1
|
Zhang W, Luo P, Liu X, Cheng R, Zhang S, Qian X, Liu F. Roles of Fibroblast Growth Factors in the Axon Guidance. Int J Mol Sci 2023; 24:10292. [PMID: 37373438 DOI: 10.3390/ijms241210292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Fibroblast growth factors (FGFs) have been widely studied by virtue of their ability to regulate many essential cellular activities, including proliferation, survival, migration, differentiation and metabolism. Recently, these molecules have emerged as the key components in forming the intricate connections within the nervous system. FGF and FGF receptor (FGFR) signaling pathways play important roles in axon guidance as axons navigate toward their synaptic targets. This review offers a current account of axonal navigation functions performed by FGFs, which operate as chemoattractants and/or chemorepellents in different circumstances. Meanwhile, detailed mechanisms behind the axon guidance process are elaborated, which are related to intracellular signaling integration and cytoskeleton dynamics.
Collapse
Affiliation(s)
- Weiyun Zhang
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
- Medical Experimental Teaching Center, School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| | - Peiyi Luo
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
| | - Xiaohan Liu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ruoxi Cheng
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
| | - Shuxian Zhang
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
| | - Xiao Qian
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
| | - Fang Liu
- Department of Cell Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| |
Collapse
|
2
|
Yang KY, Zhao S, Feng H, Shen J, Chen Y, Wang ST, Wang SJ, Zhang YX, Wang Y, Guo C, Liu H, Tang TS. Ca 2+ homeostasis maintained by TMCO1 underlies corpus callosum development via ERK signaling. Cell Death Dis 2022; 13:674. [PMID: 35927240 PMCID: PMC9352667 DOI: 10.1038/s41419-022-05131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023]
Abstract
Transmembrane of coiled-coil domains 1 (TMCO1) plays an important role in maintaining homeostasis of calcium (Ca2+) stores in the endoplasmic reticulum (ER). TMCO1-defect syndrome shares multiple features with human cerebro-facio-thoracic (CFT) dysplasia, including abnormal corpus callosum (CC). Here, we report that TMCO1 is required for the normal development of CC through sustaining Ca2+ homeostasis. Tmco1-/- mice exhibit severe agenesis of CC with stalled white matter fiber bundles failing to pass across the midline. Mechanistically, the excessive Ca2+ signals caused by TMCO1 deficiency result in upregulation of FGFs and over-activation of ERK, leading to an excess of glial cell migration and overpopulated midline glia cells in the indusium griseum which secretes Slit2 to repulse extension of the neural fiber bundles before crossing the midline. Supportingly, using the clinical MEK inhibitors to attenuate the over-activated FGF/ERK signaling can significantly improve the CC formation in Tmco1-/- brains. Our findings not only unravel the underlying mechanism of abnormal CC in TMCO1 defect syndrome, but also offer an attractive prevention strategy to relieve the related agenesis of CC in patients.
Collapse
Affiliation(s)
- Ke-Yan Yang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Song Zhao
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Haiping Feng
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jiaqi Shen
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yuwei Chen
- grid.410726.60000 0004 1797 8419Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101 China
| | - Si-Tong Wang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Si-Jia Wang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yu-Xin Zhang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yun Wang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Caixia Guo
- grid.410726.60000 0004 1797 8419Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101 China
| | - Hongmei Liu
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China ,grid.9227.e0000000119573309Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Tie-Shan Tang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China ,grid.9227.e0000000119573309Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| |
Collapse
|
3
|
Cervantes-Henriquez ML, Acosta-López JE, Ahmad M, Sánchez-Rojas M, Jiménez-Figueroa G, Pineda-Alhucema W, Martinez-Banfi ML, Noguera-Machacón LM, Mejía-Segura E, De La Hoz M, Arcos-Holzinger M, Pineda DA, Puentes-Rozo PJ, Arcos-Burgos M, Vélez JI. ADGRL3, FGF1 and DRD4: Linkage and Association with Working Memory and Perceptual Organization Candidate Endophenotypes in ADHD. Brain Sci 2021; 11:854. [PMID: 34206913 PMCID: PMC8301925 DOI: 10.3390/brainsci11070854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a highly heritable neurobehavioral disorder that affects children worldwide, with detrimental long-term consequences in affected individuals. ADHD-affected patients display visual-motor and visuospatial abilities and skills that depart from those exhibited by non-affected individuals and struggle with perceptual organization, which might partially explain impulsive responses. Endophenotypes (quantifiable or dimensional constructs that are closely related to the root cause of the disease) might provide a more powerful and objective framework for dissecting the underlying neurobiology of ADHD than that of categories offered by the syndromic classification. In here, we explore the potential presence of the linkage and association of single-nucleotide polymorphisms (SNPs), harbored in genes implicated in the etiology of ADHD (ADGRL3, DRD4, and FGF1), with cognitive endophenotypes related to working memory and perceptual organization in 113 nuclear families. These families were ascertained from a geographical area of the Caribbean coast, in the north of Colombia, where the community is characterized by its ethnic diversity and differential gene pool. We found a significant association and linkage of markers ADGRL3-rs1565902, DRD4-rs916457 and FGF1-rs2282794 to neuropsychological tasks outlining working memory and perceptual organization such as performance in the digits forward and backward, arithmetic, similarities, the completion of figures and the assembly of objects. Our results provide strong support to understand ADHD as a combination of working memory and perceptual organization deficits and highlight the importance of the genetic background shaping the neurobiology, clinical complexity, and physiopathology of ADHD. Further, this study supplements new information regarding an ethnically diverse community with a vast African American contribution, where ADHD studies are scarce.
