1
|
Ricci V, De Berardis D, Martinotti G, Maina G. Glial Derived Neurotrophic Factor and Schizophrenia Spectrum Disorders: A Scoping Review. Curr Neuropharmacol 2025; 23:564-578. [PMID: 39679463 DOI: 10.2174/011570159x340124241205095729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Psychotic disorders, characterized by altered brain function, significantly impair reality perception. The neurodevelopmental hypothesis suggests these disorders originate from early brain development disruptions. Glial-derived neurotrophic factor (GDNF) is crucial for neuronal survival and differentiation, especially in dopaminergic neurons, and shows promise in neurodegenerative and neuropsychiatric conditions. OBJECTIVES This scoping review aims to examine the role of GDNF in schizophrenia spectrum disorders and substance-induced psychoses, integrating knowledge on the neurobiological mechanisms and therapeutic potential of GDNF. METHODS A comprehensive literature search was conducted using PubMed and Scopus databases from January 2001 onwards. Data extraction focused on GDNF levels, cognitive function, antipsychotic treatment effects, and genetic studies. RESULTS The review included 25 studies (18 human, 7 animal). While some studies demonstrated inconsistent results regarding GDNF serum levels in schizophrenic patients, the majority reported correlations between GDNF levels and cognitive functions. Animal studies underscored GDNF's role in stress response, drug-induced neurotoxicity, and dopamine signaling abnormalities. Genetic studies revealed potential associations between GDNF gene polymorphisms and schizophrenia susceptibility, though findings were mixed. DISCUSSION GDNF plays a significant role in cognitive functions and neuroprotection in schizophrenia. The variability in study results underscores the complexity of GDNF's involvement. The therapeutic potential of GDNF in psychotic disorders remains unclear, necessitating further research to clarify its efficacy and safety. CONCLUSION This review emphasizes the importance of integrated biomarker strategies, gene therapy approaches, and precision medicine in advancing the understanding and treatment of psychotic disorders.
Collapse
Affiliation(s)
- Valerio Ricci
- Ospedale San Luigi Gonzaga, Università degli Studi di Torino, Italia; Regione Gonzole, 10, Orbassano 10043, Torino, Italia
| | - Domenico De Berardis
- Dipartimento di Salute Mentale, Servizio Psichiatrico di Diagnosi e Cura, Ospedale "Giuseppe Mazzini", Azienda Sanitaria Locale 4, 64100 Teramo, Italia
| | - Giovanni Martinotti
- Dipartimento di Neuroscienze, Imaging e Scienze Cliniche, Università degli Studi Gabriele d'Annunzio Chieti-Pescara, 66100 Chieti, Italia
| | - Giuseppe Maina
- Ospedale San Luigi Gonzaga, Università degli Studi di Torino, Italia; Regione Gonzole, 10, Orbassano 10043, Torino, Italia
- Dipartimento di Neuroscienze "Rita Levi Montalcini", Università degli Studi di Torino, Torino, Italia
| |
Collapse
|
2
|
Jászberényi M, Thurzó B, Jayakumar AR, Schally AV. The Aggravating Role of Failing Neuropeptide Networks in the Development of Sporadic Alzheimer's Disease. Int J Mol Sci 2024; 25:13086. [PMID: 39684795 DOI: 10.3390/ijms252313086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease imposes an increasing burden on aging Western societies. The disorder most frequently appears in its sporadic form, which can be caused by environmental and polygenic factors or monogenic conditions of incomplete penetrance. According to the authors, in the majority of cases, Alzheimer's disease represents an aggravated form of the natural aging of the central nervous system. It can be characterized by the decreased elimination of amyloid β1-42 and the concomitant accumulation of degradation-resistant amyloid plaques. In the present paper, the dysfunction of neuropeptide regulators, which contributes to the pathophysiologic acceleration of senile dementia, is reviewed. However, in the present review, exclusively those neuropeptides or neuropeptide families are scrutinized, and the authors' investigations into their physiologic and pathophysiologic activities have made significant contributions to the literature. Therefore, the pathophysiologic role of orexins, neuromedins, RFamides, corticotrope-releasing hormone family, growth hormone-releasing hormone, gonadotropin-releasing hormone, ghrelin, apelin, and natriuretic peptides are discussed in detail. Finally, the therapeutic potential of neuropeptide antagonists and agonists in the inhibition of disease progression is discussed here.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrew V Schally
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
3
|
Jászberényi M, Thurzó B, Bagosi Z, Vécsei L, Tanaka M. The Orexin/Hypocretin System, the Peptidergic Regulator of Vigilance, Orchestrates Adaptation to Stress. Biomedicines 2024; 12:448. [PMID: 38398050 PMCID: PMC10886661 DOI: 10.3390/biomedicines12020448] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The orexin/hypocretin neuropeptide family has emerged as a focal point of neuroscientific research following the discovery that this family plays a crucial role in a variety of physiological and behavioral processes. These neuropeptides serve as powerful neuromodulators, intricately shaping autonomic, endocrine, and behavioral responses across species. Notably, they serve as master regulators of vigilance and stress responses; however, their roles in food intake, metabolism, and thermoregulation appear complementary and warrant further investigation. This narrative review provides a journey through the evolution of our understanding of the orexin system, from its initial discovery to the promising progress made in developing orexin derivatives. It goes beyond conventional boundaries, striving to synthesize the multifaceted activities of orexins. Special emphasis is placed on domains such as stress response, fear, anxiety, and learning, in which the authors have contributed to the literature with original publications. This paper also overviews the advancement of orexin pharmacology, which has already yielded some promising successes, particularly in the treatment of sleep disorders.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, H-6725 Szeged, Hungary
| | - Zsolt Bagosi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
4
|
Ricci V, de Berardis D, Martinotti G, Maina G. Neurotrophic Factors in Cannabis-induced Psychosis: An Update. Curr Top Med Chem 2024; 24:1757-1772. [PMID: 37644743 DOI: 10.2174/1568026623666230829152150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Cannabis is the most widely used illicit substance. Numerous scientific evidence confirm the strong association between cannabis and psychosis. Exposure to cannabis can induce the development of psychosis and schizophrenia in vulnerable individuals. However, the neurobiological processes underlying this relationship are unknown. Neurotrophins are a class of proteins that serve as survival factors for central nervous system (CNS) neurons. In particular, Nerve Growth Factor (NGF) plays an important role in the survival and function of cholinergic neurons while Brain Derived Neurotrophic Factor (BDNF) is involved in synaptic plasticity and the maintenance of midbrain dopaminergic and cholinergic neurons. Glial Cell Derived Neurotrophic Factor (GDNF) promotes the survival of midbrain dopaminergic neurons and Neuregulin 1 (NrG- 1) contributes to glutamatergic signals regulating the N-methyl-D-aspartate (NMDA). They have a remarkable influence on the neurons involved in the Δ-9-THC (tethra-hydro-cannabinol) action, such as dopaminergic and glutamatergic neurons, and can play dual roles: first, in neuronal survival and death, and, second, in activity-dependent plasticity. METHODS In this brief update, reviewing in a narrative way the relevant literature, we will focus on the effects of cannabis on this class of proteins, which may be implicated, at least in part, in the mechanism of the psychostimulant-induced neurotoxicity and psychosis. CONCLUSION Since altered levels of neurotrophins may participate in the pathogenesis of psychotic disorders which are common in drug users, one possible hypothesis is that repeated cannabis exposure can cause psychosis by interfering with neurotrophins synthesis and utilization by CNS neurons.
Collapse
Affiliation(s)
- Valerio Ricci
- Psychiatric Service for Diagnosis and Treatment, San Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Turin, Italy
| | - Domenico de Berardis
- NHS, Department of Mental Health, Psychiatric Service for Diagnosis and Treatment, Hospital "G. Mazzini", ASL 4, 64100, Teramo, Italy
| | - Giovanni Martinotti
- Department of Neurosciences, Imaging and Clinical Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
| | - Giuseppe Maina
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Italy
| |
Collapse
|
5
|
The Small Molecule PPARγ Agonist GL516 Induces Feeding-Stimulatory Effects in Hypothalamus Cells Hypo-E22 and Isolated Hypothalami. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154882. [PMID: 35956831 PMCID: PMC9369729 DOI: 10.3390/molecules27154882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022]
Abstract
PPARγ agonists are implicated in the regulation of diabetes and metabolic syndrome and have therapeutic potential in brain disorders. PPARγ modulates appetite through its central effects, especially on the hypothalamic arcuate nucleus (ARC). Previous studies demonstrated that the small molecule GL516 is a PPARγ agonist able to reduce oxidative stress and apoptosis with a potential neuroprotective role. Herein, we investigated the effects of GL516, in vitro and ex vivo, on the levels of hypothalamic dopamine (DA) and serotonin (5-HT). The gene expressions of neuropeptide Y, CART, AgRP, and POMC, which play master roles in the neuroendocrine regulation of feeding behavior and energy balance, were also evaluated. HypoE22 cells were treated with H2O2 (300 μM) for 2 h e 30’ and with different concentrations of GL516 (1 nM-100 µM). The cell viability was evaluated after 24 and 48 h of culturing using the MTT test. DA and 5-HT levels in the HypoE22 cell supernatants were analyzed through HPLC; an ex vivo study on isolated hypothalamic specimens challenged with scalar concentrations of GL516 (1–100 µM) and with pioglitazone (10 µM) was carried out. The gene expressions of CART, NPY, AgRP, and POMC were also determined by a quantitative real-time PCR. The results obtained showed that GL516 was able to reduce DA and 5-HT turnover; moreover, it was effective in stimulating NPY and AgRP gene expressions with a concomitant reduction in CART and POMC gene expressions. These results highlight the capability of GL516 to modulate neuropeptide pathways deeply involved in appetite control suggesting an orexigenic effect. These findings emphasize the potential use of GL516 as a promising candidate for therapeutical applications in neurodegenerative diseases associated with the reduction in food intake and stimulation of catabolic pathways.
