrophy is Duchenne muscular dystrophy (DMD), a disorder caused by the absence of dystrophin, a structural protein found on the cytoplasmic surface of the sarcolemma of striated muscle fibres. Considerable attention has been dedicated to studying myofibre damage and muscle plasticity, but there is little information to determine if damage from contraction-induced injury occurs at or near the nerve terminal axon. We used α-bungarotoxin to compare neuromuscular junction (NMJ) morphology in healthy (wild-type, WT) and dystrophic (mdx) mouse quadriceps muscles and evaluated transcript levels of the post-synaptic muscle-specific kinase signalling complex. Our focus was to study changes in NMJs after injury induced with an established in vivo animal injury model. Neuromuscular transmission, electromyography (EMG), and NMJ morphology were assessed 24 h after injury. In non-injured muscle, muscle-specific kinase expression was significantly decreased in mdx compared to WT. Injury resulted in a significant loss of maximal torque in WT (39 ± 6%) and mdx (76 ± 8%) quadriceps, but significant changes in NMJ morphology, neuromuscular transmission and EMG data were found only in mdx following injury. Compared with WT mice, motor end-plates of mdx mice demonstrated less continuous morphology, more disperse acetylcholine receptor aggregates and increased number of individual acetylcholine receptor clusters, an effect that was exacerbated following injury. Neuromuscular transmission failure increased and the EMG measures decreased after injury in mdx mice only. The data show that eccentric contraction-induced injury causes morphological and functional changes to the NMJs in mdx skeletal muscle, which may play a role in excitation-contraction coupling failure and progression of the dystrophic process.
Collapse
Affiliation(s)
- Stephen J P Pratt
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
32
|
The absence of dystrophin rather than muscle degeneration causes acetylcholine receptor cluster defects in dystrophic muscle. Neuroreport 2012; 23:82-7. [PMID: 22124255 DOI: 10.1097/wnr.0b013e32834e7e54] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Duchenne muscular dystrophy is the most common genetic muscle disease. Affected muscles are characterized by abnormal acetylcholine receptor (AChR) clustering. Some studies have suggested that changes in AChR clusters are secondary to degenerative processes. In this study, we demonstrate that AChR cluster fragmentation and muscle degeneration are separate events. We compared AChR clusters and pathological features in mdx mice (mutated dystrophin) and dko mice (mutated dystrophin and utrophin). AChR clusters were identified by binding with α-bungarotoxin, and pathological features were observed by classical immunohistochemical techniques. AChR clusters in mdx and dko mice were reduced in number and exhibited structural fragmentation. However, AChR cluster fragmentation was not significantly different in mdx and dko mice, although more severe inflammatory infiltration and degeneration were observed in dko mice. Furthermore, neuronal nitric oxide synthase, which interacts with dystrophin to anchor itself at the sarcolemma, was notably reduced in mdx and dko mice. Fragmentation of AChR and muscle degeneration are separate events, and both are secondary results of destabilization on the sarcolemma and the cytoskeleton.
Collapse
|
33
|
Sancar F, Touroutine D, Gao S, Oh HJ, Gendrel M, Bessereau JL, Kim H, Zhen M, Richmond JE. The dystrophin-associated protein complex maintains muscle excitability by regulating Ca(2+)-dependent K(+) (BK) channel localization. J Biol Chem 2011; 286:33501-10. [PMID: 21795674 PMCID: PMC3190934 DOI: 10.1074/jbc.m111.227678] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 07/07/2011] [Indexed: 11/06/2022] Open
Abstract
The dystrophin-associated protein complex (DAPC) consists of several transmembrane and intracellular scaffolding elements that have been implicated in maintaining the structure and morphology of the vertebrate neuromuscular junction (NMJ). Genetic linkage analysis has identified loss-of-function mutations in DAPC genes that give rise to degenerative muscular dystrophies. Although much is known about the involvement of the DAPC in maintaining muscle integrity, less is known about the precise contribution of the DAPC in cell signaling events. To better characterize the functional role of the DAPC at the NMJ, we used electrophysiology, immunohistochemistry, and fluorescent labeling to directly assess cholinergic synaptic transmission, ion channel localization, and muscle excitability in loss-of-function (lf) mutants of Caenorhabditis elegans DAPC homologues. We found that all DAPC mutants consistently display mislocalization of the Ca(2+)-gated K(+) channel, SLO-1, in muscle cells, while ionotropic acetylcholine receptor (AChR) expression and localization at the NMJ remained unaltered. Synaptic cholinergic signaling was also not significantly impacted across DAPC(lf) mutants. Consistent with these findings and the postsynaptic mislocalization of SLO-1, we observed an increase in muscle excitability downstream of cholinergic signaling. Based on our results, we conclude that the DAPC is not involved in regulating AChR architecture at the NMJ, but rather functions to control muscle excitability, in an activity-dependent manner, through the proper localization of SLO-1 channels.
