1
|
Yokoyama S, Koo I, Aibara D, Tian Y, Murray IA, Collins SL, Coslo DM, Kono M, Peters JM, Proia RL, Gonzalez FJ, Perdew GH, Patterson AD. Sphingosine Kinase 2 Regulates Aryl Hydrocarbon Receptor Nuclear Translocation and Target Gene Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400794. [PMID: 39207053 PMCID: PMC11516111 DOI: 10.1002/advs.202400794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Sphingolipids play vital roles in metabolism and regulation. Previously, the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, was reported to directly regulate ceramide synthesis genes by binding to their promoters. Herein, sphingosine kinase 2 (SPHK2), responsible for producing sphingosine-1-phosphate (S1P), was found to interact with AHR through LXXLL motifs, influencing AHR nuclear localization. Through mutagenesis and co-transfection studies, AHR activation and subsequent nuclear translocation was hindered by SPHK2 LXXLL mutants or SPHK2 lacking a nuclear localization signal (NLS). Similarly, an NLS-deficient AHR mutant impaired SPHK2 nuclear translocation. Silencing SPHK2 reduced AHR expression and its target gene CYP1A1, while SPHK2 overexpression enhanced AHR activity. SPHK2 was found enriched on the CYP1A1 promoter, underscoring its role in AHR target gene activation. Additionally, S1P rapidly increased AHR expression at both the mRNA and protein levels and promoted AHR recruitment to the CYP1A1 promoter. Using mouse models, AHR deficiency compromised SPHK2 nuclear translocation, illustrating a critical interaction where SPHK2 facilitates AHR nuclear localization and supports a positive feedback loop between AHR and sphingolipid enzyme activity in the nucleus. These findings highlight a novel function of SPHK2 in regulating AHR activity and gene expression.
Collapse
Affiliation(s)
- Shigetoshi Yokoyama
- Department of Veterinary and Biomedical SciencesPennsylvania State UniversityUniversity ParkPA16802USA
| | - Imhoi Koo
- Department of Veterinary and Biomedical SciencesPennsylvania State UniversityUniversity ParkPA16802USA
| | - Daisuke Aibara
- Cancer Innovation LaboratoryCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMD20892USA
| | - Yuan Tian
- Department of Veterinary and Biomedical SciencesPennsylvania State UniversityUniversity ParkPA16802USA
| | - Iain A. Murray
- Department of Veterinary and Biomedical SciencesPennsylvania State UniversityUniversity ParkPA16802USA
| | - Stephanie L. Collins
- Department of Biochemistry and Molecular BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| | - Denise M. Coslo
- Department of Veterinary and Biomedical SciencesPennsylvania State UniversityUniversity ParkPA16802USA
| | - Mari Kono
- Genetics and Biochemistry BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMD20892USA
| | - Jeffrey M. Peters
- Department of Veterinary and Biomedical SciencesPennsylvania State UniversityUniversity ParkPA16802USA
| | - Richard L. Proia
- Genetics and Biochemistry BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMD20892USA
| | - Frank J. Gonzalez
- Cancer Innovation LaboratoryCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMD20892USA
| | - Gary H. Perdew
- Department of Veterinary and Biomedical SciencesPennsylvania State UniversityUniversity ParkPA16802USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical SciencesPennsylvania State UniversityUniversity ParkPA16802USA
- Department of Biochemistry and Molecular BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
2
|
Analysis of Transcriptome Difference between Blood-Fed and Starved Tropical Bed Bug, Cimex hemipterus (F.) (Hemiptera: Cimicidae). INSECTS 2022; 13:insects13040387. [PMID: 35447830 PMCID: PMC9029146 DOI: 10.3390/insects13040387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary Bed bugs are well known for their extreme resilience to starvation. The molecular mechanisms behind this ability, however, are little known. Thus, the whole transcriptomes of blood-fed and starved bed bugs from the species Cimex hemipterus (tropical bed bugs) were sequenced and compared. The transcriptome of tropical bed bugs was initially annotated. Following differentially expressed genes (DEGs) analysis, regulated transcripts were mostly identified in biological processes during blood-feeding and starvation. The results provide an overview of the functional genes proportion of this species and a deeper understanding of the bed bug’s molecular mechanism of resistance to blood feeding and starvation. Abstract The reference transcriptome for Cimex hemipterus (tropical bed bug) was assembled de novo in this study, and differential expression analysis was conducted between blood-fed and starved tropical bed bug. A total of 24,609 transcripts were assembled, with around 79% of them being annotated against the Eukaryotic Orthologous Groups (KOG) database. The transcriptomic comparison revealed several differentially expressed genes between blood-fed and starved bed bugs, with 38 of them being identifiable. There were 20 and 18 genes significantly upregulated in blood-fed and starved bed bugs, respectively. Differentially expressed genes (DEGs) were revealed to be associated with regulation, metabolism, transport, motility, immune, and stress response; endocytosis; and signal transduction. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed an enrichment of genes encoding steroid biosynthesis, glycosaminoglycan biosynthesis, butanoate metabolism, and autophagy in both blood-fed and starved bed bugs. However, in blood-fed bed bugs, genes involved in histidine metabolism, caffeine metabolism, ubiquinone/terpenoid-quinone biosynthesis, and sulfur relay system were enriched. On the other hand, starvation activates genes related to nicotinate and nicotinamide metabolism, fatty acid elongation, terpenoid backbone biosynthesis, metabolism of xenobiotics by cytochrome P450, riboflavin metabolism, apoptosis, and protein export. The present study is the first to report a de novo transcriptomic analysis in C. hemipterus and demonstrated differential responses of bed bugs in facing blood-feeding and starvation.
