1
|
Wu S, Chen G, Zhan S, Wang L, Cao J, Guo J, Li L, Zhang H, Niu L, Zhong T. Liquid chromatograph-mass spectrometry metabolomics uncovers potential biomarkers of semen cryo-injury in goats. Anim Biosci 2025; 38:629-640. [PMID: 39483009 PMCID: PMC11917422 DOI: 10.5713/ab.24.0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/09/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE Semen cryopreservation acts a crucial role in enhancing breed improvement and conserving genetic resources. However, it often leads to decreased sperm activity and reduced pregnancy rates. Despite significant advancements in semen freezing techniques for goats, the precise factors and mechanisms causing cryo-injury remain unclear. METHODS In this study, we examined the motility characteristics of fresh semen versus frozen-thawed semen and investigated changes in the metabolite profiles of seminal plasma using liquid chromatograph-mass spectrometry. RESULTS A total of 364 differentially expressed metabolites (DEMs) were identified between fresh and frozen-thawed semen samples. Among these, 185 metabolites were significantly up-regulated, while 179 were down-regulated (p<0.05). The majority of these DEMs belonged to lipids and lipid-like molecules, as well as organic acids and derivatives. The Kyoto encyclopedia of genes and genomes indicated that these DEMs were primarily involved in pathways related to amino acid synthesis and metabolism. Additionally, metabolite set enrichment analysis underscored the critical role of amino acid synthesis and metabolic pathways in semen cryopreservation. Specific metabolites such as alanine, proline, phenylalanine, tryptophan, tyrosine, adenosine, citric acid, flavin adenine dinucleotide, and choline emerged as potential biomarkers for sperm cryo-injury in goats. CONCLUSION These findings provide valuable insights into enhancing the quality of semen cryopreservation in goats, contributing to improved breeding and genetic resource conservation efforts.
Collapse
Affiliation(s)
- Shun Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130,
China
| | - Guolin Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130,
China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130,
China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130,
China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130,
China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130,
China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130,
China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130,
China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130,
China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130,
China
| |
Collapse
|
2
|
Simsek Papur O, Glatz JFC, Luiken JJFP. Protein kinase-D1 and downstream signaling mechanisms involved in GLUT4 translocation in cardiac muscle. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119748. [PMID: 38723678 DOI: 10.1016/j.bbamcr.2024.119748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 02/21/2024] [Accepted: 04/29/2024] [Indexed: 05/20/2024]
Abstract
The Ser/Thr kinase protein kinase-D1 (PKD1) is involved in induction of various cell physiological processes in the heart such as myocellular hypertrophy and inflammation, which may turn maladaptive during long-term stimulation. Of special interest is a key role of PKD1 in the regulation of cardiac substrate metabolism. Glucose and fatty acids are the most important substrates for cardiac energy provision, and the ratio at which they are utilized determines the health status of the heart. Cardiac glucose uptake is mainly regulated by translocation of the glucose transporter GLUT4 from intracellular stores (endosomes) to the sarcolemma, and fatty acid uptake via a parallel translocation of fatty acid transporter CD36 from endosomes to the sarcolemma. PKD1 is involved in the regulation of GLUT4 translocation, but not CD36 translocation, giving it the ability to modulate glucose uptake without affecting fatty acid uptake, thereby altering the cardiac substrate balance. PKD1 would therefore serve as an attractive target to combat cardiac metabolic diseases with a tilted substrate balance, such as diabetic cardiomyopathy. However, PKD1 activation also elicits cardiac hypertrophy and inflammation. Therefore, identification of the events upstream and downstream of PKD1 may provide superior therapeutic targets to alter the cardiac substrate balance. Recent studies have identified the lipid kinase phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ) as signaling hub downstream of PKD1 to selectively stimulate GLUT4-mediated myocardial glucose uptake without inducing hypertrophy. Taken together, the PKD1 signaling pathway serves a pivotal role in cardiac glucose metabolism and is a promising target to selectively modulate glucose uptake in cardiac disease.
Collapse
Affiliation(s)
- Ozlenen Simsek Papur
- Department of Molecular Medicine, Institute of Health Science, Dokuz Eylül University, Izmir, Turkey
| | - Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Center(+), Maastricht, the Netherlands
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Center(+), Maastricht, the Netherlands.
| |
Collapse
|
3
|
Yang H, Zhang X, Wang C, Zhang H, Yi J, Wang K, Hou Y, Ji P, Jin X, Li C, Zhang M, Huang S, Jia H, Hu K, Mou L, Wang R. Microcolin H, a novel autophagy inducer, exerts potent antitumour activity by targeting PITPα/β. Signal Transduct Target Ther 2023; 8:428. [PMID: 37963877 PMCID: PMC10645841 DOI: 10.1038/s41392-023-01667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 09/16/2023] [Accepted: 09/30/2023] [Indexed: 11/16/2023] Open
Abstract
The identification of effective drug targets and the development of bioactive molecules are areas of high need in cancer therapy. The phosphatidylinositol transfer protein alpha/beta isoform (PITPα/β) has been reported to play an essential role in integrating phosphoinositide trafficking and lipid metabolism in diverse cellular processes but remains unexplored as a potential target for cancer treatment. Herein, data analysis of clinical cancer samples revealed that PITPα/β expression is closely correlated with the poor prognosis. Target identification by chemical proteomic methods revealed that microcolin H, a naturally occurring marine lipopeptide, directly binds PITPα/β and displays antiproliferative activity on different types of tumour cell lines. Furthermore, we identified that microcolin H treatment increased the conversion of LC3I to LC3II, accompanied by a reduction of the level of p62 in cancer cells, leading to autophagic cell death. Moreover, microcolin H showed preeminent antitumour efficacy in nude mouse subcutaneous tumour models with low toxicity. Our discoveries revealed that by targeting PITPα/β, microcolin H induced autophagic cell death in tumours with efficient anti-proliferating activity, which sheds light on PITPα/β as a promising therapeutic target for cancer treatment.
Collapse
Grants
- 21807053 National Natural Science Foundation of China (National Science Foundation of China)
- the Ministry of Education “Peptide Drugs” Innovation Team(No. IRT_15R27, China);the Fundamental Research Funds for the Central Universities (No. lzujbky-2019-15, China);the CAMS Innovation Fund for Medical Sciences (CIFMS, Nos. 2021-I2M-1-026, 2022-I2M-2-002, China)
- the Ministry of Education “Peptide Drugs” Innovation Team (No. IRT_15R27, China)
- the Ministry of Education “Peptide Drugs” Innovation Team (No. IRT_15R27, China), the CAMS Innovation Fund for Medical Sciences (CIFMS, Nos. 2019-I2M-5-074, 2021-I2M-1-026, 2021-I2M-3-001, 2022-I2M-2-002, China),
Collapse
Affiliation(s)
- Hange Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Xiaowei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Cong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Hailong Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, Gansu, P. R. China.
| | - Juan Yi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Kun Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Yanzhe Hou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Peihong Ji
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Xiaojie Jin
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chenghao Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Min Zhang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shan Huang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Haoyuan Jia
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, Gansu, P. R. China
- School of Life Science, Lanzhou University, 730000, Lanzhou, P. R. China
| | - Kuan Hu
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Lingyun Mou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, Gansu, P. R. China.
- School of Life Science, Lanzhou University, 730000, Lanzhou, P. R. China.
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, Gansu, P. R. China.
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, P. R. China.
| |
Collapse
|
4
|
Sun Y, Zhang M, Cheng P, Gong Z, Li X, Wang N, Wei M, Xu X, Xu W. pitpβ_w Encoding Phosphatidylinositol Transfer Protein Is Involved in Female Differentiation of Chinese Tongue Sole, Cynoglossus semilaevis. Front Genet 2022; 13:861763. [PMID: 35432449 PMCID: PMC9006047 DOI: 10.3389/fgene.2022.861763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphatidylinositol transfer protein (pitp) plays an important role in phospholipid transfer in animals. A pitp variant (pitpβ_w) in Chinese tongue sole was identified by transcriptomic analysis for its female-biased expression. The coding sequence of pitpβ_w was 816 bp, encoding a 371-amino-acid protein. pitpβ_w showed female-biased expression and was relatively high in brain, muscle, and ovary tissues. In different developmental stages of the ovary, pitpβ_w could be detected from 40 days until 3 years post hatching, and the highest expression was observed at 90 days. In situ hybridization revealed that pitpβ_w was predominantly localized in early-stage oocytes (I-III stages). After siRNA-mediated knockdown of pitpβ_w in an ovarian cell line, the expression of sox9a was reduced, while that of figla_tv1 and sox9b was significantly increased. Our findings suggest that pitpβ_w might be involved in female differentiation and early oogenesis.
