1
|
Alarcón-Sánchez BR, Pérez-Carreón JI, Villa-Treviño S, Arellanes-Robledo J. Molecular alterations that precede the establishment of the hallmarks of cancer: An approach on the prevention of hepatocarcinogenesis. Biochem Pharmacol 2021; 194:114818. [PMID: 34757033 DOI: 10.1016/j.bcp.2021.114818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver injury promotes the molecular alterations that precede the establishment of cancer. Usually, several decades of chronic insults are needed to develop the most common primary liver tumor known as hepatocellular carcinoma. As other cancer types, liver cancer cells are governed by a common set of rules collectively called the hallmarks of cancer. Although those rules have provided a conceptual framework for understanding the complex pathophysiology of established tumors, therapeutic options are still ineffective in advanced stages. Thus, the molecular alterations that precede the establishment of cancer remain an attractive target for therapeutic interventions. Here, we first summarize the chemopreventive interventions targeting the early liver carcinogenesis stages. After an integrative analysis on the plethora of molecular alterations regulated by anticancer agents, we then underline and discuss that two critical processes namely oxidative stress and genetic alterations, play the role of 'dirty work laborer' in the initial cell damage and drive the transformation of preneoplastic into neoplastic cells, respectively; besides, the activation of cellular senescence works as a key mechanism in attempting to prevent the onset and establishment of liver cancer. Whereas the detrimental effects of the binomial made up of oxidative stress and genetic alterations are either eliminated or reduced, senescence activation is promoted by anticancer agents. We argue that collectively, oxidative stress, genetic alterations, and senescence are key events that influence the fate of initiated cells and the establishment of the hallmarks of cancer.
Collapse
Affiliation(s)
- Brisa Rodope Alarcón-Sánchez
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Departament of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, CDMX, Mexico
| | | | - Saúl Villa-Treviño
- Departament of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, CDMX, Mexico
| | - Jaime Arellanes-Robledo
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Directorate of Cátedras, National Council of Science and Technology - CONACYT, CDMX, Mexico.
| |
Collapse
|
2
|
Ścibior A, Kurus J. Vanadium and Oxidative Stress Markers - In Vivo Model: A Review. Curr Med Chem 2019; 26:5456-5500. [PMID: 30621554 DOI: 10.2174/0929867326666190108112255] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/23/2018] [Accepted: 12/26/2018] [Indexed: 12/26/2022]
Abstract
This review article is an attempt to summarize the current state of knowledge of the impact of Vanadium (V) on Oxidative Stress (OS) markers in vivo. It shows the results of our studies and studies conducted by other researchers on the influence of different V compounds on the level of selected Reactive Oxygen Species (ROS)/Free Radicals (FRs), markers of Lipid peroxidation (LPO), as well as enzymatic and non-enzymatic antioxidants. It also presents the impact of ROS/peroxides on the activity of antioxidant enzymes modulated by V and illustrates the mechanisms of the inactivation thereof caused by this metal and reactive oxygen metabolites. It also focuses on the mechanisms of interaction of V with some nonenzymatic compounds of the antioxidative system. Furthermore, we review the routes of generation of oxygen-derived FRs and non-radical oxygen derivatives (in which V is involved) as well as the consequences of FR-mediated LPO (induced by this metal) together with the negative/ positive effects of LPO products. A brief description of the localization and function of some antioxidant enzymes and low-molecular-weight antioxidants, which are able to form complexes with V and play a crucial role in the metabolism of this element, is presented as well. The report also shows the OS historical background and OS markers (determined in animals under V treatment) on a timeline, collects data on interactions of V with one of the elements with antioxidant potential, and highlights the necessity and desirability of conducting studies of mutual interactions between V and antioxidant elements.
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Joanna Kurus
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
3
|
Crans DC, Barkley NE, Montezinho L, Castro MM. Vanadium Compounds as Enzyme Inhibitors with a Focus on Anticancer Effects. METAL-BASED ANTICANCER AGENTS 2019. [DOI: 10.1039/9781788016452-00169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Vanadium salts and coordination compounds have desirable cellular anticancer effects, and although they have been investigated in detail as a potential treatment for diabetes, less attention has been given to the anticancer effects. The inhibition of some signal transduction enzymes is known, and studies of the metabolism and activation pathways both in vitro and in vivo are important for future investigations and development of vanadium's role as a new potential drug. In addition, a new approach has demonstrated that the enhancement of oncolytic viruses using vanadium salts and coordination complexes for immunotherapy is very promising. Some differences exist between this approach and current antidiabetic and anticancer studies because vanadium(iv) complexes have been found to be most potent in the latter approach, but the few compounds investigated with oncolytic viruses show that vanadium(v) systems are more effective. We conclude that recent studies demonstrate effects on signal transduction enzymes and anticancer pathways, thus suggesting potential applications of vanadium as anticancer agents in the future both as standalone treatments as well as combination therapies.