Collapse
|
3
|
Zhang CH, Zhang MJ, Shi XX, Mao C, Zhu ZR. Alkaline Ceramidase Mediates the Oxidative Stress Response in Drosophila melanogaster Through Sphingosine. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5494809. [PMID: 31115476 PMCID: PMC6529914 DOI: 10.1093/jisesa/iez042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 05/04/2023]
Abstract
Alkaline ceramidase (Dacer) in Drosophila melanogaster was demonstrated to be resistant to paraquat-induced oxidative stress. However, the underlying mechanism for this resistance remained unclear. Here, we showed that sphingosine feeding triggered the accumulation of hydrogen peroxide (H2O2). Dacer-deficient D. melanogaster (Dacer mutant) has higher catalase (CAT) activity and CAT transcription level, leading to higher resistance to oxidative stress induced by paraquat. By performing a quantitative proteomic analysis, we identified 79 differentially expressed proteins in comparing Dacer mutant to wild type. Three oxidoreductases, including two cytochrome P450 (CG3050, CG9438) and an oxoglutarate/iron-dependent dioxygenase (CG17807), were most significantly upregulated in Dacer mutant. We presumed that altered antioxidative activity in Dacer mutant might be responsible for increased oxidative stress resistance. Our work provides a novel insight into the oxidative antistress response in D. melanogaster.
Collapse
Affiliation(s)
- Chun-Hong Zhang
- State Key Laboratory of Rice Biology, MOA Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min-Jing Zhang
- State Key Laboratory of Rice Biology, MOA Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Xiao Shi
- State Key Laboratory of Rice Biology, MOA Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cungui Mao
- State University of New York at Stony Brook, Stony Brook, NY
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology, MOA Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, Zhejiang, China
- Corresponding author, e-mail:
| |
Collapse
|
4
|
Vidal A, Mengelers M, Yang S, De Saeger S, De Boevre M. Mycotoxin Biomarkers of Exposure: A Comprehensive Review. Compr Rev Food Sci Food Saf 2018; 17:1127-1155. [DOI: 10.1111/1541-4337.12367] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/09/2018] [Accepted: 05/12/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Arnau Vidal
- Laboratory of Food Analysis, Dept. of Bioanalysis, Faculty of Pharmaceutical Sciences; Ghent Univ.; Ghent Belgium
| | - Marcel Mengelers
- Dept. of Food Safety; National Inst. of Public Health and the Environment; Bilthoven The Netherlands
| | - Shupeng Yang
- Inst. of Apicultural Research, Chinese Acad. of Agricultural Sciences, Key Laboratory of Bee Products for Quality and Safety Control, Laboratory of Risk Assessment for Quality and Safety of Bee Products; Bee Product Quality Supervision and Testing Center; Ministry of Agriculture Beijing 100093 People's Republic of China
| | - Sarah De Saeger
- Laboratory of Food Analysis, Dept. of Bioanalysis, Faculty of Pharmaceutical Sciences; Ghent Univ.; Ghent Belgium
| | - Marthe De Boevre
- Laboratory of Food Analysis, Dept. of Bioanalysis, Faculty of Pharmaceutical Sciences; Ghent Univ.; Ghent Belgium
| |
Collapse
|
5
|
Transcriptome Analysis of the Midgut of the Chinese Oak Silkworm Antheraea pernyi Infected with Antheraea pernyi Nucleopolyhedrovirus. PLoS One 2016; 11:e0165959. [PMID: 27820844 PMCID: PMC5098726 DOI: 10.1371/journal.pone.0165959] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/20/2016] [Indexed: 12/11/2022] Open
Abstract
The Antheraea pernyi nucleopolyhedrovirus (ApNPV) is an exclusive pathogen of A. pernyi. The intense interactions between ApNPV and A. pernyi cause a series of physiological and pathological changes to A. pernyi. However, no detailed report exists regarding the molecular mechanisms underlying the interactions between ApNPV and A. pernyi. In this study, four cDNA libraries of the A. pernyi midgut, including two ApNPV-infected groups and two control groups, were constructed for transcriptomic analysis to provide new clues regarding the molecular mechanisms that underlie these interactions. The transcriptome of the A. pernyi midgut was de novo assembled using the Trinity platform because of the lack of a genome resource for A. pernyi. Compared with the controls, a total of 5,172 differentially expressed genes (DEGs) were identified, including 2,183 up-regulated and 2,989 down-regulated candidates, of which 2,965 and 911 DEGs were classified into different GO categories and KEGG pathways, respectively. The DEGs involved in A. pernyi innate immunity were classified into several categories, including heat-shock proteins, apoptosis-related proteins, serpins, serine proteases and cytochrome P450s. Our results suggested that these genes were related to the immune response of the A. pernyi midgut to ApNPV infection via their essential roles in regulating a variety of physiological processes. Our results may serve as a basis for future research not only on the molecular mechanisms of ApNPV invasion but also on the anti-ApNPV mechanism of A. pernyi.