Collapse
Affiliation(s)
- Yuxuan Sun
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, China.,Jiangsu Ocean University, Lianyungang, China
| | - Mengqian Zhang
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, China
| | - Peng Cheng
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, China
| | - Zhihong Gong
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, China
| | - Xihong Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, China
| | - Na Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, China
| | - Min Wei
- Jiangsu Ocean University, Lianyungang, China
| | - Xiaodong Xu
- Qingdao Vland Biotech Company Group, Qingdao, China
| | - Wenteng Xu
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, China.,Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
5
|
Hashimoto D, Fujimoto K, Morioka S, Ayabe S, Kataoka T, Fukumura R, Ueda Y, Kajimoto M, Hyuga T, Suzuki K, Hara I, Asamura S, Wakana S, Yoshiki A, Gondo Y, Tamura M, Sasaki T, Yamada G. Establishment of mouse line showing inducible priapism-like phenotypes. Reprod Med Biol 2022; 21:e12472. [PMID: 35765371 PMCID: PMC9207557 DOI: 10.1002/rmb2.12472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose Penile research is expected to reveal new targets for treatment and prevention of the complex mechanisms of its disorder including erectile dysfunction (ED). Thus, analyses of the molecular processes of penile ED and continuous erection as priapism are essential issues of reproductive medicine. Methods By performing mouse N-ethyl-N-nitrosourea mutagenesis and exome sequencing, we established a novel mouse line displaying protruded genitalia phenotype (PGP; priapism-like phenotype) and identified a novel Pitpna gene mutation for PGP. Extensive histological analyses on the Pitpna mutant and intracavernous pressure measurement (ICP) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI/MS)/MS analyses were performed. Results We evaluated the role of phospholipids during erection for the first time and showed the mutants of inducible phenotypes of priapism. Moreover, quantitative analysis using LC-ESI/MS/MS revealed that the level of phosphatidylinositol (PI) was significantly lower in the mutant penile samples. These results imply that PI may contribute to penile erection by PITPα. Conclusions Our findings suggest that the current mutant is a mouse model for priapism and abnormalities in PI signaling pathways through PITPα may lead to priapism providing an attractive novel therapeutic target in its treatment.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Developmental GeneticsInstitute of Advanced Medicine, Wakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Kota Fujimoto
- Department of Developmental GeneticsInstitute of Advanced Medicine, Wakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Shin Morioka
- Department of Biochemical Pathophysiology/Lipid BiologyMedical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Shinya Ayabe
- Experimental Animal DivisionRIKEN BioResource Research CenterIbarakiJapan
| | - Tomoya Kataoka
- Department of Clinical PharmaceuticsGraduate School of Medical SciencesNagoya City UniversityNagoyaJapan
| | - Ryutaro Fukumura
- Clinical Laboratories Department sSRL & Shizuoka Cancer Center Collaborative Laboratories, IncShizuoka PrefJapan
| | - Yuko Ueda
- Department of Developmental GeneticsInstitute of Advanced Medicine, Wakayama Medical UniversityWakayamaJapan
- Department of UrologyWakayama Medical UniversityWakayamaJapan
| | - Mizuki Kajimoto
- Department of Developmental GeneticsInstitute of Advanced Medicine, Wakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Taiju Hyuga
- Department of Pediatric UrologyChildren's Medical Center TochigiJichi Medical UniversityTochigiJapan
| | - Kentaro Suzuki
- Department of Developmental GeneticsInstitute of Advanced Medicine, Wakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Isao Hara
- Department of UrologyWakayama Medical UniversityWakayamaJapan
| | - Shinichi Asamura
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| | - Shigeharu Wakana
- Department of Animal ExperimentationFoundation for Biomedical Research and Innovation at KobeCreative Lab for Innovation in Kobe 5F 6‐3‐7KobeHyogoJapan
| | - Atsushi Yoshiki
- Experimental Animal DivisionRIKEN BioResource Research CenterIbarakiJapan
| | - Yoichi Gondo
- Department of Molecular Life SciencesDivision of Basic Medical Science and Molecular MedicineTokai University School of MedicineIsehara‐shiKanagawaJapan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype AnalysisRIKEN BioResource Research CenterTsukubaIbarakiJapan
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology/Lipid BiologyMedical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Gen Yamada
- Department of Developmental GeneticsInstitute of Advanced Medicine, Wakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive SurgeryWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
6
|
Allsopp RJ, Klauda JB. Impact of PIP2 Lipids, Force Field Parameters, and Mutational Analysis on the Binding of the Osh4's α 6-α 7 Domain. J Phys Chem B 2021; 125:5296-5308. [PMID: 33984230 DOI: 10.1021/acs.jpcb.0c10393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All-atom molecular dynamics simulations are used with the highly mobile membrane mimetic method to study the α6-α7 peptide of the critical yeast Osh4 peripheral membrane protein. This research focuses on the impact of 1-palmitoyl-2-oleoyl-sn-glycero-phosphatidylinoside 4,5-bisphosphate (PIP2) lipids and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine on the protein's ability to bind to the membrane. Details of the binding mechanism are described qualitatively and quantitatively by measuring the position of the deepest residues, angle of the peptide during binding, root mean square deviation of the atomic positions within the peptide, and interaction energy, while changing variables, such as the force field used and the presence of the PIP2 lipids. The negatively charged PIP2 has a large head group that is a few Ångstroms above the main membrane phosphates enabling the PIP2 lipids to interact with the peptide before it binds deeper into the membrane. The PIP2 lipids can alter the position of the peptide during binding by recruiting charged residues on the α7 helix, such as R344 and R347. Residues R347 and R344 are unusual because they are slightly out of the reach of the main membrane phosphates but optimally positioned to interact with the PIP2 lipids. The salt-bridge interactions can also typically occur between cationic peptide residues such as R314, K325, and K336. The force field interaction effect on peptide binding was also investigated by changing the standard CHARMM36m to an improved description between some amino acids and lipid moieties (Phys. Chem. Chem. Phys. 20, 8432-8449). This resulted in the total number of salt bridges and hydrogen bonds being drastically reduced, the interaction energy was also reduced, and there was more balance between electrostatic and nonpolar interactions, but the general bound structure is maintained. This work is an important initial step to understand the effect of the Osh4 protein on the membrane binding and to quantify the effect of PIP2 lipids on this domain.
Collapse
Affiliation(s)
- Robert J Allsopp
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States.,Biophysics Graduate Program, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
7
|
Pemberton JG, Balla T. Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1111:77-137. [PMID: 30483964 DOI: 10.1007/5584_2018_288] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within eukaryotic cells, biochemical reactions need to be organized on the surface of membrane compartments that use distinct lipid constituents to dynamically modulate the functions of integral proteins or influence the selective recruitment of peripheral membrane effectors. As a result of these complex interactions, a variety of human pathologies can be traced back to improper communication between proteins and membrane surfaces; either due to mutations that directly alter protein structure or as a result of changes in membrane lipid composition. Among the known structural lipids found in cellular membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the membrane-anchored precursor of low-abundance regulatory lipids, the polyphosphoinositides (PPIn), which have restricted distributions within specific subcellular compartments. The ability of PPIn lipids to function as signaling platforms relies on both non-specific electrostatic interactions and the selective stereospecific recognition of PPIn headgroups by specialized protein folds. In this chapter, we will attempt to summarize the structural diversity of modular PPIn-interacting domains that facilitate the reversible recruitment and conformational regulation of peripheral membrane proteins. Outside of protein folds capable of capturing PPIn headgroups at the membrane interface, recent studies detailing the selective binding and bilayer extraction of PPIn species by unique functional domains within specific families of lipid-transfer proteins will also be highlighted. Overall, this overview will help to outline the fundamental physiochemical mechanisms that facilitate localized interactions between PPIn lipids and the wide-variety of PPIn-binding proteins that are essential for the coordinate regulation of cellular metabolism and membrane dynamics.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Liu F, Zhang X, Lu C, Zeng X, Li Y, Fu D, Wu G. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5663-81. [PMID: 26139823 DOI: 10.1093/jxb/erv313] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant non-specific lipid-transfer proteins (nsLTPs) are small, basic proteins present in abundance in higher plants. They are involved in key processes of plant cytology, such as the stablization of membranes, cell wall organization, and signal transduction. nsLTPs are also known to play important roles in resistance to biotic and abiotic stress, and in plant growth and development, such as sexual reproduction, seed development and germination. The structures of plant nsLTPs contain an eight-cysteine residue conserved motif, linked by four disulfide bonds, and an internal hydrophobic cavity, which comprises the lipid-binding site. This structure endows stability and increases the ability to bind and/or carry hydrophobic molecules. There is growing interest in nsLTPs, due to their critical roles, resulting in the need for a comprehensive review of their form and function. Relevant topics include: nsLTP structure and biochemical features, their classification, identification, and characterization across species, sub-cellular localization, lipid binding and transfer ability, expression profiling, functionality, and evolution. We present advances, as well as limitations and trends, relating to the different topics of the nsLTP gene family. This review collates a large body of research pertaining to the role of nsLTPs across the plant kingdom, which has been integrated as an in depth functional analysis of this group of proteins as a whole, and their activities across multiple biochemical pathways, based on a large number of reports. This review will enhance our understanding of nsLTP activity in planta, prompting further work and insights into the roles of this multifaceted protein family in plants.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaobo Zhang
- Life Science and Technology Center, China National Seed Group Co. Ltd., Wuhan 430206, China
| | - Changming Lu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xinhua Zeng
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yunjing Li
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Donghui Fu
- The Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | - Gang Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
9
|
Abstract
The movement of lipids within and between intracellular membranes is mediated by different lipid transport mechanisms and is crucial for maintaining the identities of different cellular organelles. Non-vesicular lipid transport has a crucial role in intracellular lipid trafficking and distribution, but its underlying mechanisms remain unclear. Lipid-transfer proteins (LTPs), which regulate diverse lipid-mediated cellular processes and accelerate vectorial transport of lipid monomers between membranes in vitro, could potentially mediate non-vesicular intracellular lipid trafficking. Understanding the mechanisms by which lipids are transported and distributed between cellular membranes, and elucidating the role of LTPs in intracellular lipid transport and homeostasis, are currently subjects of intensive study.