Collapse
Affiliation(s)
- Martha L. Cervantes-Henriquez
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
- Universidad del Norte, Barranquilla 081007, Colombia
| | - Johan E. Acosta-López
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Mostapha Ahmad
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Manuel Sánchez-Rojas
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Giomar Jiménez-Figueroa
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Wilmar Pineda-Alhucema
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Martha L. Martinez-Banfi
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Luz M. Noguera-Machacón
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Elsy Mejía-Segura
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Moisés De La Hoz
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Mauricio Arcos-Holzinger
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Mxdicas, Facultad de Medicina, Universidad de Antioquia, Medellin 050010, Colombia; (M.A.-H.); (M.A.-B.)
| | - David A. Pineda
- Grupo de Neuropsicología y Conducta, Universidad de San Buenaventura, Medellín 050010, Colombia;
| | - Pedro J. Puentes-Rozo
- Grupo de Neurociencias del Caribe, Universidad del Atlántico, Barranquilla 081001, Colombia;
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Mxdicas, Facultad de Medicina, Universidad de Antioquia, Medellin 050010, Colombia; (M.A.-H.); (M.A.-B.)
| | | |
Collapse
|
4
|
Onesto MM, Short CA, Rempel SK, Catlett TS, Gomez TM. Growth Factors as Axon Guidance Molecules: Lessons From in vitro Studies. Front Neurosci 2021; 15:678454. [PMID: 34093120 PMCID: PMC8175860 DOI: 10.3389/fnins.2021.678454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Growth cones at the tips of extending axons navigate through developing organisms by probing extracellular cues, which guide them through intermediate steps and onto final synaptic target sites. Widespread focus on a few guidance cue families has historically overshadowed potentially crucial roles of less well-studied growth factors in axon guidance. In fact, recent evidence suggests that a variety of growth factors have the ability to guide axons, affecting the targeting and morphogenesis of growth cones in vitro. This review summarizes in vitro experiments identifying responses and signaling mechanisms underlying axon morphogenesis caused by underappreciated growth factors.
Collapse
Affiliation(s)
| | | | | | | | - Timothy M. Gomez
- Neuroscience Training Program and Cell and Molecular Biology Program, Department of Neuroscience, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
5
|
Short CA, Onesto MM, Rempel SK, Catlett TS, Gomez TM. Familiar growth factors have diverse roles in neural network assembly. Curr Opin Neurobiol 2021; 66:233-239. [PMID: 33477094 PMCID: PMC8058242 DOI: 10.1016/j.conb.2020.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
The assembly of neuronal circuits during development depends on guidance of axonal growth cones by molecular cues deposited in their environment. While a number of families of axon guidance molecules have been identified and reviewed, important and diverse activities of traditional growth factors are emerging. Besides clear and well recognized roles in the regulation of cell division, differentiation and survival, new research shows later phase roles for a number of growth factors in promoting neuronal migration, axon guidance and synapse formation throughout the nervous system.
Collapse
Affiliation(s)
- Caitlin A Short
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States
| | - Massimo M Onesto
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States; Stanford University School of Medicine, United States
| | - Sarah K Rempel
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States
| | - Timothy S Catlett
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States
| | - Timothy M Gomez
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States.
| |
Collapse
|
6
|
Chen Z. Common cues wire the spinal cord: Axon guidance molecules in spinal neuron migration. Semin Cell Dev Biol 2018; 85:71-77. [PMID: 29274387 DOI: 10.1016/j.semcdb.2017.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 01/28/2023]
Abstract
Topographic arrangement of neuronal cell bodies and axonal tracts are crucial for proper wiring of the nervous system. This involves often-coordinated neuronal migration and axon guidance during development. Most neurons migrate from their birthplace to specific topographic coordinates as they adopt the final cell fates and extend axons. The axons follow temporospatial specific guidance cues to reach the appropriate targets. When neuronal or axonal migration or their coordination is disrupted, severe consequences including neurodevelopmental disorders and neurological diseases, can arise. Neuronal and axonal migration shares some molecular mechanisms, as genes originally identified as axon guidance molecules have been increasingly shown to direct both navigation processes. This review focuses on axon guidance pathways that are shown to also direct neuronal migration in the vertebrate spinal cord.
Collapse
Affiliation(s)
- Zhe Chen
- Department of MCD Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
7
|
Oliva C, Hassan BA. Receptor Tyrosine Kinases and Phosphatases in Neuronal Wiring: Insights From Drosophila. Curr Top Dev Biol 2016; 123:399-432. [PMID: 28236973 DOI: 10.1016/bs.ctdb.2016.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tyrosine phosphorylation is at the crossroads of many signaling pathways. Brain wiring is not an exception, and several receptor tyrosine kinases (RTKs) and tyrosine receptor phosphates (RPTPs) have been involved in this process. Considerable work has been done on RTKs, and for many of them, detailed molecular mechanisms and functions in several systems have been characterized. In contrast, RPTPs have been studied considerably less and little is known about their ligands and substrates. In both families, we find redundancy between different members to accomplish particular wiring patterns. Strikingly, some RTKs and RPTPs have lost their catalytic activity during evolution, but not their importance in biological processes. In this regard, we have to keep in mind that these proteins have multiple domains and some of their functions are independent of tyrosine phosphorylation/dephosphorylation. Since RTKs and RPTPs are enzymes involved not only in early stages of axon and dendrite pathfinding but also in synapse formation and physiology, they have a potential as drug targets. Drosophila has been a key model organism in the search of a better understanding of brain wiring, and its sophisticated toolbox is very suitable for studying the function of genes with pleiotropic functions such as RTKs and RPTPs, from wiring to synaptic formation and function. In these review, we mainly cover findings from this model organism and complement them with discoveries in vertebrate systems.