Collapse
Affiliation(s)
- Feyza Sancar
- From the Department of Biological Sciences, University of Illinois-Chicago, Chicago, Illinois 60607
| | - Denis Touroutine
- the Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Shangbang Gao
- the Samuel Lunenfeld Research Institute, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | - Hyun J. Oh
- the Department of Cell Biology and Anatomy, Rosalind Franklin University of Science and Medicine, North Chicago, Illinois 60064
| | - Marie Gendrel
- the Biology Department, Institut de Biologie de l'Ecole Normale Superieure, F-75005 Paris, France
| | - Jean-Louis Bessereau
- the Biology Department, Institut de Biologie de l'Ecole Normale Superieure, F-75005 Paris, France
- the Inserm, Unite 1024, F-75005 Paris, France, and
- the Centre National de la Recherche Scientifique, Unit e Mixte de Recherche 8197, F-75005 Paris, France
| | - Hongkyun Kim
- the Department of Cell Biology and Anatomy, Rosalind Franklin University of Science and Medicine, North Chicago, Illinois 60064
| | - Mei Zhen
- the Samuel Lunenfeld Research Institute, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | - Janet E. Richmond
- From the Department of Biological Sciences, University of Illinois-Chicago, Chicago, Illinois 60607
| |
Collapse
|
34
|
Weyer SW, Klevanski M, Delekate A, Voikar V, Aydin D, Hick M, Filippov M, Drost N, Schaller KL, Saar M, Vogt MA, Gass P, Samanta A, Jäschke A, Korte M, Wolfer DP, Caldwell JH, Müller UC. APP and APLP2 are essential at PNS and CNS synapses for transmission, spatial learning and LTP. EMBO J 2011; 30:2266-80. [PMID: 21522131 DOI: 10.1038/emboj.2011.119] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/16/2011] [Indexed: 11/09/2022] Open
Abstract
Despite its key role in Alzheimer pathogenesis, the physiological function(s) of the amyloid precursor protein (APP) and its proteolytic fragments are still poorly understood. Previously, we generated APPsα knock-in (KI) mice expressing solely the secreted ectodomain APPsα. Here, we generated double mutants (APPsα-DM) by crossing APPsα-KI mice onto an APLP2-deficient background and show that APPsα rescues the postnatal lethality of the majority of APP/APLP2 double knockout mice. Surviving APPsα-DM mice exhibited impaired neuromuscular transmission, with reductions in quantal content, readily releasable pool, and ability to sustain vesicle release that resulted in muscular weakness. We show that these defects may be due to loss of an APP/Mint2/Munc18 complex. Moreover, APPsα-DM muscle showed fragmented post-synaptic specializations, suggesting impaired postnatal synaptic maturation and/or maintenance. Despite normal CNS morphology and unaltered basal synaptic transmission, young APPsα-DM mice already showed pronounced hippocampal dysfunction, impaired spatial learning and a deficit in LTP that could be rescued by GABA(A) receptor inhibition. Collectively, our data show that APLP2 and APP are synergistically required to mediate neuromuscular transmission, spatial learning and synaptic plasticity.