Collapse
|
6
|
Mahmoud BS, AlAmri AH, McConville C. Polymeric Nanoparticles for the Treatment of Malignant Gliomas. Cancers (Basel) 2020; 12:E175. [PMID: 31936740 PMCID: PMC7017235 DOI: 10.3390/cancers12010175] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 12/24/2022] Open
Abstract
Malignant gliomas are one of the deadliest forms of brain cancer and despite advancements in treatment, patient prognosis remains poor, with an average survival of 15 months. Treatment using conventional chemotherapy does not deliver the required drug dose to the tumour site, owing to insufficient blood brain barrier (BBB) penetration, especially by hydrophilic drugs. Additionally, low molecular weight drugs cannot achieve specific accumulation in cancerous tissues and are characterized by a short circulation half-life. Nanoparticles can be designed to cross the BBB and deliver their drugs within the brain, thus improving their effectiveness for treatment when compared to administration of the free drug. The efficacy of nanoparticles can be enhanced by surface PEGylation to allow more specificity towards tumour receptors. This review will provide an overview of the different therapeutic strategies for the treatment of malignant gliomas, risk factors entailing them as well as the latest developments for brain drug delivery. It will also address the potential of polymeric nanoparticles in the treatment of malignant gliomas, including the importance of their coating and functionalization on their ability to cross the BBB and the chemistry underlying that.
Collapse
Affiliation(s)
- Basant Salah Mahmoud
- College of Medical and Dental Sciences, School of Pharmacy, University of Birmingham, Birmingham B15 2TT, UK; (B.S.M.); or
- Hormones Department, Medical Research Division, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt
| | - Ali Hamod AlAmri
- College of Medical and Dental Sciences, School of Pharmacy, University of Birmingham, Birmingham B15 2TT, UK; (B.S.M.); or
- College of Pharmacy, King Khalid University, Abha 62585, Saudi Arabia
| | - Christopher McConville
- College of Medical and Dental Sciences, School of Pharmacy, University of Birmingham, Birmingham B15 2TT, UK; (B.S.M.); or
| |
Collapse
|
7
|
Ma K, Li R, Zhao H, Qu J, Mu N, Liu X, Wang S, Yang C, Feng H, Tan L, Li F. Cattle Encephalon Glycoside and Ignotin Reduce Early Brain Injury and Cognitive Dysfunction after Subarachnoid Hemorrhage in Rats. Neuroscience 2018; 388:181-190. [PMID: 30036663 DOI: 10.1016/j.neuroscience.2018.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 01/01/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a well-known hemorrhagic stroke with high rates of morbidity and mortality where patients frequently experience cognitive dysfunction. This study explores a potential treatment for cognitive dysfunction following SAH with the demonstration that multi-target drug cattle encephalon glycoside and ignotin (CEGI) can relieve cognitive dysfunction by decreasing hippocampal neuron apoptosis following SAH in rats. Experimentally, 110 male SD rats were separated at random into Sham (20), SAH + Vehicle (30), SAH + 4 ml/kg CEGI (30), and SAH + 1 ml/kg CEGI groups (30) and an endovascular perforation model was created to induce SAH. We discovered that the number of TUNEL-positive neurons in the hippocampus was markedly decreased in SAH + 4 ml/kg and SAH + 1 ml/kg CEGI groups compared to the SAH + Vehicle group. This finding was associated with an observed decrease in Bax/Bcl-2 ratio, cytochrome-c and PUMA expression, and the suppression of caspase-3 activation following SAH. In Morris water maze tests, the SAH + 4 ml/kg CEGI group demonstrated a decreased escape latency time and increase in time spent in the target quadrant as well as crossing times of platform region. These results indicate that high doses of CEGI can decrease hippocampal neuron apoptosis and relieve cognitive dysfunction in rats, suggesting that multitarget-drug CEGI exhibits a neuroprotective effect in SAH via the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Kang Ma
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Rongwei Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hengli Zhao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jie Qu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ning Mu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xin Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shi Wang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chuanyan Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Liang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Fei Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
8
|
Ruan Q, Zhang L, Ruan J, Zhang X, Chen J, Ma C, Yu Z. Detection and quantitation of irisin in human cerebrospinal fluid by tandem mass spectrometry. Peptides 2018; 103:60-64. [PMID: 29574076 DOI: 10.1016/j.peptides.2018.03.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/30/2022]
Abstract
The myokine irisin can cross the blood brain barrier and act as a neurokine to protect brain function during endurance exercise. However, the mechanism of transport from the blood to cerebrospinal fluid is unknown. Irisin has been detected in rodent and human brain and human cerebrospinal fluid by using commercial antibodies and enzyme linked immunosorbent assay kits. However, as human FNDC5 has an atypical translation start codon, some studies have questioned the specificity of commercial antibodies. Recently, human irisin was identified and quantitated in plasma by using mass spectrometry. We investigated whether there was irisin in human cerebrospinal fluid and an irisin concentration gradient between in human cerebrospinal fluid and paired plasma. An irisin peptide was identified and quantitated by using mass spectrometry with control peptides enriched with heavy stable isotopes as internal standards. Quantitative mass spectrometry identified the presence of irisin in human cerebrospinal fluid. The internal irisin peptides were modified to the deamidated asparagine form after deglycosylation. The unmodified internal irisin peptides were not found in CSF and irisin concentration was approximately 0.26-1.86 ng/ml in men over 80 years of age with various diseases. However, the parallel reaction monitoring (PRM) elution profiles of both modified and unmodified internal irisin peptides were not found in paired plasma samples. These data unequivocally demonstrated the presence of the glycosylated form of irisin in human cerebrospinal fluid. There were significant individual differences in men over 80 years of age with diseases. However, irisin was not detected in plasma samples by using mass spectrometry.
Collapse
Affiliation(s)
- Qingwei Ruan
- Shanghai Institute of Geriatrics and Gerontology, Shanghai Key Laboratory of Clinical Geriatrics, Department of Geriatrics, Huadong Hospital, and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Limin Zhang
- Shanghai Institute of Geriatrics and Gerontology, Shanghai Key Laboratory of Clinical Geriatrics, Department of Geriatrics, Huadong Hospital, and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jian Ruan
- Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Xixue Zhang
- Department of Anesthesiology, Huadong Hospital, Shanghai Medical College, Fudan University, 221 West Yan An Road, Shanghai 200040, China
| | - Jie Chen
- Shanghai Institute of Geriatrics and Gerontology, Shanghai Key Laboratory of Clinical Geriatrics, Department of Geriatrics, Huadong Hospital, and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Cheng Ma
- Shanghai Institute of Geriatrics and Gerontology, Shanghai Key Laboratory of Clinical Geriatrics, Department of Geriatrics, Huadong Hospital, and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Zhuowei Yu
- Shanghai Institute of Geriatrics and Gerontology, Shanghai Key Laboratory of Clinical Geriatrics, Department of Geriatrics, Huadong Hospital, and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| |
Collapse
|
9
|
Lai F, Cucca F, Frau R, Corrias F, Schlich M, Caboni P, Fadda AM, Bassareo V. Systemic Administration of Orexin a Loaded Liposomes Potentiates Nucleus Accumbens Shell Dopamine Release by Sucrose Feeding. Front Psychiatry 2018; 9:640. [PMID: 30559683 PMCID: PMC6287025 DOI: 10.3389/fpsyt.2018.00640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022] Open
Abstract
Orexin neurons originate in the lateral and dorsomedial hypothalamus and perifornical area and produce two different neuropeptides: orexin A (OxA) and orexin B (OxB), which activate OxR1 and OxR2 receptors. In the lateral hypothalamus (LH) orexin neurons are involved in behavior motivated by natural rewards such as palatable food (sugar, high-fat food) and it has been demonstrated similarly that the orexin signaling in the ventral tegmental area (VTA) is implicated in the intake of high-fat food. The VTA is an important area involved in reward processing. Given the involvement of nucleus accumbens (NAc) shell dopamine (DA) in motivation for food, we intended to investigate the effect of OxA on the basal and feeding-activated DA transmission in the NAc shell. OxA is a large peptide and does not cross the blood-brain barrier and for this reason was loaded on two kinds of liposomes: anti-transferrin-monoclonal antibodies (OX26-mAb) and lactoferrin-modified stealth liposomes. The effect of IV administration of both OxA liposomes on NAc shell DA was studied by microdialysis in freely moving rats. OxA, administered using both kinds of liposomes, produced a delayed and transitory increase in dialysate DA in the NAc shell, strongly and lastingly potentiated the increase in dialysate DA elicited by sucrose pellet consumption and increased the number of eaten pellets. These effects of OxA on DA transmission and feeding were prevented by the OxR1 antagonist SB 334867. Hence, OxA acting on VTA OxR1 can facilitate sucrose-stimulated NAc shell DA transmission directly by increasing the basal activity of VTA DA neurons that send their projections to the NAc shell.