Collapse
|
6
|
Li F, Ni M, Zhang H, Wang B, Xu K, Tian J, Hu J, Shen W, Li B. Expression profile analysis of silkworm P450 family genes after phoxim induction. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 122:103-109. [PMID: 26071814 DOI: 10.1016/j.pestbp.2014.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 06/04/2023]
Abstract
Silkworm (Bombyx mori) is an important economic insect and a model species for Lepidopteran. Each year, O,O-diethyl O-(alpha-cyanobenzylideneamino) phosphorothioate (phoxim) pesticide poisoning in China results in huge economic losses in sericulture. Silkworm fat body is the main organ for nutrient storage, energy supply, intermediary metabolism, and detoxification. Microarray analysis of silkworm Cytochrome P450 detoxification enzyme genes revealed that all tested P450 4 (CYP4) family genes are expressed in the fat body. Quantitative Real-time PCR (QRT-PCR) was used to detect the expression of CYP4 family genes in silkworm fat body 0, 24, 48, and 72 h after phoxim exposure. The expression levels of silkworm molting hormone synthesis-related genes started to change 24 h after phoxim exposure, with those of CYP302A1, CYP306A1, and CYP314A1 being elevated by 1.38-, 1.33-, and 2.10-fold, respectively. The CYP18A1 gene that participates in steroid hormone inactivation and the CYP15C1 gene that participates in the epoxidation during the synthesis of juvenile hormone (JH) from methyl farnesoate (MF) were increased by 3.85- and 7.82-fold, respectively. Phylogenetic analysis indicated that these endogenous hormone metabolism-related genes belong to CYP mito clan and clan 2, and that phoxim exposure may affect silkworm development and metamorphosis. The CYP4, CYP6, and CYP9 families all showed some degrees of increases in gene expression; among them, CYP49A1, CYP4L6, CYP6AB4, CYP9G3, CYP9A19, and CYP9A22's transcription levels were significantly upregulated to 12.77-, 2.64-, 2.42-, 4.06-, 3.32-, and 2.98-fold, respectively, of the control levels. In the fat body, CYP49A1, CYP6AB4, CYP9A19, and CYP9A22 were constantly expressed at high levels after 24, 48, and 72 h of phoxim treatments; according to phylogenetic analysis, these genes belong to detoxification-related clan 3 and clan 4 CYP families. These genes may participate in the metabolism of phoxim in silkworm fat body. The results obtained in this study provide a basis for future in-depth investigations of insect P450 family genes in metabolic detoxification.
Collapse
Affiliation(s)
- Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Min Ni
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hua Zhang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Binbin Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kaizun Xu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianghai Tian
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingsheng Hu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Weide Shen
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
7
|
Schrader L, Simola DF, Heinze J, Oettler J. Sphingolipids, Transcription Factors, and Conserved Toolkit Genes: Developmental Plasticity in the Ant Cardiocondyla obscurior. Mol Biol Evol 2015; 32:1474-86. [PMID: 25725431 PMCID: PMC4615751 DOI: 10.1093/molbev/msv039] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Developmental plasticity allows for the remarkable morphological specialization of individuals into castes in eusocial species of Hymenoptera. Developmental trajectories that lead to alternative caste fates are typically determined by specific environmental stimuli that induce larvae to express and maintain distinct gene expression patterns. Although most eusocial species express two castes, queens and workers, the ant Cardiocondyla obscurior expresses diphenic females and males; this provides a unique system with four discrete phenotypes to study the genomic basis of developmental plasticity in ants. We sequenced and analyzed the transcriptomes of 28 individual C. obscurior larvae of known developmental trajectory, providing the first in-depth analysis of gene expression in eusocial insect larvae. Clustering and transcription factor binding site analyses revealed that different transcription factors and functionally distinct sets of genes are recruited during larval development to induce the four alternative trajectories. In particular, we found complex patterns of gene regulation pertaining to sphingolipid metabolism, a conserved molecular pathway involved in development, obesity, and aging.
