1
|
Borruto AM, Calpe-López C, Spanagel R, Bernardi RE. Conditional deletion of the AMPA-GluA1 and NMDA-GluN1 receptor subunit genes in midbrain D1 neurons does not alter cocaine reward in mice. Neuropharmacology 2024; 258:110081. [PMID: 39002853 DOI: 10.1016/j.neuropharm.2024.110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Synaptic plasticity in the mesolimbic dopamine (DA) system contributes to the neural adaptations underlying addictive behaviors and relapse. However, the specific behavioral relevance of glutamatergic excitatory drive onto dopamine D1 receptor (D1R)-expressing neurons in mediating the reinforcing effect of cocaine remains unclear. Here, we investigated how midbrain AMPAR and NMDAR function modulate cocaine reward-related behavior using mutant mouse lines lacking the glutamate receptor genes Gria1 or Grin1 in D1R-expressing neurons (GluA1D1CreERT2 or GluN1D1CreERT2, respectively). We found that conditional genetic deletion of either GluA1 or GluN1 within this neuronal sub-population did not impact the ability of acute cocaine injection to increase intracranial self-stimulation (ICSS) ratio or reduced brain reward threshold compared to littermate controls. Additionally, our data demonstrate that deletion of GluA1 and GluN1 receptor subunits within D1R-expressing neurons did not affect cocaine reinforcement in an operant self-administration paradigm, as mutant mice showed comparable cocaine responses and intake to controls. Given the pivotal role of glutamate receptors in mediating relapse behavior, we further explored the impact of genetic deletion of AMPAR and NMDAR onto D1R-expressing neurons on cue-induced reinstatement following extinction. Surprisingly, deletion of AMPAR and NMDAR onto these neurons did not impair cue-induced reinstatement of cocaine-seeking behavior. These findings suggest that glutamatergic activity via NMDAR and AMPAR in D1R-expressing neurons may not exclusively mediate the reinforcing effects of cocaine and cue-induced reinstatement.
Collapse
MESH Headings
- Animals
- Cocaine/pharmacology
- Cocaine/administration & dosage
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Reward
- Receptors, AMPA/genetics
- Receptors, AMPA/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Mice
- Self Administration
- Male
- Mesencephalon/metabolism
- Mesencephalon/drug effects
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Neurons/metabolism
- Neurons/drug effects
- Mice, Knockout
- Dopamine Uptake Inhibitors/pharmacology
- Mice, Inbred C57BL
- Reinforcement, Psychology
- Nerve Tissue Proteins
Collapse
Affiliation(s)
- Anna Maria Borruto
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Claudia Calpe-López
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; German Center for Mental Health (DZPG), Partner Site Mannheim, Heidelberg, Ulm, Germany
| | - Rick E Bernardi
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
2
|
Barbosa-Méndez S, Salazar-Juárez A. Mirtazapine decreased cocaine-induced c-fos expression and dopamine release in rats. Front Psychiatry 2024; 15:1428730. [PMID: 39188520 PMCID: PMC11346032 DOI: 10.3389/fpsyt.2024.1428730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Introduction Chronic cocaine exposure induces an increase in dopamine release and an increase in the expression of the Fos protein in the rat striatum. It has been suggested that both are necessary for the expression of cocaine-induced alterations in behavior and neural circuitry. Mirtazapine dosing attenuated the cocaine-induced psychomotor and reinforcer effects. Methods The study evaluates the effect of chronic dosing of mirtazapine on cocaine-induced extracellular dopamine levels and Fos protein expression in rats. Male Wistar rats received cocaine (10 mg/Kg; i.p.) during the induction and expression of locomotor sensitization. The mirtazapine (30 mg/Kg; MIR), was administered 30 minutes before cocaine during the cocaine withdrawal. After each treatment, the locomotor activity was recorded for 30 minutes. Animals were sacrificed after treatment administration. Dopamine levels were determined by high-performance liquid chromatographic (HPLC) in the ventral striatum, the prefrontal cortex (PFC), and the ventral tegmental area (VTA) in animals treated with mirtazapine and cocaine. The quantification of c-fos immunoreactive cells was carried out by stereology analysis. Results Mirtazapine generated a decrease in cocaine-induced locomotor activity. In addition, mirtazapine decreased the amount of cocaine-induced dopamine and the number of cells immunoreactive to the Fos protein in the striatum, PFC, and VTA. Discussion These data suggest that mirtazapine could prevent the consolidation of changes in behavior and the cocaine-induced reorganization of neuronal circuits. It would explain the mirtazapine-induced effects on cocaine behavioral sensitization. Thus, these data together could support its possible use for the treatment of patients with cocaine use disorder.
Collapse
|
3
|
El Atiallah I, Ponterio G, Meringolo M, Martella G, Sciamanna G, Tassone A, Montanari M, Mancini M, Castagno AN, Yu-Taeger L, Nguyen HHP, Bonsi P, Pisani A. Loss-of-function of GNAL dystonia gene impairs striatal dopamine receptors-mediated adenylyl cyclase/ cyclic AMP signaling pathway. Neurobiol Dis 2024; 191:106403. [PMID: 38182074 DOI: 10.1016/j.nbd.2024.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Loss-of-function mutations in the GNAL gene are responsible for DYT-GNAL dystonia. However, how GNAL mutations contribute to synaptic dysfunction is still unclear. The GNAL gene encodes the Gαolf protein, an isoform of stimulatory Gαs enriched in the striatum, with a key role in the regulation of cAMP signaling. Here, we used a combined biochemical and electrophysiological approach to study GPCR-mediated AC-cAMP cascade in the striatum of the heterozygous GNAL (GNAL+/-) rat model. We first analyzed adenosine type 2 (A2AR), and dopamine type 1 (D1R) receptors, which are directly coupled to Gαolf, and observed that the total levels of A2AR were increased, whereas D1R level was unaltered in GNAL+/- rats. In addition, the striatal isoform of adenylyl cyclase (AC5) was reduced, despite unaltered basal cAMP levels. Notably, the protein expression level of dopamine type 2 receptor (D2R), that inhibits the AC5-cAMP signaling pathway, was also reduced, similar to what observed in different DYT-TOR1A dystonia models. Accordingly, in the GNAL+/- rat striatum we found altered levels of the D2R regulatory proteins, RGS9-2, spinophilin, Gβ5 and β-arrestin2, suggesting a downregulation of D2R signaling cascade. Additionally, by analyzing the responses of striatal cholinergic interneurons to D2R activation, we found that the receptor-mediated inhibitory effect is significantly attenuated in GNAL+/- interneurons. Altogether, our findings demonstrate a profound alteration in the A2AR/D2R-AC-cAMP cascade in the striatum of the rat DYT-GNAL dystonia model, and provide a plausible explanation for our previous findings on the loss of dopamine D2R-dependent corticostriatal long-term depression.
Collapse
Affiliation(s)
- Ilham El Atiallah
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy; UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppe Sciamanna
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy; UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Martina Montanari
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Mancini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Fondazione Mondino, Pavia, Italy
| | - Antonio N Castagno
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Fondazione Mondino, Pavia, Italy
| | - Libo Yu-Taeger
- Department of Human Genetics, Ruhr University Bochum, Germany
| | | | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Fondazione Mondino, Pavia, Italy.
| |
Collapse
|
4
|
Chellian R, Behnood-Rod A, Wilson R, Lin K, King GWY, Ruppert-Gomez M, Teter AN, Febo M, Bruijnzeel AW. Dopamine D1-like receptor blockade and stimulation decreases operant responding for nicotine and food in male and female rats. Sci Rep 2022; 12:14131. [PMID: 35986048 PMCID: PMC9388990 DOI: 10.1038/s41598-022-18081-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/04/2022] [Indexed: 11/09/2022] Open
Abstract
Dopamine has been implicated in the reinforcing effects of smoking. However, there remains a need for a better understanding of the effects of dopamine D1-like receptor agonists on nicotine intake and the role of sex differences in the effects of dopaminergic drugs on behavior. This work studied the effects of D1-like receptor stimulation and blockade on operant responding for nicotine and food and locomotor activity in male and female rats. The effects of the D1-like receptor antagonist SCH 23390 (0.003, 0.01, 0.03 mg/kg) and the D1-like receptor agonist A77636 (0.1, 0.3, 1 mg/kg) on responding for nicotine and food, and locomotor activity were investigated. The effects of SCH 23390 were investigated 15 min and 24 h after treatment, and the effects of the long-acting drug A77636 were investigated 15 min, 24 h, and 48 h after treatment. Operant responding for nicotine and food and locomotor activity were decreased immediately after treatment with SCH 23390. Treatment with SCH 23390 did not have any long-term effects. Operant responding for nicotine was still decreased 48 h after treatment with A77636, and food responding was decreased up to 24 h after treatment. Treatment with A77636 only decreased locomotor activity at the 48 h time point. There were no sex differences in the effects of SCH 23390 or A77636. In conclusion, the D1-like receptor antagonist SCH 23390 reduces nicotine intake and causes sedation in rats. Stimulation of D1-like receptors with A77636 decreases nicotine intake at time points that the drug does not cause sedation.
Collapse
Affiliation(s)
- Ranjithkumar Chellian
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Ryann Wilson
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Karen Lin
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Grace Wing-Yan King
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Marcella Ruppert-Gomez
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Alexandria Nicole Teter
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA.
| |
Collapse
|
5
|
Ciancia M, Rataj-Baniowska M, Zinter N, Baldassarro VA, Fraulob V, Charles AL, Alvarez R, Muramatsu SI, de Lera AR, Geny B, Dollé P, Niewiadomska-Cimicka A, Krezel W. Retinoic acid receptor beta protects striatopallidal medium spiny neurons from mitochondrial dysfunction and neurodegeneration. Prog Neurobiol 2022; 212:102246. [DOI: 10.1016/j.pneurobio.2022.102246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/07/2021] [Accepted: 02/04/2022] [Indexed: 12/26/2022]
|
6
|
Nakamura Y, Longueville S, Nishi A, Hervé D, Girault JA, Nakamura Y. Dopamine D1 receptor-expressing neurons activity is essential for locomotor and sensitizing effects of a single injection of cocaine. Eur J Neurosci 2021; 54:5327-5340. [PMID: 34273137 DOI: 10.1111/ejn.15394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022]
Abstract
Dopamine D1 receptors play an important role in the effects of cocaine. Here, we investigated the role of neurons which express these receptors (D1-neurons) in the acute locomotor effects of cocaine and the locomotor sensitization observed after a second injection of this drug, using the previously established two-injection protocol of sensitization. We inhibited D1-neurons using double transgenic mice conditionally expressing the inhibitory Gi-coupled designer receptor exclusively activated by designer drugs (Gi-DREADD) in D1-neurons. Chemogenetic inhibition of D1-neurons by a low dose of clozapine (0.1 mg/kg) decreased the cocaine-induced expression of Fos in striatal neurons. It diminished the basal locomotor activity and acute hyper-locomotion induced by cocaine (20 mg/kg). Clozapine 0.1 mg/kg had no effect by itself and did not alter cocaine effects in wild-type mice. Inhibition of D1-neurons during the first cocaine administration prevented the sensitization of the locomotor response in response to a second cocaine administration 10 days later. On Day 11, inhibition of D1-neurons by clozapine stimulation of Gi-DREADD blocked cocaine-induced locomotion including in sensitized mice, whereas on Day 12, in the absence of clozapine and D1-neurons inhibition, all mice displayed a sensitized response to cocaine. These results show that chemogenetic inhibition of D1-neurons decreases spontaneous and cocaine-induced locomotor activity. It prevents sensitization induction and blocks sensitized locomotion in a two-injection protocol of sensitization but does not reverse established sensitization. Our study further supports the central role of D1-neurons in mediating the acute locomotor effects of cocaine and its sensitization.