Collapse
|
10
|
Lu L, Bao Y, Khan A, Goldstein AM, Newburg DS, Quaroni A, Brown D, Walker WA. Hydrocortisone modulates cholera toxin endocytosis by regulating immature enterocyte plasma membrane phospholipids. Gastroenterology 2008; 135:185-193.e1. [PMID: 18456000 PMCID: PMC2587123 DOI: 10.1053/j.gastro.2008.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 03/13/2008] [Accepted: 03/20/2008] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Diarrheal disease is a major cause of morbidity and mortality in infants and children worldwide. Evidence has indicated immature human enterocytes and their interaction with bacteria and enterotoxins may account for the noted increased susceptibility of neonates to diarrhea. Our aim was to characterize the developmental difference in cholera toxin (CT)-GM1-mediated endocytosis. METHODS We used H4 cells (a fetal human small intestinal epithelial cell line), T84 cells, primary cultured mature human small intestinal epithelial cells, and human fetal small intestine xenografts. In addition, hydrocortisone was used as a potent intestinal trophic factor to induce maturation of the human enterocytes. RESULTS Here we show an increase in CT-caveolae and a decrease in CT-clathrin colocalization in H4/hydrocortisone compared with H4 cells by electron microscopy. In T84 and freshly isolated human small intestinal epithelial cells, a significant amount of GM1 was partitioned into the lipid rafts. In contrast, there was little CT-GM1/lipid raft association in H4 cells. However, hydrocortisone significantly increased GM1/lipid raft association in H4 cells. Furthermore, we noted an increase in the level of phosphatidylcholine, sphingomyelin, and the ratio of phosphatidylcholine/phosphatidylinositol in mature compared with immature enterocytes and that hydrocortisone can accelerate this maturational process. Disruption of phosphatidylinositol transfer protein alpha using small interference RNA showed an increase in GM1/lipid raft association in H4 cells and resulted in a decreased CT response. CONCLUSIONS Our studies suggest that the developmental change in CT endocytosis is partially caused by an increased GM1-lipid raft association through a maturational change of phospholipid composition on the cell surface of immature enterocytes.
Collapse
Affiliation(s)
- Lei Lu
- Developmental Gastroenterology Laboratory, Massachusetts General Hospital for Children, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ran R, Pan R, Lu A, Xu H, Davis RR, Sharp FR. A novel 165-kDa Golgin protein induced by brain ischemia and phosphorylated by Akt protects against apoptosis. Mol Cell Neurosci 2007; 36:392-407. [PMID: 17888676 DOI: 10.1016/j.mcn.2007.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 07/18/2007] [Accepted: 07/30/2007] [Indexed: 01/02/2023] Open
Abstract
A cDNA encoding a novel protein was cloned from ischemic rat brain and found to be homologous to testis Mea-2 Golgi-associated protein (Golga3). The sequence predicted a 165-kDa protein, and in vitro translated protein exhibited a molecular mass of 165-170 kDa. Because brain ischemia induced the mRNA, and the protein localized to the Golgi apparatus, this protein was designated Ischemia-Inducible Golgin Protein 165 (IIGP165). In HeLa cells, serum and glucose deprivation-induced caspase-dependent cleavage of the IIGP165 protein, after which the IIGP165 fragments translocated to the nucleus. The C-terminus of IIGP165, which contains a LXXLL motif, appears to function as a transcriptional co-regulator. Akt co-localizes with IIGP165 protein in the Golgi in vivo, and phosphorylates IIGP165 on serine residues 345 and 134. Though transfection of IIGP165 cDNA alone does not protect HeLa cells from serum deprivation or Brefeldin-A-triggered cell death, co-transfection of both Akt and IIGP165 cDNA or combined IIGP165-transfection with PDGF treatment significantly protects HeLa cells better than either treatment alone. These data show that Akt phosphorylation of IIGP165 protects against apoptotic cell death, and add to evidence that the Golgi apparatus also plays a role in regulating apoptosis.
Collapse
Affiliation(s)
- Ruiqiong Ran
- M.I.N.D. Institute and Department of Neurology, University of California at Davis Medical Center, University of California at Davis, Sacramento, CA 95817, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Atshaves BP, Jefferson JR, McIntosh AL, Gallegos A, McCann BM, Landrock KK, Kier AB, Schroeder F. Effect of sterol carrier protein-2 expression on sphingolipid distribution in plasma membrane lipid rafts/caveolae. Lipids 2007; 42:871-84. [PMID: 17680294 DOI: 10.1007/s11745-007-3091-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 06/24/2007] [Indexed: 12/16/2022]
Abstract
Although sphingolipids are highly important signaling molecules enriched in lipid rafts/caveolae, relatively little is known regarding factors such as sphingolipid binding proteins that may regulate the distribution of sphingolipids to lipid rafts/caveolae of living cells. Since early work demonstrated that sterol carrier protein-2 (SCP-2) enhanced glycosphingolipid transfer from membranes in vitro, the effect of SCP-2 expression on sphingolipid distribution to lipid rafts/caveolae in living cells was examined. Using a non-detergent affinity chromatography method to isolate lipid rafts/caveolae and non-rafts from purified L-cell plasma membranes, it was shown that lipid rafts/caveolae were highly enriched in multiple sphingolipid species including ceramides, acidic glycosphingolipids (ganglioside GM1); neutral glycosphingolipids (monohexosides, dihexosides, globosides), and sphingomyelin as compared to non-raft domains. SCP-2 overexpression further enriched the content of total sphingolipids and select sphingolipid species in the lipid rafts/caveolae domains. Analysis of fluorescence binding and displacement data revealed that purified human recombinant SCP-2 exhibited high binding affinity (nanomolar range) for all sphingolipid classes tested. The binding affinity decreased in the following order: ceramides > acidic glycosphingolipid (ganglioside GM1) > neutral glycosphingolipid (monohexosides, hexosides, globosides) > sphingomyelin. Enrichment of individual sphingolipid classes to lipid rafts/caveolae versus non-rafts in SCP-2 expressing plasma membranes followed closely with those classes most strongly bound to SCP-2 (ceramides, GM1 > the neutral glycosphingolipids (monohexosides, dihexosides, and globosides) > sphingomyelin). Taken together these data suggested that SCP-2 acts to selectively regulate sphingolipid distribution to lipid rafts/caveolae in living cells.