Collapse
Affiliation(s)
- Carlos Oliva
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad of Chile, Santiago, Chile.
| | - Bassem A Hassan
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Institut du Cerveau et la Moelle (ICM)-Hôpital Pitié-Salpêtrière, Boulevard de l'Hôpital, Paris, France.
| |
Collapse
|
8
|
Lo Vasco VR, Leopizzi M, Puggioni C, Della Rocca C, Businaro R. Fibroblast growth factor acts upon the transcription of phospholipase C genes in human umbilical vein endothelial cells. Mol Cell Biochem 2014; 388:51-59. [PMID: 24242047 DOI: 10.1007/s11010-013-1898-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 11/05/2013] [Indexed: 02/02/2023]
Abstract
Besides the control of calcium levels, the phosphoinositide-specific phospholipases C (PI-PLCs), the main players in the phosphoinositide signalling pathway, contribute to a number of cell activities. The expression of PI-PLCs is strictly tissue specific and evidence suggests that it varies under different conditions, such as tumour progression or cell activation. In previous studies, we obtained a complete panel of expression of PI-PLC isoforms in human umbilical vein endothelial cells (HUVEC), a widely used experimental model for endothelial cells (EC), and demonstrated that the expression of the PLC genes varies under inflammatory stimulation. The fibroblast growth factor (FGF) activates the PI-PLC γ1 isoform. In the present study, PI-PLC expression in FGF-treated HUVEC was performed using RT-PCR, observed 24 h after stimulation. The expression of selected genes after stimulation was perturbed, suggesting that FGF affects gene transcription in PI signalling as a possible mechanism of regulation of its activity upon the AkT-PLC pathway. The most efficient effects of FGF were recorded in the 3-6-h interval. To understand the complex events progressing in EC might provide useful insights for potential therapeutic strategies. The opportunity to manipulate the EC might offer a powerful tool of considerable practical and clinical importance.
Collapse
Affiliation(s)
- Vincenza Rita Lo Vasco
- Dipartimento Organi di Senso, Policlinico Umberto I, Facoltà di Medicina e Odontoiatria, Università di Roma "Sapienza", viale del Policlinico 155, 00185, Rome, Italy,
| | | | | | | | | |
Collapse
|
9
|
Bauer R, Zubler F, Hauri A, Muir DR, Douglas RJ. Developmental origin of patchy axonal connectivity in the neocortex: a computational model. Cereb Cortex 2014; 24:487-500. [PMID: 23131803 PMCID: PMC3888370 DOI: 10.1093/cercor/bhs327] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Injections of neural tracers into many mammalian neocortical areas reveal a common patchy motif of clustered axonal projections. We studied in simulation a mathematical model for neuronal development in order to investigate how this patchy connectivity could arise in layer II/III of the neocortex. In our model, individual neurons of this layer expressed the activator-inhibitor components of a Gierer-Meinhardt reaction-diffusion system. The resultant steady-state reaction-diffusion pattern across the neuronal population was approximately hexagonal. Growth cones at the tips of extending axons used the various morphogens secreted by intrapatch neurons as guidance cues to direct their growth and invoke axonal arborization, so yielding a patchy distribution of arborization across the entire layer II/III. We found that adjustment of a single parameter yields the intriguing linear relationship between average patch diameter and interpatch spacing that has been observed experimentally over many cortical areas and species. We conclude that a simple Gierer-Meinhardt system expressed by the neurons of the developing neocortex is sufficient to explain the patterns of clustered connectivity observed experimentally.
Collapse
Affiliation(s)
- Roman Bauer
- Institute of Neuroinformatics, University of Zürich and Swiss Federal Institute of Technology Zürich
| | - Frederic Zubler
- Institute of Neuroinformatics, University of Zürich and Swiss Federal Institute of Technology Zürich
| | - Andreas Hauri
- Institute of Neuroinformatics, University of Zürich and Swiss Federal Institute of Technology Zürich
| | - Dylan R. Muir
- Department of Neurophysiology, Brain Research Institute, University of Zürich, Zürich CH-8057, Switzerland
| | - Rodney J. Douglas
- Institute of Neuroinformatics, University of Zürich and Swiss Federal Institute of Technology Zürich
| |
Collapse
|
10
|
Baron O, Ratzka A, Grothe C. Fibroblast growth factor 2 regulates adequate nigrostriatal pathway formation in mice. J Comp Neurol 2013; 520:3949-61. [PMID: 22592787 DOI: 10.1002/cne.23138] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fibroblast growth factor 2 (FGF-2) is an important neurotrophic factor that promotes survival of adult mesencephalic dopaminergic (mDA) neurons and regulates their adequate development. Since mDA neurons degenerate in Parkinson's disease, a comprehensive understanding of their development and maintenance might contribute to the development of causative therapeutic approaches. The current analysis addressed the role of FGF-2 in mDA axonal outgrowth, pathway formation, and innervation of respective forebrain targets using organotypic explant cocultures of ventral midbrain (VM) and forebrain (FB). An enhanced green fluorescent protein (EGFP) transgenic mouse strain was used for the VM explants, which allowed combining and distinguishing of individual VM and FB tissue from wildtype and FGF-2-deficient embryonic day (E)14.5 embryos, respectively. These cocultures provided a suitable model to study the role of target-derived FB and intrinsic VM-derived FGF-2. In fact, we show that loss of FGF-2 in both FB and VM results in significantly increased mDA fiber outgrowth compared to wildtype cocultures, proving a regulatory role of FGF-2 during nigrostriatal wiring. Further, we found in heterogeneous cocultures deficient for FGF-2 in FB and VM, respectively, similar phenotypes with wider fiber tracts compared to wildtype cocultures and shorter fiber outgrowth distance than cocultures completely deficient for FGF-2. Additionally, the loss of target-derived FGF-2 in FB explants resulted in decreased caudorostral glial migration. Together these findings imply an intricate interplay of target-derived and VM-derived FGF signaling, which assures an adequate nigrostriatal pathway formation and target innervation.