Collapse
Affiliation(s)
- Yukari Nakamura
- INSERM UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne University, Paris, France.,Institut du Fer à Moulin, Paris, France.,Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Sophie Longueville
- INSERM UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne University, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Denis Hervé
- INSERM UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne University, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Jean-Antoine Girault
- INSERM UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne University, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Yuki Nakamura
- INSERM UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne University, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
7
|
Zhang R, Manza P, Tomasi D, Kim SW, Shokri-Kojori E, Demiral SB, Kroll DS, Feldman DE, McPherson KL, Biesecker CL, Wang GJ, Volkow ND. Dopamine D1 and D2 receptors are distinctly associated with rest-activity rhythms and drug reward. J Clin Invest 2021; 131:e149722. [PMID: 34264865 DOI: 10.1172/jci149722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Certain components of rest-activity rhythms such as greater eveningness (delayed phase), physical inactivity (blunted amplitude) and shift work (irregularity) are associated with increased risk for drug use. Dopaminergic (DA) signaling has been hypothesized to mediate the associations, though clinical evidence is lacking. METHODS We examined associations between rhythm components and striatal D1 (D1R) and D2/3 receptor (D2/3R) availability in 32 healthy adults (12 female, age: 42.40±12.22) and its relationship to drug reward. Rest-activity rhythms were assessed by one-week actigraphy combined with self-reports. [11C]NNC112 and [11C]raclopride Positron Emission Tomography (PET) scans were conducted to measure D1R and D2/3R availability, respectively. Additionally, self-reported drug-rewarding effects of 60 mg oral methylphenidate were assessed. RESULTS We found that delayed rhythm was associated with higher D1R availability in caudate, which was not attributable to sleep loss or 'social jet lag', whereas physical inactivity was associated with higher D2/3R availability in nucleus accumbens (NAc). Delayed rest-activity rhythm, higher caudate D1R and NAc D2/3R availability were associated with greater sensitivity to the rewarding effects of methylphenidate. CONCLUSION These findings reveal specific components of rest-activity rhythms associated with striatal D1R, D2/3R availability and drug-rewarding effects. Personalized interventions that target rest-activity rhythms may help prevent and treat substance use disorders. TRIAL REGISTRATION ClinicalTrials.gov: NCT03190954FUNDING. This work was accomplished with support from the National Institute on Alcohol Abuse and Alcoholism (ZIAAA000550).
Collapse
Affiliation(s)
- Rui Zhang
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Sung Won Kim
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Ehsan Shokri-Kojori
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Sukru B Demiral
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Danielle S Kroll
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Dana E Feldman
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Katherine L McPherson
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Catherine L Biesecker
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Nora D Volkow
- National Institute on Drug Abuse, NIH, Bethesda, United States of America
| |
Collapse
|
8
|
Olsen D, Wellner N, Kaas M, de Jong IEM, Sotty F, Didriksen M, Glerup S, Nykjaer A. Altered dopaminergic firing pattern and novelty response underlie ADHD-like behavior of SorCS2-deficient mice. Transl Psychiatry 2021; 11:74. [PMID: 33495438 PMCID: PMC7835366 DOI: 10.1038/s41398-021-01199-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/12/2020] [Accepted: 01/05/2021] [Indexed: 01/03/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is the most frequently diagnosed neurodevelopmental disorder worldwide. Affected individuals present with hyperactivity, inattention, and cognitive deficits and display a characteristic paradoxical response to drugs affecting the dopaminergic system. However, the underlying pathophysiology of ADHD and how this relates to dopaminergic transmission remains to be fully understood. Sorcs2-/- mice uniquely recapitulate symptoms reminiscent of ADHD in humans. Here, we show that lack of SorCS2 in mice results in lower sucrose intake, indicating general reward deficits. Using in-vivo recordings, we further find that dopaminergic transmission in the ventral tegmental area (VTA) is shifted towards a more regular firing pattern with marked reductions in the relative occurrence of irregular firing in Sorcs2-/- mice. This was paralleled by abnormal acute behavioral responses to dopamine receptor agonists, suggesting fundamental differences in dopaminergic circuits and indicating a perturbation in the balance between the activities of the postsynaptic dopamine receptor DRD1 and the presynaptic inhibitory autoreceptor DRD2. Interestingly, the hyperactivity and drug response of Sorcs2-/- mice were markedly affected by novelty. Taken together, our findings show how loss of a candidate ADHD-risk gene has marked effects on dopaminergic circuit function and the behavioral response to the environment.
Collapse
Affiliation(s)
- Ditte Olsen
- grid.7048.b0000 0001 1956 2722Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000 Aarhus C, Denmark ,grid.424580.f0000 0004 0476 7612Neurodegeneration and Biologics, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark ,grid.7048.b0000 0001 1956 2722Present Address: Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000 Aarhus C, Denmark
| | - Niels Wellner
- grid.7048.b0000 0001 1956 2722Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000 Aarhus C, Denmark ,grid.7048.b0000 0001 1956 2722Danish Research Institute of Translational Neuroscience DANDRITE Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000 Aarhus C, Denmark
| | - Mathias Kaas
- grid.7048.b0000 0001 1956 2722Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000 Aarhus C, Denmark
| | - Inge E. M. de Jong
- grid.424580.f0000 0004 0476 7612Neurodegeneration and Biologics, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Florence Sotty
- grid.424580.f0000 0004 0476 7612Neurodegeneration and Biologics, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Michael Didriksen
- grid.424580.f0000 0004 0476 7612Neurodegeneration and Biologics, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000, Aarhus C, Denmark.
| | - Anders Nykjaer
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000, Aarhus C, Denmark. .,Danish Research Institute of Translational Neuroscience DANDRITE Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000, Aarhus C, Denmark. .,The Danish National Research Foundation Center PROMEMO, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000, Aarhus C, Denmark. .,Department of Neurosurgery, Skejby University Hospital, Palle Juul-Jensens Blvd. 99, DK-8200, Aarhus N, Denmark.
| |
Collapse
|
9
|
Song N, Du J, Gao Y, Yang S. Epitranscriptome of the ventral tegmental area in a deep brain-stimulated chronic unpredictable mild stress mouse model. Transl Neurosci 2020; 11:402-418. [PMID: 33343932 PMCID: PMC7724003 DOI: 10.1515/tnsci-2020-0146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/08/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Deep brain stimulation (DBS) applied to the nucleus accumbens (NAc) alleviates the depressive symptoms of major depressive disorders. We investigated the mechanism of this effect by assessing gene expression and RNA methylation changes in the ventral tegmental area (VTA) following NAc-DBS in a chronic unpredictable mild stress (CUMS) mouse model of depression. Gene expression and N 6-methyladenosine (m6A) levels in the VTA were measured in mice subjected to CUMS and then DBS, and transcriptome-wide m6A changes were profiled using immunoprecipitated methylated RNAs with microarrays, prior to gene ontology analysis. The expression levels of genes linked to neurotransmitter receptors, transporters, transcription factors, neuronal activities, synaptic functions, and mitogen-activated protein kinase and dopamine signaling were upregulated in the VTA upon NAc-DBS. Furthermore, m6A modifications included both hypermethylation and hypomethylation, and changes were positively correlated with the upregulation of some genes. Moreover, the effects of CUMS on gene expression and m6A-mRNA modification were reversed by DBS for some genes. Interestingly, while the expression of certain genes was not changed by DBS, long-term stimulation did alter their m6A modifications. NAc-DBS-induced modifications are correlated largely with upregulation but sometimes downregulation of genes in CUMS mice. Our findings improve the current understanding of the molecular mechanisms underlying DBS effects on depression.
Collapse
Affiliation(s)
- Nan Song
- Center of Military Brain Science, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences (AMMS), The Academy of Military Sciences, No. 27 Taiping Road, Haidian District, Beijing, China, 100850
| | - Jun Du
- Center of Military Brain Science, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences (AMMS), The Academy of Military Sciences, No. 27 Taiping Road, Haidian District, Beijing, China, 100850
| | - Yan Gao
- Center of Military Brain Science, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences (AMMS), The Academy of Military Sciences, No. 27 Taiping Road, Haidian District, Beijing, China, 100850
| | - Shenglian Yang
- Center of Military Brain Science, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences (AMMS), The Academy of Military Sciences, No. 27 Taiping Road, Haidian District, Beijing, China, 100850
| |
Collapse
|
10
|
Ouyang X, Ahmad I, Johnson MS, Redmann M, Craver J, Wani WY, Benavides GA, Chacko B, Li P, Young M, Jegga AG, Darley-Usmar V, Zhang J. Nuclear receptor binding factor 2 (NRBF2) is required for learning and memory. J Transl Med 2020; 100:1238-1251. [PMID: 32350405 DOI: 10.1038/s41374-020-0433-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 01/13/2023] Open
Abstract
The mechanisms which underlie defects in learning and memory are a major area of focus with the increasing incidence of Alzheimer's disease in the aging population. The complex genetically-controlled, age-, and environmentally-dependent onset and progression of the cognitive deficits and neuronal pathology call for better understanding of the fundamental biology of the nervous system function. In this study, we focus on nuclear receptor binding factor-2 (NRBF2) which modulates the transcriptional activities of retinoic acid receptor α and retinoid X receptor α, and the autophagic activities of the BECN1-VPS34 complex. Since both transcriptional regulation and autophagic function are important in supporting neuronal function, we hypothesized that NRBF2 deficiency may lead to cognitive deficits. To test this, we developed a new mouse model with nervous system-specific knockout of Nrbf2. In a series of behavioral assessment, we demonstrate that NRBF2 knockout in the nervous system results in profound learning and memory deficits. Interestingly, we did not find deficits in autophagic flux in primary neurons and the autophagy deficits were minimal in the brain. In contrast, RNAseq analyses have identified altered expression of genes that have been shown to impact neuronal function. The observation that NRBF2 is involved in learning and memory suggests a new mechanism regulating cognition involving the role of this protein in regulating networks related to the function of retinoic acid receptors, protein folding, and quality control.
Collapse
Affiliation(s)
- Xiaosen Ouyang
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Israr Ahmad
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Michelle S Johnson
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Matthew Redmann
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jason Craver
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Willayat Y Wani
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Gloria A Benavides
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Balu Chacko
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Peng Li
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Martin Young
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Victor Darley-Usmar
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jianhua Zhang
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
11
|
Kozak R, Kiss T, Dlugolenski K, Johnson DE, Gorczyca RR, Kuszpit K, Harvey BD, Stolyar P, Sukoff Rizzo SJ, Hoffmann WE, Volfson D, Hajós M, Davoren JE, Abbott AL, Williams GV, Castner SA, Gray DL. Characterization of PF-6142, a Novel, Non-Catecholamine Dopamine Receptor D1 Agonist, in Murine and Nonhuman Primate Models of Dopaminergic Activation. Front Pharmacol 2020; 11:1005. [PMID: 32733245 PMCID: PMC7358525 DOI: 10.3389/fphar.2020.01005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022] Open
Abstract
Selective activation of dopamine D1 receptors remains a promising pro-cognitive therapeutic strategy awaiting robust clinical investigation. PF-6142 is a key example from a recently disclosed novel series of non-catechol agonists and partial agonists of the dopamine D1/5 receptors (D1R) that exhibit pharmacokinetic (PK) properties suitable for oral delivery. Given their reported potential for functionally biased signaling compared to known catechol-based selective agonists, and the promising rodent PK profile of PF-6142, we utilized relevant in vivo assays in male rodents and male and female non-human primates (NHP) to evaluate the pharmacology of this new series. Studies in rodents showed that PF-6142 increased locomotor activity and prefrontal cortex acetylcholine release, increased time spent in wakefulness, and desynchronized the EEG, like known D1R agonists. D1R selectivity of PF-6142 was supported by lack of effect in D1R knock-out mice and blocked response in the presence of the D1R antagonist SCH-23390. Further, PF-6142 improved performance in rodent models of NMDA receptor antagonist-induced cognitive dysfunction, such as MK-801-disrupted paired-pulse facilitation, and ketamine-disrupted working memory performance in the radial arm maze. Similarly, PF-6142 reversed ketamine-induced deficits in NHP performing the spatial delayed recognition task. Of importance, PF-6142 did not alter the efficacy of risperidone in assays predictive of antipsychotic-like effect in rodents including pre-pulse inhibition and conditioned avoidance responding. These data support the continued development of non-catechol based D1R agonists for the treatment of cognitive impairment associated with brain disorders including schizophrenia.