Collapse
Affiliation(s)
- Francesco Lai
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.,CNBS, University of Cagliari, Cagliari, Italy
| | - Flavia Cucca
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Roberto Frau
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Francesco Corrias
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Michele Schlich
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Anna Maria Fadda
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.,CNBS, University of Cagliari, Cagliari, Italy
| | - Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy.,Cagliari Section, National Institute of Neuroscience, Monserrato, Italy
| |
Collapse
|
10
|
Anorexigenic effects induced by RVD-hemopressin(α) administration. Pharmacol Rep 2017; 69:1402-1407. [DOI: 10.1016/j.pharep.2017.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 01/31/2023]
|
11
|
Broers C, Melchior C, Van Oudenhove L, Vanuytsel T, Van Houtte B, Scheerens C, Rommel N, Tack J, Pauwels A. The effect of intravenous corticotropin-releasing hormone administration on esophageal sensitivity and motility in health. Am J Physiol Gastrointest Liver Physiol 2017; 312:G526-G534. [PMID: 28336550 DOI: 10.1152/ajpgi.00437.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 02/08/2023]
Abstract
Esophageal hypersensitivity is important in gastroesophageal reflux disease (GERD) patients who are refractory to acid-suppressive therapy. Stress affects visceral sensitivity and exacerbates heartburn in GERD. Peripheral CRH is a key mediator of the gut stress response. We hypothesize that CRH increases esophageal sensitivity and alters esophageal motility in health. Esophageal sensitivity to thermal, mechanical, electrical, and chemical stimuli was assessed in 14 healthy subjects after administration of placebo or CRH (100 μg iv). Perception scores were assessed for first perception, pain perception threshold (PPT), and pain tolerance threshold (PTT). Esophageal motility was investigated by high-resolution impedance manometry, before and after CRH and evaluated by distal contractile integral (DCI) and intrabolus pressure (IBP). Pressure flow analysis assessed bolus clearance (impedance ratio), degree of pressurization needed to propel bolus onward (IBP slope), and pressure flow (pressure flow index, PFI). Stress and mood were assessed during the study. Sensitivity to mechanical distention was increased after CRH compared with placebo (PPT: P = 0.0023; PTT: P = 0.0253). CRH had no influence on the other stimulations. DCI was increased for all boluses (liquid, P = 0.0012; semisolid, P = 0.0017; solid, P = 0.0107). Impedance ratio for liquid (P < 0.0001) and semisolid swallows (P = 0.0327) decreased after CRH. IBP slope increased after CRH for semisolid (P = 0.0041) and solid (P = 0.0003) swallows. PFI increased for semisolid (P = 0.0017) and solid swallows (P = 0.0031). CRH increased esophageal sensitivity to mechanical distention, not to the other stimulation modalities. CRH increased esophageal contractility and tone, decreased LES relaxation, increased esophageal bolus pressurization, improved esophageal bolus clearance, and increased pressure flow.NEW & NOTEWORTHY This is the first study to address the effect of corticotropin-releasing hormone (CRH) on esophageal sensitivity and alterations in motility in health. CRH administration increased esophageal sensitivity to mechanical distention. This effect is accompanied by an increase in esophageal contractility and tone and a decrease in lower esophageal sphincter relaxation. CRH increased esophageal bolus pressurization, improved esophageal bolus clearance, and increased pressure flow. The changes in esophageal contractile properties may underlie the increased sensitivity to mechanical distention after CRH.
Collapse
Affiliation(s)
- Charlotte Broers
- Translational Research Center for Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, KU Leuven, Belgium
| | - Chloé Melchior
- Translational Research Center for Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, KU Leuven, Belgium.,Institut National de la Santé et de la Recherche Médicale, UMR 1073, Institute for Research and Innovation in Biomedicine, Normandy University, Rouen, France; and.,Physiology and Gastroenterology Department, Rouen University Hospital, France
| | - Lukas Van Oudenhove
- Translational Research Center for Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, KU Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, KU Leuven, Belgium.,Department of Gastroenterology, Leuven University Hospitals, Leuven, Belgium
| | - Brecht Van Houtte
- Translational Research Center for Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, KU Leuven, Belgium
| | - Charlotte Scheerens
- Translational Research Center for Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, KU Leuven, Belgium.,Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Belgium
| | - Nathalie Rommel
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, KU Leuven, Belgium; .,Department of Gastroenterology, Leuven University Hospitals, Leuven, Belgium
| | - Ans Pauwels
- Translational Research Center for Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, KU Leuven, Belgium
| |
Collapse
|
12
|
Oral delivery of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3, synthetic peptide leptin mimetics: Immunofluorescent localization in the mouse hypothalamus. Brain Res 2017; 1664:1-8. [PMID: 28347670 DOI: 10.1016/j.brainres.2017.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/07/2017] [Accepted: 03/20/2017] [Indexed: 11/24/2022]
Abstract
This study describes the localization of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3, synthetic peptide leptin mimetics, in the hypothalamus of Swiss Webster and C57BL/6J wild-type mice, leptin-deficient ob/ob mice, and leptin-resistant diet-induced obese (DIO) mice. The mice were given [D-Leu-4]-OB3 or MA-[D-Leu-4]-OB3 in 0.3% dodecyl maltoside by oral gavage. Once peak serum concentrations were reached, the mice received a lethal dose of pentobarbital and were subjected to intracardiac perfusion fixation. The brains were excised, post-fixed in paraformaldehyde, and cryo-protected in sucrose. Free-floating frozen coronal sections were cut at 25-µm and processed for imaging by immunofluorescence microscopy. In all four strains of mice, dense staining was concentrated in the area of the median eminence, at the base and/or along the inner wall of the third ventricle, and in the brain parenchyma at the level of the arcuate nucleus. These results indicate that [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 cross the blood-brain barrier and concentrate in an area of the hypothalamus known to regulate energy balance and glucose homeostasis. Most noteworthy is the localization of [D-Leu-4]-OB3 immunoreactivity within the hypothalamus of DIO mice via a conduit that is closed to leptin in this rodent model, and in most cases of human obesity. Together with our previous studies describing the effects of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 on energy balance, glucose regulation, and signal transduction pathway activation, these findings are consistent with a central mechanism of action for these synthetic peptide leptin mimetics, and suggest their potential usefulness in the management of leptin-resistant obesity and type 2 diabetes in humans.
Collapse
|
13
|
Jezowska M, Honcharenko D, Ghidini A, Strömberg R, Honcharenko M. Enabling Multiple Conjugation to Oligonucleotides Using "Click Cycles". Bioconjug Chem 2016; 27:2620-2628. [PMID: 27756130 DOI: 10.1021/acs.bioconjchem.6b00380] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An efficient method for the synthesis of multiply functionalized oligonucleotides (ONs) utilizing a novel H-phosphonate alkyne-based linker for multiple functionalization (LMF) is developed. The strategy allows for the conjugation of various active entities to oligonucleotide through the postsynthetic attachment of LMF at the 5'-terminus of ONs using H-phosphonate chemistry followed by conjugation of various entities via [3 + 2] copper(I) catalyzed cycloaddition in a stepwise manner. Each cycle is composed of attachment of the LMF followed by a click reaction with azido-containing units. Sequential solid-phase synthesis of oligonucleotide conjugates containing three attached entities was performed using an acetylated form of MIF peptide conjugated to azido linker, achieving high conversions at each unit addition. In addition, to show the versatility of the method, oligonucleotide conjugates with several different classes of compounds were synthesized. Each conjugate containing three different entities, whose structure and function varied (e.g., sugars, peptides, fluorescent labels, and m3G-Caps).
Collapse
Affiliation(s)
- Martina Jezowska
- Department of Biosciences and Nutrition, Karolinska Institute, Novum , SE-14183 Huddinge, Sweden
| | - Dmytro Honcharenko
- Department of Biosciences and Nutrition, Karolinska Institute, Novum , SE-14183 Huddinge, Sweden
| | - Alice Ghidini
- Department of Biosciences and Nutrition, Karolinska Institute, Novum , SE-14183 Huddinge, Sweden
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institute, Novum , SE-14183 Huddinge, Sweden
| | - Malgorzata Honcharenko
- Department of Biosciences and Nutrition, Karolinska Institute, Novum , SE-14183 Huddinge, Sweden
| |
Collapse
|
14
|
Mar’yanovich AT. Blood–brain barrier and evolution of peptide regulation of physiological functions. J EVOL BIOCHEM PHYS+ 2016. [DOI: 10.1134/s0022093016040074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Bakhtazad A, Vousooghi N, Garmabi B, Zarrindast MR. Evaluation of CART peptide level in rat plasma and CSF: Possible role as a biomarker in opioid addiction. Peptides 2016; 84:1-6. [PMID: 27349817 DOI: 10.1016/j.peptides.2016.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 11/28/2022]
Abstract
It has been shown previously that cocaine- and amphetamine-regulated transcript (CART) peptide has a modulatory role and homeostatic regulatory effect in motivation to and reward of the drugs of abuse specially psychostimulants. Recent data also showed that in addition to psychostimulants, CART is critically involved in the different stages of opioid addiction. Here we have evaluated the fluctuations in the level of CART peptide in plasma and CSF in different phases of opioid addiction to find out whether CART can serve as a suitable marker in opioid addiction studies. Male rats were randomly distributed in groups of control, acute low-dose (10mg/kg) morphine, acute high-dose morphine (80mg/kg), chronic escalating doses of morphine, withdrawal syndrome precipitated by administration of naloxone (1mg/kg), and abstinent after long-term drug-free maintenance of addicted animals. The level of CART peptide in CSF and plasma samples was measured by enzyme immunoassay. CART peptide concentration in the CSF and plasma was significantly elevated in acute high-dose morphine and withdrawal state animals and down-regulated in addicted rats. In abstinent group, CART peptide level was up-regulated in plasma but not in CSF samples. As the observed results are in agreement with data regarding the CART mRNA and protein expression in the brain reward pathway in opioid addiction phases, it may be suggested that evaluation of CART peptide level in CSF or plasma could be a suitable marker which reflects the rises and falls of the peptide concentration in brain in the development of opioid addiction.