Collapse
Affiliation(s)
- Sascha W Weyer
- Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Guido AN, Campos GER, Neto HS, Marques MJ, Minatel E. Fiber type composition of the sternomastoid and diaphragm muscles of dystrophin-deficient mdx mice. Anat Rec (Hoboken) 2010; 293:1722-8. [PMID: 20730859 DOI: 10.1002/ar.21224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 05/06/2010] [Indexed: 11/05/2022]
Abstract
The muscle fiber phenotype is mainly determined by motoneuron innervation and changes in neuromuscular interaction alter the muscle fiber type. In dystrophin-deficient mdx mice, changes in the molecular assembly of the neuromuscular junction and in nerve terminal sprouting occur in the sternomastoid (STN) muscle during early stages of the disease. In this study, we were interested to see whether early changes in neuromuscular assembly are correlated with alterations in fiber type in dystrophic STN at 2 months of age. A predominance of hybrid fast myofibers (about 52% type IIDB) was observed in control (C57Bl/10) STN. In mdx muscle, the lack of dystrophin did not change this profile (about 54% hybrid type IIDB). Pure fast type IID fibers predominated in normal and dystrophic diaphragm (DIA; about 39% in control and 30% in mdx muscle) and a population of slow Type I fibers was also present (about 10% in control and 13% in mdx muscle). In conclusion, early changes in neuromuscular assembly do not affect the fiber type composition of dystrophic STN. In contrast to the pure fast fibers of the more affected DIA, the hybrid phenotype of the STN may permit dynamic adaptations during progression of the disease.
Collapse
Affiliation(s)
- Anderson Neri Guido
- Departamento de Anatomia, Biologia Celular, Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
37
|
Ghedini PC, Viel TA, Honda L, Avellar MCW, Godinho RO, Lima-Landman MTR, Lapa AJ, Souccar C. Increased expression of acetylcholine receptors in the diaphragm muscle of MDX mice. Muscle Nerve 2009; 38:1585-94. [PMID: 19016551 DOI: 10.1002/mus.21183] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The absence of dystrophin in Duchenne muscular dystrophy (DMD) and in the mutant mdx mouse causes muscle degeneration and disruption of the neuromuscular junction. Based on evidence from the denervation-like properties of these muscles, we assessed the ligand-binding constants of nicotinic acetylcholine receptors (nAChRs) and the mRNA expression of individual subunits in membrane preparations of diaphragm muscles from adult (4-month-old) and aged (20-month-old) control and mdx mice. The concentration of nAChRs as determined by the maximal specific [(125)I]-alpha-bungarotoxin binding (Bmax) in the muscle membranes did not change with aging in both animal strains. When compared to age-matched control groups, the Bmax in mdx muscles was increased by 65% in adults, and by 103% in aged mice with no alteration of toxin affinity for nAChRs. Reverse-transcription polymerase chain reaction assays showed that mRNA transcripts for the nAChR alpha1, gamma, alpha7, and beta2, but not the epsilon subunits, were more abundant in mdx than in control muscles. The results indicate increased expression of extrajunctional nAChRs in the mdx diaphragm and reflect impairment of nAChR regulation in dystrophin-deficient muscles. These observations may be related to the resistance to nondepolarizing muscle relaxants and the high sensitivity to depolarizing agents reported in DMD patients.
Collapse
Affiliation(s)
- Paulo C Ghedini
- Department of Pharmacology, Natural Products Section, Universidade Federal de São Paulo, 04044-020, Rua Três de Maio 100, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ghahramani Seno MM, Graham IR, Athanasopoulos T, Trollet C, Pohlschmidt M, Crompton MR, Dickson G. RNAi-mediated knockdown of dystrophin expression in adult mice does not lead to overt muscular dystrophy pathology. Hum Mol Genet 2008; 17:2622-32. [DOI: 10.1093/hmg/ddn162] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Theroux MC, Olivant A, Akins RE. C Histomorphology of neuromuscular junction in Duchenne muscular dystrophy. Paediatr Anaesth 2008; 18:256-9. [PMID: 18230070 DOI: 10.1111/j.1460-9592.2008.02411.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Our objective was to better understand neuromuscular junction (NMJ) morphology in children with Duchenne muscular dystrophy (DMD). METHODS We examined the NMJs of four children, age 6-13 years, who were diagnosed with DMD. Using our previously established staining technique, we examined the gross appearance of the NMJs in patients with DMD and evaluated the spread of acetylcholine receptors (AChRs) in relationship to the NMJs. We used a computerized algorithm to measure the area of staining corresponding to AChRs and NMJ. RESULTS Abnormal shape and morphological appearance of some of the NMJs was clearly evident. The spread of AChRs in DMD patients is comparable with the spread of AChRs in nonDMD patients. CONCLUSIONS The distribution of AChRs in relationship to the boundaries of NMJs in DMD children is similar to the distribution of NMJs in the erector spinae muscles of idiopathic scoliosis patients.