Collapse
Affiliation(s)
- Rouba Kozak
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | - Tamás Kiss
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | - Keith Dlugolenski
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | - David E Johnson
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | | | - Kyle Kuszpit
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | - Brian D Harvey
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | - Polina Stolyar
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | | | | | - Dmitri Volfson
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | - Mihaly Hajós
- Global Research and Development, Pfizer Inc., Groton, CT, United States.,Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, United States
| | | | - Amanda L Abbott
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Graham V Williams
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Stacy A Castner
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, United States
| | - David L Gray
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| |
Collapse
|
12
|
Environmental enrichment reduces behavioural sensitization in mice previously exposed to toluene: The role of D1 receptors. Behav Brain Res 2020; 390:112624. [DOI: 10.1016/j.bbr.2020.112624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/11/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022]
|
13
|
Prieto JP, González B, Muñiz J, Bisagno V, Scorza C. Molecular changes in the nucleus accumbens and prefrontal cortex associated with the locomotor sensitization induced by coca paste seized samples. Psychopharmacology (Berl) 2020; 237:1481-1491. [PMID: 32034449 DOI: 10.1007/s00213-020-05474-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/28/2020] [Indexed: 02/02/2023]
Abstract
RATIONALE In previous studies, we have demonstrated that seized samples of a smokable form of cocaine, also known as coca paste (CP), induced behavioral sensitization in rats. Interestingly, this effect was accelerated and enhanced when the samples were adulterated with caffeine. While the cocaine phenomenon is associated with persistent functional and structural alterations in the prefrontal cortex (PFC) and nucleus accumbens (NAc), the molecular mechanisms underlying the CP sensitization and the influence of caffeine remains still unknown. OBJECTIVE We examined the gene expression in NAc and mPFC after the expression caffeine-adulterated and non-adulterated CP locomotor sensitization. METHODS The locomotor sensitization was established in C57BL/6 mice, repeatedly treated with a CP-seized sample adulterated with caffeine (CP-2) and a non-adulterated one (CP-1). We then assessed the mRNA expression of receptor subunits of the dopaminergic and glutamatergic systems in the medial PFC (mPFC) and NAc. Other molecular markers (e.g., adenosinergic, endocannabinoid receptor subunits, and synaptic plasticity-associated genes) were also analyzed. RESULTS Only CP-2-treated mice expressed locomotor sensitization. This phenomenon was associated with increased Drd1a, Gria1, Cnr1, and Syn mRNA expression levels in the NAc. Drd3 mRNA expression levels were only significantly increased in mPFC of CP-2-treated group. CONCLUSIONS Our results demonstrated that caffeine actively collaborates in the induction of the molecular changes underlying CP sensitization. The present study provides new knowledge on the impact of active adulterants to understand the early dependence induced by CP consumption.
Collapse
Affiliation(s)
- José Pedro Prieto
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Betina González
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Buenos Aires, Argentina
| | - Javier Muñiz
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Buenos Aires, Argentina
| | - Verónica Bisagno
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Buenos Aires, Argentina
| | - Cecilia Scorza
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
14
|
Galvanho JP, Manhães AC, Carvalho-Nogueira ACC, Silva JDM, Filgueiras CC, Abreu-Villaça Y. Profiling of behavioral effects evoked by ketamine and the role of 5HT 2 and D 2 receptors in ketamine-induced locomotor sensitization in mice. Prog Neuropsychopharmacol Biol Psychiatry 2020; 97:109775. [PMID: 31676464 DOI: 10.1016/j.pnpbp.2019.109775] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
Abstract
Ketamine has addictive potential, a troublesome fact due to its promising use as a therapeutic drug. An important phenomenon associated with drug addiction is behavioral sensitization, usually characterized as augmented locomotion. However, other behaviors may also be susceptible to sensitization, and/or interfere with locomotor activity. Thus, this study drew a comprehensive behavioral 'profiling' in an animal model of repeated administration of ketamine. Adult Swiss mice received single daily ketamine injections (30 or 50 mg/Kg, i.p.), which were followed by open field testing for 7 days (acquisition period, ACQ). A ketamine challenge (sensitization test, ST) was carried out after a 5-day withdrawal. Locomotion, rearing, grooming, rotation and falling were assessed during ACQ and ST. All behaviors were affected from the first ACQ day onwards, with no indication of competition between locomotion and the other behaviors. Only locomotion in response to 30 mg/Kg of ketamine both escalated during ACQ and expressed increased levels at ST, evidencing development and expression of locomotor sensitization. Considering the involvement of serotonin 5HT(2) and dopamine D(2) receptors on addiction mechanisms, we further tested the involvement of these receptors in ketamine-induced sensitization. Ketanserin (5HT2 antagonist, 3 mg/Kg, s.c.) prevented ketamine-evoked development of locomotor sensitization. However, ketanserin pretreatment during ACQ failed to inhibit its expression during ST. Raclopride (D2 antagonist, 0.5 mg/Kg, s.c.) evoked less robust reductions in locomotion but prevented the development of ketamine-evoked sensitization. Pretreatment during ACQ further inhibited the expression of sensitization during ST. These results indicate that a partial overlap in serotonergic and dopaminergic mechanisms underlies ketamine-induced locomotor sensitization.
Collapse
Affiliation(s)
- Jefferson P Galvanho
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Alex C Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil.
| | - Ana Cristina C Carvalho-Nogueira
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Joyce de M Silva
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Claudio C Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil.
| |
Collapse
|
15
|
Sungur AÖ, Redecker TM, Andres E, Dürichen W, Schwarting RKW, Del Rey A, Wöhr M. Reduced Efficacy of d-Amphetamine and 3,4-Methylenedioxymethamphetamine in Inducing Hyperactivity in Mice Lacking the Postsynaptic Scaffolding Protein SHANK1. Front Mol Neurosci 2018; 11:419. [PMID: 30505269 PMCID: PMC6250831 DOI: 10.3389/fnmol.2018.00419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/26/2018] [Indexed: 02/02/2023] Open
Abstract
Genetic defects in the three SH3 and multiple ankyrin repeat domains (SHANK) genes (SHANK1, SHANK2, and SHANK3) are associated with multiple major neuropsychiatric disorders, including autism spectrum disorder (ASD), schizophrenia (SCZ), and bipolar disorder (BPD). Psychostimulant-induced hyperactivity is a commonly applied paradigm to assess behavioral phenotypes related to BPD and considered to be the gold standard for modeling mania-like elevated drive in mouse models. Therefore, the goal of our present study was to test whether Shank1 plays a role in the behavioral effects of psychostimulants and whether this is associated with genotype-dependent neurochemical alterations. To this aim, male and female null mutant Shank1-/- mice were treated with d-amphetamine (AMPH; 2.5 mg/kg) and 3,4-methylenedioxymethamphetamine (MDMA, commonly known as ecstasy; 20 mg/kg), and psychostimulant-induced hyperactivity was compared to heterozygous Shank1+/- and wildtype Shank1+/+ littermate controls. Results show that Shank1-/- mice display reduced psychostimulant-induced hyperactivity, although psychostimulants robustly stimulated locomotor activity in littermate controls. Shank1 deletion effects emerged throughout development, were particularly prominent in adulthood, and seen in response to both psychostimulants, i.e., AMPH and MDMA. Specifically, while AMPH-induced hyperactivity was reduced but still detectable in Shank1-/- mice, MDMA-induced hyperactivity was robustly blocked and completely absent in Shank1-/- mice. Reduced efficacy of psychostimulants to stimulate hyperactivity in Shank1-/- mice might be associated with alterations in the neurochemical architecture in prefrontal cortex, nucleus accumbens, and hypothalamus. Our observation that psychostimulant-induced hyperactivity is reduced rather than enhanced in Shank1-/- mice clearly speaks against a behavioral phenotype with relevance to BPD. Lack of BPD-like phenotype is consistent with currently available human data linking mutations in SHANK2 and SHANK3 but not SHANK1 to BPD.
Collapse
Affiliation(s)
- A Özge Sungur
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps University of Marburg, Marburg, Germany
| | - Tobias M Redecker
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps University of Marburg, Marburg, Germany
| | - Elena Andres
- Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University of Marburg, Marburg, Germany
| | - Wiebke Dürichen
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps University of Marburg, Marburg, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps University of Marburg, Marburg, Germany
| | - Adriana Del Rey
- Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University of Marburg, Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
16
|
Runegaard AH, Jensen KL, Wörtwein G, Gether U. Initial rewarding effects of cocaine and amphetamine assessed in a day using the single‐exposure place preference protocol. Eur J Neurosci 2018; 50:2156-2163. [DOI: 10.1111/ejn.14082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/25/2018] [Accepted: 07/17/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Annika H. Runegaard
- Faculty of Health and Medical Sciences Molecular Neuropharmacology and Genetics Laboratory Department of Neuroscience Panum Institute – Maersk Tower 7.5 University of Copenhagen Blegdamsvej 3 Copenhagen DK‐2200 Denmark
| | - Kathrine Louise Jensen
- Faculty of Health and Medical Sciences Molecular Neuropharmacology and Genetics Laboratory Department of Neuroscience Panum Institute – Maersk Tower 7.5 University of Copenhagen Blegdamsvej 3 Copenhagen DK‐2200 Denmark
| | - Gitta Wörtwein
- Laboratory of Neuropsychiatry Psychiatric Center Copenhagen and Department of Neuroscience University of Copenhagen Copenhagen Denmark
| | - Ulrik Gether
- Faculty of Health and Medical Sciences Molecular Neuropharmacology and Genetics Laboratory Department of Neuroscience Panum Institute – Maersk Tower 7.5 University of Copenhagen Blegdamsvej 3 Copenhagen DK‐2200 Denmark
| |
Collapse
|
17
|
Selective Vulnerability of Striatal D2 versus D1 Dopamine Receptor-Expressing Medium Spiny Neurons in HIV-1 Tat Transgenic Male Mice. J Neurosci 2017; 37:5758-5769. [PMID: 28473642 DOI: 10.1523/jneurosci.0622-17.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 02/04/2023] Open
Abstract
Despite marked regional differences in HIV susceptibility within the CNS, there has been surprisingly little exploration into the differential vulnerability among neuron types and the circuits they underlie. The dorsal striatum is especially susceptible, harboring high viral loads and displaying marked neuropathology, with motor impairment a frequent manifestation of chronic infection. However, little is known about the response of individual striatal neuron types to HIV or how this disrupts function. Therefore, we investigated the morphological and electrophysiological effects of HIV-1 trans-activator of transcription (Tat) in dopamine subtype 1 (D1) and dopamine subtype 2 (D2) receptor-expressing striatal medium spiny neurons (MSNs) by breeding transgenic Tat-expressing mice to Drd1a-tdTomato- or Drd2-eGFP-reporter mice. An additional goal was to examine neuronal vulnerability early during the degenerative process to gain insight into key events underlying the neuropathogenesis. In D2 MSNs, exposure to HIV-1 Tat reduced dendritic spine density significantly, increased dendritic damage (characterized by swellings/varicosities), and dysregulated neuronal excitability (decreased firing at 200-300 pA and increased firing rates at 450 pA), whereas insignificant morphologic and electrophysiological consequences were observed in Tat-exposed D1 MSNs. These changes were concomitant with an increased anxiety-like behavioral profile (lower latencies to enter a dark chamber in a light-dark transition task, a greater frequency of light-dark transitions, and reduced rearing time in an open field), whereas locomotor behavior was unaffected by 2 weeks of Tat induction. Our findings suggest that D2 MSNs and a specific subset of neural circuits within the dorsal striatum are preferentially vulnerable to HIV-1.SIGNIFICANCE STATEMENT Despite combination antiretroviral therapy (cART), neurocognitive disorders afflict 30-50% of HIV-infected individuals and synaptodendritic injury remains evident in specific brain regions such as the dorsal striatum. A possible explanation for the sustained neuronal injury is that the neurotoxic HIV-1 regulatory protein trans-activator of transcription (Tat) continues to be expressed in virally suppressed patients on cART. Using inducible Tat-expressing transgenic mice, we found that dopamine subtype 2 (D2) receptor-expressing medium spiny neurons (MSNs) are selectively vulnerable to Tat exposure compared with D1 receptor-expressing MSNs. This includes Tat-induced reductions in D2 MSN dendritic spine density, increased dendritic damage, and disruptions in neuronal excitability, which coincide with elevated anxiety-like behavior. These data suggest that D2 MSNs and specific circuits within the basal ganglia are preferentially vulnerable to HIV-1.