Collapse
Affiliation(s)
- Debbie C. Crans
- Colorado State University, Department of Chemistry Fort Collins CO 80525 USA
- Colorado State University, Cell and Molecular Biology Fort Collins CO 80525 USA
| | - Noah E. Barkley
- Colorado State University, Molecular and Cellular Integrative Neuroscience Program Fort Collins CO 80525 USA
| | - Liliana Montezinho
- Center for Investigation Vasco da Gama (CIVG), Department of Veterinary Medicine, Escola Universitária Vasco da Gama Coimbra Portugal
| | - M. Margarida Castro
- University of Coimbra, Department of Life Sciences, Faculty of Science and Technology 3000-456 Coimbra Portugal
- University of Coimbra, Coimbra Chemistry Center 3000-456 Coimbra Portugal
| |
Collapse
|
4
|
Matsushita K, Kijima A, Ishii Y, Takasu S, Jin M, Kuroda K, Kawaguchi H, Miyoshi N, Nohmi T, Ogawa K, Umemura T. Development of a Medium-term Animal Model Using gpt Delta Rats to Evaluate Chemical Carcinogenicity and Genotoxicity. J Toxicol Pathol 2013; 26:19-27. [PMID: 23723564 PMCID: PMC3620210 DOI: 10.1293/tox.26.19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/06/2012] [Indexed: 12/19/2022] Open
Abstract
In this study, the potential for development of an animal model (GPG46) capable of rapidly detecting chemical carcinogenicity and the underlying mechanisms of action were examined in gpt delta rats using a reporter gene assay to detect mutations and a medium-term rat liver bioassay to detect tumor promotion. The tentative protocol for the GPG46 model was developed based on the results of dose-response exposure to diethylnitrosamine (DEN) and treatment with phenobarbital over time following DEN administration. Briefly, gpt delta rats were exposed to various chemicals for 4 weeks, followed by a partial hepatectomy (PH) to collect samples for an in vivo mutation assay. The mutant frequencies (MFs) of the reporter genes were examined as an indication of tumor initiation. A single intraperitoneal (ip) injection of 10 mg/kg DEN was administered to rats 18 h after the PH to initiate hepatocytes. Tumor-promoting activity was evaluated based on the development of glutathione S-transferase placental form (GST-P)-positive foci at week 10. The genotoxic carcinogens 2-acetylaminofluorene (2-AAF), 2-amino-3-methylimidazo [4,5-f] quinolone (IQ) and safrole (SF), the non-genotoxic carcinogens piperonyl butoxide (PBO) and phenytoin (PHE), the non-carcinogen acetaminophen (APAP) and the genotoxic non-hepatocarcinogen aristolochic acid (AA) were tested to validate the GPG46 model. The validation results indicate that the GPG46 model could be a powerful tool in understanding chemical carcinogenesis and provide valuable information regarding human risk hazards.
Collapse
Affiliation(s)
- Kohei Matsushita
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Nunes GG, Bonatto AC, de Albuquerque CG, Barison A, Ribeiro RR, Back DF, Andrade AVC, de Sá EL, Pedrosa FDO, Soares JF, de Souza EM. Synthesis, characterization and chemoprotective activity of polyoxovanadates against DNA alkylation. J Inorg Biochem 2012; 108:36-46. [DOI: 10.1016/j.jinorgbio.2011.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/31/2011] [Accepted: 11/23/2011] [Indexed: 10/14/2022]
|
6
|
Bishayee A, Waghray A, Patel MA, Chatterjee M. Vanadium in the detection, prevention and treatment of cancer: the in vivo evidence. Cancer Lett 2010; 294:1-12. [PMID: 20206439 DOI: 10.1016/j.canlet.2010.01.030] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/22/2010] [Accepted: 01/24/2010] [Indexed: 10/19/2022]
Abstract
Vanadium, a dietary micronutrient, is yet to be established as an essential part of the human diet. Over the past century, several biological effects of vanadium, such as insulin-mimetic action as well as amelioration of hyperlipidemia and hypertension, have been discovered. This transition element is known to influence a battery of enzymatic systems, namely phosphatases, ATPases, peroxidases, ribonucleases, protein kinases and oxidoreductases. Multiple biochemical and molecular actions of vanadium have been implicated in its inhibitory effects on various tumor cells of human origin. Successful in vitro studies over the past few decades have advanced the anticancer research on vanadium into the preclinical stage. Vanadium in several animal cancer models provides protection against all stages of carcinogenesis--initiation, promotion, and progression. This review focuses on the current advances in cancer prevention and treatment as well as early detection by vanadium compounds in preclinical animal models while pointing to possible mechanisms of such diverse beneficial effects. Clinical pharmacokinetic and potential toxicity studies on vanadium are also highlighted in this review. Supporting and challenging evidence as well as future directions of vanadium research exploring the possibility of using this dietary agent for detection, prevention and treatment of human cancers are critically discussed.