Collapse
Affiliation(s)
- Atefeh Bakhtazad
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran; Cognitive Sciences and Behavior Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Behzad Garmabi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zarrindast
- Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran; Genomics Center, School of Advanced Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran; School of Cognitive Sciences, Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran.
| |
Collapse
|
16
|
Ferrante C, Orlando G, Recinella L, Leone S, Chiavaroli A, Di Nisio C, Shohreh R, Manippa F, Ricciuti A, Vacca M, Brunetti L. Central inhibitory effects on feeding induced by the adipo-myokine irisin. Eur J Pharmacol 2016; 791:389-394. [PMID: 27614130 DOI: 10.1016/j.ejphar.2016.09.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 11/30/2022]
Abstract
Irisin, the soluble secreted form of fibronectin type III domain containing 5 (FNDC5)-cleaved product, is a recently identified adipo-myokine that has been indicated as a possible link between physical exercise and energetic homeostasis. The co-localization of irisin with neuropeptide Y in hypothalamic sections of paraventricular nucleus, which receives NPY/AgRP projections from the arcuate nucleus, suggests a possible role of irisin in the central regulation of energy balance. In this context, in the present work we studied the effects of intra-hypothalamic irisin (1μl, 50-200nmol/l) administration on feeding and orexigenic [agouti-related peptide (AgRP), neuropeptide Y (NPY) and orexin-A] and anorexigenic [cocaine and amphetamine-regulated transcript (CART) and proopiomelanocortin (POMC)] peptides in male Sprague-Dawley rats. Furthermore, we evaluated the effects of irisin on hypothalamic dopamine (DA), norepinephrine (NE) and serotonin (5-hydroxytryptamine, 5-HT) concentrations and plasma NE levels. Compared to vehicle, irisin injected rats showed decreased food intake, possibly mediated by stimulated CART and POMC and inhibited DA, NE and orexin-A, in the hypothalamus. We also found increased plasma NE levels, supporting a role for sympathetic nervous system stimulation in mediating increased oxygen consumption by irisin.
Collapse
Affiliation(s)
- Claudio Ferrante
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Giustino Orlando
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Lucia Recinella
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Sheila Leone
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Annalisa Chiavaroli
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Chiara Di Nisio
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Rugia Shohreh
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Fabio Manippa
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Adriana Ricciuti
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Michele Vacca
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Luigi Brunetti
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| |
Collapse
|
17
|
Abstract
Sleep and its disorders are known to affect the functions of essential organs and systems in the body. However, very little is known about how the blood-brain barrier (BBB) is regulated. A few years ago, we launched a project to determine the impact of sleep fragmentation and chronic sleep restriction on BBB functions, including permeability to fluorescent tracers, tight junction protein expression and distribution, glucose and other solute transporter activities, and mediation of cellular mechanisms. Recent publications and relevant literature allow us to summarize here the sleep-BBB interactions in five sections: (1) the structural basis enabling the BBB to serve as a huge regulatory interface; (2) BBB transport and permeation of substances participating in sleep-wake regulation; (3) the circadian rhythm of BBB function; (4) the effect of experimental sleep disruption maneuvers on BBB activities, including regional heterogeneity, possible threshold effect, and reversibility; and (5) implications of sleep disruption-induced BBB dysfunction in neurodegeneration and CNS autoimmune diseases. After reading the review, the general audience should be convinced that the BBB is an important mediating interface for sleep-wake regulation and a crucial relay station of mind-body crosstalk. The pharmaceutical industry should take into consideration that sleep disruption alters the pharmacokinetics of BBB permeation and CNS drug delivery, being attentive to the chrono timing and activation of co-transporters in subjects with sleep disorders.
Collapse
Affiliation(s)
- Weihong Pan
- 1 Biopotentials Sleep Center, Baton Rouge, LA 70809
| | - Abba J Kastin
- 2 Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| |
Collapse
|
18
|
Takahashi Y, Yu Z, Sakai M, Tomita H. Linking Activation of Microglia and Peripheral Monocytic Cells to the Pathophysiology of Psychiatric Disorders. Front Cell Neurosci 2016; 10:144. [PMID: 27375431 PMCID: PMC4891983 DOI: 10.3389/fncel.2016.00144] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/16/2016] [Indexed: 11/17/2022] Open
Abstract
A wide variety of studies have identified microglial activation in psychiatric disorders, such as schizophrenia, bipolar disorder, and major depressive disorder. Relatively fewer, but robust, studies have detected activation of peripheral monocytic cells in psychiatric disorders. Considering the origin of microglia, as well as neuropsychoimmune interactions in the context of the pathophysiology of psychiatric disorders, it is reasonable to speculate that microglia interact with peripheral monocytic cells in relevance with the pathogenesis of psychiatric disorders; however, these interactions have drawn little attention. In this review, we summarize findings relevant to activation of microglia and monocytic cells in psychiatric disorders, discuss the potential association between these cell types and disease pathogenesis, and propose perspectives for future research on these processes.
Collapse
Affiliation(s)
- Yuta Takahashi
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku UniversitySendai, Japan; Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku UniversitySendai, Japan; Department of Psychiatry, Graduate School of Medicine, Tohoku UniversitySendai, Japan
| | - Zhiqian Yu
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku UniversitySendai, Japan; Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku UniversitySendai, Japan; Group of Mental Health Promotion, Tohoku Medical Megabank Organization, Tohoku UniversitySendai, Japan
| | - Mai Sakai
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku UniversitySendai, Japan; Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku UniversitySendai, Japan
| | - Hiroaki Tomita
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku UniversitySendai, Japan; Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku UniversitySendai, Japan; Group of Mental Health Promotion, Tohoku Medical Megabank Organization, Tohoku UniversitySendai, Japan
| |
Collapse
|
19
|
The Emerging Therapeutic Role of NGF in Alzheimer’s Disease. Neurochem Res 2016; 41:1211-8. [DOI: 10.1007/s11064-016-1829-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/08/2015] [Accepted: 01/05/2016] [Indexed: 11/29/2022]
|
20
|
Morley JE. Peptides and aging: Their role in anorexia and memory. Peptides 2015; 72:112-8. [PMID: 25895851 DOI: 10.1016/j.peptides.2015.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/03/2015] [Accepted: 04/04/2015] [Indexed: 12/16/2022]
Abstract
The rapid aging of the world's population has led to a need to increase our understanding of the pathophysiology of the factors leading to frailty and cognitive decline. Peptides have been shown to be involved in the pathophysiology of frailty and cognitive decline. Weight loss is a major component of frailty. In this review, we demonstrate a central role for both peripheral peptides (e.g., cholecystokinin and ghrelin) and neuropeptides (e.g., dynorphin and alpha-MSH) in the pathophysiology of the anorexia of aging. Similarly, peripheral peptides (e.g., ghrelin, glucagon-like peptide 1, and cholecystokinin) are modulators of memory. A number of centrally acting neuropeptides have also been shown to modulate cognitive processes. Amyloid-beta peptide in physiological levels is a memory enhancer, while in high (pathological) levels, it plays a key role in the development of Alzheimer's disease.
Collapse
Affiliation(s)
- John E Morley
- Divisions of Geriatric Medicine and Endocrinology, Saint Louis University School of Medicine, St Louis, MO, United States.
| |
Collapse
|
21
|
Inekci D, Jonesco DS, Kennard S, Karsdal MA, Henriksen K. The potential of pathological protein fragmentation in blood-based biomarker development for dementia - with emphasis on Alzheimer's disease. Front Neurol 2015; 6:90. [PMID: 26029153 PMCID: PMC4426721 DOI: 10.3389/fneur.2015.00090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/10/2015] [Indexed: 12/12/2022] Open
Abstract
The diagnosis of dementia is challenging and early stages are rarely detected limiting the possibilities for early intervention. Another challenge is the overlap in the clinical features across the different dementia types leading to difficulties in the differential diagnosis. Identifying biomarkers that can detect the pre-dementia stage and allow differential diagnosis could provide an opportunity for timely and optimal intervention strategies. Also, such biomarkers could help in selection and inclusion of the right patients in clinical trials of both Alzheimer’s disease and other dementia treatment candidates. The cerebrospinal fluid (CSF) has been the most investigated source of biomarkers and several candidate proteins have been identified. However, looking solely at protein levels is too simplistic to provide enough detailed information to differentiate between dementias, as there is a significant crossover between the proteins involved in the different types of dementia. Additionally, CSF sampling makes these biomarkers challenging for presymptomatic identification. We need to focus on disease-specific protein fragmentation to find a fragment pattern unique for each separate dementia type – a form of protein fragmentology. Targeting protein fragments generated by disease-specific combinations of proteins and proteases opposed to detecting the intact protein could reduce the overlap between diagnostic groups as the extent of processing as well as which proteins and proteases constitute the major hallmark of each dementia type differ. In addition, the fragments could be detectable in blood as they may be able to cross the blood–brain barrier due to their smaller size. In this review, the potential of the fragment-based biomarker discovery for dementia diagnosis and prognosis is discussed, especially highlighting how the knowledge from CSF protein biomarkers can be used to guide blood-based biomarker development.
Collapse
Affiliation(s)
- Dilek Inekci
- Nordic Bioscience, Biomarkers and Research , Herlev , Denmark ; Systems Biology, Technical University of Denmark , Lyngby , Denmark
| | | | - Sophie Kennard
- Nordic Bioscience, Biomarkers and Research , Herlev , Denmark
| | | | - Kim Henriksen
- Nordic Bioscience, Biomarkers and Research , Herlev , Denmark
| |
Collapse
|
22
|
Rational Approach to the Design of Bioactive Peptidomimetics: Recent Developments in Opioid Agonist Peptides. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2015. [DOI: 10.1016/b978-0-444-63462-7.00002-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
23
|
Arnoldussen IAC, Kiliaan AJ, Gustafson DR. Obesity and dementia: adipokines interact with the brain. Eur Neuropsychopharmacol 2014; 24:1982-99. [PMID: 24704273 PMCID: PMC4169761 DOI: 10.1016/j.euroneuro.2014.03.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/11/2014] [Indexed: 12/20/2022]
Abstract
Obesity is a pandemic and a serious global health concern. Obesity is a risk factor for multiple conditions and contributes to multi-morbidities, resulting in increased health costs and millions of deaths each year. Obesity has been associated with changes in brain structure, cognitive deficits, dementia and Alzheimer׳s disease. Adipokines, defined as hormones, cytokines and peptides secreted by adipose tissue, may have more widespread influence and functionality in the brain than previously thought. In this review, six adipokines, and their actions in the obese and non-obese conditions will be discussed. Included are: plasminogen activator inhibitor-1 (PAI-1), interleukin-6 (IL-6), tumor necrosis factors alpha (TNF-α), angiotensinogen (AGT), adiponectin and leptin. Their functionality in the periphery, their ability to cross the blood brain barrier (BBB) and their influence on dementia processes within the brain will be discussed.