Collapse
Affiliation(s)
- Lukas Schrader
- Department for Zoology/Evolutionary Biology, Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| | - Daniel F Simola
- Department of Cell and Developmental Biology, University of Pennsylvania
| | - Jürgen Heinze
- Department for Zoology/Evolutionary Biology, Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| | - Jan Oettler
- Department for Zoology/Evolutionary Biology, Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
8
|
Wang L, Su M, Zhao X, Hong J, Yu X, Xu B, Sheng L, Liu D, Shen W, Li B, Hong F. Nanoparticulate TiO2 protection of midgut damage in the silkworm (Bombyx mori) following phoxim exposure. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 68:534-542. [PMID: 25552327 DOI: 10.1007/s00244-014-0121-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/10/2014] [Indexed: 06/04/2023]
Abstract
Bombyx mori (B. mori) is often subjected to phoxim poisoning in China due to phoxim exposure, which leads to a decrease in silk production. Nanoparticulate (NP) titanium dioxide (nano-TiO2) has been shown to attenuate damages in B. mori caused by phoxim exposure. However, little is known about the molecular mechanisms of midgut injury due to organophosphorus insecticide exposure and its repair by nano-TiO2 pretreatment. In this study, phoxim exposure for 36 h led to significant decreases in body weight and survival and increased oxidative stress and midgut injury. Pretreatment with nano-TiO2 attenuated the phoxim-induced midgut injury, increased body weight and survival, and decreased oxidative stress in the midgut of B. mori. Digital gene-expression data showed that exposure to phoxim results in significant changes in the expression of 254 genes in the phoxim-exposed midgut and 303 genes in phoxim + nano-TiO2-exposed midgut. Specifically, phoxim exposure led to upregulation of Tpx, α-amylase, trypsin, and glycoside hydrolase genes involved in digestion and absorption. Phoxim exposure also led to the downregulation of Cyp450 and Cyp4C1 genes involved in an antioxidant capacity. In contrast, a combination of both phoxim and nano-TiO2 treatment significantly decreased the change in α-amylase, trypsin, and glycoside hydrolases (GHs), which are involved in digestion and absorption. These results indicated that Tpx, α-amylase, trypsin, GHs, Cyp450, and Cyp4C1 may be potential biomarkers of midgut toxicity caused by phoxim exposure and the attenuation of these toxic impacts by nano-TiO2.
Collapse
Affiliation(s)
- Ling Wang
- Library of Soochow University, Suzhou, 215123, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gu ZY, Li FC, Wang BB, Xu KZ, Ni M, Zhang H, Shen WD, Li B. Differentially expressed genes in the fat body of Bombyx mori in response to phoxim insecticide. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 117:47-53. [PMID: 25619911 DOI: 10.1016/j.pestbp.2014.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/29/2014] [Accepted: 10/07/2014] [Indexed: 06/04/2023]
Abstract
The silkworm, Bombyx mori, is an economically important insect. However, poisoning of silkworms by organophosphate pesticides causes tremendous loss to the sericulture. The fat body is the major tissue involved in detoxification and produces antimicrobial peptides and regulates hormones. In this study, a microarray system comprising 22,987 oligonucluotide 70-mer probes was employed to examine differentially expressed genes in the fat body of B. mori exposed to phoxim insecticide. The results showed that a total of 774 genes were differentially expressed upon phoxim exposure, including 500 up-regulated genes and 274 down-regulated genes. The expression levels of eight detoxification-related genes were up-regulated upon phoxim exposure, including six cytochrome P450s and two glutathione-S-transferases. It was firstly found that eight antimicrobial peptide genes were down-regulated, which might provide important references for studying the larvae of B. mori become more susceptible to microbial infections after phoxim treatment. In addition, we firstly detected the expression level of metamorphosis-related genes after phoxim exposure, which may lead to impacted reproduction. Our results may facilitate the overall understanding of the molecular mechanism of multiple pathways following exposure to phoxim insecticide in the fat body of B. mori.
Collapse
Affiliation(s)
- Z Y Gu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - F C Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - B B Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - K Z Xu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - M Ni
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - H Zhang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - W D Shen
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
| | - B Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
10
|
Kim YM, Park TS, Kim SG. The role of sphingolipids in drug metabolism and transport. Expert Opin Drug Metab Toxicol 2013; 9:319-31. [PMID: 23289866 DOI: 10.1517/17425255.2013.748749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Sphingolipids represent a diverse class of lipid molecules. In addition to their function as membrane structural components, they serve as signaling molecules involved in various biological processes such as cell metabolism, growth, differentiation, stress and inflammatory responses and apoptosis. Sphingolipids may modulate the activity and/or expression of cytochrome P450s (CYPs) and transporters, which suggests that they may affect drug metabolism and excretion. AREAS COVERED In this review, the authors provide an overview of the properties of sphingolipid structures and metabolism. They also describe the effects of sphingolipids on the activity and expression of CYPs and transporters. In addition, the authors discuss the pathologic conditions where the sphingolipid metabolism is dysregulated particularly in association with inflammation and cancer. EXPERT OPINION Sphingolipidomic approaches have become accessible with the aid of advances in analytical technology. Sphingolipid profiles are modified by diseases, genetic disorders or certain drug treatment. The consequent changes in sphingolipid contents may alter the activities of detoxifying enzymes and those associated with cell viability. Since CYPs and transporters play roles in xenobiotics metabolism and excretion, sphingolipidomic information may be of use in understanding drug effect and toxicity.