Collapse
Affiliation(s)
- Olga Baron
- Institute of Neuroanatomy, Hannover Medical School, 30625 Hannover, Germany
| | | | | |
Collapse
|
11
|
McFarlane S, Lom B. The Xenopus retinal ganglion cell as a model neuron to study the establishment of neuronal connectivity. Dev Neurobiol 2012; 72:520-36. [PMID: 21634016 DOI: 10.1002/dneu.20928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neurons receive inputs through their multiple branched dendrites and pass this information on to the next neuron via long axons, which branch within the target. The shape the neuron acquires is thus the key to its proper functioning in the neural circuit in which it participates. Both axons and dendrites grow in a directed fashion to their target partner neurons by responding to a large number of molecular cues in the milieu through which they extend. They then go through the process of synaptogenesis, first choosing a neuron on which to synapse, and then the appropriate subcellular location. How a neuron acquires its unique shape, establishes and modifies appropriate synaptic connectivity, and the molecular signals involved, are key questions in developmental neurobiology. Such questions of nervous system wiring are being pursued actively with a variety of different animal models and neuron types, each with its own unique advantages. Among these, the developing retinal ganglion cell (RGC) of the South African clawed frog, Xenopus laevis, has proven particularly fruitful for revealing the secrets of how axons and dendrites acquire their final morphology and connectivity. In this review, we describe how this system can be used to understand the multiple molecular events that instruct the incorporation of RGCs into the neural circuit that controls vision.
Collapse
Affiliation(s)
- Sarah McFarlane
- Department of Cell Biology and Anatomy, University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada.
| | | |
Collapse
|
12
|
Changes in fibroblast growth factor-2 and FGF receptors in the frog visual system during optic nerve regeneration. J Chem Neuroanat 2012; 46:35-44. [PMID: 22940608 DOI: 10.1016/j.jchemneu.2012.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 02/02/2023]
Abstract
We have previously shown that application of fibroblast growth factor-2 (FGF-2) to cut optic nerve axons enhances retinal ganglion cell (RGC) survival in the adult frog visual system. These actions are mediated via activation of its high affinity receptor FGFR1, enhanced BDNF and TrkB expression, increased CREB phosphorylation, and by promoting MAPK and PKA signaling pathways. The role of endogenous FGF-2 in this system is less well understood. In this study, we determine the distribution of FGF-2 and its receptors in normal animals and in animals at different times after optic nerve cut. Immunohistochemistry and Western blot analysis were conducted using specific antibodies against FGF-2 and its receptors in control retinas and optic tecta, and after one, three, and six weeks post nerve injury. FGF-2 was transiently increased in the retina while it was reduced in the optic tectum just one week after optic nerve transection. Axotomy induced a prolonged upregulation of FGFR1 and FGFR3 in both retina and tectum. FGFR4 levels decreased in the retina shortly after axotomy, whereas a significant increase was detected in the optic tectum. FGFR2 distribution was not affected by the optic nerve lesion. Changes in the presence of these proteins after axotomy suggest a potential role during regeneration.
Collapse
|
13
|
Li PP, Peng HB. Regulation of axonal growth and neuromuscular junction formation by neuronal phosphatase and tensin homologue signaling. Mol Biol Cell 2012; 23:4109-17. [PMID: 22918949 PMCID: PMC3469524 DOI: 10.1091/mbc.e12-05-0367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Axonal growth and synaptogenesis are sequential events of neuronal development. Phosphatase and tensin homologue (PTEN) is expressed in motor neurons, and its disruption leads to continued axonal extension, even upon muscle contact, leading to synaptogenic suppression. Thus PTEN is involved in target-mediated cessation of axonal growth and subsequent synaptic differentiation. During the development of the vertebrate neuromuscular junction (NMJ), motor axon tips stop growing after contacting muscle and transform into presynaptic terminals that secrete the neurotransmitter acetylcholine and activate postsynaptic ACh receptors (AChRs) to trigger muscle contraction. The neuron-intrinsic signaling that retards axonal growth to facilitate stable nerve–muscle interaction and synaptogenesis is poorly understood. In this paper, we report a novel function of presynaptic signaling by phosphatase and tensin homologue (PTEN) in mediating a growth-to-synaptogenesis transition in neurons. In Xenopus nerve–muscle cocultures, axonal growth speed was halved after contact with muscle, when compared with before contact, but when cultures were exposed to the PTEN blocker bisperoxo (1,10-phenanthroline) oxovanadate, axons touching muscle grew ∼50% faster than their counterparts in control cultures. Suppression of neuronal PTEN expression using morpholinos or the forced expression of catalytically inactive PTEN in neurons also resulted in faster than normal axonal advance after contact with muscle cells. Significantly, interference with PTEN by each of these methods also led to reduced AChR clustering at innervation sites in muscle, indicating that disruption of neuronal PTEN signaling inhibited NMJ assembly. We thus propose that PTEN-dependent slowing of axonal growth enables the establishment of stable nerve–muscle contacts that develop into NMJs.
Collapse
Affiliation(s)
- Pan P Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | |
Collapse
|
14
|
Atkinson-Leadbeater K, McFarlane S. Extrinsic factors as multifunctional regulators of retinal ganglion cell morphogenesis. Dev Neurobiol 2011; 71:1170-85. [DOI: 10.1002/dneu.20924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Su J, Haner CV, Imbery TE, Brooks JM, Morhardt DR, Gorse K, Guido W, Fox MA. Reelin is required for class-specific retinogeniculate targeting. J Neurosci 2011; 31:575-86. [PMID: 21228166 PMCID: PMC3257181 DOI: 10.1523/jneurosci.4227-10.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 10/07/2010] [Accepted: 11/01/2010] [Indexed: 02/02/2023] Open
Abstract
Development of visual system circuitry requires the formation of precise synaptic connections between neurons in the retina and brain. For example, axons from retinal ganglion cells (RGCs) form synapses onto neurons within subnuclei of the lateral geniculate nucleus (LGN) [i.e., the dorsal LGN (dLGN), ventral LGN (vLGN), and intergeniculate leaflet (IGL)]. Distinct classes of RGCs project to these subnuclei: the dLGN is innervated by image-forming RGCs, whereas the vLGN and IGL are innervated by non-image-forming RGCs. To explore potential mechanisms regulating class-specific LGN targeting, we sought to identify differentially expressed targeting molecules in these LGN subnuclei. One candidate targeting molecule enriched in the vLGN and IGL during retinogeniculate circuit formation was the extracellular matrix molecule reelin. Anterograde labeling of RGC axons in mutant mice lacking functional reelin (reln(rl/rl)) revealed reduced patterns of vLGN and IGL innervation and misrouted RGC axons in adjacent non-retino-recipient thalamic nuclei. Using genetic reporter mice, we further demonstrated that mistargeted axons were from non-image-forming, intrinsically photosensitive RGCs (ipRGCs). In contrast to mistargeted ipRGC axons, axons arising from image-forming RGCs and layer VI cortical neurons correctly targeted the dLGN in reln(rl/rl) mutants. Together, these data reveal that reelin is essential for the targeting of LGN subnuclei by functionally distinct classes of RGCs.