Collapse
Affiliation(s)
- Anupam Bishayee
- Department of Pharmaceutical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, 4209 State Route 44, Rootstown, OH 44272, United States.
| | | | | | | |
Collapse
|
7
|
Chakraborty T, Swamy AHMV, Chatterjee A, Rana B, Shyamsundar A, Chatterjee M. Molecular basis of vanadium-mediated inhibition of hepatocellular preneoplasia during experimental hepatocarcinogenesis in rats. J Cell Biochem 2007; 101:244-58. [PMID: 17243116 DOI: 10.1002/jcb.21169] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Carcinogen-induced early DNA lesions and metallothionein (MT) over-expression have been implicated in cell proliferation and thereby subsequent expression of premalignant phenotype of the cell. We have therefore investigated the chemopreventive potential of vanadium in a multi-biomarker approach, viz. 8-hydroxy-2'-deoxyguanosines (8-OHdGs), DNA single-strand breaks (SSBs), DNA-protein crosslinks (DPCs), chromosomal aberrations (CAs), in situ MT expression, and cell proliferation in rat liver preneoplasia. Hepatocarcinogenesis was induced in male Sprague-Dawley rats with a single, necrogenic, intraperitoneal (i.p.) injection of diethylnitrosamine (DEN) (200 mg/Kg body weight) at week 4 of the experimental protocol followed by promotion with phenobarbital (PB) (0.05% in basal diet), on and from week 8 and continued till 32 weeks in a long-term regimen. There was a significant and steady elevation of modified DNA bases 8-OHdGs (P < 0.0001; 90.69%) along with substantial increments of the extent of SSBs (P < 0.001) and CAs (P < 0.001) following DEN exposure. Supplementation of vanadium at a dose of 0.5 ppm abated the formations of 8-OHdGs (80.63%; P < 0.0001), SS-DNAs (P < 0.001) and SSBs/DNA unit (P < 0.01; 56.39%), DPCs (59.26%; P < 0.0001) and CAs (71.52%; P < 0.001) in preneoplastic rat liver studied at various time points. Low dose of vanadium treatment further reduced liver-MT immunoreactivity (P < 0.05) and BrdU-labeling index (P < 0.02) and a significant positive correlation (r = 0.92; r2 = 0.85; P = 0.0001) was noted between them. Continuous vanadium administration also decreased nodular incidence (66.67%) and nodule multiplicity (62.12%; P < 0.001) along with substantial improvement in the altered hepatocellular phenotype when compared to DEN + PB treatment alone. The study indicates that vanadium-mediated suppression of cell proliferation and resulting premalignant expression might be due to the observed reductions in hepatic 8-OHdGs, SSBs, DPCs, CAs, and MT immunoreactivity. Vanadium is chemopreventive for DEN-induced hepatocellular preneoplasia in rats.
Collapse
Affiliation(s)
- Tridib Chakraborty
- Division of Biochemistry, Department of Pharmaceutical Technology, Jadavpur University, PO Box 17028, Calcutta-700032, West-Bengal, India
| | | | | | | | | | | |
Collapse
|
8
|
Scibior A, Zaporowska H. Effects of vanadium(V) and/or chromium(III) on L-ascorbic acid and glutathione as well as iron, zinc, and copper levels in rat liver and kidney. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:696-704. [PMID: 17365624 DOI: 10.1080/15287390601187906] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This study investigated the selected parameters of the antioxidant system in liver and kidney after in vivo administration of vanadium and/or chromium in rats. Outbred 2-mo-old albino male Wistar rats received drinking water for 12 wk with either sodium metavanadate (SMV; group II); chromium chloride (Cr; group III); or sodium metavanadate and chromium chloride (SMV-Cr; group IV); and group I (control) received deionized water. Chronic treatment with V alone or in combination with Cr produced a significant increase in kidney relative weight. Further, giving rats V alone also led to a significant elevation in liver relative weight. An increase in hepatic Fe concentration and renal Zn content occurred after treatment with V or Cr, respectively. The rats coadministered V and Cr had significantly higher levels of Fe in liver and Zn in kidneys. Simultaneous administration of these two elements resulted in a significant decrease in renal L-ascorbic acid concentration. V given alone significantly decreased GSH content and GSH/GSSG ratio in liver and kidney as well as increased GSSG concentration in liver, whereas Cr alone produced a significant decrease in GSH content in kidney and GSH/GSSG ratio in both organs. In the SMV-Cr-treated group a significant decrease in renal GSH concentration and GSH/GSSG ratio in both organs occurred. A significant increase in liver GSSG content was also found. The observed significant changes in kidney GSH content and in GSH/GSSG ratio in both rat tissues after Cr might result from the pro-oxidant actions of this metal. Thus, oxidative stress, which is a major pathway for V-induced toxicity, might also be associated with Cr(III)-induced adverse effects in rats.