Collapse
Affiliation(s)
- Ilse A C Arnoldussen
- Department of Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Geert Grooteplein Noord 21, 6525 EZ Nijmegen, The Netherlands.
| | - Amanda J Kiliaan
- Department of Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Geert Grooteplein Noord 21, 6525 EZ Nijmegen, The Netherlands.
| | - Deborah R Gustafson
- Department of Neurology, State University of New York-Downstate Medical Center, 450 Clarkson Avenue, Box 1213, Brooklyn, NY11203, USA; UMS 011 Inserm Versailles Saint Quentin, France; Section for Psychiatry and Neurochemistry, Neuropsychiatric Epidemiology Unit, Sahlgrenska Academy at University of Gothenburg, Institute for Neuroscience and Physiology, NeuroPsychiatric Epidemiology Unit, Wallinsgatan 6, 431 41 Gothenburg, Sweden.
| |
Collapse
|
24
|
Chen Q, de Lecea L, Hu Z, Gao D. The hypocretin/orexin system: an increasingly important role in neuropsychiatry. Med Res Rev 2014; 35:152-97. [PMID: 25044006 DOI: 10.1002/med.21326] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hypocretins, also named as orexins, are excitatory neuropeptides secreted by neurons specifically located in lateral hypothalamus and perifornical areas. Orexinergic fibers are extensively distributed in various brain regions and involved in a number of physiological functions, such as arousal, cognition, stress, appetite, and metabolism. Arousal is the most important function of orexin system as dysfunction of orexin signaling leads to narcolepsy. In addition to narcolepsy, orexin dysfunction is associated with serious neural disorders, including addiction, depression, and anxiety. However, some results linking orexin with these disorders are still contradictory, which may result from differences of detection methods or the precision of tools used in measurements; strategies targeted to orexin system (e.g., antagonists to orexin receptors, gene delivery, and cell transplantation) are promising new tools for treatment of neuropsychiatric disorders, though studies are still in a stage of preclinical or clinical research.
Collapse
Affiliation(s)
- Quanhui Chen
- Department of Physiology, Third Military Medical University, Chongqing 400038, China; Department of Sleep and Psychology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | |
Collapse
|
25
|
Brunetti L, Orlando G, Ferrante C, Recinella L, Leone S, Chiavaroli A, Di Nisio C, Shohreh R, Manippa F, Ricciuti A, Vacca M. Peripheral chemerin administration modulates hypothalamic control of feeding. Peptides 2014; 51:115-21. [PMID: 24269538 DOI: 10.1016/j.peptides.2013.11.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/05/2013] [Accepted: 11/05/2013] [Indexed: 11/22/2022]
Abstract
Chemerin is a recently identified adipokine that is involved in the regulation of adipogenesis, energy metabolism, and inflammation. The aim of the present study was to investigate the role of chemerin on food intake, body weight and hypothalamic peptidergic and aminergic modulators which play a pivotal role in feeding regulation in rats. Male adult Wistar rats were intraperitoneally injected, daily for 17 days at 9.00am, with either vehicle (saline; N=12) or chemerin (8μg/kg; N=12) and (16μg/kg; N=12). Food intake was recorded 24h after each administration. Animals were sacrificed 24h after the last injection. Total RNA was extracted from hypothalami and reverse transcribed to evaluate gene expression of agouti-related peptide (AgRP), neuropeptide Y (NPY), orexin-A, corticotrophin releasing hormone (CRH), pro-opiomelanocortin (POMC) and cocaine and amphetamine-regulated transcript (CART). Furthermore, we evaluated the effect of chemerin on dopamine, norepinephrine and serotonin steady state concentrations in rat hypothalamus homogenate, and monoamine release from rat hypothalamic synaptosomes. Chemerin administration (8 and 16μg/kg) decreased both food intake and body weight compared to vehicle, possibly associated with a significant increase in serotonin synthesis and release, in the hypothalamus. On the other hand, the pattern of gene expression following chemerin administration indicates a minor role played by chemerin as a peripheral appetite-regulating signal.
Collapse
Affiliation(s)
- Luigi Brunetti
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Giustino Orlando
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Claudio Ferrante
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Lucia Recinella
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Sheila Leone
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Annalisa Chiavaroli
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Chiara Di Nisio
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Rugia Shohreh
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Fabio Manippa
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Adriana Ricciuti
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Michele Vacca
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| |
Collapse
|
26
|
Brunetti L, Orlando G, Ferrante C, Recinella L, Leone S, Chiavaroli A, Di Nisio C, Shohreh R, Manippa F, Ricciuti A, Vacca M. Orexigenic effects of omentin-1 related to decreased CART and CRH gene expression and increased norepinephrine synthesis and release in the hypothalamus. Peptides 2013; 44:66-74. [PMID: 23538212 DOI: 10.1016/j.peptides.2013.03.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/01/2013] [Accepted: 03/01/2013] [Indexed: 12/21/2022]
Abstract
Omentin-1, a visceral fat depot-specific secretory protein, is inversely correlated with obesity and insulin resistance. We investigated, in rats, the effects of chronic omentin-1 administration (8 μg/kg, intraperitoneally, once daily for 14-days) on feeding behavior and related hypothalamic peptides and neurotransmitters. Food intake and body weight were recorded daily throughout the study. We found a significantly increased food intake compared to controls, but only in days 10-14, while body weight significantly increased since day 12 (P<0.05). Compared with vehicle, omentin-1 treatment led to a significant reduction in both cocaine and amphetamine-regulated transcript (CART) (P<0.05) and corticotrophin releasing hormone (CRH) (P<0.05) gene expression, while pro-opiomelanocortin (POMC), agouti-related peptide (AgRP), neuropeptide Y (NPY) and orexin-A gene expression were not modified with respect to vehicle-treated rats. We also found an increase in hypothalamic levodopa (l-dopa) (P<0.05) and norepinephrine (NE) (P<0.01) synthesis, without any effect on dopamine (DA) and serotonin (5-hydroxytryptamine, 5-HT) metabolism. Furthermore, in hypothalamic synaptosomes, omentin-1 (10-100 ng/ml) stimulated basal NE release (ANOVA, P<0.0001; post hoc, P<0.001 vs. vehicle), in a dose-dependent manner, leaving unaffected both basal and depolarization-induced DA and 5-HT release. Finally, when synaptosomes were co-perfused with leptin and omentin-1, we observed that leptin was able to reverse omentin-1-induced stimulation of NE. In conclusion, the orexigenic effects of omentin-1 could be related, at least in part, to decreased CART and CRH gene expression and increased NE synthesis and release in the hypothalamus.
Collapse
Affiliation(s)
- Luigi Brunetti
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Masserini M. Nanoparticles for brain drug delivery. ISRN BIOCHEMISTRY 2013; 2013:238428. [PMID: 25937958 PMCID: PMC4392984 DOI: 10.1155/2013/238428] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/11/2013] [Indexed: 12/24/2022]
Abstract
The central nervous system, one of the most delicate microenvironments of the body, is protected by the blood-brain barrier (BBB) regulating its homeostasis. BBB is a highly complex structure that tightly regulates the movement of ions of a limited number of small molecules and of an even more restricted number of macromolecules from the blood to the brain, protecting it from injuries and diseases. However, the BBB also significantly precludes the delivery of drugs to the brain, thus, preventing the therapy of a number of neurological disorders. As a consequence, several strategies are currently being sought after to enhance the delivery of drugs across the BBB. Within this review, the recently born strategy of brain drug delivery based on the use of nanoparticles, multifunctional drug delivery systems with size in the order of one-billionth of meters, is described. The review also includes a brief description of the structural and physiological features of the barrier and of the most utilized nanoparticles for medical use. Finally, the potential neurotoxicity of nanoparticles is discussed, and future technological approaches are described. The strong efforts to allow the translation from preclinical to concrete clinical applications are worth the economic investments.
Collapse
Affiliation(s)
- Massimo Masserini
- Department of Health Sciences, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| |
Collapse
|
28
|
Pan W, Stone KP, Hsuchou H, Manda VK, Zhang Y, Kastin AJ. Cytokine signaling modulates blood-brain barrier function. Curr Pharm Des 2013; 17:3729-40. [PMID: 21834767 DOI: 10.2174/138161211798220918] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/30/2011] [Accepted: 09/26/2011] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) provides a vast interface for cytokines to affect CNS function. The BBB is a target for therapeutic intervention. It is essential, therefore, to understand how cytokines interact with each other at the level of the BBB and how secondary signals modulate CNS functions beyond the BBB. The interactions between cytokines and lipids, however, have not been fully addressed at the level of the BBB. Here, we summarize current understanding of the localization of cytokine receptors and transporters in specific membrane microdomains, particularly lipid rafts, on the luminal (apical) surface of the microvascular endothelial cells composing the BBB. We then illustrate the clinical context of cytokine effects on the BBB by neuroendocrine regulation and amplification of inflammatory signals. Two unusual aspects discussed are signaling crosstalk by different classes of cytokines and genetic regulation of drug efflux transporters. We also introduce a novel area of focus on how cytokines may act through nuclear hormone receptors to modulate efflux transporters and other targets. A specific example discussed is the ATP-binding cassette transporter-1 (ABCA-1) that regulates lipid metabolism. Overall, cytokine signaling at the level of the BBB is a crucial feature of the dynamic regulation that can rapidly change BBB function and affect brain health and disease.