Collapse
Affiliation(s)
- Mary C Theroux
- Department of Anesthesiology and Critical Care, Alfred I. duPont Hospital for Children, Wilmington, DE 19899, USA.
| | | | | |
Collapse
|
40
|
Kueh SLL, Head SI, Morley JW. GABA(A) receptor expression and inhibitory post-synaptic currents in cerebellar Purkinje cells in dystrophin-deficient mdx mice. Clin Exp Pharmacol Physiol 2007; 35:207-10. [PMID: 17941889 DOI: 10.1111/j.1440-1681.2007.04816.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1. Duchenne muscular dystrophy (DMD) is the second most common fatal genetic disease and arises as a consequence of an absence or disruption of the protein dystrophin. In addition to wasting of the skeletal musculature, boys with DMD have a significant degree of cognitive impairment. 2. We show here that there is no difference between littermate control and mdx mice (a murine model of DMD) in the overall expression of the GABA(A) receptor a1-subunit, supporting the suggestion that it is the clustering at the synapse that is affected and not the expression of the GABA(A) receptor protein. 3. We report a significant reduction in both the frequency and amplitude of spontaneous inhibitory post-synaptic currents in cerebellar Purkinje cells of mdx mice compared with littermate controls, consistent with the reported reduction in the number and size of GABA(A) receptor clusters immunoreactive for a1- and a2-subunits at the post-synaptic densities. 4. These results may explain some of the behavioural problems and cognitive impairment reported in DMD.
Collapse
Affiliation(s)
- S L L Kueh
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
41
|
Marques MJ, Pertille A, Carvalho CLT, Santo Neto H. Acetylcholine Receptor Organization at the Dystrophic Extraocular Muscle Neuromuscular Junction. Anat Rec (Hoboken) 2007; 290:846-54. [PMID: 17492672 DOI: 10.1002/ar.20525] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spared extraocular muscles of dystrophic mice are not subjected to regeneration process and can be used to verify whether the lack of dystrophin per se could cause changes in acetylcholine receptor (AChR) distribution. In the present study, rectus and oblique (spared) and retractor bulbi (nonspared) muscles were dissected from adult control (C57Bl/10) and mdx mice. AChRs and nerve terminals were labeled with rhodamine-alpha-bungarotoxin and anti-NF200-IgG-FITC, respectively, and visualized by confocal microscopy. Rectus and oblique muscles presented 0.5% central nucleation, while retractor bulbi had central nucleation in 45% of muscle fibers. In mdx rectus, AChRs were distributed in branches in 99% of the junctions examined (n = 200), similar to that observed for controls. Nerve terminals covered the AChR branches in 100% of the junctions examined. In control retractor bulbi, AChRs were distributed in regular branches. In mdx retractor bulbi, multiple fragmented islands of receptors were seen in 56% of the endplates examined (n = 200). These results suggest that the lack of dystrophin per se does not influence the distribution of acetylcholine receptors at the neuromuscular junction of spared extraocular muscles.