Collapse
Affiliation(s)
- Jianmin Su
- Departments of Anatomy and Neurobiology and
| | | | | | | | - Duncan R. Morhardt
- Biochemistry and Molecular Biology, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298-0709
| | | | | | | |
Collapse
|
16
|
Dynamic expression of axon guidance cues required for optic tract development is controlled by fibroblast growth factor signaling. J Neurosci 2010; 30:685-93. [PMID: 20071533 DOI: 10.1523/jneurosci.4165-09.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axons are guided to their targets by molecular cues expressed in their environment. How is the presence of these cues regulated? Although some evidence indicates that morphogens establish guidance cue expression as part of their role in patterning tissues, an important question is whether morphogens are then required to maintain guidance signals. We found that fibroblast growth factor (FGF) signaling sustains the expression of two guidance cues, semaphorin3A (xsema3A) and slit1 (xslit1), throughout the period of Xenopus optic tract development. With FGF receptor inhibition, xsema3A and xslit1 levels were rapidly diminished, and retinal ganglion cell axons arrested in the mid-diencephalon, before reaching their target. Importantly, direct downregulation of XSema3A and XSlit1 mostly phenocopied this axon guidance defect. Thus, FGFs promote continued presence of specific guidance cues critical for normal optic tract development, suggesting a second later role for morphogens, independent of tissue patterning, in maintaining select cues by acting to regulate their transcription.
Collapse
|
17
|
Catalani E, Tomassini S, Dal Monte M, Bosco L, Casini G. Localization patterns of fibroblast growth factor 1 and its receptors FGFR1 and FGFR2 in postnatal mouse retina. Cell Tissue Res 2009; 336:423-38. [DOI: 10.1007/s00441-009-0787-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/23/2009] [Indexed: 11/29/2022]
|
18
|
Abstract
Fibroblast growth factors (FGFs) are a large family of secreted growth factors that are involved in the development, regeneration and repair of various tissues. In the nervous system, FGFs have been implicated in early developmental processes, such as neural induction, proliferation and patterning. Accumulating data indicate that FGFs are also important for the formation of functional neural networks. The role of FGFs in axon guidance, target recognition and synaptic differentiation as target-derived factors, and how they cooperate with cell adhesion molecules that are also involved in the wiring of the nervous system are the focus of this review.
Collapse
Affiliation(s)
- Hisashi Umemori
- Molecular & Behavioral Neuroscience Institute and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA.
| |
Collapse
|
19
|
|
20
|
Falk J, Drinjakovic J, Leung KM, Dwivedy A, Regan AG, Piper M, Holt CE. Electroporation of cDNA/Morpholinos to targeted areas of embryonic CNS in Xenopus. BMC DEVELOPMENTAL BIOLOGY 2007; 7:107. [PMID: 17900342 PMCID: PMC2147031 DOI: 10.1186/1471-213x-7-107] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 09/27/2007] [Indexed: 02/07/2023]
Abstract
Background Blastomere injection of mRNA or antisense oligonucleotides has proven effective in analyzing early gene function in Xenopus. However, functional analysis of genes involved in neuronal differentiation and axon pathfinding by this method is often hampered by earlier function of these genes during development. Therefore, fine spatio-temporal control of over-expression or knock-down approaches is required to specifically address the role of a given gene in these processes. Results We describe here an electroporation procedure that can be used with high efficiency and low toxicity for targeting DNA and antisense morpholino oligonucleotides (MOs) into spatially restricted regions of the Xenopus CNS at a critical time-window of development (22–50 hour post-fertilization) when axonal tracts are first forming. The approach relies on the design of "electroporation chambers" that enable reproducible positioning of fixed-spaced electrodes coupled with accurate DNA/MO injection. Simple adjustments can be made to the electroporation chamber to suit the shape of different aged embryos and to alter the size and location of the targeted region. This procedure can be used to electroporate separate regions of the CNS in the same embryo allowing separate manipulation of growing axons and their intermediate and final targets in the brain. Conclusion Our study demonstrates that electroporation can be used as a versatile tool to investigate molecular pathways involved in axon extension during Xenopus embryogenesis. Electroporation enables gain or loss of function studies to be performed with easy monitoring of electroporated cells. Double-targeted transfection provides a unique opportunity to monitor axon-target interaction in vivo. Finally, electroporated embryos represent a valuable source of MO-loaded or DNA transfected cells for in vitro analysis. The technique has broad applications as it can be tailored easily to other developing organ systems and to other organisms by making simple adjustments to the electroporation chamber.
Collapse
Affiliation(s)
- Julien Falk
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Jovana Drinjakovic
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Kin Mei Leung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Asha Dwivedy
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Aoife G Regan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Michael Piper
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
- The Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
21
|
Mason I. Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nat Rev Neurosci 2007; 8:583-96. [PMID: 17637802 DOI: 10.1038/nrn2189] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
From a wealth of experimental findings, derived from both in vitro and in vivo experiments, it is becoming clear that fibroblast growth factors regulate processes that are central to all aspects of nervous system development. Some of these functions are well known, whereas others, such as the roles of these proteins in axon guidance and synaptogenesis, have been established only recently. The emergent picture is one of remarkable economy, in which this family of ligands is deployed and redeployed at successive developmental stages to sculpt the nervous system.