Collapse
Affiliation(s)
- Young Mi Kim
- Seoul National University, Research Institute of Pharmaceutical Sciences, College of Pharmacy, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-742, Korea
| | | | | |
Collapse
|
11
|
Gu ZY, Sun SS, Wang YH, Wang BB, Xie Y, Ma L, Wang JM, Shen WD, Li B. Transcriptional characteristics of gene expression in the midgut of domestic silkworms (Bombyx mori) exposed to phoxim. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2013; 105:36-43. [PMID: 24238288 DOI: 10.1016/j.pestbp.2012.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/23/2012] [Accepted: 11/18/2012] [Indexed: 06/02/2023]
Abstract
Silkworm (Bombyx mori) is not only an economically important insect but also a model system for lepidoptera. As a vital organ of digestion and nutrient absorption, the midgut of insects also serves as the first physiological barrier to chemical pesticides. In this study, microarray was performed to profile the gene expression changes in the midgut of silkworms exposed to phoxim. After 24h of phoxim exposure (4.0μg/mL), 266 genes displayed at least 2.0-fold changes in expression levels. Among them, 192 genes were up-regulated, and 74 genes were down-regulated. The most significant changes were 14.88-fold up-regulation and 23.36-fold down-regulation. According to gene ontology annotation and pathway analysis, differentially expressed genes were mainly classified into different groups based on their potential involvements in detoxification, immunne response, stress response, energy metabolism and transport. Particularly, the transcription levels of detoxification-related genes were up-regulated, such as cytochrome P450s, esterases and glutathione-S-transferase (GST), indicating increased detoxification activity in the midgut. Our study provides new insights into the molecular mechanism of pesticide metabolism in the midgut of insects, which may promote the development of highly efficient insecticides.
Collapse
Affiliation(s)
- Z Y Gu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lucki NC, Li D, Sewer MB. Sphingosine-1-phosphate rapidly increases cortisol biosynthesis and the expression of genes involved in cholesterol uptake and transport in H295R adrenocortical cells. Mol Cell Endocrinol 2012; 348:165-75. [PMID: 21864647 PMCID: PMC3508734 DOI: 10.1016/j.mce.2011.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 07/26/2011] [Accepted: 08/03/2011] [Indexed: 12/22/2022]
Abstract
In the acute phase of adrenocortical steroidogenesis, adrenocorticotrophin (ACTH) activates a cAMP/PKA-signaling pathway that promotes the transport of free cholesterol to the inner mitochondrial membrane. We have previously shown that ACTH rapidly stimulates the metabolism of sphingolipids and the secretion of sphingosine-1-phosphate (S1P) in H295R cells. In this study, we examined the effect of S1P on genes involved in the acute phase of steroidogenesis. We show that S1P increases the expression of steroidogenic acute regulatory protein (StAR), 18-kDa translocator protein (TSPO), low-density lipoprotein receptor (LDLR), and scavenger receptor class B type I (SR-BI). S1P-induced StAR mRNA expression requires Gα(i) signaling, phospholipase C (PLC), Ca(2+)/calmodulin-dependent kinase II (CamKII), and ERK1/2 activation. S1P also increases intracellular Ca(2+), the phosphorylation of hormone sensitive lipase (HSL) at Ser(563), and cortisol secretion. Collectively, these findings identify multiple roles for S1P in the regulation of glucocorticoid biosynthesis.
Collapse
Affiliation(s)
- Natasha C. Lucki
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230
| | - Donghui Li
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093-0704
| | - Marion B. Sewer
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093-0704
| |
Collapse
|
13
|
Lucki NC, Sewer MB. The interplay between bioactive sphingolipids and steroid hormones. Steroids 2010; 75:390-9. [PMID: 20138078 PMCID: PMC2854287 DOI: 10.1016/j.steroids.2010.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 01/25/2010] [Accepted: 01/26/2010] [Indexed: 01/02/2023]
Abstract
Steroid hormones regulate various physiological processes including development, reproduction, and metabolism. These regulatory molecules are synthesized from cholesterol in endocrine organs - such as the adrenal glands and gonads - via a multi-step enzymatic process that is catalyzed by the cytochrome P450 superfamily of monooxygenases and hydroxysteroid dehydrogenases. Steroidogenesis is induced by trophic peptide hormones primarily via the activation of a cAMP/protein kinase A (PKA)-dependent pathway. However, other signaling molecules, including cytokines and growth factors, control the steroid hormone biosynthetic pathway. More recently, sphingolipids, including ceramide, sphingosine-1-phosphate, and sphingosine, have been found to modulate steroid hormone secretion at multiple levels. In this review, we provide a brief overview of the mechanisms by which sphingolipids regulate steroidogenesis. In addition, we discuss how steroid hormones control sphingolipid metabolism. Finally, we outline evidence supporting the emerging role of bioactive sphingolipids in various nuclear processes and discuss a role for nuclear sphingolipid metabolism in the control of gene transcription.