Collapse
|
18
|
Rodent models of impulsive–compulsive behaviors in Parkinson's disease: How far have we reached? Neurobiol Dis 2015; 82:561-573. [DOI: 10.1016/j.nbd.2015.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/22/2015] [Accepted: 08/25/2015] [Indexed: 01/26/2023] Open
|
19
|
Murray RC, Logan MC, Horner KA. Striatal patch compartment lesions reduce stereotypy following repeated cocaine administration. Brain Res 2015; 1618:286-98. [PMID: 26100338 DOI: 10.1016/j.brainres.2015.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/06/2015] [Accepted: 06/12/2015] [Indexed: 12/13/2022]
Abstract
Stereotypy can be characterized as inflexible, repetitive behaviors that occur following repeated exposure to psychostimulants, such as cocaine (COC). Stereotypy may be related to preferential activation of the patch (striosome) compartment of striatum, as enhanced relative activation of the patch compartment has been shown to positively correlate with the emergence of stereotypy following repeated psychostimulant treatment. However, the specific contribution of the patch compartment to COC-induced stereotypy following repeated exposure is unknown. To elucidate the involvement of the patch compartment to the development of stereotypy following repeated COC exposure, we determined if destruction of this sub-region altered COC-induced behaviors. The neurons of the patch compartment were ablated by bilateral infusion of the neurotoxin dermorphin-saporin (DERM-SAP; 17 ng/μl) into the striatum. Animals were allowed to recover for eight days following the infusion, and then were given daily injections of COC (25mg/kg) or saline for one week, followed by a weeklong drug-free period. Animals were then given a challenge dose of saline or COC, observed for 2h in activity chambers and sacrificed. The number of mu-labeled patches in the striatum were reduced by DERM-SAP pretreatment. In COC-treated animals DERM-SAP pretreatment significantly reduced the immobilization and intensity of stereotypy but increased locomotor activity. DERM-SAP pretreatment attenuated COC-induced c-Fos expression in the patch compartment, while enhancing COC-induced c-Fos expression in the matrix compartment. These data indicate that the patch compartment contributes to repetitive behavior and suggests that alterations in activity in the patch vs matrix compartments may underlie to this phenomenon.
Collapse
Affiliation(s)
- Ryan C Murray
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA 31207, United States
| | - Mary C Logan
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA 31207, United States
| | - Kristen A Horner
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA 31207, United States.
| |
Collapse
|
20
|
Tobón KE, Catuzzi JE, Cote SR, Sonaike A, Kuzhikandathil EV. Post-transcriptional regulation of dopamine D1 receptor expression in caudate-putamen of cocaine-sensitized mice. Eur J Neurosci 2015; 42:1849-57. [PMID: 25900179 DOI: 10.1111/ejn.12933] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 11/30/2022]
Abstract
The dopamine D1 receptor is centrally involved in mediating the effects of cocaine and is essential for cocaine-induced locomotor sensitization. Changes in D1 receptor expression have been reported in various models of cocaine addiction; however, the mechanisms that mediate these changes in D1 receptor expression are not well understood. Using preadolescent drd1a-EGFP mice and a binge cocaine treatment protocol we demonstrate that the D1 receptor is post-transcriptionally regulated in the caudate-putamen of cocaine-sensitized animal. While cocaine-sensitized mice express high levels of steady-state D1 receptor mRNA, the expression of D1 receptor protein is not elevated. We determined that the post-transcriptional regulation of D1 receptor mRNA is rapidly attenuated and D1 receptor protein levels increase within 30 min when the sensitized mice are challenged with cocaine. The rapid increase in D1 receptor protein levels requires de novo protein synthesis and correlates with the cocaine-induced hyperlocomotor activity in the cocaine-sensitized mice. The increase in D1 receptor protein levels in the caudate-putamen inversely correlated with the levels of microRNA 142-3p and 382, both of which regulate D1 receptor protein expression. The levels of these two microRNAs decreased significantly within 5 min of cocaine challenge in sensitized mice. The results provide novel insights into the previously unknown rapid kinetics of D1 receptor protein expression which occurs in a time scale that is comparable to the expression of immediate early genes. Furthermore, the results suggest a potential novel role for inherently labile microRNAs in regulating the rapid expression of D1 receptor protein in cocaine-sensitized animals.
Collapse
Affiliation(s)
- Krishna E Tobón
- Department of Pharmacology and Physiology, Rutgers-New Jersey Medical School, 185 South Orange Avenue, MSB, I-647, Newark, NJ, 07103, USA
| | - Jennifer E Catuzzi
- Department of Pharmacology and Physiology, Rutgers-New Jersey Medical School, 185 South Orange Avenue, MSB, I-647, Newark, NJ, 07103, USA
| | - Samantha R Cote
- Department of Pharmacology and Physiology, Rutgers-New Jersey Medical School, 185 South Orange Avenue, MSB, I-647, Newark, NJ, 07103, USA
| | - Adenike Sonaike
- Department of Pharmacology and Physiology, Rutgers-New Jersey Medical School, 185 South Orange Avenue, MSB, I-647, Newark, NJ, 07103, USA
| | - Eldo V Kuzhikandathil
- Department of Pharmacology and Physiology, Rutgers-New Jersey Medical School, 185 South Orange Avenue, MSB, I-647, Newark, NJ, 07103, USA
| |
Collapse
|
21
|
Arango-Lievano M, Schwarz JT, Vernov M, Wilkinson MB, Bradbury K, Feliz A, Marongiu R, Gelfand Y, Warner-Schmidt J, Nestler EJ, Greengard P, Russo SJ, Kaplitt MG. Cell-type specific expression of p11 controls cocaine reward. Biol Psychiatry 2014; 76:794-801. [PMID: 24725970 PMCID: PMC4145045 DOI: 10.1016/j.biopsych.2014.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/25/2014] [Accepted: 02/14/2014] [Indexed: 01/06/2023]
Abstract
BACKGROUND The high rate of comorbidity between depression and cocaine addiction suggests shared molecular mechanisms and anatomical pathways. Limbic structures, such as the nucleus accumbens (NAc), play a crucial role in both disorders, yet how different cell types within these structures contribute to the pathogenesis remains elusive. Downregulation of p11 (S100A10), specifically in the NAc, elicits depressive-like behaviors in mice, but its role in drug addiction is unknown. METHODS We combined mouse genetics and viral strategies to determine how the titration of p11 levels within the entire NAc affects the rewarding actions of cocaine on behavior (six to eight mice per group) and molecular correlates (three experiments, five to eight mice per group). Finally, the manipulation of p11 expression in distinct NAc dopaminoceptive neuronal subsets distinguished cell-type specific effects of p11 on cocaine reward (five to eight mice per group). RESULTS We demonstrated that p11 knockout mice have enhanced cocaine conditioned place preference, which is reproduced by the focal downregulation of p11 in the NAc of wild-type mice. In wild-type mice, cocaine reduced p11 expression in the NAc, while p11 overexpression exclusively in the NAc reduced cocaine conditioned place preference. Finally, we identified dopamine receptor-1 expressing medium spiny neurons as key mediators of the effects of p11 on cocaine reward. CONCLUSIONS Our data provide evidence that disruption of p11 homeostasis in the NAc, particularly in dopamine receptor-1 expressing medium spiny neurons, may underlie pathophysiological mechanisms of cocaine rewarding action. Treatments to counter maladaptation of p11 levels may provide novel therapeutic opportunities for cocaine addiction.
Collapse
Affiliation(s)
- Margarita Arango-Lievano
- Laboratory of Molecular Neurosurgery, Department of Neurological
Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Justin T. Schwarz
- Laboratory of Molecular Neurosurgery, Department of Neurological
Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Mary Vernov
- Laboratory of Molecular Neurosurgery, Department of Neurological
Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Matthew B. Wilkinson
- Fishberg Department of Neuroscience, Psychiatry, Friedman Brain
Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kathryn Bradbury
- Fishberg Department of Neuroscience, Psychiatry, Friedman Brain
Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Akira Feliz
- Laboratory of Molecular Neurosurgery, Department of Neurological
Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Roberta Marongiu
- Laboratory of Molecular Neurosurgery, Department of Neurological
Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Yaroslav Gelfand
- Laboratory of Molecular Neurosurgery, Department of Neurological
Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jennifer Warner-Schmidt
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller
University, New York, NY 10021
| | - Eric J. Nestler
- Fishberg Department of Neuroscience, Psychiatry, Friedman Brain
Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029,Pharmacology, Friedman Brain Institute, Icahn School of Medicine
at Mount Sinai, New York, NY 10029
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller
University, New York, NY 10021
| | - Scott J. Russo
- Fishberg Department of Neuroscience, Psychiatry, Friedman Brain
Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Michael G. Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological
Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
22
|
Yun J, Jung YS. A Scutellaria baicalensis radix water extract inhibits morphine-induced conditioned place preference. PHARMACEUTICAL BIOLOGY 2014; 52:1382-1387. [PMID: 25068674 DOI: 10.3109/13880209.2014.892514] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Scutellaria baicalensis Georgi (Lamiaceae) has been used as a traditional herbal preparation for the treatment of neuropsychiatric disorders in Asian countries for centuries. OBJECTIVE To evaluate the effects of S. baicalensis on morphine-induced drug dependence in rats. MATERIALS AND METHODS In order to evaluate the effect of S. baicalensis and baicalin on morphine-induced dependence-like behavior, a water extract of S. baicalensis [500 mg/kg, intraperitoneally (i.p.)] or baicalin (50 mg/kg, i.p., a flavonoid found in S. baicalensis) was administered prior to morphine injection [5 and 2.5 mg/kg, respectively, subcutaneously (s.c.)] to rats for 8 and 4 d, respectively. Morphine-induced conditioned place preference was assessed by measuring the time spent in a drug-paired chamber. The effect of S. baicalensis on dopamine receptor supersensitivity (locomotor activity) and dopamine agonist-induced climbing behavior due to a single apomorphine treatment (2 mg/kg, s.c.) was also measured. RESULTS At 50 mg/kg, a water extract of S. baicalensis decreased morphine (5 mg/kg)-induced conditioned place preference by 86% in rats. Apomorphine (2 mg/kg)-induced locomotor activity (dopamine receptor supersensitivity) in rats and climbing behavior in mice were attenuated after pretreatment with 500 mg/kg of S. baicalensis water extract by 41% and 56%, respectively. In addition, baicalin-reduced morphine-induced conditioned places preference by 86% in rats at 50 mg/kg. DISCUSSION AND CONCLUSION These results suggest that S. baicalensis can ameliorate drug addiction-related behavior through functional regulation of dopamine receptors.