Collapse
Affiliation(s)
- Agnieszka Scibior
- Department of Cell Biology, Institute of Environmental Protection, John Paul II Catholic University of Lublin, Lublin, Poland.
| | | |
Collapse
|
9
|
Chakraborty T, Chatterjee A, Rana A, Dhachinamoorthi D, Kumar P A, Chatterjee M. Carcinogen-induced early molecular events and its implication in the initiation of chemical hepatocarcinogenesis in rats: Chemopreventive role of vanadium on this process. Biochim Biophys Acta Mol Basis Dis 2007; 1772:48-59. [PMID: 17174075 DOI: 10.1016/j.bbadis.2006.10.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2006] [Revised: 09/19/2006] [Accepted: 10/16/2006] [Indexed: 11/24/2022]
Abstract
Carcinogen-induced formation of DNA adducts and other types of DNA lesions are the critical molecular events in the initiation of chemical carcinogenesis and modulation of such events by chemopreventive agents could be an important step in limiting neoplastic transformation in vivo. Vanadium, a dietary micronutrient has been found to be effective in several types of cancers both in vivo and in vitro and also possesses profound anticarcinogenicity against rat models of mammary, colon and hepatocarcinogenesis. Presently, we report the chemopreventive potential of vanadium on diethylnitrosamine (DEN)-induced early DNA damages in rat liver. Hepatocarcinogenesis was induced in male Sprague-Dawley rats with a single, necrogenic, intraperitoneal (i.p.) injection of DEN (200 mg/kg body weight) at week 4. There was a significant induction of tissue-specific ethylguanines, steady elevation of modified DNA bases 8-hydroxy-2'-deoxyguanosines (8-OHdGs) (P<0.0001; 89.93%) along with substantial increment of the extent of single-strand breaks (SSBs) (P<0.0001) following DEN exposure. Supplementation of 0.5 ppm of vanadium throughout the experiment abated the formations of O(6)-ethylguanines and 7-ethylguanines (P<0.0001; 48.71% and 67.54% respectively), 8-OHdGs (P<0.0001; 81.37%), length:width (L:W) of DNA mass (P<0.01; 62.12%) and the mean frequency of tailed DNA (P<0.001; 53.58%), and hepatic nodulogenesis in preneoplastic rat liver. The study indicates that 0.5 ppm vanadium is potentially and optimally effective, as derived from dose-response studies, in limiting early molecular events and preneoplastic lesions, thereby modulating the initiation stage of hepatocarcinogenesis. Vanadium is chemopreventive against DEN-induced genotoxicity and resulting hepatocellular transformation in rats.
Collapse
Affiliation(s)
- Tridib Chakraborty
- Division of Biochemistry, Department of Pharmaceutical Technology, Jadavpur University, PO Box 17028, Calcutta-700032, India
| | | | | | | | | | | |
Collapse
|
10
|
Chakraborty T, Pandey N, Chatterjee A, Ghosh B, Rana B, Chatterjee M. Molecular basis of anticlastogenic potential of vanadium in vivo during the early stages of diethylnitrosamine-induced hepatocarcinogenesis in rats. Mutat Res 2006; 609:117-28. [PMID: 16942905 DOI: 10.1016/j.mrgentox.2006.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 03/17/2006] [Accepted: 04/06/2006] [Indexed: 12/14/2022]
Abstract
Carcinogen-induced DNA base modification and subsequent DNA lesions are the critical events for the expression of premalignant phenotype of the cell. We have therefore investigated the chemopreventive efficacy of a vanadium salt against diethylnitrosamine (DEN)-induced early DNA and chromosomal damages in rat liver. Hepatocarcinogenesis was induced in male Sprague-Dawley rats with a single, necrogenic, intraperitoneal injection of DEN (200mg/kg body weight). 8-Hydroxy-2'-deoxyguanosines (8-OHdGs), strand-breaks and DNA-protein crosslinks (DPCs) were measured by HPLC, comet assay and spectrofluorimetry, respectively. There was a significant and steady elevation of modified bases 8-OHdGs along with substantial increments of the extent of single-strand-breaks (SSBs), DPCs and chromosomal aberrations (CAs) following DEN exposure. Supplementation of vanadium as ammonium metavanadate (NH(4)VO(3), +V oxidation state) at a dose of 0.5ppm in terms of the salt weight throughout the experiment abated the formations of 8-OHdGs (P<0.0001; 79.54%), tailed DNA (P<0.05; 31.55%) and length:width of DNA mass (P<0.02; 61.25%) in preneoplastic rat liver. Vanadium treatment also inhibited DPCs (P<0.0001; 58.47%) and CAs (P<0.001; 45.17%) studied at various time points. The results indicate that the anticlastogenic potential of vanadium in vivo might be due to the observed reductions in liver-specific 8-OHdGs, SSBs and/or DPCs by this trace metal. We conclude that, vanadium plays a significant role in limiting DEN-induced genotoxicity and clastogenicity during the early stages of hepatocarcinogenesis in rats.