Collapse
Affiliation(s)
- Natasha C. Lucki
- School of Biology and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 310 Ferst Dr., Atlanta, GA 30332
| | - Marion B. Sewer
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr. MC0704, La Jolla, CA 92093
| |
Collapse
|
14
|
Microarray analysis of the gene expression profile in the midgut of silkworm infected with cytoplasmic polyhedrosis virus. Mol Biol Rep 2010; 38:333-41. [PMID: 20349281 DOI: 10.1007/s11033-010-0112-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 03/16/2010] [Indexed: 12/16/2022]
Abstract
In order to obtain an overall view on silkworm response to Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) infection, a microarray system comprising 22,987 oligonucluotide 70-mer probes was employed to compare differentially expressed genes in the midguts of BmCPV-infected and normal silkworm larvae. At 72 h post-inoculation, 258 genes exhibited at least 2.0-fold differences in expression level. Out of these, 135 genes were up-regulated, while 123 genes were down-regulated. According to gene ontology (GO), 140 genes were classified into GO categories. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicates that 35 genes were involved in 10 significant (P<0.05) KEGG pathways. The expressions of genes related to valine, leucine, and isoleucine degradation, retinol metabolism, and vitamin B6 metabolism were all down-regulated. The expressions of genes involved in ribosome and proteasome pathway were all up-regulated. Quantitative real-time polymerase chain reaction was performed to validate the expression patterns of 13 selected genes of interest. The results suggest that BmCPV infection resulted in the disturbance of protein and amino acid metabolism and a series of major physiological and pathological changes in silkworm. Our results provide new insights into the molecular mechanism of BmCPV infection and host cell response.
Collapse
|
15
|
Abstract
Steroid hormones are essential regulators of a vast number of physiological processes. The biosynthesis of these chemical messengers occurs in specialized steroidogenic tissues via a multi-step process that is catalyzed by members of the cytochrome P450 superfamily of monooxygenases and hydroxysteroid dehydrogenases. Though numerous signaling mediators, including cytokines and growth factors control steroidogenesis, trophic peptide hormones are the primary regulators of steroid hormone production. These peptide hormones activate a cAMP/cAMP-dependent kinase (PKA) signaling pathway, however, studies have shown that crosstalk between multiple signal transduction pathways and signaling molecules modulates optimal steroidogenic capacity. Sphingolipids such as ceramide, sphingosine, sphingosine-1-phosphate, sphingomyelin, and gangliosides have been shown to control the steroid hormone biosynthetic pathway at multiple levels, including regulating steroidogenic gene expression and activity as well as acting as second messengers in signaling cascades. In this review, we provide an overview of recent studies that have investigated the role of sphingolipids in adrenal, gonadal, and neural steroidogenesis.
Collapse
Affiliation(s)
- Natasha C Lucki
- School of Biology and Parker H, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332-0230, USA
| | | |
Collapse
|
16
|
|
17
|
Rábano M, Peña A, Brizuela L, Macarulla JM, Gómez-Muñoz A, Trueba M. Angiotensin II-stimulated cortisol secretion is mediated by phospholipase D. Mol Cell Endocrinol 2004; 222:9-20. [PMID: 15249121 DOI: 10.1016/j.mce.2004.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 05/20/2004] [Indexed: 10/26/2022]
Abstract
Angiotensin II (Ang-II) regulates a variety of cellular functions including cortisol secretion. In the present report, we demonstrate that Ang-II activates phospholipase D (PLD) in zona fasciculata (ZF) cells of bovine adrenal glands, and that this effect is associated to the stimulation of cortisol secretion by this hormone. PLD activation was dependent upon extracellular Ca2+, and was blocked by inhibition of protein kinase C (PKC). Using the reverse transcription-polymerase chain reaction technique, we demonstrated that ZF cells express both PLD-1 and PLD-2 isozymes. Primary alcohols, which attenuate the formation of phosphatidate (the product of PLD), and cell-permeable ceramides, which inhibit PLD potently, blocked Ang-II-stimulated cortisol secretion. Furthermore, propranolol or chlorpromazine, which are potent inhibitors of phosphatidate phosphohydrolase (PAP) (the enzyme that produces diacylglycerol from phosphatidate), also blocked cortisol secretion. These data suggest that the PLD/PAP pathway plays an important role in the regulation of cortisol secretion by Ang-II in ZF cells.