Collapse
MESH Headings
- Animals
- Bungarotoxins
- Disease Models, Animal
- Dystrophin/deficiency
- Dystrophin/genetics
- Dystrophin/metabolism
- Fluorescent Antibody Technique
- Fluorescent Dyes
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Microscopy, Confocal
- Muscle, Skeletal/innervation
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Neurofilament Proteins/metabolism
- Neuromuscular Junction/metabolism
- Presynaptic Terminals/metabolism
- Receptors, Cholinergic/metabolism
- Regeneration
- Rhodamines
Collapse
Affiliation(s)
- Maria Julia Marques
- Departamento de Anatomia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil. marques@.unicamp.br
| | | | | | | |
Collapse
|
42
|
Marques MJ, Taniguti APT, Minatel E, Neto HS. Nerve terminal contributes to acetylcholine receptor organization at the dystrophic neuromuscular junction ofmdx mice. Anat Rec (Hoboken) 2007; 290:181-7. [PMID: 17441210 DOI: 10.1002/ar.20421] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Changes in the distribution of acetylcholine receptors have been reported to occur at the neuromuscular junction of mdx mice and may be a consequence of muscle fiber regeneration rather than the absence of dystrophin. In the present study, we examined whether the nerve terminal determines the fate of acetylcholine receptor distribution in the dystrophic muscle fibers of mdx mice. The left sternomastoid muscle of young (1-month-old) and adult (6-month-old) mdx mice was injected with 60 microl lidocaine hydrochloride to induce muscle degeneration-regeneration. Some mice had their sternomastoid muscle denervated at the time of lidocaine injection. After 10 days of muscle denervation, nerve terminals and acetylcholine receptors were labeled with 4-Di-2-ASP and rhodamine-alpha-bungarotoxin, respectively, for confocal microscopy. In young mdx mice, 75% (n = 137 endplates) of the receptors were distributed in islands. The same was observed in 100% (n = 114 endplates) of the adult junctions. In denervated-regenerated fibers of young mice, the receptors were distributed as branches in 89% of the endplates (n = 90). In denervated-regenerated fibers of adult mice, the receptors were distributed in islands in 100% of the endplates (n = 100). These findings show that nerve-dependent mechanisms are also involved in the changes in receptor distribution in young dystrophic muscles. In older dystrophic muscles, other factors may play a role in receptor distribution.
Collapse
MESH Headings
- Age Factors
- Animals
- Disease Models, Animal
- Lidocaine/pharmacology
- Mice
- Mice, Inbred mdx
- Microscopy, Confocal
- Muscle Denervation
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/innervation
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/physiopathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Neuromuscular Junction/metabolism
- Presynaptic Terminals/metabolism
- Receptor Aggregation
- Receptors, Cholinergic/metabolism
- Regeneration/drug effects
Collapse
Affiliation(s)
- Maria Julia Marques
- Department of Anatomy, Institute of Biology, State University of Campinas, São Paulo, Brazil.
| | | | | | | |
Collapse
|
43
|
Personius KE, Sawyer RP. Variability and failure of neurotransmission in the diaphragm of mdx mice. Neuromuscul Disord 2006; 16:168-77. [PMID: 16483776 DOI: 10.1016/j.nmd.2006.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 12/16/2005] [Accepted: 01/06/2006] [Indexed: 11/18/2022]
Abstract
Loss of specific muscle force and evidence of myopathy are present in the diaphragm of mdx mice by 4 weeks of age. The neuromuscular junction of dystrophic muscle also shows structural abnormalities at this age. Whether these structural alterations result in neural transmission abnormalities is currently unclear, particularly at physiological firing frequencies. Thus, we investigated the extent of neurotransmission variability and failure during 35 and 100 Hz stimulation in the diaphragm of 6 to 8-month-old mdx mice in comparison to age-matched controls. Neurotransmission failure was similar across groups at both stimulation frequencies, despite the presence of disrupted post-synaptic acetylcholine receptors (AChRs). Neural transmission variability, however, measured by comparing variation in force production during direct muscle stimulation compared to variation in force production during phrenic nerve stimulation was significantly greater in dystrophic muscle. Together, these results suggest that neurotransmission is maintained at physiologic firing frequencies in dystrophic muscle, but the precision of neurotransmission is attenuated. A reduced density of functional AChRs likely underlies the increase in neurotransmission variability.
Collapse
Affiliation(s)
- Kirkwood E Personius
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Kimball Tower Rm. 515, 3435 Main St., Buffalo, NY 14214-3079, USA.
| | | |
Collapse
|
44
|
|
45
|
Personius KE, Sawyer RP. Terminal Schwann cell structure is altered in diaphragm ofmdx mice. Muscle Nerve 2005; 32:656-63. [PMID: 16025531 DOI: 10.1002/mus.20405] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The diaphragm muscle of the mdx mouse is a model system of Duchenne muscular dystrophy, since it completely lacks dystrophin and shows severe fiber necrosis and loss of specific muscle force by 4-6 weeks of age. Changes in neuromuscular junction structure also become apparent around 4 weeks including postsynaptic acetylcholine receptor declustering, loss of postsynaptic junctional folds, abnormally complex presynaptic nerve terminals, and muscle fiber denervation. Normally, terminal Schwann cells (TSCs) cap both nerve terminals and acetylcholine receptors at the neuromuscular junction, and play a crucial role in regeneration of motor axons following muscle denervation by guiding axons to grow from innervated junctions to nearby denervated junctions. However, their role in restoring innervation in dystrophic muscle is unknown. We now show that TSCs fail to cap fully the neuromuscular junction in dystrophic muscle; TSCs extend processes, but the organization of these extensions is abnormal. TSC processes of dystrophic muscle do not form bridges from denervated fibers to nearby innervated endplates, but appear to be directed away from these endplates. Adequate signaling for TSC reactivity is present, since significant muscle fiber denervation and acetylcholine receptor declustering are present. Thus, significant structural denervation is present in the diaphragm of mdx mice and the ability of TSCs to form bridges between adjacent endplates to guide reinnervation of muscle fibers is impaired, possibly attenuating the ability of dystrophic muscle to recover from denervation and ultimately leading to muscle weakness.