Collapse
Affiliation(s)
- Tridib Chakraborty
- Division of Biochemistry, Department of Pharmaceutical Technology, Jadavpur University, PO Box 17028, Calcutta 700032, India
| | | | | | | | | | | |
Collapse
|
11
|
Chakraborty T, Chatterjee A, Saralaya MG, Chatterjee M. Chemopreventive effect of vanadium in a rodent model of chemical hepatocarcinogenesis: reflections in oxidative DNA damage, energy-dispersive X-ray fluorescence profile and metallothionein expression. J Biol Inorg Chem 2006; 11:855-66. [PMID: 16830150 DOI: 10.1007/s00775-006-0128-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2006] [Accepted: 06/12/2006] [Indexed: 01/31/2023]
Abstract
In the present study, we investigated the antitumour efficacy of vanadium in a defined rodent model of experimental hepatocarcinogenesis. Hepatic preneoplasia was induced in male Sprague-Dawley rats with a single, necrogenic, intraperitoneal injection of diethylnitrosamine (DEN) (200 mg/kg body weight) followed by promotion with phenobarbital (PB). The levels of modified DNA bases 8-hydroxy-2'-deoxyguanosine (8-OHdG), a potential marker involved in the initiation of carcinogenesis, were measured by high-performance liquid chromatography, whereas tissue trace element status and expression of metallothionein (MT), a Cu-Zn metalloprotein associated with neoplastic cell growth and subsequent development of premalignant phenotype of the cell, were studied by energy-dispersive X-ray fluorescence spectrometry and enzyme-coupled immunohistochemistry, respectively. There was a significant and steady elevation of modified bases (8-OHdG) along with substantial increase in MT immunoexpression and disturbance in trace element homeostasis following DEN exposure. Supplementation of vanadium at a dose of 0.5 ppm for four consecutive weeks strictly abated the formation of 8-OHdG (P < 0.0001; 81.28%) in preneoplastic rat liver. In a long-term DEN plus PB regimen, vanadium was able to limit in situ MT expression with a concomitant decrease in MT immunoreactivity (P < 0.05). Furthermore, vanadium treatment throughout the study restored hepatic levels of essential trace elements and decreased nodular incidence (58.34%) and nodule multiplicity (P < 0.001; 66.89%) in rats treated with DEN plus PB. Taken together, the study provides evidence in support of the chemopreventive potential of vanadium in limiting neoplastic transformation during the preneoplastic stages of hepatocarcinogenesis in rats.
Collapse
Affiliation(s)
- Tridib Chakraborty
- Division of Biochemistry, Department of Pharmaceutical Technology, Jadavpur University, 17028, Kolkata, 700032, West Bengal, India
| | | | | | | |
Collapse
|
12
|
Danilenko M, Studzinski GP. Enhancement by other compounds of the anti-cancer activity of vitamin D(3) and its analogs. Exp Cell Res 2004; 298:339-58. [PMID: 15265684 DOI: 10.1016/j.yexcr.2004.04.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 04/20/2004] [Indexed: 12/15/2022]
Abstract
Differentiation therapy holds promise as an alternative to cytotoxic drug therapy of cancer. Among compounds under scrutiny for this purpose is the physiologically active form of vitamin D(3), 1,25-dihydroxyvitamin D(3), and its chemically modified derivatives. However, the propensity of vitamin D(3) and its analogs to increase the levels of serum calcium has so far precluded their use in cancer patients except for limited clinical trials. This article summarizes the range of compounds that have been shown to increase the differentiation-inducing and antiproliferative activities of vitamin D(3) and its analogs, and discusses the possible mechanistic basis for this synergy in several selected combinations. The agents discussed include those that have differentiation-inducing activity of their own that is increased by combination with vitamin D(3) or analogs, such as retinoids or transforming growth factor-beta and plant-derived compounds and antioxidants, such as curcumin and carnosic acid. Among other compounds discussed here are dexamethasone, nonsteroidal anti-inflammatory drugs, and inhibitors of cytochrome P450 enzymes, for example, ketoconazole. Thus, recent data illustrate that there are extensive, but largely unexplored, opportunities to develop combinatorial, differentiation-based approaches to chemoprevention and chemotherapy of human cancer.