Collapse
Affiliation(s)
- Miriam Rábano
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Seidel SD, Winters GM, Rogers WJ, Ziccardi MH, Li V, Keser B, Denison MS. Activation of the Ah receptor signaling pathway by prostaglandins. J Biochem Mol Toxicol 2002; 15:187-96. [PMID: 11673847 DOI: 10.1002/jbt.16] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates many of the biological and toxicological actions of a diverse range of chemicals, including the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin). Although no endogenous physiological ligand for the AhR has yet been described, numerous studies support the existence of such a ligand(s). Here we have examined the ability of prostaglandins and related chemicals to activate the AhR signaling system. Using two AhR-based bioassay systems we report that relatively high concentrations of several prostaglandins (namely, PGB3, PGD3, PGF3alpha, PGG2, PGH1, and PGH2) can not only stimulate AhR transformation and DNA binding in vitro, but also induce AhR-dependent reporter gene expression in mouse hepatoma cells in culture. PGG2 also induced AhR-dependent reporter gene expression to a level three-to four fold greater than that observed with a maximal inducing dose of TCDD. Sucrose gradient ligand binding analysis revealed that PGG2 could competitively displace [3H]TCDD from the AhR. Overall, our results demonstrate that selected prostaglandins are weak agonists for the AhR and they represent a structurally distinct and novel class of activator of the AhR signal transduction pathway.
Collapse
Affiliation(s)
- S D Seidel
- Department of Environmental Toxicology, University of California, Davis, 95616-8588, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Carlson DB, Williams DE, Spitsbergen JM, Ross PF, Bacon CW, Meredith FI, Riley RT. Fumonisin B1 promotes aflatoxin B1 and N-methyl-N'-nitro-nitrosoguanidine-initiated liver tumors in rainbow trout. Toxicol Appl Pharmacol 2001; 172:29-36. [PMID: 11264020 DOI: 10.1006/taap.2001.9129] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Laboratory studies have described the carcinogenicity of fumonisin B1 (FB1) in rodents and epidemiological evidence suggests an association between FB1 (a mycotoxin produced by Fusarium moniliforme) and cancer in humans. This study was designed to reveal in rainbow trout, a species with very low spontaneous tumor incidence, if FB1 was (i) a complete carcinogen, in the absence of an initiator; (ii) a promoter of liver tumors in fish initiated as fry with aflatoxin B1 (AFB1); and (iii) a promoter of liver, kidney, stomach, or swim bladder tumors in fish initiated as fry with N-methyl-N'-nitro-nitrosoguanidine (MNNG). FB1 was not a complete carcinogen in trout. No tumors were observed in any tissue of fish fed diets containing 0, 3.2, 23, or 104 ppm FB1 for a total of 34 weeks (4 weeks FB1 exposure, 2 weeks outgrowth on control diet, followed by 30 weeks FB1 diet) in the absence of a known initiator. FB1 promoted AFB1 initiated liver tumors in fish fed > or = 23 ppm FB1 for 42 weeks. A 1-week pretreatment of FB1 did not alter the amount of liver [3H]AFB1 DNA adducts, which suggests that short-term exposure to FB1 will not alter phase I or phase II metabolism of AFB1. In MNNG-initiated fish, liver tumors were promoted in the 104 ppm FB1 treatment (42 weeks), but FB1 did not promote tumors in any other tissue. Tumor incidence decreased in kidney and stomach in the 104 ppm FB1 treatment of MNNG-initiated trout. The FB1 promotional activity in AFB1-initiated fish was correlated with disruption of sphingolipid metabolism, suggesting that alterations in associated sphingolipid signaling pathways are potentially responsible for the promotional activity of FB1 in AFB1-initiated fish.
Collapse
Affiliation(s)
- D B Carlson
- Center for Molecular Toxicology, Penn State University, 226 Fenske Lab, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Marathe S, Choi Y, Leventhal AR, Tabas I. Sphingomyelinase converts lipoproteins from apolipoprotein E knockout mice into potent inducers of macrophage foam cell formation. Arterioscler Thromb Vasc Biol 2000; 20:2607-13. [PMID: 11116060 DOI: 10.1161/01.atv.20.12.2607] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The apoE knockout (E0) mouse is one of the most widely used animal models of atherosclerosis, and there may be similarities to chylomicron remnant-induced atherosclerosis in humans. Although the lesions of these mice contain large numbers of cholesteryl ester (CE)-laden macrophages (foam cells), E0 plasma lipoproteins are relatively weak inducers of cholesterol esterification in macrophages. Previous in vivo work has suggested that arterial wall sphingomyelinase (SMase) may promote atherogenesis in the E0 mouse, perhaps by inducing subendothelial lipoprotein aggregation and subsequent foam cell formation. The goal of the present study was to test the hypothesis that the modification of E0 lipoproteins by SMase converts these lipoproteins into potent inducers of macrophage foam cell formation. When d<1.063 E0 lipoproteins were pretreated with SMase and then incubated with E0 macrophages, cellular CE mass and stimulation of the cholesterol esterification pathway were increased approximately 5-fold compared with untreated lipoproteins. SMase-treated E0 lipoproteins were more potent stimulators of cholesterol esterification than either E0 lipoproteins in the presence of lipoprotein lipases or oxidized E0 lipoproteins. The uptake and degradation of SMase-treated E0 lipoproteins by macrophages were saturable and specific and substantially inhibited by partial proteolysis of cell-surface proteins. Uptake and degradation were diminished by an anti-apoB antibody and by competition with human S(f) 100-400 hypertriglyceridemic VLDL, raising the possibility that a receptor that recognizes apoB-48 might be involved. In conclusion, SMase-modification of E0 lipoproteins, a process previously shown to occur in lesions, may be an important mechanism for foam cell formation in this widely studied model of atherosclerosis. Moreover, the findings in this report may provide important clues regarding the atherogenicity of chylomicron remnants in humans.