Collapse
Affiliation(s)
- Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | | | | | |
Collapse
|
29
|
Beumer W, Gibney SM, Drexhage RC, Pont-Lezica L, Doorduin J, Klein HC, Steiner J, Connor TJ, Harkin A, Versnel MA, Drexhage HA. The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. J Leukoc Biol 2012; 92:959-75. [PMID: 22875882 DOI: 10.1189/jlb.0212100] [Citation(s) in RCA: 277] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This review describes a key role for mononuclear phagocytes in the pathogenesis of major psychiatric disorders. There is accumulating evidence for activation of microglia (histopathology and PET scans) and circulating monocytes (enhanced gene expression of immune genes, an overproduction of monocyte/macrophage-related cytokines) in patients with bipolar disorder, major depressive disorder, and schizophrenia. These data are strengthened by observations in animal models, such as the MIA models, the chronic stress models, and the NOD mouse model. In these animal models of depressive-, anxiety-, and schizophrenia-like behavior, similar activations of microglia and circulating monocytes can be found. These animal models also make in-depth pathogenic studies possible and show that microglia activation impacts neuronal development and function in brain areas congruent with the altered depressive and schizophrenia-like behaviors.
Collapse
Affiliation(s)
- Wouter Beumer
- Department of Immunology, Erasmus MC, Rotterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Opioid glycopeptide analgesics derived from endogenous enkephalins and endorphins. Future Med Chem 2012; 4:205-26. [PMID: 22300099 DOI: 10.4155/fmc.11.195] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Over the past two decades, potent and selective analgesics have been developed from endogenous opioid peptides. Glycosylation provides an important means of modulating interaction with biological membranes, which greatly affects the pharmacodynamics and pharmacokinetics of the resulting glycopeptide analogues. Furthermore, manipulation of the membrane affinity allows penetration of cellular barriers that block efficient drug distribution, including the blood-brain barrier. Extremely potent and selective opiate agonists have been developed from endogenous peptides, some of which show great promise as drug candidates.
Collapse
|
31
|
Disrupted sleep without sleep curtailment induces sleepiness and cognitive dysfunction via the tumor necrosis factor-α pathway. J Neuroinflammation 2012; 9:91. [PMID: 22578011 PMCID: PMC3411474 DOI: 10.1186/1742-2094-9-91] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 05/11/2012] [Indexed: 12/14/2022] Open
Abstract
Background Sleepiness and cognitive dysfunction are recognized as prominent consequences of sleep deprivation. Experimentally induced short-term sleep fragmentation, even in the absence of any reductions in total sleep duration, will lead to the emergence of excessive daytime sleepiness and cognitive impairments in humans. Tumor necrosis factor (TNF)-α has important regulatory effects on sleep, and seems to play a role in the occurrence of excessive daytime sleepiness in children who have disrupted sleep as a result of obstructive sleep apnea, a condition associated with prominent sleep fragmentation. The aim of this study was to examine role of the TNF-α pathway after long-term sleep fragmentation in mice. Methods The effect of chronic sleep fragmentation during the sleep-predominant period on sleep architecture, sleep latency, cognitive function, behavior, and inflammatory markers was assessed in C57BL/6 J and in mice lacking the TNF-α receptor (double knockout mice). In addition, we also assessed the above parameters in C57BL/6 J mice after injection of a TNF-α neutralizing antibody. Results Mice subjected to chronic sleep fragmentation had preserved sleep duration, sleep state distribution, and cumulative delta frequency power, but also exhibited excessive sleepiness, altered cognitive abilities and mood correlates, reduced cyclic AMP response element-binding protein phosphorylation and transcriptional activity, and increased phosphodiesterase-4 expression, in the absence of AMP kinase-α phosphorylation and ATP changes. Selective increases in cortical expression of TNF-α primarily circumscribed to neurons emerged. Consequently, sleepiness and cognitive dysfunction were absent in TNF-α double receptor knockout mice subjected to sleep fragmentation, and similarly, treatment with a TNF-α neutralizing antibody abrogated sleep fragmentation-induced learning deficits and increases in sleep propensity. Conclusions Taken together, our findings show that recurrent arousals during sleep, as happens during sleep apnea, induce excessive sleepiness via activation of inflammatory mechanisms, and more specifically TNF-α-dependent pathways, despite preserved sleep duration.
Collapse
|
32
|
Depression and type 2 diabetes: Inflammatory mechanisms of a psychoneuroendocrine co-morbidity. Neurosci Biobehav Rev 2012; 36:658-76. [DOI: 10.1016/j.neubiorev.2011.10.001] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 10/01/2011] [Accepted: 10/05/2011] [Indexed: 01/28/2023]
|
33
|
Wenska M, Alvira M, Steunenberg P, Stenberg Å, Murtola M, Strömberg R. An activated triple bond linker enables 'click' attachment of peptides to oligonucleotides on solid support. Nucleic Acids Res 2011; 39:9047-59. [PMID: 21795380 PMCID: PMC3203603 DOI: 10.1093/nar/gkr603] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 11/13/2022] Open
Abstract
A general procedure, based on a new activated alkyne linker, for the preparation of peptide-oligonucleotide conjugates (POCs) on solid support has been developed. With this linker, conjugation is effective at room temperature (RT) in millimolar concentration and submicromolar amounts. This is made possible since the use of a readily attachable activated triple bond linker enhances the Cu(I) catalyzed 1,3-dipolar cycloaddition ('click' reaction). The preferred scheme for conjugate preparation involves sequential conjugation to oligonucleotides on solid support of (i) an H-phosphonate-based aminolinker; (ii) the triple bond donor p-(N-propynoylamino)toluic acid (PATA); and (iii) azido-functionalized peptides. The method gives conversion of oligonucleotide to the POC on solid support, and only involves a single purification step after complete assembly. The synthesis is flexible and can be carried out without the need for specific automated synthesizers since it has been designed to utilize commercially available oligonucleotide and peptide derivatives on solid support or in solution. Methodology for the ready conversion of peptides into 'clickable' azidopeptides with the possibility of selecting either N-terminus or C-terminus connection also adds to the flexibility and usability of the method. Examples of synthesis of POCs include conjugates of oligonucleotides with peptides known to be membrane penetrating and nuclear localization signals.
Collapse
Affiliation(s)
- Malgorzata Wenska
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, SE-141 83 Huddinge, Sweden
| | | | | | | | | | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, SE-141 83 Huddinge, Sweden
| |
Collapse
|
34
|
Ricci V, Martinotti G, Gelfo F, Tonioni F, Caltagirone C, Bria P, Angelucci F. Chronic ketamine use increases serum levels of brain-derived neurotrophic factor. Psychopharmacology (Berl) 2011; 215:143-8. [PMID: 21161184 DOI: 10.1007/s00213-010-2121-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 11/26/2010] [Indexed: 10/18/2022]
Abstract
RATIONALE Ketamine is a non-competitive N-methyl-D: -aspartate (NMDA) receptor antagonist which interferes with the action of excitatory amino acids (EAAs) including glutamate and aspartate. The use of ketamine at subanaesthetic doses has increased because of its psychotomimetic properties. However, long-term ketamine abuse may interfere with memory processes and inhibit the induction of long-term potentiation (LTP) in the hippocampus, an effect probably mediated by its NMDA antagonist action. Neurotrophins such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) serve as survival factors for selected populations of central nervous system neurons, including cholinergic and dopaminergic neurons. In addition, neurotrophins, particularly BDNF, may regulate LTP in the hippocampus and influence synaptic plasticity. OBJECTIVES The purpose of this study was to test the hypothesis that ketamine use in humans is associated with altered serum levels of neurotrophins. METHODS We measured by enzyme-linked immunosorbent assay the NGF and BDNF serum levels in two groups of subjects: frequent ketamine users and healthy subjects. RESULTS Our data show that BDNF serum levels were increased in chronic ketamine users as compared to healthy subjects, while NGF levels were not affected by ketamine use. CONCLUSION These findings suggest that chronic ketamine intake is associated with increases in BDNF serum levels in humans. Other studies are needed to explore the pharmacological and molecular mechanism by which ketamine, and/or other NMDA antagonists, may induce modification in the production and utilization of BDNF and alter normal brain function.
Collapse
Affiliation(s)
- Valerio Ricci
- Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Doan ND, Bourgault S, Dejda A, Létourneau M, Detheux M, Vaudry D, Vaudry H, Chatenet D, Fournier A. Design and in vitro characterization of PAC1/VPAC1-selective agonists with potent neuroprotective effects. Biochem Pharmacol 2011; 81:552-61. [DOI: 10.1016/j.bcp.2010.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/19/2010] [Accepted: 11/19/2010] [Indexed: 01/25/2023]
|
36
|
Van Dorpe S, Adriaens A, Polis I, Peremans K, Van Bocxlaer J, De Spiegeleer B. Analytical characterization and comparison of the blood-brain barrier permeability of eight opioid peptides. Peptides 2010; 31:1390-9. [PMID: 20347901 DOI: 10.1016/j.peptides.2010.03.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/20/2010] [Accepted: 03/22/2010] [Indexed: 12/31/2022]
Abstract
Opioid drugs, including the newly developed peptides, should penetrate the blood-brain barrier (BBB) for pain management activity. Although BBB transport is fragmentarily described for some mu-opioid peptides, a complete and comparative overview is currently lacking. In this study, the BBB transport of eight opioid peptides (EM-1, EM-2, CTAP, CTOP, DAMGO, dermorphin, TAPP and TAPS) is described and compared. In addition, the metabolic stability in plasma and brain was evaluated. The highest influx rate was obtained for dermorphin (K(in)=2.18 microl/(g x min)), followed by smaller rates for EM-1, EM-2 and TAPP (K(in)=1.06-1.14 microl/(g x min)). Negligible influx was observed for DAMGO, CTOP and TAPS (K(in)=0.18-0.40 microl/(g x min)) and no influx for CTAP. Capillary depletion revealed that all peptides reached brain parenchyma for over 75%. Efflux was shown for TAPP (t(1/2)=2.82 min) and to a lesser extent for EM-1, EM-2 and DAMGO (t(1/2)=10.66-21.98 min), while no significant efflux was observed for the other peptides. All peptides were stable in mouse plasma and brain, with generally higher stability in brain, except for EM-1 and EM-2 which showed plasma half-life stabilities of a few minutes only.