Collapse
Affiliation(s)
- Ivor Mason
- MRC Centre for Developmental Neurobiology, King's College London, Fourth floor New Hunt's House, Guy's Hospital Campus, London, SE1 1UL, UK.
| |
Collapse
|
22
|
Fogarty MP, Emmenegger BA, Grasfeder LL, Oliver TG, Wechsler-Reya RJ. Fibroblast growth factor blocks Sonic hedgehog signaling in neuronal precursors and tumor cells. Proc Natl Acad Sci U S A 2007; 104:2973-8. [PMID: 17299056 PMCID: PMC1815291 DOI: 10.1073/pnas.0605770104] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Indexed: 01/16/2023] Open
Abstract
The Sonic hedgehog (Shh) and FGF signaling pathways regulate growth and differentiation in many regions of the nervous system, but interactions between these pathways have not been studied extensively. Here, we examine the relationship between Shh and FGF signaling in granule cell precursors (GCPs), which are the most abundant neural progenitors in the cerebellum and the putative cell of origin for the childhood brain tumor medulloblastoma. In these cells, Shh induces a potent proliferative response that is abolished by coincubation with basic FGF. FGF also inhibits transcription of Shh target genes and prevents activation of a Gli-responsive promoter in fibroblasts, which suggests that it blocks Shh signaling upstream of Gli-mediated transcription. FGF-mediated inhibition of Shh responses requires activation of FGF receptors and of ERK and JNK kinases, because it can be blocked by inhibitors of these enzymes. Finally, FGF promotes differentiation of GCPs in vitro and in vivo and halts proliferation of tumor cells from patched (ptc) mutant mice, a model for medulloblastoma. These findings suggest that FGF is a potent inhibitor of Shh signaling and may be a useful therapy for tumors involving activation of the hedgehog pathway.
Collapse
Affiliation(s)
- Marie P. Fogarty
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Brian A. Emmenegger
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Linda L. Grasfeder
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Trudy G. Oliver
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Robert J. Wechsler-Reya
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
23
|
Similarities Between Angiogenesis and Neural Development: What Small Animal Models Can Tell Us. Curr Top Dev Biol 2007; 80:1-55. [DOI: 10.1016/s0070-2153(07)80001-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Smith KM, Ohkubo Y, Maragnoli ME, Rasin MR, Schwartz ML, Sestan N, Vaccarino FM. Midline radial glia translocation and corpus callosum formation require FGF signaling. Nat Neurosci 2006; 9:787-97. [PMID: 16715082 DOI: 10.1038/nn1705] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 04/24/2006] [Indexed: 12/11/2022]
Abstract
Midline astroglia in the cerebral cortex develop earlier than other astrocytes through mechanisms that are still unknown. We show that radial glia in dorsomedial cortex retract their apical endfeet at midneurogenesis and translocate to the overlaying pia, forming the indusium griseum. These cells require the fibroblast growth factor receptor 1 (Fgfr1) gene for their precocious somal translocation to the dorsal midline, as demonstrated by inactivating the Fgfr1 gene in radial glial cells and by RNAi knockdown of Fgfr1 in vivo. Dysfunctional astroglial migration underlies the callosal dysgenesis in conditional Fgfr1 knockout mice, suggesting that precise targeting of astroglia to the cortex has unexpected roles in axon guidance. FGF signaling is sufficient to induce somal translocation of radial glial cells throughout the cortex; furthermore, the targeting of astroglia to dorsolateral cortex requires FGFr2 signaling after neurogenesis. Hence, FGFs have an important role in the transition from radial glia to astrocytes by stimulating somal translocation of radial glial cells.
Collapse
Affiliation(s)
- Karen Müller Smith
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Haines BP, Wheldon LM, Summerbell D, Heath JK, Rigby PWJ. Regulated expression of FLRT genes implies a functional role in the regulation of FGF signalling during mouse development. Dev Biol 2006; 297:14-25. [PMID: 16872596 DOI: 10.1016/j.ydbio.2006.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 04/03/2006] [Accepted: 04/04/2006] [Indexed: 12/21/2022]
Abstract
Within the mammalian genome, there are many multimember gene families that encode membrane proteins with extracellular leucine rich repeats which are thought to act as cell adhesion or signalling molecules. We previously showed that the members of the NLRR gene family are expressed in a developmentally restricted manner in the mouse with NLRR-1 being expressed in the developing myotome. The FLRT gene family shows a similar genomic layout and predicted protein secondary structure to the NLRRs so we analysed expression of the three FLRT genes during mouse development. FLRTs are glycosylated membrane proteins expressed at the cell surface which localise in a homophilic manner to cell-cell contacts expressing the focal adhesion marker vinculin. Each member of the FLRT family has a distinct, highly regulated expression pattern, as was seen for the NLRR family. FLRT3 has a provocative expression pattern during somite development being expressed in regions of the somite where muscle precursor cells migrate from the dermomyotome and move into the myotome, and later in myotomal precursors destined to migrate towards their final destination, for example, those that form the ventral body wall. FLRT3 is also expressed at the midbrain/hindbrain boundary and in the apical ectodermal ridge, regions where FGF signalling is known to be important, suggesting that the role for FLRT3 in FGF signalling identified in Xenopus is conserved in mammals. FLRT1 is expressed at brain compartmental boundaries and FLRT2 is expressed in a subset of the sclerotome, adjacent to the region that forms the syndetome, suggesting that interaction with FGF signalling may be a general property of FLRT proteins. We confirmed this by showing that all FLRTs can interact with FGFR1 and FLRTs can be induced by the activation of FGF signalling by FGF-2. We conclude that FLRT proteins act as regulators of FGF signalling, being induced by the signal and then able to interact with the signalling receptor, in many tissues during mouse embryogenesis. This process may, in part, be dependent on homophilic intercellular interactions between FLRT molecules.