Collapse
Affiliation(s)
- Barbara P Atshaves
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Diehl KM, Grewal N, Ethier SP, Woods-Ignatoski KM. p38MAPK-activated AKT in HER-2 overexpressing human breast cancer cells acts as an EGF-independent survival signal. J Surg Res 2007; 142:162-9. [PMID: 17612563 DOI: 10.1016/j.jss.2007.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 01/16/2007] [Accepted: 01/23/2007] [Indexed: 11/16/2022]
Abstract
BACKGROUND HER-2 is an epidermal growth factor receptor (EGFR) family receptor tyrosine kinase that is overexpressed in about 30% of human breast cancers correlating with a poor prognosis. Previous work in our laboratory has found that HER-2 overexpression plays a role in growth factor independence, anchorage independence, motility, and invasion of naturally occurring basement membranes. We also found that AKT was activated by p38MAPK in these cells, but this activation did not play a role in invasion. Since AKT has been shown in other systems to be a survival factor, we hypothesized that HER-2 mediated activation of AKT is necessary for growth factor independence. METHODS Human mammary epithelial cells transduced to overexpress HER-2, HER-2, PTEN, and Myr-AKT and the primary breast cancer cell lines SUM-149 and SUM-225 were used to dissect the signaling pathways leading to growth factor independence and anchorage-independent growth in HER-2 overexpressing cells. RESULTS We found that, in the absence of EGF, p38MAPK-activated AKT is necessary for HER-2 overexpressing cells to survive and to form colonies in soft agar. We show that EGF works as a survival signal in the absence of p38MAPK-mediated activation of AKT. We also show that human mammary epithelial cells expressing a constitutively active AKT do not require EGF for growth or colony formation in soft agar. CONCLUSIONS The data presented here indicate that AKT activation can compensate for EGF-mediated cell survival signals leading to growth factor independence and anchorage-independent growth.
Collapse
Affiliation(s)
- Kathleen M Diehl
- University of Michigan Health Systems, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
14
|
Cockcroft S, Carvou N. Biochemical and biological functions of class I phosphatidylinositol transfer proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:677-91. [PMID: 17490911 DOI: 10.1016/j.bbalip.2007.03.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 03/05/2007] [Accepted: 03/27/2007] [Indexed: 12/21/2022]
Abstract
Phosphoinositides function in a diverse array of cellular activities. They include a role as substrate for lipid kinases and phospholipases to generate second messengers, regulators of the cytoskeleton, of enzymes and of ion channels, and docking sites for reversible recruitment of proteins to membranes. Mammalian phosphatidylinositol transfer proteins, PITPalpha and PITPbeta are paralogs that share 77% sequence identity and contain a hydrophobic cavity that can sequester either phosphatidylinositol or phosphatidylcholine. A string of 11 amino acid residues at the C-terminal acts as a "lid" which shields the lipid from the aqueous environment. PITPs in vitro can facilitate inter-membrane lipid transfer and this requires the movement of the "lid" to allow the lipid cargo to be released. Thus PITPs are structurally designed for delivering lipid cargo and could thus participate in cellular events that are dependent on phosphatidylinositol or derivatives of phosphatidylinositol. Phosphatidylinositol, the precursor for all phosphoinositides is synthesised at the endoplasmic reticulum and its distribution to other organelles could be facilitated by PITPs. Here we highlight recent studies that report on the three-dimensional structures of the different PITP forms and suggest how PITPs are likely to dock at the membrane surface for lipid delivery and extraction. Additionally we discuss whether PITPs are important regulators of sphingomyelin metabolism, and finally describe recent studies that link the association of PITPs with diverse functions including membrane traffic at the Golgi, neurite outgrowth, cytokinesis and stem cell growth.
Collapse
Affiliation(s)
- Shamshad Cockcroft
- Department of Physiology, 21 University Street, University College London, London WC1E 6JJ, UK.
| | | |
Collapse
|
15
|
Schroeder F, Atshaves BP, McIntosh AL, Gallegos AM, Storey SM, Parr RD, Jefferson JR, Ball JM, Kier AB. Sterol carrier protein-2: new roles in regulating lipid rafts and signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1771:700-18. [PMID: 17543577 PMCID: PMC1989133 DOI: 10.1016/j.bbalip.2007.04.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 03/28/2007] [Accepted: 04/03/2007] [Indexed: 12/31/2022]
Abstract
Sterol carrier protein-2 (SCP-2) was independently discovered as a soluble protein that binds and transfers cholesterol as well as phospholipids (nonspecific lipid transfer protein, nsLTP) in vitro. Physiological functions of this protein are only now beginning to be resolved. The gene encoding SCP-2 also encodes sterol carrier protein-x (SCP-x) arising from an alternate transcription site. In vitro and in vivo SCP-x serves as a peroxisomal 3-ketoacyl-CoA thiolase in oxidation of branched-chain lipids (cholesterol to form bile acids; branched-chain fatty acid for detoxification). While peroxisomal SCP-2 facilitates branched-chain lipid oxidation, the role(s) of extraperoxisomal (up to 50% of total) are less clear. Studies using transfected fibroblasts overexpressing SCP-2 and hepatocytes from SCP-2/SCP-x gene-ablated mice reveal that SCP-2 selectively remodels the lipid composition, structure, and function of lipid rafts/caveolae. Studies of purified SCP-2 and in cells show that SCP-2 has high affinity for and selectively transfers many lipid species involved in intracellular signaling: fatty acids, fatty acyl CoAs, lysophosphatidic acid, phosphatidylinositols, and sphingolipids (sphingomyelin, ceramide, mono-di-and multi-hexosylceramides, gangliosides). SCP-2 selectively redistributes these signaling lipids between lipid rafts/caveolae and intracellular sites. These findings suggest SCP-2 serves not only in cholesterol and phospholipid transfer, but also in regulating multiple lipid signaling pathways in lipid raft/caveolae microdomains of the plasma membrane.
Collapse
Affiliation(s)
- Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Várnai P, Balla T. Visualization and manipulation of phosphoinositide dynamics in live cells using engineered protein domains. Pflugers Arch 2007; 455:69-82. [PMID: 17473931 DOI: 10.1007/s00424-007-0270-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 04/12/2007] [Indexed: 11/26/2022]
Abstract
There is hardly a membrane-associated molecular event that is not regulated by phosphoinositides, a minor but critically important class of phospholipids of cellular membranes. The rapid formation, elimination, and conversion of these lipids in specific membrane compartments are ensured by a wealthy number of inositol lipid kinases and phosphatases with unique localization and regulatory properties. The existence of multiple inositol lipid pools have been indicated by metabolic labeling studies, but the level of functional compartmentalization revealed by the identification of numerous protein effectors acted upon by phosphoinositides could not have been foreseen. The changing perception of inositides from just serving as lipid precursors of second messengers to becoming highly dynamic local membrane-bound regulators poses new challenges concerning the detection of their rapid localized changes. Moreover, it is increasingly evident that manipulation of lipids in highly defined compartments would be a highly superior approach to soaking the cells with a particular phosphoinositide when studying the local regulation of the lipid on any effectors. In this review, we will summarize our efforts to improve our tools in studying phosphoinositide dynamics and discuss our views on the values of these methods compared to other options currently used or being explored.
Collapse
Affiliation(s)
- Péter Várnai
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bldg 49, Rm 6A35, 49 Convent Drive, Bethesda, MD, USA.
| | | |
Collapse
|
17
|
Abstract
Although oncogenes and their transformation mechanisms have been known for 30 years, we are just now using our understanding of protein function to abrogate the activity of these genes to block cancer growth. The advent of specific small-molecule inhibitors has been a tremendous step in the fight against cancer and their main targets are the cellular counterparts of viral oncogenes. The best-known example of a molecular therapeutic is Gleevec (imatinib). In the early 1990s, IFN-alpha treatment produced a sustained cytologic response in approximately 33% of chronic myelogenous leukemia patients. Today, with Gleevec targeting the kinase activity of the proto-oncogene abl, the hematologic response rate in chronic myelogenous leukemia patients is 95% with 89% progression-free survival at 18 months. There are still drawbacks to the new therapies, such as drug resistance after a period of treatment, but the drawbacks are being studied experimentally. New drugs and combination therapies are being designed that will bypass the resistance mechanisms.
Collapse
Affiliation(s)
- Kathleen M Diehl
- Department of Urology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0940, USA
| | | | | |
Collapse
|
18
|
Wirtz KWA, Schouten A, Gros P. Phosphatidylinositol transfer proteins: From closed for transport to open for exchange. ACTA ACUST UNITED AC 2006; 46:301-11. [PMID: 16854452 DOI: 10.1016/j.advenzreg.2006.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Karel W A Wirtz
- Bijvoet Center for Biomolecular Research, Department of Lipid Biochemistry, Utrecht University, Utrecht, The Netherlands.
| | | | | |
Collapse
|
19
|
Balla T. Found in the crystal: phospholipid ligands for nuclear orphan receptors. Trends Endocrinol Metab 2005; 16:289-90. [PMID: 16054837 DOI: 10.1016/j.tem.2005.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 06/06/2005] [Accepted: 07/19/2005] [Indexed: 11/15/2022]
Abstract
Phospholipids are important components of cellular membranes, contributing to their structural integrity and regulatory functions. Because of these functional properties, phospholipids are often the subject of cell biology and signal transduction studies. Proteins that bind and transport phospholipids between membranes have been described and investigated but few scientists would have entertained the thought of phospholipids acting as ligands for transcription factors. However, the surprising results of recent crystallization studies revealed phospholipid ligands in the binding pockets of members of the nuclear orphan receptor family 5. Their ability to alter transcriptional activity by acting as bona fide ligands has been inspirational not only for the transcription factor community, but also for phospholipid researchers.