Collapse
Affiliation(s)
- S Marathe
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
21
|
Wong ML, Xie B, Beatini N, Phu P, Marathe S, Johns A, Gold PW, Hirsch E, Williams KJ, Licinio J, Tabas I. Acute systemic inflammation up-regulates secretory sphingomyelinase in vivo: a possible link between inflammatory cytokines and atherogenesis. Proc Natl Acad Sci U S A 2000; 97:8681-6. [PMID: 10890909 PMCID: PMC27008 DOI: 10.1073/pnas.150098097] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2000] [Indexed: 11/18/2022] Open
Abstract
Inflammation plays a critical role in atherogenesis, yet the mediators linking inflammation to specific atherogenic processes remain to be elucidated. One such mediator may be secretory sphingomyelinase (S-SMase), a product of the acid sphingomyelinase gene. The secretion of S-SMase by cultured endothelial cells is induced by inflammatory cytokines, and in vivo data have implicated S-SMase in subendothelial lipoprotein aggregation, macrophage foam cell formation, and possibly other atherogenic processes. Thus, the goal of this study was to seek evidence for S-SMase regulation in vivo during a physiologically relevant inflammatory response. First, wild-type mice were injected with saline or lipopolysaccharide (LPS) as a model of acute systemic inflammation. Serum S-SMase activity 3 h postinjection was increased 2- to 2.5-fold by LPS (P < 0.01). To determine the role of IL-1 in the LPS response, we used IL-1 converting enzyme knockout mice, which exhibit deficient IL-1 bioactivity. The level of serum S-SMase activity in LPS-injected IL-1 converting enzyme knockout mice was approximately 35% less than that in identically treated wild-type mice (P < 0.01). In LPS-injected IL-1-receptor antagonist knockout mice, which have an enhanced response to IL-1, serum S-SMase activity was increased 1. 8-fold compared with LPS-injected wild-type mice (P < 0.01). Finally, when wild-type mice were injected directly with IL-1beta, tumor necrosis factor alpha, or both, serum S-SMase activity increased 1. 6-, 2.3-, and 2.9-fold, respectively (P < 0.01). These data show regulation of S-SMase activity in vivo and they raise the possibility that local stimulation of S-SMase may contribute to the effects of inflammatory cytokines in atherosclerosis.
Collapse
Affiliation(s)
- M L Wong
- Department of Psychiatry and Biobehavioral Sciences, University of California, School of Medicine, Los Angeles, CA 90095-1761, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Vesper H, Schmelz EM, Nikolova-Karakashian MN, Dillehay DL, Lynch DV, Merrill AH. Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J Nutr 1999; 129:1239-50. [PMID: 10395583 DOI: 10.1093/jn/129.7.1239] [Citation(s) in RCA: 376] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic organisms as well as some prokaryotes and viruses contain sphingolipids, which are defined by a common structural feature, i.e. , a "sphingoid base" backbone such as D-erythro-1,3-dihydroxy, 2-aminooctadec-4-ene (sphingosine). The sphingolipids of mammalian tissues, lipoproteins, and milk include ceramides, sphingomyelins, cerebrosides, gangliosides and sulfatides; plants, fungi and yeast have mainly cerebrosides and phosphoinositides. The total amounts of sphingolipids in food vary considerably, from a few micromoles per kilogram (fruits) to several millimoles per kilogram in rich sources such as dairy products, eggs and soybeans. With the use of the limited data available, per capita sphingolipid consumption in the United States can be estimated to be on the order of 150-180 mmol (approximately 115-140 g) per year, or 0.3-0.4 g/d. There is no known nutritional requirement for sphingolipids; nonetheless, they are hydrolyzed throughout the gastrointestinal tract to the same categories of metabolites (ceramides and sphingoid bases) that are used by cells to regulate growth, differentiation, apoptosis and other cellular functions. Studies with experimental animals have shown that feeding sphingolipids inhibits colon carcinogenesis, reduces serum LDL cholesterol and elevates HDL, suggesting that sphingolipids represent a "functional" constituent of food. Sphingolipid metabolism can also be modified by constituents of the diet, such as cholesterol, fatty acids and mycotoxins (fumonisins), with consequences for cell regulation and disease. Additional associations among diet, sphingolipids and health are certain to emerge as more is learned about these compounds.
Collapse
Affiliation(s)
- H Vesper
- Departments of Biochemistry and Pathology, and Division of Animal Resources, Emory University, Atlanta, GA 30322-3050, USA
| | | | | | | | | | | |
Collapse
|