Collapse
Affiliation(s)
- Michael Danilenko
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | | |
Collapse
|
13
|
Banerjee P, Chatterjee M. Antiproliferative role of vitamin D and its analogs--a brief overview. Mol Cell Biochem 2004; 253:247-54. [PMID: 14619976 DOI: 10.1023/a:1026072118217] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The active metabolite of vitamin D, 1alpha, 25-dihydroxyvitamin D3 [1,25(OH)2D3]--a seco-steroid hormone is a pivotal regulator of cellular proliferation and differentiation those are independent of its classical function of calcium homeostasis and bone mineralization. The existence of the nuclear vitamin D receptor (VDR) has been found in numerous tissues in different organs, which are the so-called 'non-classical' targets of this seco-steroid hormone. Vitamin D has been documented as a potent antiproliferative agent in different tissues and cells. Epidemiological studies reveal a negative correlation between physiological level of vitamin and cancer risk. Studies using animal models clearly demonstrate protective role of vitamin D in different cancer types by the reduction in tumor progression and by monitoring biochemical parameters. Experiments with cultured human and animal cancer cell lines show similar antiproliferative role of vitamin D manifested by up or down regulations of crucial genes leading to inhibition of cellular growth. Hypercalcemia hinders broad-spectrum therapeutic uses of vitamin D in cancer chemotherapy. Application of vitamin D analogs having similar chemical structures or other compounds having vitamin D like actions but lacking calcemic adverse effects are getting significant attention towards rational therapeutics to treat cancer. The current review focuses on the application of vitamin D and its analogs in different forms of cancer and on the molecular mechanism involved in vitamin D mediated inhibition in cellular proliferation, cell cycle, induction of apoptosis and tumor suppression, which may eventually evolve as a meaningful cancer therapy.
Collapse
Affiliation(s)
- Pratik Banerjee
- Division of Biochemistry, Department of Pharmaceutical Technology, Jadavpur University, Calcutta, India
| | | |
Collapse
|
14
|
Kanna PS, Mahendrakumar CB, Chatterjee M, Hemalatha P, Datta S, Chakraborty P. Vanadium inhibits placental glutathione S-transferase (GST-P) positive foci in 1,2-dimethyl hydrazine induced rat colon carcinogenesis. J Biochem Mol Toxicol 2004; 17:357-65. [PMID: 14708091 DOI: 10.1002/jbt.10099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vanadium (V) has recently been found to possess potent anti-neoplastic activity in rat colon carcinogenesis. In the present study attempts have been made to investigate the expression of the number and area of aberrant crypt foci positive for placental glutathione S-transferase (GST-P) during 1,2-dimethyl hydrazine (DMH)-induced rat colon carcinogenesis. Male Sprague Dawley rats were randomly divided into four groups. Rats in group A were designed as normal controls. Group B animals received DMH once a week (20 mg/kg body wt.) intraperitoneally for 16 weeks. Group C rats received the same treatment of DMH as in group B, along with 0.5-ppm vanadium as ammonium monovanadate ad libitum in drinking water throughout the experiment. Vanadium alone was given to Group D rats without any DMH injection. The expression of the number and the area of aberrant crypt foci (ACF) positive for GST-P was maximum in DMH-treated group. Vanadium-treated rats significantly reduced (P < 0.001) the expression of GST-P positive ACF cells (by 71.13%) for the entire period of the study. Moreover the histopathological examination also showed that vanadium action could minimize the aberrant crypt foci (P < 0.001). Furthermore, vanadium supplementation also elevated SOD activities in both liver and colon (P < 0.01, P < 0.02 and P < 0.01, P < 0.02 respectively) when compared to their carcinogen counterparts. Our results confirm that vanadium is particularly effective in limiting the action of the carcinogen, thereby establishing its anticarcinogenicity in chemically induced rat colon carcinogenesis.