Collapse
Affiliation(s)
- Sylvia Van Dorpe
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
37
|
Overstreet DH, Fredericks K, Knapp D, Breese G, McMichael J. Nerve growth factor (NGF) has novel antidepressant-like properties in rats. Pharmacol Biochem Behav 2009; 94:553-60. [PMID: 19945476 DOI: 10.1016/j.pbb.2009.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 11/09/2009] [Accepted: 11/22/2009] [Indexed: 10/20/2022]
Abstract
Nerve growth factor, a neurotrophin, may have other functions, including a role in depressive disorders. The present study sought to determine whether NGF would (1) have antidepressant-like effects and (2) behave similarly to or differently from other well-recognized antidepressants. Over a broad dose-range, NGF reduced the exaggerated swim test immobility exhibited by the Flinders Sensitive Line (FSL) rats, but at a standard dose of 40 ng/ml, it was not as effective as desipramine (DMI, 5 mg/kg). The low social interaction behavior and locomotor activity of the FSL rats were less affected by NGF than was the immobility. Acute treatment with NGF did not induce c-fos expression in brain regions known to be activated by other acute antidepressants. The fact that chronic treatment with DMI blunted the corticosterone response to fluoxetine was replicated in this study. However, chronic treatment with NGF did not alter this response. Similarly, chronic treatment with fluoxetine blunted 5-HT(1A) and 5-HT(2A) receptor-mediated responses, whereas chronic treatment with NGF was without effect. Thus, NGF has antidepressant-like effects but does not appear to have biochemical actions typical of other antidepressants.
Collapse
Affiliation(s)
- David H Overstreet
- Department of Psychiatry, University of North Carolina at Chapel Hill, CB #7178, Chapel Hill, NC 27599-7178, USA.
| | | | | | | | | |
Collapse
|
38
|
Wenzel J, Grabinski N, Knopp CA, Dendorfer A, Ramanjaneya M, Randeva HS, Ehrhart-Bornstein M, Dominiak P, Jöhren O. Hypocretin/orexin increases the expression of steroidogenic enzymes in human adrenocortical NCI H295R cells. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1601-9. [PMID: 19793950 DOI: 10.1152/ajpregu.91034.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypocretins/orexins act through two receptor subtypes: OX(1) and OX(2). Outside the brain, orexin receptors are expressed in adrenal glands, where orexins stimulate the release of glucocorticoids. To further address the regulation of steroidogenesis, we analyzed the effect of orexins on the expression of steroidogenic enzymes in human adrenocortical National Cancer Institute (NCI) H295R cells by qPCR. In NCI H295R cells, OX(2) receptors were highly expressed, as they were in human adrenal glands. After treatment of NCI H295R cells with orexin A for 12-24 h, the cortisol synthesis rate was significantly increased, whereas 30 min of treatment showed no effect. While CYP11B1 and CYP11B2 mRNA levels were increased already at earlier time points, the expression of HSD3B2 and CYP21 mRNA was significantly up-regulated after treatment with orexin A for 12 h. Likewise, orexin B increased CYP21 and HSD3B2 mRNA levels showing, however, a lower potency compared with orexin A. The mRNA levels of CYP11A and CYP17 were unaffected by orexin A. OX(2) receptor mRNA levels were down-regulated after 12 and 24 h of orexin A treatment. Orexin A increased intracellular Ca(2+) but not cAMP concentrations in NCI H295R cells. Furthermore, inhibition of PKC and MAPK kinase/ERK kinase (MEK1/2) prevented the increase of HSD3B2 expression by orexin A. Accordingly, orexin A treatment of NCI H295R cells markedly enhanced ERK1/2 phosphorylation that was prevented by PKC and, in part, PKA inhibition. In conclusion, orexins may influence adrenal steroidogenesis by differential regulation of the expression of steroidogenic enzymes involving Ca(2+), as well as PKC-ERK1/2 signaling.
Collapse
Affiliation(s)
- Jan Wenzel
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Schuhmann MU, Zucht HD, Nassimi R, Heine G, Schneekloth CG, Stuerenburg HJ, Selle H. Peptide screening of cerebrospinal fluid in patients with glioblastoma multiforme. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2009; 36:201-7. [PMID: 19674866 DOI: 10.1016/j.ejso.2009.07.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 07/07/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
Abstract
AIMS To apply modern mass spectrometry based technology to identify possible CSF peptide markers of glioblastoma multiforme (GBM). METHODS Mass spectrometry based peptidomics technology enables a systematic and comprehensive screening of cerebrospinal fluid (CSF) with regard to its peptide composition. Differential Peptide Display (DPD) allows the identification of single marker peptides for a target disease. Using both, we analyzed CSF samples of 11 patients harbouring a glioblastoma multiforme in comparison to 13 normal controls. RESULTS Four CSF peptides which significantly distinguished GBM from controls in all applied statistic tests could be identified out of more than 2,000 detected CSF peptides. They were specific C-terminal fragments of alpha-1-antichymotrypsin, osteopontin, and transthyretin as well as a N-terminal residue of albumin. All molecules are constituents of normal CSF, but none has previously been reported to be significantly elevated in CSF of GBM patients. CONCLUSION The study showed that peptidomics technology is able to identify possible biomarkers of neoplastic CNS disease. It remains to be determined if the identified elevated CSF peptides are specific for GBM. With regard to GBM, however, the more important role of CSF peptide biomarkers than aiding initial diagnosis might be early recognition of disease recurrence or monitoring of efficacy of adjuvant therapy protocols.
Collapse
Affiliation(s)
- M U Schuhmann
- Klinik für Neurochirurgie, Medizinische Hochschule Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Perlikowska R, Gach K, Fichna J, Toth G, Walkowiak B, do-Rego JC, Janecka A. Biological activity of endomorphin and [Dmt1]endomorphin analogs with six-membered proline surrogates in position 2. Bioorg Med Chem 2009; 17:3789-94. [DOI: 10.1016/j.bmc.2009.04.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 04/20/2009] [Accepted: 04/22/2009] [Indexed: 10/20/2022]
|
41
|
Choudhury BK, Shi XZ, Sarna SK. Norepinephrine mediates the transcriptional effects of heterotypic chronic stress on colonic motor function. Am J Physiol Gastrointest Liver Physiol 2009; 296:G1238-47. [PMID: 19359422 PMCID: PMC2697948 DOI: 10.1152/ajpgi.90712.2008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 04/02/2009] [Indexed: 01/31/2023]
Abstract
Chronic stress precipitates or exacerbates the symptoms of functional bowel disorders, including motility dysfunction. The cellular mechanisms of these effects are not understood. We tested the hypothesis that heterotypic chronic stress (HeCS) elevates the release of norepinephrine from the adrenal medulla, which enhances transcription of the gene-regulating expression of Ca(v)1.2 (L-type) channels in colonic circular smooth muscle cells, resulting in enhanced colonic motor function. The experiments were performed in rats using a 9-day heterotypic chronic stress (HeCS) protocol. We found that HeCS, but not acute stress, time dependently enhances the contractile response to ACh in colonic circular smooth muscle strips and in single dissociated smooth muscle cells, the plasma levels of norepinephrine and the mRNA and protein expressions of the alpha(1C) subunit of Ca(v)1.2 channels. These effects result in faster colonic transit and increase in defecation rate. The effects of HeCS are blocked by adrenalectomy but not by depletion of norepinephrine in sympathetic neurons. The inhibition of receptors for glucocortocoids, corticotropin-releasing hormone or nicotine also does not block the effects of heterotypic chronic stress. Norepinephrine acts on alpha- and beta(3)-adrenergic receptors to induce the transcription of alpha(1C) subunit. We conclude that HeCS alters colonic motor function by elevating the plasma levels of norepinephrine. Colonic motor dysfunction is associated with enhanced gene transcription of Ca(v)1.2 channels in circular smooth muscle cells. These findings suggest the potential cellular mechanisms by which heterotypic chronic stress may exacerbate motility dysfunction in patients with irritable bowel syndrome.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Adrenal Glands/metabolism
- Adrenalectomy
- Adrenergic Antagonists/pharmacology
- Animals
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Colon/drug effects
- Colon/metabolism
- Colon/physiopathology
- Corticosterone/antagonists & inhibitors
- Corticosterone/blood
- Corticotropin-Releasing Hormone/antagonists & inhibitors
- Corticotropin-Releasing Hormone/blood
- Defecation/physiology
- Gastrointestinal Motility/physiology
- Gene Expression/drug effects
- Gene Expression/genetics
- Gene Expression Regulation/physiology
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Muscle, Smooth/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Norepinephrine/antagonists & inhibitors
- Norepinephrine/pharmacology
- Norepinephrine/physiology
- Potassium Chloride/pharmacology
- Rats
- Rats, Sprague-Dawley
- Stress, Psychological/blood
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Tyrosine 3-Monooxygenase/metabolism
Collapse
Affiliation(s)
- Barun K Choudhury
- Div. of Gastroenterology, Dept. of Internal Medicine, The Univ. of Texas Medical Branch at Galveston, 8-104 Medical Research Bldg., Galveston, TX 77555-1083, USA
| | | | | |
Collapse
|
42
|
Abe Y, Nawa H, Namba H. Activation of epidermal growth factor receptor ErbB1 attenuates inhibitory synaptic development in mouse dentate gyrus. Neurosci Res 2009; 63:138-48. [DOI: 10.1016/j.neures.2008.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/13/2008] [Accepted: 11/14/2008] [Indexed: 10/21/2022]
|
43
|
Epidermal growth factor administered in the periphery influences excitatory synaptic inputs onto midbrain dopaminergic neurons in postnatal mice. Neuroscience 2009; 158:1731-41. [DOI: 10.1016/j.neuroscience.2008.10.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 10/13/2008] [Accepted: 10/31/2008] [Indexed: 01/08/2023]
|
44
|
Theoharides TC, Rozniecki JJ, Sahagian G, Jocobson S, Kempuraj D, Conti P, Kalogeromitros D. Impact of stress and mast cells on brain metastases. J Neuroimmunol 2008; 205:1-7. [DOI: 10.1016/j.jneuroim.2008.09.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 09/12/2008] [Accepted: 09/15/2008] [Indexed: 01/20/2023]
|
45
|
Angelucci F, Ricci V, Spalletta G, Pomponi M, Tonioni F, Caltagirone C, Bria P. Reduced serum concentrations of nerve growth factor, but not brain-derived neurotrophic factor, in chronic cannabis abusers. Eur Neuropsychopharmacol 2008; 18:882-7. [PMID: 18774699 DOI: 10.1016/j.euroneuro.2008.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 07/10/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
Abstract
Chronic cannabis use produces effects within the central nervous system (CNS) which include deficits in learning and attention tasks and decreased brain volume. Neurotrophins, in particular nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), are proteins that serve as survival factors for CNS neurons. Deficits in the production and utilization of these proteins can lead to CNS dysfunctions including those associated with cannabis abuse. In this study we measured by enzyme-linked immunosorbent assay (ELISA) the NGF and BDNF serum levels in two groups of subjects: cannabis-dependent patients and healthy subjects. We found that NGF serum levels were significantly reduced in cannabis abusers as compared to healthy subjects. These findings indicate that NGF may have a role in the central action of cannabis and potentially in the neurotoxicity induced by this drug. These data also suggest that chronic cannabis consumption may be a risk factor for developing psychosis among drug users.