Collapse
Affiliation(s)
- Kirkwood E Personius
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Kimball Tower, New York 14214-3079, USA.
| | | |
Collapse
|
46
|
Head SI, Bakker AJ, Liangas G. EDL and soleus muscles of the C57BL6J/dy2jlaminin-α2-deficient dystrophic mouse are not vulnerable to eccentric contractions. Exp Physiol 2004; 89:531-9. [PMID: 15184359 DOI: 10.1113/expphysiol.2004.027383] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many muscular dystrophies arise as a consequence of mutations in a series of interconnected proteins associated with the sarcolemma. This group of proteins is collectively referred to as the 'dystrophin-associated complex'. We used the C57BL6J/dy(2j), dystrophia muscularis, dystrophic mouse, in which the laminin-alpha(2) component of the dystrophin-associated complex is mutated, to test the hypothesis that the disruption of this complex will destabilize the lipid bilayer, rendering it more susceptible to damage during eccentric contractions. We demonstrated that neither slow- nor fast-twitch dystrophic muscles were more susceptible to eccentric contractions when compared with controls. Only fast-twitch extensor digitorum longus (EDL) muscles (from both dystrophic and control mice) showed an irreversible loss of force with our eccentric contraction protocol, suggesting that it is the fast 11b fibres (not present in slow-twitch soleus) which are most susceptible to eccentric damage. We used the general anaesthetic halothane to increase the fluidity of the lipid bilayer to see if this would uncover any greater susceptibility of the dystrophic muscle to eccentric damage. This also did not reveal any greater fragility of fast- and slow-twitch dystrophic muscles. We did, however, demonstrate that halothane made both control and dystrophic fast- and slow-twitch muscles more susceptible to eccentric contraction damage. The C57BL6J/dy(2j) dystrophic laminopathy produced the pathophysiological and pathohistological characteristics associated with muscular dystrophy: the fast- and slow-twitch dystophic muscles produced only 55 and 53%, respectively, of the force of control muscles and 34 and 40%, respectively, of the dystrophic muscle fibres were branched. The presence of the branched fibres in the dystrophic muscles did not make them more susceptible to eccentric damage but may have contributed to the reduction in maximal force in the dystrophic muscles. We conclude that our data do not support the structural hypothesis that the dystrophin-associated complex acts as a scaffolding to support the lipid bilayer, but are consistent with channel-based hypotheses put forward to explain the dystrophic process.