Collapse
Affiliation(s)
- P Suresh Kanna
- Division of Biochemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | | | | | | | | | | |
Collapse
|
15
|
Carrasco-Legleu CE, Márquez-Rosado L, Fattel-Fazenda S, Arce-Popoca E, Pérez-Carreón JI, Villa-Treviño S. Chemoprotective effect of caffeic acid phenethyl ester on promotion in a medium-term rat hepatocarcinogenesis assay. Int J Cancer 2004; 108:488-92. [PMID: 14696111 DOI: 10.1002/ijc.11595] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Caffeic acid phenethyl ester (CAPE), a natural honeybee product exhibits a spectrum of biological activities including anti-microbial, anti-inflammatory, antioxidant and anti-tumoral actions. CAPE is also chemopreventive against intestinal, colon and skin cancer. Our aim was to extend the study of its chemoprotective features to the promotion of hepatocarcinogenesis. Male Wistar rats were subjected to a protocol under a modified promotion regimen of the resistant hepatocyte model. The altered hepatic foci (AHF) were quantitatively analyzed by histochemistry and image processing. When given during promotion, CAPE (20 mg/kg) decreased the expression of number and area gamma-glutamyl transpeptidase (GGT) positive AHF by 91% and 97%, respectively. When GGT expression was analyzed by RT-PCR, CAPE drastically decreased and prevented expression of almost all GGT transcripts at this stage of the carcinogenic process. Glutathione S-transferase placental form (GST-P), another protein marker for preneoplastic lesions was measured by Western blot and a decrease of 82% was observed. Additionally, we evaluated the effect of CAPE on the expression of nuclear factor NF-kappaB and found an 85% decrease in nuclear localization of the p65 subunit of NF-kappaB; however, their repressor, IkappaBalpha was not modified. Our results showed that CAPE given during promotion in hepatocarcinogenesis protects against induction of GGT-positive AHF, GST-P protein, GGT mRNA expression and translocation of p65. This phenomenon was independent of IkappaBalpha degradation.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Caffeic Acids/therapeutic use
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/prevention & control
- Cell Nucleus/metabolism
- Disease Models, Animal
- Disease Progression
- Gene Expression Regulation
- Glutathione S-Transferase pi
- Glutathione Transferase/genetics
- Glutathione Transferase/metabolism
- Humans
- I-kappa B Proteins/pharmacology
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/prevention & control
- Male
- NF-KappaB Inhibitor alpha
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Phenylethyl Alcohol/analogs & derivatives
- Phenylethyl Alcohol/therapeutic use
- Precancerous Conditions/chemically induced
- Precancerous Conditions/metabolism
- Precancerous Conditions/pathology
- Precancerous Conditions/prevention & control
- Protein Transport
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Reverse Transcriptase Polymerase Chain Reaction
- gamma-Glutamyltransferase/genetics
- gamma-Glutamyltransferase/metabolism
Collapse
Affiliation(s)
- Claudia E Carrasco-Legleu
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), México, México
| | | | | | | | | | | |
Collapse
|
16
|
Saha BK, Bhattacharya R, Chatterjee M. 1alpha,25-Dihydroxyvitamin D(3) inhibits rat liver ultrastructural changes and the development of gamma-glutamyltranspeptidase-positive foci in diethylnitrosamine-initiated and streptozotocin-induced diabetes-promoted hepatocarcinogenesis. Cell Biochem Funct 2002; 20:195-204. [PMID: 12125095 DOI: 10.1002/cbf.946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present study, the chemopreventive effect of the active metabolite of vitamin D, 1alpha,25-dihydroxyvitamin D(3) (VD(3)), against chemically-induced and diabetes-promoted rat liver carcinogenesis was investigated. Hepatocarcinogenesis was initiated with a single intraperitoneal (i.p.) injection of diethylnitrosamine (DEN) (125 mg kg(-1) body weight) at week 4 followed by promotion with streptozotocin (STZ) (65 mg kg(-1) body weight with a single i.p. injection) at week 7. With this basic experimental regimen, the effect of VD(3) (0.3 microg (0.1 ml)(-1) propylene glycol per os twice a week) was investigated with effect from 4 weeks prior to the exposure of DEN. The results showed that VD(3) supplementation throughout the experimental period reduced the incidence, total number and multiplicity and altered the size of visible persistent nodules (PNs) in DEN- or DEN + STZ-treated rats as compared with their respective controls. In these two groups, it also caused a significant decrease in the number (p < 0.002 and 0.001 respectively) and focal area (p < 0.05) of gamma-glutamyltranspeptidase (GGT)-positive hepatic foci. Moreover, continuous supplementation of VD(3) exhibits a protective effect in maintaining the normal cellular architecture of the hepatocytes in DEN- or DEN + STZ-treated rats. Our results thus strongly suggest that VD(3) is very effective in the inhibition of DEN-initiated and STZ-induced diabetes-promoted rat liver carcinogenesis.