Collapse
Affiliation(s)
- Bryan P Haines
- Section of Gene Function and Regulation, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | | | |
Collapse
|
26
|
Abstract
Our knowledge about molecular mechanisms underlying axon guidance along the antero-posterior axis in contrast to the dorso-ventral axis of the developing nervous system is very limited. During the past two years in vitro and in vivo studies have indicated that morphogens have a role in longitudinal axon guidance. Morphogens are secreted proteins that act in a concentration-dependent manner on susceptible groups of precursor cells and induce their differentiation to a specific cell fate. Thus, gradients of morphogens are responsible for the appropriate patterning of the nervous system during early phases of neural development. Therefore, it was surprising to find that gradients of two of these morphogens, Wnt4 and Shh, can be re-used for longitudinal axon guidance during later stages of nervous system development.
Collapse
Affiliation(s)
- Esther T Stoeckli
- Institute of Zoology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
27
|
Webber CA, Chen YY, Hehr CL, Johnston J, McFarlane S. Multiple signaling pathways regulate FGF-2-induced retinal ganglion cell neurite extension and growth cone guidance. Mol Cell Neurosci 2005; 30:37-47. [PMID: 15996482 DOI: 10.1016/j.mcn.2005.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 04/23/2005] [Accepted: 05/12/2005] [Indexed: 11/23/2022] Open
Abstract
Growth cones use cues in their environment in order to grow in a directed fashion to their targets. In Xenopus laevis, fibroblast growth factors (FGFs) participate in retinal ganglion cell (RGC) axon guidance in vivo and in vitro. The main intracellular signaling cascades known to act downstream of the FGF receptor include the mitogen-activated protein kinase (MAPK), phospholipase Cgamma (PLCgamma) and phosphotidylinositol 3-kinase (PI3K) pathways. We used pharmacological inhibitors to identify the signaling cascade(s) responsible for FGF-2-stimulated RGC axon extension and chemorepulsion. The MAPK, PI3K and PLCgamma pathways were blocked by U0126, LY249002 and U73122, respectively. D609 was used to test a role for the phosphotidylcholine-PLC (PC-PLC) pathway. We determined that the MAPK and two PLC pathways are required for FGF-2 to stimulate RGC neurite extension in vitro, but the response of axons to FGF-2 applied asymmetrically to the growth cone depended only on the PLC pathways.
Collapse
Affiliation(s)
- C A Webber
- Genes and Development Research Group, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, Canada T2N 4N1
| | | | | | | | | |
Collapse
|
28
|
Pollock NS, Atkinson-Leadbeater K, Johnston J, Larouche M, Wildering WC, McFarlane S. Voltage-gated potassium channels regulate the response of retinal growth cones to axon extension and guidance cues. Eur J Neurosci 2005; 22:569-78. [PMID: 16101738 DOI: 10.1111/j.1460-9568.2005.04242.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Xenopus retinal ganglion cell growth cones express various voltage-gated potassium (Kv) channels. We showed previously that 4-aminopyridine and tetraethylammonium have different effects on the outward currents of embryonic Xenopus retinal ganglion cells. Therefore, we asked whether these Kv channel inhibitors differentially regulate the response of retinal ganglion cell growth cones to extrinsic cues. First, we tested the role of Kv channels in axon extension mediated by a substrate bound cue and found that 4-aminopyridine blocked, whereas tetraethylammonium enhanced basal extension on laminin. Yet, when the growth cones were stimulated to extend with application of soluble growth factors, both inhibitors resulted in a return to the basal extension rates observed in the presence of laminin alone. Second, we asked if Kv channels modulate the response of retinal ganglion cell growth cones to a guidance cue, the chemorepellent fibroblast growth factor-2. When presented in a gradient to one side of the growth cone, fibroblast growth factor-2 repulsed retinal ganglion cell growth cones in the presence of 4-aminopyridine but not tetraethylammonium. These data argue that tetraethylammonium- and 4-aminopyridine-sensitive Kv channels differ in the manner by which they regulate the response of retinal ganglion cell axons to extension and guidance cues. Non-ratiometric calcium imaging indicated that differences in the ability of tetraethylammonium- and 4-aminopyridine-sensitive Kv channels to regulate calcium activity within the growth cone may underlie their unique modulation of growth cone behaviour.
Collapse
Affiliation(s)
- N S Pollock
- Genes and Development Research Group, University of Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
29
|
McCaig CD, Rajnicek AM, Song B, Zhao M. Controlling cell behavior electrically: current views and future potential. Physiol Rev 2005; 85:943-78. [PMID: 15987799 DOI: 10.1152/physrev.00020.2004] [Citation(s) in RCA: 680] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Direct-current (DC) electric fields are present in all developing and regenerating animal tissues, yet their existence and potential impact on tissue repair and development are largely ignored. This is primarily due to ignorance of the phenomenon by most researchers, some technically poor early studies of the effects of applied fields on cells, and widespread misunderstanding of the fundamental concepts that underlie bioelectricity. This review aims to resolve these issues by describing: 1) the historical context of bioelectricity, 2) the fundamental principles of physics and physiology responsible for DC electric fields within cells and tissues, 3) the cellular mechanisms for the effects of small electric fields on cell behavior, and 4) the clinical potential for electric field treatment of damaged tissues such as epithelia and the nervous system.