Collapse
Affiliation(s)
- Tamas Balla
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, MD 20892-4510, USA.
| |
Collapse
|
20
|
Subramanian KK, Narang A. A mechanistic model for eukaryotic gradient sensing: spontaneous and induced phosphoinositide polarization. J Theor Biol 2004; 231:49-67. [PMID: 15363929 DOI: 10.1016/j.jtbi.2004.05.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 05/11/2004] [Accepted: 05/25/2004] [Indexed: 12/20/2022]
Abstract
The crawling movement of cells in response to a chemoattractant gradient is a complex process requiring coordination of various subcellular activities. Although a complete description of the mechanisms underlying cell movement remains elusive, the very first step of gradient sensing, enabling the cell to perceive the imposed gradient, is becoming more transparent. The increased understanding of this step has been driven by the discovery that within 5-10 s of applying a weak chemoattractant gradient, membrane phosphoinositides such as PIP(3) localize at the front end of the cell. It is currently believed that the gradient sensing mechanism is precisely the mechanism leading to this localization. We have formulated a reaction-diffusion model based on the phosphoinositide cycle which predicts various responses of motile cells in addition to the phosphoinositide polarization induced by chemoattractant gradients. The responses include: (a) Polarized sensitivity wherein a polarized cell responds to a change in the direction of the gradient by turning its existing front. (b) Spontaneous polarization wherein cells polarize in a random direction even if the surrounding chemoattractant concentration is uniform. (c) Unique localization which refers to the formation of a unique polarity even in the face of multiple chemoattractant sources. The above responses preclude the hypothesis that the cell merely amplifies the external signal. Our model indicates that the cell must be viewed as a system that nonlinearly processes chemoattractant inputs. We show in particular that these seemingly complex dynamics can be explained very simply in terms of the instabilities and wavefront dynamics that are characteristic of the activator-inhibitor class of models.
Collapse
Affiliation(s)
- K K Subramanian
- Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, FL 32611-6005, USA
| | | |
Collapse
|
21
|
Zhou M, Parr RD, Petrescu AD, Payne HR, Atshaves BP, Kier AB, Ball JM, Schroeder F. Sterol carrier protein-2 directly interacts with caveolin-1 in vitro and in vivo. Biochemistry 2004; 43:7288-306. [PMID: 15182174 DOI: 10.1021/bi035914n] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HDL-mediated reverse-cholesterol transport as well as phosphoinositide signaling are mediated through plasma membrane microdomains termed caveolae/lipid rafts. However, relatively little is known regarding mechanism(s) whereby these lipids traffic to or are targeted to caveolae/lipid rafts. Since sterol carrier protein-2 (SCP-2) binds both cholesterol and phosphatidylinositol, the possibility that SCP-2 might interact with caveolin-1 and caveolae was examined. Double immunolabeling and laser scanning fluorescence microscopy showed that a small but significant portion of SCP-2 colocalized with caveolin-1 primarily at the plasma membrane of L-cells and more so within intracellular punctuate structures in hepatoma cells. In SCP-2 overexpressing L-cells, SCP-2 was detected in close proximity to caveolin, 48 +/- 4 A, as determined by fluorescence resonance energy transfer (FRET) and immunogold electron microscopy. Cell fractionation of SCP-2 overexpressing L-cells and Western blotting detected SCP-2 in purified plasma membranes, especially in caveolae/ lipid rafts as compared to the nonraft fraction. SCP-2 and caveolin-1 were coimmunoprecipitated from cell lysates by anti-caveolin-1 and anti-SCP-2. Finally, a yeast two-hybrid assay demonstrated that SCP-2 directly interacts with caveolin-1 in vivo. These interactions of SCP-2 with caveolin-1 were specific since a functionally related protein, phosphatidyinositol transfer protein (PITP), colocalized much less well with caveolin-1, was not in close proximity to caveolin-1 (i.e., >120 A), and was not coimmunoprecipitated by anti-caveolin-1 from cell lysates. In summary, it was shown for the first time that SCP-2 (but not PITP) selectively interacted with caveolin-1, both within the cytoplasm and at the plasma membrane. These data contribute significantly to our understanding of the role of SCP-2 in cholesterol and phosphatidylinositol targeted from intracellular sites of synthesis in the endoplasmic reticulum to caveolae/lipid rafts at the cell surface plasma membrane.
Collapse
Affiliation(s)
- Minglong Zhou
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas 77843-4466, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Lev S. The role of the Nir/rdgB protein family in membrane trafficking and cytoskeleton remodeling. Exp Cell Res 2004; 297:1-10. [PMID: 15194420 DOI: 10.1016/j.yexcr.2004.02.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2004] [Revised: 02/17/2004] [Indexed: 10/26/2022]
Abstract
The Nir/rdgB family of proteins has been identified in a variety of eukaryotic organisms, ranging from worms to mammals. The Drosophila retinal degeneration B (rdgB), a protein that is required for photoreceptor cell viability and light response, was the first to be identified. It consists an amino-terminal phosphatidylinositol (PI)-transfer domain and was proposed to play an essential role in photoreceptor membrane renewal and biogenesis. The other Nir/rdgB family members are functionally and structurally related to the Drosophila homolog and are implicated in regulation of lipid trafficking, metabolism, and signaling. Recent advances have revealed that Nir/rdgB proteins are also involved in regulation of cytoskeletal elements. Thus, these family members exert a broad spectrum of cellular functions and are involved in multiple cellular processes. The physiological functions of these closely related proteins are described in this review.
Collapse
Affiliation(s)
- Sima Lev
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
23
|
Schenning M, van Tiel CM, Van Manen D, Stam JC, Gadella BM, Wirtz KWA, Snoek GT. Phosphatidylinositol transfer protein α regulates growth and apoptosis of NIH3T3 cells. J Lipid Res 2004; 45:1555-64. [PMID: 15145975 DOI: 10.1194/jlr.m400127-jlr200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse fibroblast cells overexpressing phosphatidylinositol transfer protein alpha [PI-TPalpha; sense PI-TPalpha (SPIalpha) cells] show a significantly increased rate of proliferation and an extreme resistance toward ultraviolet- or tumor necrosis factor-alpha-induced apoptosis. The conditioned medium (CM) from SPIalpha cells or the neutral lipid extract from CM stimulated the proliferation of quiescent wild-type NIH3T3 cells. CM was also highly effective in increasing resistance toward induced apoptosis in both wild-type cells and the highly apoptosis-sensitive SPIbeta cells (i.e., wild-type cells overexpressing PI-TPbeta). CM from SPIalpha cells grown in the presence of NS398, a specific cyclooxygenase-2 (COX-2) inhibitor, expressed a diminished mitogenic and antiapoptotic activity. This strongly suggests that at least one of the bioactive factor(s) is an eicosanoid. In accordance, SPIalpha cells express enhanced levels of COX-1 and COX-2. The antiapoptotic activity of CM from SPIalpha cells tested on SPIbeta cells was inhibited by approximately 50% by pertussis toxin and suramin as well as by SR141716A, a specific antagonist of the cannabinoid 1 receptor. These inhibitors had virtually no effect on the COX-2-independent antiapoptotic activity of CM from SPIalpha cells. The latter results imply that PI-TPalpha mediates the production of a COX-2-dependent eicosanoid that activates a G-protein-coupled receptor, most probably a cannabinoid 1-like receptor.