Collapse
Affiliation(s)
- Jaesuk Yun
- Pharmaceutical Standardization Research and Testing Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Busan , Republic of Korea and
| | | |
Collapse
|
23
|
Yan Y, Newman AH, Xu M. Dopamine D1 and D3 receptors mediate reconsolidation of cocaine memories in mouse models of drug self-administration. Neuroscience 2014; 278:154-64. [PMID: 25149631 PMCID: PMC4172503 DOI: 10.1016/j.neuroscience.2014.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/15/2014] [Accepted: 08/08/2014] [Indexed: 12/18/2022]
Abstract
Memories of drug experience and drug-associated environmental cues can elicit drug-seeking and taking behaviors in humans. Disruption of reconsolidation of drug memories dampens previous memories and therefore may provide a useful way to treat drug abuse. We and others previously demonstrated that dopamine D1 and D3 receptors play differential roles in acquiring cocaine-induced behaviors. Moreover, D3 receptors contribute to the reconsolidation of cocaine-induced conditioned place preference. In the present study, we examined effects of manipulating D1 or D3 receptors on reconsolidation of cocaine memories in mouse models of drug self-administration. We found that pharmacological blockade of D1 receptors or a genetic mutation of the D3 receptor gene attenuated reconsolidation that lasted for at least 1week after the memory retrieval. In contrast, with no memory retrieval, pharmacological antagonism of D1 receptors or the D3 receptor gene mutation did not significantly affect reconsolidation of cocaine memories. Pharmacological blockade of D3 receptors also attenuated reconsolidation in wild-type mice that lasted for at least 1week after the memory retrieval. These results suggest that D1 and D3 receptors and related signaling mechanisms play key roles in reconsolidation of cocaine memories in mice, and that these receptors may serve as novel targets for the treatment of cocaine abuse in humans.
Collapse
Affiliation(s)
- Y Yan
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, USA
| | - A H Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - M Xu
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
24
|
Chiang YC, Hung TW, Ho IK. Development of sensitization to methamphetamine in offspring prenatally exposed to morphine, methadone and buprenorphine. Addict Biol 2014; 19:676-86. [PMID: 23551991 DOI: 10.1111/adb.12055] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heroin use among young women of reproductive age has drawn much attention around the world. However, there is lack of information on the long-term effects of prenatal exposure to opioids on their offspring. Our previous study demonstrated that prenatally buprenorphine-exposed offspring showed a marked change in the cross-tolerance to morphine compared with other groups. In the current study, this animal model was used to study effects of methamphetamine (METH)-induced behavioral sensitization in the offspring at their adulthood. The results showed no differences in either basal or acute METH-induced locomotor activity in any of the groups of animals tested. When male offspring received METH injections of 2 mg/kg, i.p., once a day for 5 days, behavioral sensitization was induced, as determined by motor activity. Furthermore, the distance and rate of development (slope) of locomotor activity and conditioned place preference induced by METH were significantly increased in the prenatally buprenorphine-exposed animals compared with those in other groups. The dopamine D1 R in the nucleus accumbens of the prenatally buprenorphine-exposed offspring had lower mRNA expression; but no significant changes in the μ-, κ-opioid, nociceptin, D2 R and D3 R receptors were noted. Furthermore, significant alterations were observed in the basal level of cAMP and the D1 R agonist enhanced adenylyl cyclase activity in the prenatally buprenorphine-exposed group. Overall, the study demonstrates that D1 R and its downregulated cAMP signals are involved in enhancing METH-induced behavioral sensitization in prenatally buprenorphine-exposed offspring. The study reveals that prenatal exposure to buprenorphine caused long-term effects on offspring and affected the dopaminergic system-related reward mechanism.
Collapse
Affiliation(s)
- Yao-Chang Chiang
- Center for Drug Abuse and Addiction; China Medical University Hospital; Taiwan
- China Medical University; Taiwan
| | | | - Ing-Kang Ho
- Center for Drug Abuse and Addiction; China Medical University Hospital; Taiwan
- National Health Research Institutes; Taiwan
- Graduate Institute of Clinical Medical Science; China Medical University; Taiwan
| |
Collapse
|
25
|
Hernandez G, Oleson EB, Gentry RN, Abbas Z, Bernstein DL, Arvanitogiannis A, Cheer JF. Endocannabinoids promote cocaine-induced impulsivity and its rapid dopaminergic correlates. Biol Psychiatry 2014; 75:487-98. [PMID: 24138924 PMCID: PMC3943889 DOI: 10.1016/j.biopsych.2013.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 08/13/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Impaired decision making, a hallmark of addiction, is hypothesized to arise from maladaptive plasticity in the mesolimbic dopamine pathway. The endocannabinoid system modulates dopamine activity through activation of cannabinoid type 1 receptors (CB1Rs). Here, we investigated whether impulsive behavior observed following cocaine exposure requires CB1R activation. METHODS We trained rats in a delay-discounting task. Following acquisition of stable performance, rats were exposed to cocaine (10 mg/kg, intraperitoneal) every other day for 14 days and locomotor activity was measured. Two days later, delay-discounting performance was re-evaluated. To assess reversal of impulsivity, injections of a CB1R antagonist (1.5 mg/kg, intraperitoneal) or vehicle were given 30 minutes before the task. During the second experiment, aimed at preventing impulsivity rather than reversing it, CB1Rs were antagonized before each cocaine injection. In this experiment, subsecond dopamine release was measured in the nucleus accumbens during delay-discounting sessions before and after cocaine treatment. RESULTS Blockade of CB1Rs reversed and prevented cocaine-induced impulsivity. Electrochemical results showed that during baseline and following disruption of endocannabinoid signaling, there was a robust increase in dopamine for immediate large rewards compared with immediate small rewards, but this effect reversed when the delay for the large reward was 10 seconds. In contrast, dopamine release always increased for one-pellet options at minimal or moderate delays in vehicle-treated rats. CONCLUSIONS Endocannabinoids play a critical role in changes associated with cocaine exposure. Cannabinoid type 1 receptor blockade may thus counteract maladaptive alterations in afferents to dopamine neurons, thereby preventing changes in dopaminergic activity underlying a loss of self-control.
Collapse
Affiliation(s)
| | - Erik B. Oleson
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, (Baltimore-Maryland)
| | - Ronny N. Gentry
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, (Baltimore-Maryland)
| | - Zarish Abbas
- Center for Studies in Behavioral Neurobiology, Concordia University (Montréal-Quebec)
| | - David L. Bernstein
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, (Baltimore-Maryland)
| | - A. Arvanitogiannis
- Center for Studies in Behavioral Neurobiology, Concordia University (Montréal-Quebec)
| | - Joseph F. Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, (Baltimore-Maryland),Department of Psychiatry, University of Maryland School of Medicine, (Baltimore-Maryland),Corresponding Author: 20 Penn Street, Baltimore MD, 21201. Phone: (410) 706 0112/Fax: (410) 706 2512.
| |
Collapse
|
26
|
Cahill E, Salery M, Vanhoutte P, Caboche J. Convergence of dopamine and glutamate signaling onto striatal ERK activation in response to drugs of abuse. Front Pharmacol 2014; 4:172. [PMID: 24409148 PMCID: PMC3884214 DOI: 10.3389/fphar.2013.00172] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/19/2013] [Indexed: 12/31/2022] Open
Abstract
Despite their distinct targets, all addictive drugs commonly abused by humans evoke increases in dopamine (DA) concentration within the striatum. The main DA Guanine nucleotide binding protein couple receptors (GPCRs) expressed by medium-sized spiny neurons of the striatum are the D1R and D2R, which are positively and negatively coupled to cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling, respectively. These two DA GPCRs are largely segregated into distinct neuronal populations, where they are co-expressed with glutamate receptors in dendritic spines. Direct and indirect interactions between DA GPCRs and glutamate receptors are the molecular basis by which DA modulates glutamate transmission and controls striatal plasticity and behavior induced by drugs of abuse. A major downstream target of striatal D1R is the extracellular signal-regulated kinase (ERK) kinase pathway. ERK activation by drugs of abuse behaves as a key integrator of D1R and glutamate NMDAR signaling. Once activated, ERK can trigger chromatin remodeling and induce gene expression that permits long-term cellular alterations and drug-induced morphological and behavioral changes. Besides the classical cAMP/PKA pathway, downstream of D1R, recent evidence implicates a cAMP-independent crosstalk mechanism by which the D1R potentiates NMDAR-mediated calcium influx and ERK activation. The mounting evidence of reciprocal modulation of DA and glutamate receptors adds further intricacy to striatal synaptic signaling and is liable to prove relevant for addictive drug-induced signaling, plasticity, and behavior. Herein, we review the evidence that built our understanding of the consequences of this synergistic signaling for the actions of drugs of abuse.
Collapse
Affiliation(s)
- Emma Cahill
- UMRS 952, INSERM, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; UMR7224, CNRS, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; University Pierre and Marie Curie-Paris 6 Paris, France
| | - Marine Salery
- UMRS 952, INSERM, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; UMR7224, CNRS, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; University Pierre and Marie Curie-Paris 6 Paris, France
| | - Peter Vanhoutte
- UMRS 952, INSERM, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; UMR7224, CNRS, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; University Pierre and Marie Curie-Paris 6 Paris, France
| | - Jocelyne Caboche
- UMRS 952, INSERM, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; UMR7224, CNRS, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; University Pierre and Marie Curie-Paris 6 Paris, France
| |
Collapse
|
27
|
Xu W, Wang Y, Ma Z, Chiu YT, Huang P, Rasakham K, Unterwald E, Lee DYW, Liu-Chen LY. L-isocorypalmine reduces behavioral sensitization and rewarding effects of cocaine in mice by acting on dopamine receptors. Drug Alcohol Depend 2013; 133:693-703. [PMID: 24080315 PMCID: PMC3954112 DOI: 10.1016/j.drugalcdep.2013.08.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND We previously reported isolation of l-isocorypalmine (l-ICP), a mono-demethylated analog of l-tetrahydropalmatine (l-THP), from the plant Corydalis yanhusuo. Here we characterized its in vitro pharmacological properties and examined its effects on cocaine-induced behaviors in mice. METHODS Receptor binding, cAMP and [(35)S]GTPγS assays were used to examine pharmacological actions of l-ICP in vitro. Effects of l-ICP on cocaine-induced locomotor hyperactivity and sensitization and conditioned place preference (CPP) in mice were investigated. HPLC was employed to analyze metabolites of l-ICP in mouse serum. RESULTS Among more than 40 targets screened, l-ICP and l-THP bound only to dopamine (DA) receptors. l-ICP was a high-affinity partial agonist of D1 and D5 receptors and a moderate-affinity antagonist of D2, D3 and D4 receptors, whereas l-THP bound to only D1 and D5 receptors, with lower affinities than l-ICP. At 10mg/kg (i.p.), l-ICP inhibited spontaneous locomotor activity for a shorter time than l-THP. Pretreatment with l-ICP reduced cocaine-induced locomotor hyperactivities. Administration of l-ICP before cocaine once a day for 5 days reduced cocaine-induced locomotor sensitization on days 5 and 13 after 7 days of withdrawal. Pretreatment with l-ICP before cocaine daily for 6 days blocked cocaine-induced CPP, while l-ICP itself did not cause preference or aversion. HPLC analysis showed that l-ICP was the main compound in mouse serum following i.p. injection of l-ICP. CONCLUSIONS l-ICP likely acts as a D1 partial agonist and a D2 antagonist to produce its in vivo effects and may be a promising agent for treatment of cocaine addiction.