Collapse
Affiliation(s)
- Colin D McCaig
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland.
| | | | | | | |
Collapse
|
30
|
Chen YY, McDonald D, Cheng C, Magnowski B, Durand J, Zochodne DW. Axon and Schwann Cell Partnership During Nerve Regrowth. J Neuropathol Exp Neurol 2005; 64:613-22. [PMID: 16042313 DOI: 10.1097/01.jnen.0000171650.94341.46] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Regeneration of peripheral nerve involves an essential contribution by Schwann cells (SCs) in collaboration with regrowing axons. We examined such collaboration between new axons and Schwann cells destined to reform peripheral nerve trucks in a regeneration chamber bridging transected rat sciatic nerves. There was a highly intimate "dance" between axons that followed outgrowing and proliferating SCs. Axons without SCs only grew short distances and almost all axon processes had associated SC processes. When regeneration chambers were infused through an external access port with local mitomycin, a mitosis inhibitor, SC proliferation, migration and subsequent axon regrowth were dramatically reduced. Adding laminin to mitomycin did not reverse this regenerative lag and indicated that SCs provide more than laminin synthesis alone. Laminin infused alone supplemented endogenous laminin and facilitated first SC then axon regrowth. "Wrong way" misdirected axons were associated with misdirected SC processes and were more numerous in bridges exposed to mitomycin, but were fewer in laminin supplemented bridges. Later, by 21 days, there was myelinated axon repopulation of regenerative bridges but those exposed to mitomycin alone at early time points had substantial impairments in axon investment. Reforming peripheral nerve trucks involves a very close and intimate relationship between axons and SCs that must proliferate and migrate, facilitated by laminin.
Collapse
Affiliation(s)
- Yuan Yuan Chen
- University of Calgary, Department of Clinical Neuroscience, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Hehr CL, Hocking JC, McFarlane S. Matrix metalloproteinases are required for retinal ganglion cell axon guidance at select decision points. Development 2005; 132:3371-9. [PMID: 15975939 DOI: 10.1242/dev.01908] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Axons receive guidance information from extrinsic cues in their environment in order to reach their targets. In the frog Xenopus laevis, retinal ganglion cell (RGC) axons make three key guidance decisions en route through the brain. First, they cross to the contralateral side of the brain at the optic chiasm. Second, they turn caudally in the mid-diencephalon. Finally, they must recognize the optic tectum as their target. The matrix metalloproteinase (MMP) and a disintegrin and metalloproteinase (ADAM) families are zinc (Zn)-dependent proteolytic enzymes. The latter functions in axon guidance, but a similar role has not yet been identified for the MMP family. Our previous work implicated metalloproteinases in the guidance decisions made by Xenopus RGC axons. To test specifically the importance of MMPs, we used two different in vivo exposed brain preparations in which RGC axons were exposed to an MMP-specific pharmacological inhibitor (SB-3CT), either as they reached the optic chiasm or as they extended through the diencephalon en route to the optic tectum. Interestingly, SB-3CT affected only two of the guidance decisions, with misrouting defects at the optic chiasm and tectum. Only at higher concentrations was RGC axon extension also impaired. These data implicate MMPs in the guidance of vertebrate axons, and suggest that different metalloproteinases function to regulate axon behaviour at distinct choice points: an MMP is important in guidance at the optic chiasm and the target, while either a different MMP or an ADAM is required for axons to make the turn in the mid-diencephalon.
Collapse
Affiliation(s)
- Carrie L Hehr
- University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | | | | |
Collapse
|
32
|
Bovolenta P. Morphogen signaling at the vertebrate growth cone: A few cases or a general strategy? ACTA ACUST UNITED AC 2005; 64:405-16. [PMID: 16041755 DOI: 10.1002/neu.20161] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Axon navigation relies on the competence of growth cones to sense and interpret attractive and repulsive guidance cues present along their trajectory. For most neurons, this process is mediated by a limited number of conserved families of ligand-receptor signaling systems, including Ephrin/Eph, Netrins/DCC-Unc5, Slits/Robo, and Semaphorins/Plexin-Neuropilin. Recent studies have demonstrated that some neurons respond also to well-known secreted signaling molecules, best known for their roles as morphogens, such as BMP7, SHH, FGF8, and Wnt. Thus, retina ganglion cell axon navigation is influenced by FGF, SHH, and possibly BMP signaling. Similarly, commissural neurons in the spinal cord respond sequentially to the activity of BMP, SHH, and Wnt to extend toward and away from their intermediate target, the floor plate. The data that support this conclusion will be summarized and how morphogens may signal at the growth cone will be discussed.
Collapse
|
33
|
Ensslen SE, Brady-Kalnay SM. PTPmu signaling via PKCdelta is instructive for retinal ganglion cell guidance. Mol Cell Neurosci 2004; 25:558-71. [PMID: 15080886 DOI: 10.1016/j.mcn.2003.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 11/24/2003] [Accepted: 12/03/2003] [Indexed: 01/03/2023] Open
Abstract
The receptor protein tyrosine phosphatase (RPTP) PTPmu mediates distinct cellular responses in nasal and temporal retinal ganglion cell (RGC) axons. PTPmu is permissive for nasal RGC neurite outgrowth and inhibitory to temporal RGCs. In addition, PTPmu causes preferential temporal growth cone collapse. Previous studies demonstrated that PTPmu associates with the scaffolding protein RACK1 and the protein kinase C-delta (PKCdelta) isoform in chick retina and that PKCdelta activity is required for PTPmu-mediated RGC outgrowth. Using in vitro stripe and collapse assays, we find that PKCdelta activity is required for both inhibitory and permissive responses of RGCs to PTPmu, with higher levels of PKCdelta activation associated with temporal growth cone collapse and repulsion. A potential mechanism for differential PKCdelta activation is due to the gradient of PTPmu expression in the retina. PTPmu is expressed in a high temporal, low nasal step gradient in the retina. In support of this, overexpression of exogenous PTPmu in nasal neurites results in a phenotypic switch from permissive to repulsive in response to PTPmu. Together, these results suggest that the differential expression of PTPmu within the retina is instructive for RGC guidance and that the magnitude of PKCdelta activation in response to PTPmu signaling results in the distinct cellular behaviors of nasal and temporal RGCs.
Collapse
Affiliation(s)
- Sonya E Ensslen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | | |
Collapse
|