Collapse
Affiliation(s)
- Martijn Schenning
- Center for Biomembranes and Lipid Enzymology, Department of Lipid Biochemistry, Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
24
|
Yingling J, Toyo-Oka K, Wynshaw-Boris A. Miller-Dieker syndrome: analysis of a human contiguous gene syndrome in the mouse. Am J Hum Genet 2003; 73:475-88. [PMID: 12905154 PMCID: PMC1180674 DOI: 10.1086/378096] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2002] [Accepted: 06/30/2003] [Indexed: 11/03/2022] Open
Affiliation(s)
- Jessica Yingling
- Departments of Pediatrics and Medicine, University of California at San Diego School of Medicine, La Jolla, CA, 92093, USA
| | | | | |
Collapse
|
25
|
Schroeder F, Zhou M, Swaggerty CL, Atshaves BP, Petrescu AD, Storey SM, Martin GG, Huang H, Helmkamp GM, Ball JM. Sterol carrier protein-2 functions in phosphatidylinositol transfer and signaling. Biochemistry 2003; 42:3189-202. [PMID: 12641450 DOI: 10.1021/bi026904+] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Over 20 years ago, it was reported that liver cytosol contains at least two distinct proteins that transfer phosphatidylinositol in vitro, phosphatidylinositol transfer protein (PITP) and a pH 5.1 supernatant fraction containing sterol carrier protein-2 (SCP-2). In contrast to PITP, there has been minimal progress on the structural and functional significance of SCP-2 in phosphatidylinositol transport. As shown herein, highly purified, recombinant SCP-2 stimulated up to 13-fold the rapid (s) transfer of radiolabeled phosphatidylinositol (PI) from microsomal donor membranes to highly curved acceptor membranes. SCP-2 bound to microsomes in vitro and overexpression of SCP-2 in transfected L-cells resulted in the following: (i) redistribution of phosphatidylinositols from intracellular membranes (mitochondria and microsomes) to the plasma membrane; (ii) enhancement of insulin-mediated inositol-triphosphate production; and (iii) 5.5-fold down regulation of PITP. Like PITP, SCP-2 binds two ligands required for vesicle budding from the Golgi, PI, and fatty acyl CoA. Double immunolabeling confocal microscopy showed SCP-2 significantly colocalized with caveolin-1 in the cytoplasm (punctate) and plasma membrane of SCP-2 overexpressing hepatoma cells (72%), HT-29 cells (58%), and SCP-2 overexpressing L-cells (37%). Taken together, these data show for the first time that SCP-2 plays a hitherto unrecognized role in intracellular phosphatidylinositol transfer, distribution, and signaling.
Collapse
Affiliation(s)
- Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas 77843-4466, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Takano N, Owada Y, Suzuki R, Sakagami H, Shimosegawa T, Kondo H. Cloning and characterization of a novel variant (mM-rdgBbeta1) of mouse M-rdgBs, mammalian homologs of Drosophila retinal degeneration B gene proteins, and its mRNA localization in mouse brain in comparison with other M-rdgBs. J Neurochem 2003; 84:829-39. [PMID: 12562526 DOI: 10.1046/j.1471-4159.2003.01591.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the cloning, characterization and localization in the brain of a novel isoform termed mM-rdgBbeta1 (mouse type of mammalian retinal degeneration Bbeta1 protein) in comparison with the localization of three known mammalian homologs (M-rdgBbeta, M-rdgB1, M-rdgB2). mM-rdgBbeta1 cDNA contains a sequence of 119 bp as a form of insertion in the open reading frame of the known mM-rdgBbeta, and encodes a protein of 269 amino acids with a calculated molecular mass of 31.7 kDa, different from the molecular mass of 38.3 kDa of mM-rdgBbeta. It also contains a phosphatidylinositol transfer protein (PITP)-like domain similar to the known three homologs, as well as D-rdgB. The recombinant mM-rdgBbeta1 protein shows the specific binding activity to phosphatidylinositol but not to other phospholipids. This novel molecule is localized not only in the cytoplasm but also in the nucleus, different from the cytoplasmic localization of mM-rdgBbeta. In in situ hybridization analysis, the gene expression for mM-rdgBbeta1 in the brain, though weak, is rather confined to the embryonic stage, different from wider expression of mM-rdgBbeta in the gray matters of pre- and post-natal brains. Taken together, mM-rdgBbeta1 is suggested to play a role in the phosphoinositide-mediated signaling in the neural development.
Collapse
Affiliation(s)
- Nobuo Takano
- Division of Histology, Department of Cell Biology, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Identification of an axotomy-induced glycosylated protein, AIGP1, possibly involved in cell death triggered by endoplasmic reticulum-Golgi stress. J Neurosci 2003. [PMID: 12486168 DOI: 10.1523/jneurosci.22-24-10751.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We developed a new method, designated N-linked glycosylation signal (NGS) differential display (DD)-PCR, that enables the identification of genes encoding N-linked glycosylated molecules that exhibit varying patterns of expression. Using this innovative technique, we identified an N-linked glycosylated 11-transmembrane domain protein that is upregulated in response to axotomy. Expression levels increased 3 d after axotomy, reached maximal levels at approximately postoperative days 5-7, and then gradually decreased through day 20. The protein was termed axotomy-induced glycosylated/Golgi-complex protein 1 (AIGP1). AIGP1 immunoreactivity is specifically localized in neurons, with subcellular localization within the Golgi, indicating that AIGP1 is a resident Golgi protein. Moreover, AIGP1 gene expression in cultured neurons is specifically induced by the endoplasmic reticulum (ER)-Golgi stressors tunicamycin and brefeldin A. We observed that the frequency of cell death is increased by AIGP1 overexpression and that the corresponding region of the protein implicated in the activity involves the large eighth and ninth transmembrane loops. Our results suggest that AIGP1 gene activation and protein accumulation in the Golgi complex in response to axotomy-induced ER-Golgi stress may contribute to signaling during programmed cell death in damaged neurons.
Collapse
|
28
|
Larijani B, Allen-Baume V, Morgan CP, Li M, Cockcroft S. EGF regulation of PITP dynamics is blocked by inhibitors of phospholipase C and of the Ras-MAP kinase pathway. Curr Biol 2003; 13:78-84. [PMID: 12526750 DOI: 10.1016/s0960-9822(02)01395-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Phosphatidylinositol transfer proteins (PITP) function in signal transduction and in membrane traffic. Studies aimed at elucidating the mechanism of action of PITP have yielded a singular theme; the activity of PITP stems from its ability to transfer phosphatidylinositol (PI) from its site of synthesis to sites of cellular activity and to stimulate the local synthesis of phosphorylated forms of PI. The participation of various phosphoinositides in EGF signal transduction and in the trafficking of the EGF receptors is well documented. Using fluorescence lifetime imaging microscopy (FLIM) to measure fluorescence resonance energy transfer (FRET) between EGFP-PITP proteins and fluorescently labeled phospholipids, we report that PITPalpha and PITPbeta can dynamically interact with PI or PC at the plasma membrane when stimulated with EGF. Additionally, PITPbeta is localized at the Golgi, and EGF stimulation resulted in enhanced FRET. Inhibitors of the PLC and the Ras/MAP kinase pathway were both able to inhibit the EGF-stimulated interaction of PITPalpha with PI at the plasma membrane. The mobility of PITP proteins was determined by using fluorescence recovery after photobleaching (FRAP), and EGF stimulation reduced the mobility at the plasma membrane. We conclude that the dynamic behavior of PITPalpha and PITPbeta in vivo is a regulated process involving multiple mechanisms.
Collapse
Affiliation(s)
- Banafshé Larijani
- Cell Biophysics Laboratory, London Research Institute, Cancer Research UK, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, WC2A 3PX, London, United Kingdom
| | | | | | | | | |
Collapse
|
29
|
Sotoda Y, Negoro M, Wakabayashi I. Involvement of decreased myo-inositol transport in lipopolysaccharide-induced depression of phosphoinositide hydrolysis in vascular smooth muscle. FEBS Lett 2002; 519:227-30. [PMID: 12023050 DOI: 10.1016/s0014-5793(02)02747-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The mechanism underlying lipopolysaccharide (LPS)-induced depression of phosphoinositide (PI) hydrolysis was investigated using rat aortas. In LPS-pretreated aortas, the 5-hydroxytryptamine-stimulated accumulation of inositol monophosphate and incorporation of exogenous myo-inositol into PIs were significantly less than those in control aortas. Both sodium-myo-inositol cotransporter (SMIT) and phosphatidylinositol transfer protein (PITP) genes were constituently expressed in rat aortas. The mRNA level of SMIT was remarkably lower in LPS-pretreated aortas, while that of PITP mRNA was not affected by LPS. These results suggest that LPS-induced depression of SMIT expression is involved in inhibition of agonist-stimulated PI hydrolysis by LPS.
Collapse
Affiliation(s)
- Yoko Sotoda
- Department of Hygiene and Preventive Medicine, School of Medicine, Yamagata University, Iida-Nishi 2-2-2, Yamagata, Japan
| | | | | |
Collapse
|
30
|
Schouten A, Agianian B, Westerman J, Kroon J, Wirtz KW, Gros P. Structure of apo-phosphatidylinositol transfer protein alpha provides insight into membrane association. EMBO J 2002; 21:2117-21. [PMID: 11980708 PMCID: PMC125982 DOI: 10.1093/emboj/21.9.2117] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phosphatidylinositol transfer protein alpha (PITP alpha) is a ubiquitous and highly conserved protein in multicellular eukaryotes that catalyzes the exchange of phospholipids between membranes in vitro and participates in cellular phospholipid metabolism, signal transduction and vesicular trafficking in vivo. Here we report the three-dimensional crystal structure of a phospholipid-free mouse PITP alpha at 2.0 A resolution. The structure reveals an open conformation characterized by a channel running through the protein. The channel is created by opening the phospholipid-binding cavity on one side by displacement of the C-terminal region and a hydrophobic lipid exchange loop, and on the other side by flattening of the central beta-sheet. The relaxed conformation is stabilized at the proposed membrane association site by hydrophobic interactions with a crystallographically related molecule, creating an intimate dimer. The observed open conformer is consistent with a membrane-bound state of PITP and suggests a mechanism for membrane anchoring and the presentation of phosphatidylinositol to kinases and phospholipases after its extraction from the membrane. Coordinates have been deposited in the Protein Data Bank (accession No. 1KCM).