Collapse
Affiliation(s)
- Wei Xu
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA
| | - Yujun Wang
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA
| | - Zhongze Ma
- Bio-Organic and Natural Products Laboratory, McLean Hospital,
Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| | - Yi-Ting Chiu
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA
| | - Peng Huang
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA
| | - Khampaseuth Rasakham
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA
| | - Ellen Unterwald
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA
| | - David Y.-W. Lee
- Bio-Organic and Natural Products Laboratory, McLean Hospital,
Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA,Correspondence should be sent to Dr. Lee-Yuan Liu-Chen,
Center for Substance Abuse Research and Department of Pharmacology, Temple
University School of Medicine, Philadelphia, PA 19140, USA. Tel: +1 215
707 4188; Fax: +1 215 707 7068.
| |
Collapse
|
28
|
Tobón KE, Kuzhikandathil EV. Preadolescent drd1-EGFP mice exhibit cocaine-induced behavioral sensitization. Neurosci Lett 2013; 558:20-5. [PMID: 24095672 DOI: 10.1016/j.neulet.2013.09.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/19/2013] [Accepted: 09/20/2013] [Indexed: 12/31/2022]
Abstract
In adult mice, repeated cocaine administration induces behavioral sensitization measured as increased horizontal locomotor activity. Cocaine-induced locomotor sensitization has been well characterized in adult mice. In adult animals, the D1 dopamine receptor is important for mediating effects of cocaine. The effect of cocaine on D1 receptor expression and function in preadolescent animals is less understood. The recently described drd1-enhanced green fluorescent protein (drd1-EGFP) reporter mouse is a useful model for performing such mechanistic studies; however, preadolescent drd1-EGFP mice have not been characterized previously. Here we studied cocaine-induced locomotor sensitization in preadolescent drd1-EGFP reporter mice. We administered 15mg/kg cocaine three times daily at 1h intervals for seven consecutive days beginning on postnatal day 23 to drd1-EGFP reporter mice and the commonly used C57BL/6 mice. Under this regimen, preadolescent mice of both strains exhibited cocaine-induced locomotor sensitization; however, by day 7 the cocaine-induced locomotor activity in the drd1-EGFP mice was maintained for a longer duration compared to the C57BL/6 mice. The preadolescent drd1-EGFP mice also exhibited elevated basal locomotor activity in a novel environment and had higher D1 and D2 dopamine receptor mRNA levels in the caudate nucleus compared to the C57BL/6 mice. The cocaine-induced locomotor sensitization was not retained when the drd1-EGFP mice were maintained cocaine-free for two weeks suggesting that in preadolescent drd1-EGFP mice the cocaine-induced changes do not persist.
Collapse
Affiliation(s)
- Krishna E Tobón
- Department of Pharmacology and Physiology, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Eldo V Kuzhikandathil
- Department of Pharmacology and Physiology, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
29
|
The LIM homeobox gene Isl1 is required for the correct development of the striatonigral pathway in the mouse. Proc Natl Acad Sci U S A 2013; 110:E4026-35. [PMID: 24082127 DOI: 10.1073/pnas.1308275110] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The mammalian striatum controls the output of the basal ganglia via two distinct efferent pathways, the direct (i.e., striatonigral) and the indirect (i.e., striatopallidal) pathways. The LIM homeodomain transcription factor Islet1 (Isl1) is expressed in a subpopulation of striatal progenitors; however, its specific role in striatal development remains unknown. Our genetic fate-mapping results show that Isl1-expressing progenitors give rise to striatal neurons belonging to the striatonigral pathway. Conditional inactivation of Isl1 in the telencephalon resulted in a smaller striatum with fewer striatonigral neurons and reduced projections to the substantia nigra. Additionally, conditional inactivation in the ventral forebrain (including both the telencephalon and diencephalon) revealed a unique role for Isl1 in diencephalic cells bordering the internal capsule for the normal development of the striatonigral pathway involving PlexinD1-Semaphorin 3e (Sema3e) signaling. Finally, Isl1 conditional mutants displayed a hyperlocomotion phenotype, and their locomotor response to psychostimulants was significantly blunted, indicating that the alterations in basal ganglia circuitry contribute to these mutant behaviors.
Collapse
|
30
|
Abstract
Drugs that induce psychosis, such as D-amphetamine (AMP), and those that alleviate it, such as antipsychotics, are suggested to exert behavioral effects via dopamine receptor D2 (D2). All antipsychotic drugs are D2 antagonists, but D2 antagonism underlies the severe and debilitating side effects of these drugs; it is therefore important to know whether D2 is necessary for their behavioral effects. Using D2-null mice (Drd2-/-), we first investigated whether D2 is required for AMP disruption of latent inhibition (LI). LI is a process of learning to ignore irrelevant stimuli. Disruption of LI by AMP models impaired attention and abnormal salience allocation consequent to dysregulated dopamine relevant to schizophrenia. AMP disruption of LI was seen in both wild-type (WT) and Drd2-/-. This was in contrast to AMP-induced locomotor hyperactivity, which was reduced in Drd2-/-. AMP disruption of LI was attenuated in mice lacking dopamine receptor D1 (Drd1-/-), suggesting that D1 may play a role in AMP disruption of LI. Further supporting this possibility, we found that D1 antagonist SKF83566 attenuated AMP disruption of LI in WT. Remarkably, both haloperidol and clozapine attenuated AMP disruption of LI in Drd2-/-. This demonstrates that antipsychotic drugs can attenuate AMP disruption of learning to ignore irrelevant stimuli in the absence of D2 receptors. Data suggest that D2 is not essential either for AMP to disrupt or for antipsychotic drugs to reverse AMP disruption of learning to ignore irrelevant stimuli and further that D1 merits investigation in the mediation of AMP disruption of these processes.
Collapse
|
31
|
Striatal patch compartment lesions alter methamphetamine-induced behavior and immediate early gene expression in the striatum, substantia nigra and frontal cortex. Brain Struct Funct 2013; 219:1213-29. [PMID: 23625147 DOI: 10.1007/s00429-013-0559-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
Abstract
Methamphetamine (METH) induces stereotypy, which is characterized as inflexible, repetitive behavior. Enhanced activation of the patch compartment of the striatum has been correlated with stereotypy, suggesting that stereotypy may be related to preferential activation of this region. However, the specific contribution of the patch compartment to METH-induced stereotypy is not clear. To elucidate the involvement of the patch compartment to the development of METH-induced stereotypy, we determined if destruction of this sub-region altered METH-induced behaviors. Animals were bilaterally infused in the striatum with the neurotoxin dermorphin-saporin (DERM-SAP; 17 ng/μl) to specifically ablate the neurons of the patch compartment. Eight days later, animals were treated with METH (7.5 mg/kg), placed in activity chambers, observed for 2 h and killed. DERM-SAP pretreatment significantly reduced the number and total area of mu-labeled patches in the striatum. DERM-SAP pretreatment significantly reduced the intensity of METH-induced stereotypy and the spatial immobility typically observed with METH-induced stereotypy. In support of this observation, DERM-SAP pretreatment also significantly increased locomotor activity in METH-treated animals. In the striatum, DERM-SAP pretreatment attenuated METH-induced c-Fos expression in the patch compartment, while enhancing METH-induced c-Fos expression in the matrix compartment. DERM-SAP pretreatment followed by METH administration augmented c-Fos expression in the SNpc and reduced METH-induced c-Fos expression in the SNpr. In the medial prefrontal, but not sensorimotor cortex, c-Fos and zif/268 expression was increased following METH treatment in animals pre-treated with DERM-SAP. These data indicate that the patch compartment is necessary for the expression of repetitive behaviors and suggests that alterations in activity in the basal ganglia may contribute to this phenomenon.
Collapse
|
32
|
Frau R, Pillolla G, Bini V, Tambaro S, Devoto P, Bortolato M. Inhibition of 5α-reductase attenuates behavioral effects of D1-, but not D2-like receptor agonists in C57BL/6 mice. Psychoneuroendocrinology 2013; 38:542-51. [PMID: 22877998 PMCID: PMC3540184 DOI: 10.1016/j.psyneuen.2012.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 11/30/2022]
Abstract
Converging lines of evidence point to the involvement of neurosteroids in the regulation of dopamine (DA) neurotransmission and signaling, yet the neurobiological bases of this link remain poorly understood. We previously showed that inhibition of steroid 5α-reductase (5αR), the key rate-limiting enzyme in neurosteroidogenesis, attenuates the behavioral effects of non-selective DA receptor agonists in rats, including stereotyped responses and sensorimotor gating deficits, as measured by the prepulse inhibition (PPI) of the acoustic startle reflex. Since previous findings suggested that the role of DA D(1)- and D(2)-like receptor families in behavioral regulation may exhibit broad interspecies and interstrain variations, we assessed the impact of 5αR blockade on the behavioral effects of DAergic agonists in C57BL/6 mice. The prototypical 5αR inhibitor finasteride (FIN; 25-50 mg/kg, intraperitoneally, IP) dose-dependently countered the PPI deficits and the enhancement of rearing responses induced by the full D(1)-like receptor agonist SKF-82958 (0.3 mg/kg, IP); however, FIN did not significantly affect the hyperlocomotive and startle-attenuating effects of SKF-82958. Whereas the D(2)-like receptor agonist quinpirole (QUIN; 0.5 mg/kg, IP) did not induce significant changes in PPI, the combination of this agent and FIN surprisingly produced marked gating and startle deficits. In contrast with previous data on rats, FIN did not affect the reductions of startle reflex and PPI produced by the non-selective DAergic agonist apomorphine (APO; 0.5 mg/kg, IP). These findings collectively indicate that, in C57BL/6 mice, 5αR differentially modulates the effects of D(1)- and D(2)-like receptor agonists in behavioral regulation.
Collapse
Affiliation(s)
- Roberto Frau
- “Guy Everett” laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
- Tourette Syndrome Center, University of Cagliari, Italy
| | - Giuliano Pillolla
- “Guy Everett” laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
| | - Valentina Bini
- “Guy Everett” laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
| | - Simone Tambaro
- Dept. of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles (CA), USA
| | - Paola Devoto
- “Guy Everett” laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
| | - Marco Bortolato
- Tourette Syndrome Center, University of Cagliari, Italy
- Dept. of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles (CA), USA
- Corresponding author: Marco Bortolato, MD PhD, Dept. of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Rm. 527, PSC 1985 Zonal Ave, Los Angeles, CA 90089, Phone: 323-442-3225, Fax: 323-442-3229,
| |
Collapse
|
33
|
Vidal-Infer A, Roger-Sánchez C, Daza-Losada M, Aguilar MA, Miñarro J, Rodríguez-Arias M. Role of the dopaminergic system in the acquisition, expression and reinstatement of MDMA-induced conditioned place preference in adolescent mice. PLoS One 2012; 7:e43107. [PMID: 22916213 PMCID: PMC3420895 DOI: 10.1371/journal.pone.0043107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 07/19/2012] [Indexed: 12/16/2022] Open
Abstract
Background The rewarding effects of 3,4-methylenedioxy-metamphetamine (MDMA) have been demonstrated in conditioned place preference (CPP) procedures, but the involvement of the dopaminergic system in MDMA-induced CPP and reinstatement is poorly understood. Methodology/Principal Findings In this study, the effects of the DA D1 antagonist SCH 23390 (0.125 and 0.250 mg/kg), the DA D2 antagonist Haloperidol (0.1 and 0.2 mg/kg), the D2 antagonist Raclopride (0.3 and 0.6 mg/kg) and the dopamine release inhibitor CGS 10746B (3 and 10 mg/kg) on the acquisition, expression and reinstatement of a CPP induced by 10 mg/kg of MDMA were evaluated in adolescent mice. As expected, MDMA significantly increased the time spent in the drug-paired compartment during the post-conditioning (Post-C) test, and a priming dose of 5 mg/kg reinstated the extinguished preference. The higher doses of Haloperidol, Raclopride and CGS 10746B and both doses of SCH 23390 blocked acquisition of the MDMA-induced CPP. However, only Haloperidol blocked expression of the CPP. Reinstatement of the extinguished preference was not affected by any of the drugs studied. Analysis of brain monoamines revealed that the blockade of CPP acquisition was accompanied by an increase in DA concentration in the striatum, with a concomitant decrease in DOPAC and HVA levels. Administration of haloperidol during the Post-C test produced increases in striatal serotonin, DOPAC and HVA concentrations. In mice treated with the higher doses of haloperidol and CGS an increase in SERT concentration in the striatum was detected during acquisition of the CPP, but no changes in DAT were observed. Conclusions/Significance These results demonstrate that, in adolescent mice, the dopaminergic system is involved in the acquisition and expression of MDMA-induced CPP, but not in its reinstatement.