Collapse
Affiliation(s)
- Francesco Angelucci
- IRCCS Santa Lucia Foundation, Department of Clinical and Behavioural Neurology, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Insulin-like growth factor I (IGF-I) is present at high concentrations in the circulation. Tissue-specific genetic ablation has shown that the majority of serum IGF-I is secreted by liver cells, although all major organs synthesize it. IGF-I is an important signal during development, including brain growth. Although the biological role of IGF-I in organs such as muscle or ovary is reasonably well established, its biological significance in the adult brain is far from clear. In this regard, while local IGF-I synthesis decreases during brain development, protein levels remain relatively constant throughout life until old age, where a decline is found, not only in the brain but also in the bloodstream. This mismatch between declining local synthesis early after birth and steady protein levels may be explained by the ability of serum IGF-I to access the brain across the blood-brain-barrier. This peripheral IGF-I input to the brain is a physiologically meaningful process of potential impact in brain diseases. Numerous brain mechanisms are regulated by serum IGF-I. Many of these, such as cell energy modulation or growth and survival are common to other IGF-I target tissues but there are also a number of brain-specific mechanisms regulated by IGF-I which likely underlie the ability of serum IGF-I to modulate the major function of the brain: cognition. We propose that serum IGF-I forms part of the mechanisms involved in the "cognitive reserve" concept of brain responses to homeostasis breakdown. Based on IGF-I pleiotropy not only in brain but elsewhere, we consider that loss of IGF-I function is an important step towards disease.
Collapse
Affiliation(s)
- Eva Carro
- Cajal Institute, CSIC, Madrid, Spain
| | | |
Collapse
|
47
|
Sen S, Duman R, Sanacora G. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry 2008; 64:527-32. [PMID: 18571629 PMCID: PMC2597158 DOI: 10.1016/j.biopsych.2008.05.005] [Citation(s) in RCA: 888] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 04/30/2008] [Accepted: 05/12/2008] [Indexed: 12/27/2022]
Abstract
BACKGROUND Converging lines of evidence implicate the neurotrophin brain-derived neurotrophic factor (BDNF) in the pathophysiology of major depression. Recent studies have begun to explore the relationship between serum BDNF and depression. METHODS We conducted meta-analyses of 11 studies examining differences in serum BDNF content between depressed and nondepressed subjects (N = 748), and eight studies comparing pre- and post-antidepressant treatment serum BDNF content (N = 220). RESULTS The meta-analysis revealed strong evidence that BDNF levels were lower in depressed subjects than healthy control subjects (p < 6.8 x 10(-8)). Similarly, the second meta-analysis found significantly higher BDNF levels after antidepressant treatment (p = .003). There was no evidence of publication bias in the first (p = .376) or second (p = .571) meta-analysis and no evidence that either meta-analysis was unduly influenced by any one study. CONCLUSIONS These findings provide strong evidence to suggest that serum BDNF levels are abnormally low in patients suffering from major depressive disorder and that the BDNF levels are elevated following a course of antidepressant treatment. Although the relationship of our findings to pathophysiology of depression and the mechanism of drug action remains to be determined, the measure may have potential use as a biomarker for psychiatric disorders or as a predictor of antidepressant efficacy.
Collapse
Affiliation(s)
- Srijan Sen
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519
| | - Ronald Duman
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519
- Department of Pharmacology, Yale University School of Medicine, Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519
| |
Collapse
|
48
|
do Rego JC, Leprince J, Scalbert E, Vaudry H, Costentin J. Behavioral actions of urotensin-II. Peptides 2008; 29:838-44. [PMID: 18294732 DOI: 10.1016/j.peptides.2007.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2007] [Revised: 12/20/2007] [Accepted: 12/21/2007] [Indexed: 02/07/2023]
Abstract
Urotensin-II (U-II) and urotensin-II-related peptide (URP) have been identified as the endogenous ligands of the orphan G-protein-coupled receptor GPR14 now renamed UT. The occurrence of U-II and URP in the central nervous system, and the widespread distribution of UT in the brain suggest that U-II and URP may play various behavioral activities. Studies conducted in rodents have shown that central administration of U-II stimulates locomotion, provokes anxiety- and depressive-like states, enhances feeding activity and increases the duration of paradoxical sleep episodes. These observations indicate that, besides the endocrine/paracrine activities of U-II and URP on cardiovascular and kidney functions, these peptides may act as neurotransmitters and/or neuromodulators to regulate various neurobiological activities.
Collapse
Affiliation(s)
- Jean-Claude do Rego
- CNRS FRE 2735, Laboratoire de Neuropsychopharmacologie Expérimentale, Institut Fédératif de Recherches Multidisciplinaires sur les Peptides 23, UFR de Médecine et Pharmacie, 22 Boulevard Gambetta, Rouen 76183, France.
| | | | | | | | | |
Collapse
|
49
|
Systemic and nasal delivery of orexin-A (Hypocretin-1) reduces the effects of sleep deprivation on cognitive performance in nonhuman primates. J Neurosci 2008; 27:14239-47. [PMID: 18160631 DOI: 10.1523/jneurosci.3878-07.2007] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hypocretin-1 (orexin-A) was administered to sleep-deprived (30-36 h) rhesus monkeys immediately preceding testing on a multi-image delayed match-to-sample (DMS) short-term memory task. The DMS task used multiple delays and stimulus images and effectively measures cognitive defects produced by sleep deprivation (Porrino et al., 2005). Two methods of administration of orexin-A were tested, intravenous injections (2.5-10.0 microg/kg, i.v.) and a novel method developed for nasal delivery via an atomizer spray mist to the nostrils (dose estimated 1.0 microg/kg). Results showed that orexin-A delivered via the intravenous and nasal routes significantly improved performance in sleep-deprived monkeys; however, the nasal delivery method was significantly more effective than the highest dose (10 microg/kg) of intravenous orexin-A tested. The improvement in performance by orexin-A was specific to trials classified as high versus low cognitive load as determined by performance difficulty under normal testing conditions. Except for the maximum intravenous dose (10 microg/kg), neither delivery method affected task performance in alert non-sleep-deprived animals. The improved performance in sleep-deprived animals was accompanied by orexin-A related alterations in local cerebral glucose metabolism (CMRglc) in specific brain regions shown previously to be engaged by the task and impaired by sleep deprivation (Porrino et al., 2005). Consistent with the differential effects on performance, nasal delivered orexin-A produced a more pronounced reversal of sleep deprivation induced changes in brain metabolic activity (CMRglc) than intravenous orexin-A. These findings provide strong evidence for the effectiveness of intranasal orexin-A in alleviating cognitive deficits produced by loss of sleep.
Collapse
|
50
|
Koda Y, Liang MT, Blanchfield JT, Toth I. In vitro stability and permeability studies of liposomal delivery systems for a novel lipophilic endomorphin 1 analogue. Int J Pharm 2008; 356:37-43. [PMID: 18272306 DOI: 10.1016/j.ijpharm.2007.12.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 12/19/2007] [Accepted: 12/19/2007] [Indexed: 11/24/2022]
Abstract
We have previously shown that the stability and permeability of peptides can be greatly improved by conjugation with lipoamino acids such as 2-aminododecanoic acid (C12Laa). However, the increase in lipophilicity which this conjugation provides can also cause a significant decrease in the compound's water solubility. In this study, we coupled C12Laa to the N-terminus of endomorphin1 (Endo-1, Tyr-Pro-Trp-Phe-NH(2)), and addressed its solubility issue by formulating C12Laa-Endo-1 into phosphatidylcholine liposomes. The aqueous solubility of the lipidic analogue was greatly improved, facilitating the accurate analysis of the compound in in vitro assays. The metabolic stability and in vitro endothelial permeability of the C12Laa-Endo-1 liposomal formulation was assessed using Caco-2 cells, and compared with the formulation of the parent peptide Endo-1. The liposome-encapsulated C12Laa-Endo exhibited significant increases in both stability and permeability. These results suggest that the combination of chemical modification and liposome formulation has great potentials in improving the bioavailability of neuroactive peptides.
Collapse
Affiliation(s)
- Yasuko Koda
- School of Pharmacy, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | | | | |
Collapse
|