Collapse
Affiliation(s)
- Arie Schouten
- Department of Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and Department of Lipid Biochemistry, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8,NL-3584 CH Utrecht, The Netherlands Present address: EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany Corresponding author e-mail: †Deceased
| | - Bogos Agianian
- Department of Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and Department of Lipid Biochemistry, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8,NL-3584 CH Utrecht, The Netherlands Present address: EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany Corresponding author e-mail: †Deceased
| | - Jan Westerman
- Department of Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and Department of Lipid Biochemistry, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8,NL-3584 CH Utrecht, The Netherlands Present address: EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany Corresponding author e-mail: †Deceased
| | - Jan Kroon
- Department of Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and Department of Lipid Biochemistry, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8,NL-3584 CH Utrecht, The Netherlands Present address: EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany Corresponding author e-mail: †Deceased
| | - Karel W.A. Wirtz
- Department of Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and Department of Lipid Biochemistry, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8,NL-3584 CH Utrecht, The Netherlands Present address: EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany Corresponding author e-mail: †Deceased
| | - Piet Gros
- Department of Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and Department of Lipid Biochemistry, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8,NL-3584 CH Utrecht, The Netherlands Present address: EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany Corresponding author e-mail: †Deceased
| |
Collapse
|
31
|
Jones DR, D'Santos CS, Mérida I, Divecha N. T lymphocyte nuclear diacylglycerol is derived from both de novo synthesis and phosphoinositide hydrolysis. Int J Biochem Cell Biol 2002; 34:158-68. [PMID: 11809418 DOI: 10.1016/s1357-2725(01)00108-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Novel phospholipid metabolism in T lymphocytes and the generation of biologically active lipid second messengers (LSMs) has attracted much attention in recent years. Despite this interest, no reports have attempted to characterise such events in the nuclei of these cells. In order to gain insight into the structural relationships between the lipids diglyceride (DG) and phosphatidic acid (PtdOH) and their structural precursors phosphatidylcholine (PtdCho) and phosphatidylinositides (PtdIns) in the nuclei of CTLL-2 T lymphocytes, an analysis of their molecular species was performed. The results clearly indicated that there were two pools of DG. The major pool consisted primarily of saturated and monunsaturated structures whereas the minor pool consisted of more unsaturated species, most likely derived from PtdIns. Only the latter pool was found to be accessible to endogenous nuclear diacylglycerol kinase (DGK) activity which showed partial inhibition with the recognised DGK inhibitor R59949. Molecular species analysis of the endogenous nuclear PtdOH revealed it to be distinct from that generated by the endogenous DGK, but instead resembled that of PtdCho species. We were unable to detect enzymatic activities which targeted PtdCho (PtdCho-phospholipase C (PtdCho-PLC), PtdCho-phospholipase D (PtdCho-PLD) and sphingomyelin synthase (SMS)) but instead a detectable PtdOH phosphatase (PAP) activity. We propose that, in exponentially growing CTLL-2 cells, synthesis de novo represents one of the routes for the biosynthesis of structural phospholipids which may be the source of biologically active LSMs in the nucleus.
Collapse
Affiliation(s)
- David R Jones
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
32
|
Xu Y, Seet LF, Hanson B, Hong W. The Phox homology (PX) domain, a new player in phosphoinositide signalling. Biochem J 2001; 360:513-30. [PMID: 11736640 PMCID: PMC1222253 DOI: 10.1042/0264-6021:3600513] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphoinositides are key regulators of diverse cellular processes. The pleckstrin homology (PH) domain mediates the action of PtdIns(3,4)P(2), PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3), while the FYVE domain relays the pulse of PtdIns3P. The recent establishment that the Phox homology (PX) domain interacts with PtdIns3P and other phosphoinositides suggests another mechanism by which phosphoinositides can regulate/integrate multiple cellular events via a spectrum of PX domain-containing proteins. Together with the recent discovery that the epsin N-terminal homologue (ENTH) domain interacts with PtdIns(4,5)P(2), it is becoming clear that phosphoinositides regulate diverse cellular events through interactions with several distinct structural motifs present in many different proteins.
Collapse
Affiliation(s)
- Y Xu
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Singapore
| | | | | | | |
Collapse
|
33
|
Tremblay JM, Li H, Yarbrough LR, Helmkamp GM. Modifications of cysteine residues in the solution and membrane-associated conformations of phosphatidylinositol transfer protein have differential effects on lipid transfer activity. Biochemistry 2001; 40:9151-8. [PMID: 11478882 DOI: 10.1021/bi0107896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The alpha isoforms of mammalian phosphatidylinositol transfer protein (PITP) contain four conserved Cys residues. In this investigation, a series of thiol-modifying reagents, both alkylating and mixed disulfide-forming, was employed to define the accessibility of these residues and to evaluate their role in protein-mediated intermembrane phospholipid transport. Isolation and analysis of chemically modified peptides and site-directed mutagenesis of each Cys residue to Ala were also performed. Soluble, membrane-associated, and denatured preparations of wild-type and mutant rat PITPs were studied. Under denaturing conditions, all four Cys residues could be detected spectrophotometrically by chemical reaction with 4,4'-dipyridyl disulfide or 5,5'-dithiobis(2-nitrobenzoate). In the native protein, two of the four Cys residues were sensitive to some but not all thiol-modifying reagents, with discrimination based on the charge and hydrophobicity of the reagent and the conformation of the protein. With the soluble conformation of PITP, achieved in the absence of phospholipid vesicles, the surface-exposed Cys(188) was chemically modified without consequence to lipid transfer activity. Cys(188) exhibited an apparent pK(a) of 7.6. The buried Cys(95), which constitutes part of the phospholipid substrate binding site, was covalently modified upon transient association of PITP with a membrane surface. The Cys-to-Ala mutations showed that neither Cys(95) nor Cys(188) was essential for lipid transfer activity. However, chemical modification of Cys(95) resulted in the loss of lipid transfer activity. These results demonstrate that the Cys residues of PITP can be assigned to several different classes of chemical reactivity. Of particular interest is Cys(95), whose sulfhydryl group becomes exposed to modification in the membrane-associated conformation of PITP. Furthermore, the inhibition of PITP activity by thiol-modifying reagents is a result of steric hindrance of phospholipid substrate binding.
Collapse
Affiliation(s)
- J M Tremblay
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421, USA
| | | | | | | |
Collapse
|
34
|
Abstract
The trans-Golgi network (TGN) is a major secretory pathway sorting station that directs newly synthesized proteins to different subcellular destinations. The TGN also receives extracellular materials and recycled molecules from endocytic compartments. In this review, we summarize recent progress on understanding TGN structure and the dynamics of trafficking to and from this compartment. Protein sorting into different transport vesicles requires specific interactions between sorting motifs on the cargo molecules and vesicle coat components that recognize these motifs. Current understanding of the various targeting signals and vesicle coat components that are involved in TGN sorting are discussed, as well as the molecules that participate in retrieval to this compartment in both yeast and mammalian cells. Besides proteins, lipids and lipid-modifying enzymes also participate actively in the formation of secretory vesicles. The possible mechanisms of action of these lipid hydrolases and lipid kinases are discussed. Finally, we summarize the fundamentally different apical and basolateral cell surface delivery mechanisms and the current facts and hypotheses on protein sorting from the TGN into the regulated secretory pathway in neuroendocrine cells.