Collapse
Affiliation(s)
- Antonio Vidal-Infer
- Unit of Research on Psychobiology of Drug Dependence, University of Valencia, Valencia, Spain
| | | | - Manuel Daza-Losada
- Unit of Research on Psychobiology of Drug Dependence, University of Valencia, Valencia, Spain
| | - María A. Aguilar
- Unit of Research on Psychobiology of Drug Dependence, University of Valencia, Valencia, Spain
| | - José Miñarro
- Unit of Research on Psychobiology of Drug Dependence, University of Valencia, Valencia, Spain
| | - Marta Rodríguez-Arias
- Unit of Research on Psychobiology of Drug Dependence, University of Valencia, Valencia, Spain
- * E-mail:
| |
Collapse
|
34
|
Akula KK, Kulkarni SK. Adenosinergic system: an assorted approach to therapeutics for drug addiction. FUTURE NEUROLOGY 2012. [DOI: 10.2217/fnl.12.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenosine is an endogenous purine nucleoside and it is extensively present in the brain. It exerts several metabolic and neuromodulatory roles in the body. Adenosine also acts as an important messenger molecule for extracellular signaling and shows a homeostatic neuromodulatory function at the synaptic level. Extracellular adenosine exerts a wide variety of biological actions through four cell surface G-protein-coupled receptor subtypes, namely A1, A2A, A2B and A3 adenosine receptors. The extracellular levels of adenosine have been found to be enhanced in several neuropathological conditions, including drug addiction, and thus a neuroprotective role of adenosine was perceived by various experimental studies. The aversive withdrawal symptoms emanating from drug discontinuation provokes rebound drug intake patterns. In addition, alteration of neurotransmitter(s) release and changes in receptor expression contribute to the behavioral changes of drug withdrawal. Furthermore, the abuse of major drugs such as alcohol and opioids are reported to modulate extracellular adenosine levels. In this context, the neuromodulatory functions of adenosine would be valuable if projected to the clinical applications and thus, an increasing attention is currently given to the functional role of adenosine in human addictive disorders. This review will focus on recent clinical and experimental studies that reveal the actions of adenosine and related ligands in drug addiction and various drug-withdrawal syndromes. The evidence and reports provided in this review highlight the looming therapeutic potential of purinergic drugs, with a hope that new therapeutic interventions based on the adenosinergic concept will emerge in the coming years for the management of drug withdrawal syndrome.
Collapse
Affiliation(s)
- Kiran Kumar Akula
- R.S. Dow Neurobiology Laboratories, Legacy Research, 1225 NE 2nd Avenue, Portland, OR 97232, USA
| | - SK Kulkarni
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh-160014, India
| |
Collapse
|
35
|
Kong H, Xu M. Dopamine D1 and D3 Receptors Are Differentially Involved in Cocaine-Induced Reward Learning and Cell Signaling. ACTA ACUST UNITED AC 2012. [DOI: 10.4303/jdar/235577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Klug J, Deutch A, Colbran R, Winder D. Synaptic Triad in the Neostriatum. DOPAMINE – GLUTAMATE INTERACTIONS IN THE BASAL GANGLIA 2011. [DOI: 10.1201/b11284-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
37
|
Kong H, Xu M. Exploring mechanisms underlying extinction of cue-elicited cocaine seeking. Curr Neuropharmacol 2011; 9:8-11. [PMID: 21886552 PMCID: PMC3137207 DOI: 10.2174/157015911795017173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/17/2010] [Accepted: 05/26/2010] [Indexed: 12/03/2022] Open
Abstract
A prominent feature of drug addiction is that drug-associated cues can elicit drug-seeking behaviors and contribute significantly to the high propensity to relapse. We have been investigating the notion that the dopamine D1 receptor and the immediate early gene product c-Fos expressed in D1 receptor-bearing neurons mediate the development of persistent neuroadaptation in the brain dopamine system by regulating cell signaling and gene expression. We generated and analyzed genetically engineered mouse models and found that the D1 receptor and c-Fos expressed in D1 receptor-bearing neurons mediate the locomotor sensitization and reinforcing effects of cocaine. Moreover, these molecules regulate cocaine-induced dendritic remodeling, electrophysiological responses, and changes in cell signaling and gene expression in the brain. Notably, a lack of Fos expression in D1 receptor-bearing neurons in mice results in no change in the induction but a significantly delayed extinction of cocaine-induced conditioned place preference. These findings suggest that D1 receptor-mediated and c-Fos-regulated changes in cell signaling and gene expression may play key roles in the extinction process, and they provide a foundation for further exploring mechanisms underlying extinction of cue-elicited cocaine seeking.
Collapse
Affiliation(s)
- Han Kong
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
38
|
Jang EY, Hwang M, Yoon SS, Lee JR, Kim KJ, Kim HC, Yang CH. Liquiritigenin decreases selective molecular and behavioral effects of cocaine in rodents. Curr Neuropharmacol 2011; 9:30-4. [PMID: 21886557 PMCID: PMC3137196 DOI: 10.2174/157015911795017371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/17/2010] [Accepted: 05/26/2010] [Indexed: 11/30/2022] Open
Abstract
Cocaine, as an indirect dopamine agonist, induces selective behavioral and physiological events such as hyperlocomotion and dopamine release. These changes are considered as consequences of cocaine-induced molecular adaptation such as CREB and c-Fos. Recently, methanolic extracts from licorice was reported to decrease cocaine-induced dopamine release and c-Fos expression in the nucleus accumbens. In the present study, we investigated the effects of liquiritigenin (LQ), a main compound of licorice, on acute cocaine-induced behavioral and molecular changes in rats. LQ attenuated acute cocaine-induced hyperlocomotion in dose-dependent manner. In addition, LQ inhibited CREB phosphorylation and c-Fos expression in the striatum and the nucleus accumbens induced by acute cocaine. Results provide strong evidence that LQ effectively attenuates the acute behavioral effects of cocaine exposure and prevents the induction of selective neuroadaptive changes in dopaminergic signaling pathways. Further investigation of LQ from licorice extract might provide a novel therapeutic strategy for the treatment of cocaine addiction.
Collapse
Affiliation(s)
- E Y Jang
- Department of Physiology, College of Oriental Medicine, Daegu Haany University, Daegu 706-828, South Korea
| | | | | | | | | | | | | |
Collapse
|
39
|
Tanaka T, Kai N, Kobayashi K, Takano Y, Hironaka N. Up-regulation of dopamine D1 receptor in the hippocampus after establishment of conditioned place preference by cocaine. Neuropharmacology 2011; 61:842-8. [PMID: 21669213 DOI: 10.1016/j.neuropharm.2011.05.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 05/27/2011] [Accepted: 05/28/2011] [Indexed: 11/30/2022]
Abstract
The hippocampus plays an important role in the formation of contextual memory between the environment and the rewarding effect of abused drugs. The dopaminergic neural transmission in the hippocampus seems to be critical for such memory. Using conditioned place preference in rats, we found that the protein level of the dopamine D(1) receptor and its prerequisite mRNA in the hippocampus increased in animals that showed a clear preference for the environment paired with cocaine. The increase was not a simple reflection of the repeated administration of cocaine. Instead, it is attributable to conditioning, because systematic contingency between drug administration and exposure to a particular environment was necessary for the increase. Furthermore, we found that the mRNA of the dopamine D(1) receptors increased in the granule cell layer of the dentate gyrus. These results suggest that the alteration of dopamine D(1) receptor in the hippocampus, especially in the dentate gyrus, is related to the induction of drug-induced contextual memory. The finding implicates the relevance of the dopaminergic signal transduction in the hippocampus to drug dependence.
Collapse
Affiliation(s)
- Tomoko Tanaka
- Department of Functional Brain Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
40
|
Antzoulatos E, Jakowec MW, Petzinger GM, Wood RI. MPTP Neurotoxicity and Testosterone Induce Dendritic Remodeling of Striatal Medium Spiny Neurons in the C57Bl/6 Mouse. PARKINSONS DISEASE 2011; 2011:138471. [PMID: 21765998 PMCID: PMC3134993 DOI: 10.4061/2011/138471] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 03/27/2011] [Indexed: 01/20/2023]
Abstract
Nigrostriatal damage is increased in males relative to females. While estrogen is neuroprotective in females, less is known about potential protective effects of testosterone in males. We determined if castration enhances neuronal injury to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Castrates or sham-castrated mice were sacrificed 1 week following injection of MPTP (4 × 20 mg/kg) or saline (n = 11-12/group). The right striatum was immunostained for tyrosine hydroxylase (TH). The left hemisphere was stained by Golgi Cox to quantify neuronal morphology in medium spiny neurons (MSNs) of the dorsolateral striatum. MPTP reduced TH, but there was no effect of castration and no interaction. For MSN dendritic morphology, MPTP decreased the highest branch order and increased spine density on 2nd-order dendrites. Castrated males had shorter 5th-order dendrites. However, there was no interaction between gonadal status and MPTP. Thus, castration and MPTP exert nonoverlapping effects on MSN morphology with castration acting on distal dendrites and MPTP acting proximally.
Collapse
Affiliation(s)
- Eleni Antzoulatos
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
41
|
Kim J, Park BH, Lee JH, Park SK, Kim JH. Cell type-specific alterations in the nucleus accumbens by repeated exposures to cocaine. Biol Psychiatry 2011; 69:1026-34. [PMID: 21377654 DOI: 10.1016/j.biopsych.2011.01.013] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 12/23/2010] [Accepted: 01/12/2011] [Indexed: 11/29/2022]
Abstract
BACKGROUND The nucleus accumbens (NAc) is a brain region critically involved in psychostimulant-induced neuroadaptations. A major proportion of NAc neurons consists of medium spiny neurons (MSNs), commonly divided into two major subsets on the basis of their expression of D1 dopamine receptors (D1R-MSNs) or D2 dopamine receptors (D2R-MSNs). Although NAc MSNs are known to undergo extensive alterations in their characteristics upon exposure to drugs of abuse, the functional and structural changes specific to each type of MSN have yet to be fully resolved. METHODS We repeatedly injected cocaine into transgenic mice expressing enhanced green fluorescent protein under the control of promoters for either D1R or D2R and then analyzed the physiological characteristics of each type of MSN by whole-cell recording. We also analyzed cocaine-induced changes of spine densities of individual MSNs with recombinant lentivirus in a cell type-specific manner and corroborated findings by use of a pathway-specific labeling using recombinant rabies virus. RESULTS The D1R-MSNs exhibited decreased membrane excitability but increased frequency of miniature excitatory postsynaptic currents after repeated cocaine administration, whereas D2R-MSNs displayed a decrease in miniature excitatory postsynaptic current frequency with no change in excitability. Interestingly, miniature inhibitory postsynaptic currents decreased in D1R-MSNs but were unaffected in D2R-MSNs. Moreover, morphological analyses revealed a selective increase in spine density in D1R-MSNs after chronic cocaine exposure. CONCLUSIONS This study provides the first experimental evidence that NAc MSNs differentially contribute to psychostimulant-induced neuroadaptations by changing their intrinsic, synaptic, and structural characteristics in a cell type-specific fashion.