Collapse
Affiliation(s)
- Barun Kanti Saha
- Division of Biochemistry, Department of Pharmaceutical Technology, Jadavpur University, Calcutta, India
| | | | | |
Collapse
|
17
|
Abstract
1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] has been shown to act on novel target tissues not related to calcium homeostasis. There have been reports characterizing 1,25(OH)(2)D(3) receptors and activities in diverse tissues such as brain, pancreas, pituitary, skin, muscle, placenta, immune cells and parathyroid. The receptor hormone complex becomes localized in the nucleus, and undergoes phosphorylation by reacting with a kinase. This form of the receptor then interacts with the Vitamin D responsive element of target gene and modifies the transcription of those genes to develop the action. The modulation of gene transcription results in either the induction or repression of specific messenger RNAs (m-RNAs), ultimately resulting in changes in protein expression needed to produce biological responses. Genes for carbonic anhydrase that are expressed at high levels in osteoclast are known to be involved in bone resorption and Id genes role in osteoblast-osteoclast differentiation reflects the genomic effect of Vitamin D on bones. Genomic action of Vitamin D also explains the biosynthesis of oncogenes, polyamines, lymphokines and calcium binding proteins. However, there is a possibility that some of the actions of 1,25(OH)(2)D(3) may be mediated by non-genomic mechanisms and may not require the binding to Vitamin D receptor (VDR). Vitamin D offers a protection from genotoxic effects of Vitamin D deficiency by increasing the insulin receptor gene expression and BSP (bone sialoprotein), bone-remodeling by decreasing the osteopontin (OPN) m-RNAs, maintaining the normal epidermal structure and enamel matrix. Gonadal insufficiency in Vitamin D deficiency was corrected by vitamin mediated direct regulation of the expression of aramotase gene. The supportive role of Vitamin D in placental function is also evident by its influence on human placental lactogen (hpl) gene transcription accompanied by increase hpl m-RNA levels. Further role of Vitamin D is envisaged in identifying cyclin C as an important target for Vitamin D in cell-cycle regulation. Vitamin D at physiological concentration has been found to protect cell proteins and membranes against oxidative stress by inhibiting the peroxidative attack on membrane lipids. Vitamin D, at a concentration range of 2x10(-8)-5x10(-8)M, induces apoptosis in most cancer cells, stabilizes chromosomal structure and prevents DNA double-strand breaks induced either by endogenous or exogenous factors. Vitamin D is also effective in stimulating DNA synthesis in adult alveolar II cells and provides a novel mechanism of modulation of epithelial cell proliferation in the context of lung development and repair against injury. The regulation of various proto-oncogenes (c-myc, c-fos, c-jun), differentiation inducing properties, antiproliferative effects on keratinocytes and inhibitory effects in several human malignancy ranks Vitamin D as a novel hormone that may have physiological and clinical implication in the carcinogenic process.
Collapse
Affiliation(s)
- M Chatterjee
- Department of Pharmaceutical Technology, Division of Biochemistry, Jadavpur University, 700032, Calcutta, India.
| |
Collapse
|
18
|
Basak R, Bhattacharya R, Chatterjee M. 1 alpha,25-Dihydroxyvitamin D(3) inhibits rat liver ultrastructural changes in diethylnitrosamine-initiated and phenobarbital promoted rat hepatocarcinogenesis. J Cell Biochem 2001; 81:357-67. [PMID: 11241675 DOI: 10.1002/1097-4644(20010501)81:2<357::aid-jcb1050>3.0.co;2-q] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The active metabolite of vitamin D, 1 alpha,25-dihydroxyvitamin D(3)[1,25(OH)(2)D(3)] has been receiving increasing attention and has come to the forefront of cancer chemoprevention research as being a regulator of cellular growth, differentiation and death. In the present study, attempts have been made to investigate the in vivo chemopreventive effect of 1,25(OH)(2)D(3) in two-stage rat liver carcinogenesis. Hepatocarcinogenesis was initiated with a single intraperitoneal injection of diethylnitrosamine [DEN] (200 mg/kg b. wt.) at week 4. After a brief recovery period of 2 weeks, all the DEN-treated rats were given phenobarbital (0.05%) in the basal diet and continued thereafter till the completion of the experiment. The results of our experiment showed that the rats which received 1,25(OH)(2)D(3) for 14 weeks (0.3 microg/100 microL propylene glycol, per os, twice a week), starting the treatment 4 weeks prior to DEN injection, exhibited maximum protective effect in maintaining the normal cellular architecture of the hepatocytes than the group of rats which received this micronutrient for only 9 weeks. Moreover, continuous supplementation of 1,25(OH)(2)D(3) maintains the concentration of hepatic microsomal cytochrome P-450 like that of normal vehicle control. Thus, long-term supplementation of 1,25(OH)(2)D(3) significantly (P < 0.001) inhibits hepatic cytosolic lipid peroxidation, thereby protecting the cell membranes from free-radical mediated damage. These results suggest that 1,25(OH)(2)D(3) is useful in the inhibition of rat liver carcinogenesis.
Collapse
Affiliation(s)
- R Basak
- Division of Biochemistry, Department of Pharmaceutical Technology, Jadavpur University, Calcutta 700 032, India.
| | | | | |
Collapse
|