Collapse
Affiliation(s)
- F. Gu
- Vollum Institute, L-474, Oregon Health Science University, 3181 SW Sam Jackson Park Road, Portland (Oregon 97201, USA), Fax: +1 503 494 4534, e-mail: , , , , US
| | - C.M. Crump
- Vollum Institute, L-474, Oregon Health Science University, 3181 SW Sam Jackson Park Road, Portland (Oregon 97201, USA), Fax: +1 503 494 4534, e-mail: , , , , US
| | - G. Thomas
- Vollum Institute, L-474, Oregon Health Science University, 3181 SW Sam Jackson Park Road, Portland (Oregon 97201, USA), Fax: +1 503 494 4534, e-mail: , , , , US
| |
Collapse
|
35
|
Abstract
Chemical synaptic transmission serves as the main form of cell to cell communication in the nervous system. Neurotransmitter release occurs through the process of regulated exocytosis, in which a synaptic vesicle releases its contents in response to an increase in calcium. The use of genetic, biochemical, structural, and functional studies has led to the identification of factors important in the synaptic vesicle life cycle. Here we focus on the prominent role of SNARE (soluble NSF attachment protein receptor) proteins during membrane fusion and the regulation of SNARE function by Rab3a, nSec1, and NSF. Many of the proteins important for transmitter release have homologs involved in intracellular vesicle transport, and all forms of vesicle trafficking share common basic principles. Finally, modifications to the synaptic exocytosis pathway are very likely to underlie certain forms of synaptic plasticity and therefore contribute to learning and memory.
Collapse
Affiliation(s)
- R C Lin
- Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305-5428, USA
| | | |
Collapse
|
36
|
Bouma B, Westerman J, Dekker N, Gros P, Wirtz KW. Activation of phosphatidylinositol transfer protein alpha and beta isoforms from inclusion bodies. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1546:216-25. [PMID: 11257524 DOI: 10.1016/s0167-4838(01)00142-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Fully active phosphatidylinositol transfer protein (PI-TP) isoforms alpha and beta have been obtained from Escherichia coli inclusion bodies. Folding and activation of PI-TPalpha was achieved in the presence of DiC7:0-phosphatidylcholine-Triton X-114 (PtdCho-TX114) mixed micelles. Replacement of DiC7:0-PtdCho with the natural ligands of PI-TPalpha, i.e. long-chain PtdCho and phosphatidylinositol, did not stimulate activation. Efficient activation of PI-TPalpha required a low temperature (4 degrees C), the presence of dithiothreitol, and was achieved at a relatively high protein concentration (i.e. up to 500 microg ml(-1)). The inclusion bodies yielded 10 mg homogeneous PI-TPalpha per liter of E. coli culture. Conditions for full activation of PI-TPbeta were similar to those for PI-TPalpha except that long-chain PtdCho-TX114 mixed micelles and a very low protein concentration (i.e. 10 microg ml(-1)) were required. In contrast to PI-TPalpha, PI-TPbeta lost its lipid transfer activity within a few days. This inactivation could be prevented by addition of beta-alanine. In summary, despite 94% sequence similarity, PI-TPalpha and PI-TPbeta display a striking difference both in their preference for the PtdCho acyl chain length required for activation, and in their conformational stability after folding.
Collapse
Affiliation(s)
- B Bouma
- Department of Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands.
| | | | | | | | | |
Collapse
|
37
|
Nemoto Y, Kearns BG, Wenk MR, Chen H, Mori K, Alb JG, De Camilli P, Bankaitis VA. Functional characterization of a mammalian Sac1 and mutants exhibiting substrate-specific defects in phosphoinositide phosphatase activity. J Biol Chem 2000; 275:34293-305. [PMID: 10887188 DOI: 10.1074/jbc.m003923200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae SAC1 gene was identified via independent analyses of mutations that modulate yeast actin function and alleviate the essential requirement for phosphatidylinositol transfer protein (Sec14p) activity in Golgi secretory function. The SAC1 gene product (Sac1p) is an integral membrane protein of the endoplasmic reticulum and the Golgi complex. Sac1p shares primary sequence homology with a subfamily of cytosolic/peripheral membrane phosphoinositide phosphatases, the synaptojanins, and these Sac1 domains define novel phosphoinositide phosphatase modules. We now report the characterization of a rat counterpart of Sac1p. Rat Sac1 is a ubiquitously expressed 65-kDa integral membrane protein of the endoplasmic reticulum that is found at particularly high levels in cerebellar Purkinje cells. Like Sac1p, rat Sac1 exhibits intrinsic phosphoinositide phosphatase activity directed toward phosphatidylinositol 3-phosphate, phosphatidylinositol 4-phosphate, and phosphatidylinositol 3,5-bisphosphate substrates, and we identify mutant rat sac1 alleles that evoke substrate-specific defects in this enzymatic activity. Finally, rat Sac1 expression in Deltasac1 yeast strains complements a wide phenotypes associated with Sac1p insufficiency. Biochemical and in vivo data indicate that rat Sac1 phosphatidylinositol-4-phosphate phosphatase activity, but not its phosphatidylinositol-3-phosphate or phosphatidylinositol-3, 5-bisphosphate phosphatase activities, is essential for the heterologous complementation of Sac1p defects in vivo. Thus, yeast Sac1p and rat Sac1 are integral membrane lipid phosphatases that play evolutionary conserved roles in eukaryotic cell physiology.
Collapse
Affiliation(s)
- Y Nemoto
- Brain Science Institute, The Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hébert SS, Daviau A, Grondin G, Latreille M, Aubin RA, Blouin R. The mixed lineage kinase DLK is oligomerized by tissue transglutaminase during apoptosis. J Biol Chem 2000; 275:32482-90. [PMID: 10922377 DOI: 10.1074/jbc.m006528200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Current evidence suggests that the mixed lineage kinase family member dual leucine zipper-bearing kinase (DLK) might play a significant role in the regulation of cell growth and differentiation, particularly during the process of tissue remodeling. To further explore this working model, we have investigated the regulation of host and recombinant DLK in NIH3T3 and COS-1 cells undergoing apoptosis. Using calphostin C, a potent and selective inhibitor of protein kinase C and a recognized apoptosis inducer for various cell types, we demonstrate, by immunoblot analysis, that DLK protein levels are rapidly and dramatically down-regulated during the early phases of apoptosis. Down-regulation in calphostin C-treated cells was also accompanied by the appearance of SDS- and mercaptoethanol-resistant high molecular weight DLK immunoreactive oligomers. Experiments aimed at elucidating the mechanism(s) underlying DLK oligomerization revealed that the tissue transglutaminase (tTG) inhibitor monodansylcadaverine antagonized the effects of calphostin C almost completely, thereby suggesting the involvement of a tTG-catalyzed reaction as the root cause of DLK down-regulation and accumulation as high molecular weight species. In support of this notion, we also show that DLK can serve as a substrate for tTG-dependent cross-linking in vitro and that this covalent post-translational modification leads to the functional inactivation of DLK. Taken together, these observations suggest that transglutamination and oligomerization may constitute a relevant physiological mechanism for the regulation of DLK activity.
Collapse
Affiliation(s)
- S S Hébert
- Centre de Recherche sur les Mécanismes d'Expression Génétique, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1 and Santé Canada, France
| | | | | | | | | | | |
Collapse
|
39
|
Mancini M, Machamer CE, Roy S, Nicholson DW, Thornberry NA, Casciola-Rosen LA, Rosen A. Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J Cell Biol 2000; 149:603-12. [PMID: 10791974 PMCID: PMC2174848 DOI: 10.1083/jcb.149.3.603] [Citation(s) in RCA: 303] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/1999] [Accepted: 03/07/2000] [Indexed: 01/08/2023] Open
Abstract
Caspases are an extended family of cysteine proteases that play critical roles in apoptosis. Animals deficient in caspases-2 or -3, which share very similar tetrapeptide cleavage specificities, exhibit very different phenotypes, suggesting that the unique features of individual caspases may account for distinct regulation and specialized functions. Recent studies demonstrate that unique apoptotic stimuli are transduced by distinct proteolytic pathways, with multiple components of the proteolytic machinery clustering at distinct subcellular sites. We demonstrate here that, in addition to its nuclear distribution, caspase-2 is localized to the Golgi complex, where it cleaves golgin-160 at a unique site not susceptible to cleavage by other caspases with very similar tetrapeptide specificities. Early cleavage at this site precedes cleavage at distal sites by other caspases. Prevention of cleavage at the unique caspase-2 site delays disintegration of the Golgi complex after delivery of a pro-apoptotic signal. We propose that the Golgi complex, like mitochondria, senses and integrates unique local conditions, and transduces pro-apoptotic signals through local caspases, which regulate local effectors.
Collapse
Affiliation(s)
- Marie Mancini
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Carolyn E. Machamer
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Sophie Roy
- Department of Biochemistry and Molecular Biology, Merck Frosst Center for Therapeutic Research, Pointe Claire-Dorval, Quebec, H9R 4P8, Canada
| | - Donald W. Nicholson
- Department of Biochemistry and Molecular Biology, Merck Frosst Center for Therapeutic Research, Pointe Claire-Dorval, Quebec, H9R 4P8, Canada
| | - Nancy A. Thornberry
- Department of Biochemistry, Merck Research Laboratories, Rahway, New Jersey 07065
| | - Livia A. Casciola-Rosen
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Antony Rosen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|