Collapse
Affiliation(s)
- Juhyun Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, Gyungbuk, Republic of Korea
| | | | | | | | | |
Collapse
|
42
|
Young JW, Kooistra K, Geyer MA. Dopamine receptor mediation of the exploratory/hyperactivity effects of modafinil. Neuropsychopharmacology 2011; 36:1385-96. [PMID: 21412225 PMCID: PMC3096808 DOI: 10.1038/npp.2011.23] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/28/2011] [Accepted: 01/30/2011] [Indexed: 11/09/2022]
Abstract
Modafinil (2-((diphenylmethyl)sulfinyl)acetamide) is described as an atypical stimulant and is a putative cognition enhancer for schizophrenia, but the precise mechanisms of action remain unclear. Receptor knockout (KO) mice offer an opportunity to identify receptors that contribute to a drug-induced effect. Here we examined the effects of modafinil on exploration in C57BL/6J mice, in dopamine drd1, drd2, drd3, and drd4 wild-type (WT), heterozygous (HT), and KO mice, and in 129/SJ mice pretreated with the drd1 antagonist SCH23390 using a cross-species test paradigm based on the behavioral pattern monitor. Modafinil increased activity, specific exploration (rearing), and the smoothness of locomotor paths (reduced spatial d) in C57BL/6J and 129/SJ mice (increased holepoking was also observed in these mice). These behavioral profiles are similar to that produced by the dopamine transporter inhibitor GBR12909. Modafinil was ineffective at increasing activity in male drd1 KOs, rearing in female drd1 KOs, or reducing spatial d in all drd1 KOs, but produced similar effects in drd1 WT and HT mice as in C57BL/6J mice. Neither dopamine drd2 nor drd3 mutants attenuated modafinil-induced effects. Drd4 mutants exhibited a genotype dose-dependent attenuation of modafinil-induced increases in specific exploration. Furthermore, the drd1 KO effects were largely supported by the SCH23390 study. Thus, the dopamine drd1 receptor appears to exert a primary role in modafinil-induced effects on spontaneous exploration, whereas the dopamine drd4 receptor appears to be important for specific exploration. The modafinil-induced alterations in exploratory behavior may reflect increased synaptic dopamine and secondary actions mediated by dopamine drd1 and drd4 receptors.
Collapse
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093-0804, USA.
| | | | | |
Collapse
|
43
|
Kong H, Kuang W, Li S, Xu M. Activation of dopamine D3 receptors inhibits reward-related learning induced by cocaine. Neuroscience 2011; 176:152-61. [PMID: 21168475 PMCID: PMC3040280 DOI: 10.1016/j.neuroscience.2010.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 12/03/2010] [Accepted: 12/06/2010] [Indexed: 01/10/2023]
Abstract
Memories of learned associations between the rewarding properties of drugs and environmental cues contribute to craving and relapse in humans. The mesocorticolimbic dopamine (DA) system is involved in reward-related learning induced by drugs of abuse. DA D3 receptors are preferentially expressed in mesocorticolimbic DA projection areas. Genetic and pharmacological studies have shown that DA D3 receptors suppress locomotor-stimulant effects of cocaine and reinstatement of cocaine-seeking behaviors. Activation of the extracellular signal-regulated kinase (ERK) induced by acute cocaine administration is also inhibited by D3 receptors. How D3 receptors modulate cocaine-induced reward-related learning and associated changes in cell signaling in reward circuits in the brain, however, have not been fully investigated. In the present study, we show that D3 receptor mutant mice exhibit potentiated acquisition of conditioned place preference (CPP) at low doses of cocaine compared to wild-type mice. Activation of ERK and CaMKIIα, but not the c-Jun N-terminal kinase and p38, in the nucleus accumbens, amygdala and prefrontal cortex is also potentiated in D3 receptor mutant mice compared to that in wild-type mice following CPP expression. These results support a model in which D3 receptors modulate reward-related learning induced by low doses of cocaine by inhibiting activation of ERK and CaMKIIα in reward circuits in the brain.
Collapse
Affiliation(s)
- Han Kong
- Department of Forensic Medicine, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, PR China
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, USA
| | - Wenjian Kuang
- Department of Forensic Medicine, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, PR China
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, USA
| | - Shengbin Li
- Department of Forensic Medicine, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, PR China
| | - Ming Xu
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
44
|
Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proc Natl Acad Sci U S A 2010; 107:14845-50. [PMID: 20682746 DOI: 10.1073/pnas.1009874107] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The direct and indirect pathways of the basal ganglia have been proposed to oppositely regulate locomotion and differentially contribute to pathological behaviors. Analysis of the distinct contributions of each pathway to behavior has been a challenge, however, due to the difficulty of selectively investigating the neurons comprising the two pathways using conventional techniques. Here we present two mouse models in which the function of striatonigral or striatopallidal neurons is selectively disrupted due to cell type-specific deletion of the striatal signaling protein dopamine- and cAMP-regulated phosphoprotein Mr 32kDa (DARPP-32). Using these mice, we found that the loss of DARPP-32 in striatonigral neurons decreased basal and cocaine-induced locomotion and abolished dyskinetic behaviors in response to the Parkinson's disease drug L-DOPA. Conversely, the loss of DARPP-32 in striatopallidal neurons produced a robust increase in locomotor activity and a strongly reduced cataleptic response to the antipsychotic drug haloperidol. These findings provide insight into the selective contributions of the direct and indirect pathways to striatal motor behaviors.
Collapse
|
45
|
Abstract
Environmental cues previously associated with reinforcing drugs can play a key role in relapse to drug seeking behaviors in humans. The mesocorticolimbic dopamine system plays a critical role in cocaine-induced neurobiological changes. Dopamine D1 and D3 receptors modulate locomotor-stimulant and positive reinforcing effects of cocaine, and cue-induced reinstatement of cocaine-seeking. Moreover, activation of the extracellular signal-regulated kinase (ERK) induced by acute cocaine administration is regulated by both D1 and D3 receptors. How D1 and D3 receptors modulate the acquisition and extinction of cue-elicited cocaine seeking behavior and associated changes in the MAPK signaling pathway in different brain regions, however, remains unclear. In the present study, we found that D1 receptor mutant mice failed to acquire conditioned place preference (CPP) while D3 receptor mutant mice show delayed CPP extinction compared with wild-type mice. Moreover, ERK, but not the c-jun N-terminal kinase and p38, is activated in wild-type and D3 receptor mutant mice but not in D1 receptor mutant mice following CPP acquisition. D3 receptor mutant mice also exhibit sustained ERK activation compared with wild-type mice following extinction training. Our results suggest that D1 and D3 receptors differentially contribute to learned association between cues and the rewarding properties of cocaine by regulating, at least in part, ERK activation in specific areas of the brain.
Collapse
Affiliation(s)
- Liping Chen
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, USA
- Department of Forensic Medicine, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, PR China
| | - Ming Xu
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
46
|
Ren Z, Sun WL, Jiao H, Zhang D, Kong H, Wang X, Xu M. Dopamine D1 and N-methyl-D-aspartate receptors and extracellular signal-regulated kinase mediate neuronal morphological changes induced by repeated cocaine administration. Neuroscience 2010; 168:48-60. [PMID: 20346392 PMCID: PMC2871972 DOI: 10.1016/j.neuroscience.2010.03.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/15/2010] [Accepted: 03/16/2010] [Indexed: 11/21/2022]
Abstract
The development of drug addiction involves persistent cellular and molecular changes in the CNS. The brain dopamine and glutamate systems play key roles in mediating drug-induced neuroadaptation. Changes in dendritic morphology in medium spiny neurons (MSNs) in the nucleus accumbens (NAc) and caudate putamen (CPu) accompany drug-induced enduring behavioral and molecular changes. We have investigated the potential involvement of dopamine D1 and D2 receptors, the N-methyl-D-aspartate (NMDA) receptor, and the extracellular signal-regulated kinase (ERK) in dendritic morphological changes induced by repeated cocaine administration. We show that either a genetic mutation or pharmacological blockade of dopamine D1 receptors attenuated cocaine-induced changes in both dendritic branching and spine density of MSNs in the shell of the NAc and CPu. In contrast, antagonism of dopamine D2 receptors had no obvious effect on changes in dendritic branching but had a partial effect on changes in spine density of MSNs in these brain regions following repeated cocaine injections. Pharmacological inhibition of either NMDA receptors or ERK attenuated cocaine-induced changes in both dendritic branching and spine density of MSNs in the shell of the NAc and CPu. These results suggest that dopamine D1 and NMDA receptors and ERK contribute significantly to neuronal morphological changes induced by repeated exposure to cocaine.
Collapse
Affiliation(s)
- Zhihua Ren
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL 60637
| | - Wei-Lun Sun
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL 60637
| | - Hongyuan Jiao
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL 60637
| | - Dongsheng Zhang
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL 60637
| | - Han Kong
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL 60637
| | | | - Ming Xu
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
47
|
Distinct Roles of Synaptic Transmission in Direct and Indirect Striatal Pathways to Reward and Aversive Behavior. Neuron 2010; 66:896-907. [DOI: 10.1016/j.neuron.2010.05.011] [Citation(s) in RCA: 455] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2010] [Indexed: 11/24/2022]
|
48
|
Maternal deprivation-caused behavioral abnormalities in adult rats relate to a non-methylation-regulated D2 receptor levels in the nucleus accumbens. Behav Brain Res 2010; 209:281-8. [DOI: 10.1016/j.bbr.2010.02.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 01/29/2010] [Accepted: 02/02/2010] [Indexed: 12/31/2022]
|
49
|
Krapacher FA, Mlewski EC, Ferreras S, Pisano V, Paolorossi M, Hansen C, Paglini G. Mice lacking p35 display hyperactivity and paradoxical response to psychostimulants. J Neurochem 2010; 114:203-14. [PMID: 20403084 DOI: 10.1111/j.1471-4159.2010.06748.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclin-dependent kinase 5/p35 kinase complex plays a critical role in dopaminergic neurotransmission. Dysregulation of dopamine (DA) signaling is associated with neurological and neuropsychiatric disorders. As cyclin-dependent kinase 5 (Cdk5) requires association with p35 for its proper activation, we hypothesized that dysregulation of Cdk5 activity might have an effect on striatal-mediated behavior. We used a mutant mouse, deficient in p35 protein (p35 KO), which displayed reduced Cdk5 activity. Throughout behavioral and biochemical characterization of naïve and psychostimulant-treated mice, we demonstrated that only juvenile p35 KO mice displayed spontaneous hyperactivity, responded with a paradoxical hypolocomotor effect to psychostimulant drugs and exhibited deficit on proper behavioral inhibition. Strong immunolabeling for tyrosine-hydroxylase and high striatal DA synthesis and contents with a low DA turnover, which were reverted by psychostimulants, were also found in mutant mice. Our results demonstrate that p35 deficiency is critically involved in the expression of a hyperactive behavioral phenotype with hyper-functioning of the dopaminergic system, emphasizing the importance of proper Cdk5 kinase activity for normal motor and emotional features. Thus, p35 KO mice may be another useful animal model for understanding cellular and molecular events underlying attention deficit hyperactivity disorder-like disorders.
Collapse
Affiliation(s)
- Favio Ariel Krapacher
- Laboratory of Neurobiology and Cell Biology, Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), 5016 Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
50
|
Sora I, Li B, Igari M, Hall FS, Ikeda K. Transgenic mice in the study of drug addiction and the effects of psychostimulant drugs. Ann N Y Acad Sci 2010; 1187:218-46. [PMID: 20201856 DOI: 10.1111/j.1749-6632.2009.05276.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The first transgenic models used to study addiction were based upon a priori assumptions about the importance of particular genes in addiction, including the main target molecules of morphine, amphetamine, and cocaine. This consequently emphasized the importance of monoamine transporters, opioid receptors, and monoamine receptors in addiction. Although the effects of opiates were largely eliminated by mu opioid receptor gene knockout, the case for psychostimulants was much more complex. Research using transgenic models supported the idea of a polygenic basis for psychostimulant effects and has associated particular genes with different behavioral consequences of psychostimulants. Phenotypic analysis of transgenic mice, especially gene knockout mice, has been instrumental in identifying the role of specific molecular targets of addictive drugs in their actions. In this article, we summarize studies that have provided insight into the polygenic determination of drug addiction phenotypes in ways that are not possible with other methods, emphasizing research into the effects of psychostimulant drugs in gene knockouts of the monoamine transporters and monoamine receptors.
Collapse
Affiliation(s)
- Ichiro Sora
- Department of Biological Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | |
Collapse
|