Collapse
Affiliation(s)
- Stewart I Head
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | |
Collapse
|
47
|
Ryten M, Yang SY, Dunn PM, Goldspink G, Burnstock G. Purinoceptor expression in regenerating skeletal muscle in the mdx mouse model of muscular dystrophy and in satellite cell cultures. FASEB J 2004; 18:1404-6. [PMID: 15231720 DOI: 10.1096/fj.03-1175fje] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
ATP is an important extracellular signaling molecule mediating its effects by activation of P2X and P2Y receptors. P2 receptors are expressed during muscle development, and recent findings demonstrate that ATP can regulate myoblast proliferation and differentiation in vitro. However, the role of purinergic signaling during regeneration of injured skeletal muscle has not been investigated. To examine this process in a clinically relevant system, we used the mouse model of muscular dystrophy (mdx), in which muscle degeneration is rapidly followed by regeneration. The latter process, in vivo muscle regeneration, was the focus of this study, and to study the cellular mechanisms involved in it, a parallel study on normal rat skeletal myoblast cultures was conducted. Using immunohistochemistry, RT-PCR, and electrophysiology, we investigated the expression of the P2X1-7 receptor subtypes and the P2Y1,2,4,6 receptors. Experiments in vitro and in vivo demonstrated the sequential expression of the P2X5, P2Y1, and P2X2 receptors during the process of muscle regeneration. The P2X5 and P2Y1 receptors were expressed first on activated satellite cells, and the P2Y1 receptor was also expressed on infiltrating immune cells. Subsequent P2X2 receptor expression on newly formed myotubes showed significant colocalization with AChRs, suggesting a role in regulation of muscle innervation. Thus, this study provides the first evidence for a role for purinergic signaling in muscle regeneration and raises the possibility of new therapeutic strategies in the treatment of muscle disease.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Cells, Cultured
- Disease Models, Animal
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Muscular Dystrophies/metabolism
- Myoblasts/metabolism
- Rats
- Receptors, Cholinergic/metabolism
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X2
- Receptors, Purinergic P2X5
- Receptors, Purinergic P2Y1
- Regeneration
Collapse
Affiliation(s)
- Mina Ryten
- Autonomic Neuroscience Institute, Royal Free & University College Medical School, Royal Free Campus, London, UK
| | | | | | | | | |
Collapse
|
48
|
Minatel E, Neto HS, Marques MJ. Acetylcholine receptor distribution and synapse elimination at the developing neuromuscular junction of mdx mice. Muscle Nerve 2003; 28:561-9. [PMID: 14571457 DOI: 10.1002/mus.10416] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The pattern of innervation of the vertebrate neuromuscular junction is established during early development, when junctions go from multiple to single innervation in the phenomenon of synapse elimination, suggesting that changes at the molecular level in the postsynaptic cell lead to the removal of nerve terminals. The mdx mouse is deficient in dystrophin and associated proteins that are part of the postsynaptic cytoskeleton. We used rhodamine-alpha-bungarotoxin and anti-neurofilament IgG-FITC to stain acetylcholine receptors and nerve terminals of the sternomastoid muscle during postnatal development in mdx and control C57BL/10 mice. Using fluorescence confocal microscopy, we observed that, 7 days after birth, 86.7% of the endplates of mdx mice were monoinnervated (n = 200) compared with 41.4% in control mice (n = 200). By the end of the second postnatal week, all endplates were innervated singly (100% mdx and 94.7% controls, n = 200 per group). These results show that dystrophic fibers achieve single innervation earlier, perhaps because dystrophin or a normal cytoskeletal complex is implicated in this phenomenon.
Collapse
Affiliation(s)
- Elaine Minatel
- Departamento de Anatomia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | | | | |
Collapse
|
49
|
Anderson JE, Kong J. Acetylcholine receptors at the neuromuscular junction of regenerated muscle fibers. Muscle Nerve 2002; 25:300-1. [PMID: 11870704 DOI: 10.1002/mus.10024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Rae C, Griffin JL, Blair DH, Bothwell JH, Bubb WA, Maitland A, Head S. Abnormalities in brain biochemistry associated with lack of dystrophin: studies of the mdx mouse. Neuromuscul Disord 2002; 12:121-9. [PMID: 11738353 DOI: 10.1016/s0960-8966(01)00253-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Biochemical abnormalities have been reported in dystrophin-deficient muscle of boys with Duchenne (severe Xp21) muscular dystrophy or in the murine (mdx) model of the disease. These abnormalities include altered energy metabolism and responses to osmotic shock. In contrast, the situation in brain is less well understood and it is probable that dystrophin is playing a different role (or roles) in this organ. In this study we conclude that the elevation in choline-containing compounds reported in mdx brain is confined to cerebellum and hippocampus in older (> 6 months) mice. We report alterations in glucose metabolism in mdx brain under normal, awake conditions, and a reduced response of brain metabolism to the gamma-aminobutyric acid(A) receptor agonist muscimol. Using brain cortical slices we found no difference in the response of dystrophic tissue to hypoosmotic shock, but increased, substrate-dependent oxygen consumption rates at low oxygen partial pressures.
Collapse
Affiliation(s)
- Caroline Rae
- Department of Biochemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | | | | | | | |
Collapse
|