1
|
Hanley S, Imcha M, Mohamad MM. Cannabinoid hyperemesis syndrome in pregnancy: a case series and review. Obstet Med 2024:1753495X241307415. [PMID: 39759763 PMCID: PMC11694266 DOI: 10.1177/1753495x241307415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/15/2024] [Indexed: 01/07/2025] Open
Abstract
Background Cannabinoid hyperemesis syndrome (CHS) is a syndrome of cyclic nausea and vomiting in the setting of chronic cannabis use. To date, only 11 cases of CHS in pregnancy have been reported. Case presentation We describe two cases of uncontrolled vomiting in pregnancy due to CHS. Case 1 represents a 30-year-old Caucasian woman presenting in the 5th week of gestation with nausea, vomiting and abdominal pain intermittently of 1 week duration. Physical work-up was normal, and symptoms resolved with supportive treatment within 3 days, only to occur again at the 14th week of gestation, and again at the 30th week of gestation. Link between symptom relief and hot bathing led to suspicion for CHS, confirmed with positive cannabis urine toxicology screening. Nausea, vomiting and pain subsided with cannabis cessation, and baby was born healthy at 38 + 5 weeks gestation. Case 2 describes a 28-year-old Caucasian woman presenting in the 16th week of gestation with nausea, vomiting and abdominal pain. Physical examination was normal, and symptoms self-resolved. Two weeks later, in the 18th week of gestation, the patient re-presented to the emergency room with sudden re-occurrence of nausea, vomiting and abdominal pain. Once again, a link between symptom relief and hot bathing was noted on admission. The patient was educated on possible links of chronic cannabis use with CHS symptoms and subsequently relayed extensive (>14 years) cannabis use history. Symptoms resolved with cannabis cessation. Baby was born at 37 weeks gestation, with low birth weight of 2180 g requiring 5 days neonatal intensive care unit (NICU) treatment. Regular follow-up up to 5 months post-partum confirmed no CHS relapse with cannabis cessation. Conclusion CHS in pregnancy is likely under-reported, reflective possibly of limited physician and patient awareness of this condition, as well as patient concealment of cannabis use in pregnancy. In cases of severe, cyclic nausea and vomiting in pregnancy unresponsive to typical anti-emetic treatment, comprehensive social history including cannabis use should be sought, and associated hot bathing for symptomatic relief out-ruled.
Collapse
Affiliation(s)
- Sarah Hanley
- Department of Psychiatry, Health Service Executive, Galway, Ireland
| | - Mendinaro Imcha
- Department of Obstetrics and Gynaecology, University Maternity Hospital Limerick, Limerick, Ireland
| | - Mas Mahady Mohamad
- Specialist Perinatal Mental Health Service, University Maternity Hospital Limerick, Limerick, Ireland
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| |
Collapse
|
2
|
Burillo-Putze G, Richards JR, Rodríguez-Jiménez C, Sanchez-Agüera A. Pharmacological management of cannabinoid hyperemesis syndrome: an update of the clinical literature. Expert Opin Pharmacother 2022; 23:693-702. [DOI: 10.1080/14656566.2022.2049237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - John R. Richards
- Department of Emergency Medicine, University of California, Davis Medical Center, Sacramento, CA, USA
| | - Consuelo Rodríguez-Jiménez
- Facultad de Ciencias de la Salud, Universidad Europea de Canarias, Tenerife, Spain
- Clinical Pharmacology Department, Hospital Universitario de Canarias, Tenerife, Spain
| | | |
Collapse
|
3
|
Lian J, Casari I, Falasca M. Modulatory role of the endocannabinoidome in the pathophysiology of the gastrointestinal tract. Pharmacol Res 2021; 175:106025. [PMID: 34883211 DOI: 10.1016/j.phrs.2021.106025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022]
Abstract
Originating from Eastern Asia, the plant Cannabis sativa has been used for centuries as a medicinal treatment. The unwanted psychotropic effects of one of its major components, Δ9-tetrahydrocannabinol, discouraged its therapeutic employment until, recently, the discovery of cannabinoids receptors and their endogenous ligands endocannabinoids reignited the interest. The endocannabinoid system has lately been found to play an important role in the maintenance of human health, both centrally and peripherally. However, the initial idea of the endocannabinoid system structure has been quickly understood to be too simplistic and, as new receptors, mediators, and enzymes have been discovered to participate in a complex relationship, the new, more comprehensive term "expanded endocannabinoid system" or "endocannabinoidome", has taken over. The discovery of other endocannabinoid-like receptors, such as the G protein-coupled receptor 119 and G protein-coupled receptor 55, has opened the way to the development of potential therapeutic targets for the treatment of various metabolic disorders. In addition, recent findings have also provided evidence suggesting the potential therapeutic link between the endocannabinoidome and various inflammatory-based gut diseases, such as inflammatory bowel disease and cancer. This review will provide an introduction to the endocannabinoidome, focusing on its modulatory role in the gastrointestinal tract and on the interest generated by the link between gut microbiota, the endocannabinoid system and metabolic diseases such as inflammatory bowel disease, type-2 diabetes and obesity. In addition, we will look at the potential novel aspects and benefits of drugs targeting the endocannabinoid system.
Collapse
Affiliation(s)
- Jerome Lian
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
4
|
Ochiai K, Hirooka R, Sakaino M, Takeuchi S, Hira T. 2-Arachidonoyl glycerol potently induces cholecystokinin secretion in murine enteroendocrine STC-1 cells via cannabinoid receptor CB1. Lipids 2021; 56:603-611. [PMID: 34533218 DOI: 10.1002/lipd.12323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/09/2021] [Accepted: 09/01/2021] [Indexed: 11/05/2022]
Abstract
Cholecystokinin (CCK) is a peptide hormone secreted from enteroendocrine cells and regulates the exocrine pancreas, gastric motility, and appetite. Dietary triacylglycerols are hydrolyzed to fatty acids (FA) and 2-monoacylglycerols (2-MAG) in the small intestine. Although it is well known that FA stimulate CCK secretion, whether 2-MAG have the CCK-releasing activity remains unclear. We examined the CCK-releasing activity of four commercially available 2-MAG in a murine CCK-producing cell line, STC-1, and the molecular mechanism underlying 2-MAG-induced CCK secretion. CCK released from the cells was measured using ELISA. Among four 2-MAG (2-palmitoyl, 2-oleoyl, 2-linoleoyl, and 2-arachidonoyl monoacylglycerols) examined, 2-arachidonoyl glycerol (2-AG) potently stimulated CCK secretion in a dose-dependent manner. Structurally related compounds, such as 2-arachidonoyl glycerol ether and 1-arachidonoyl glycerol, did not stimulate CCK secretion. Both arachidonic acid and 2-AG stimulated CCK secretion at 100 μM, but only 2-AG did at 50 μM. 2-AG-induced CCK secretion but not arachidonic acid-induced CCK secretion was attenuated by treatment with a cannabinoid receptor 1 (CB1) antagonist. These results indicate that a specific 2-MAG, 2-AG, directly stimulates CCK secretion via CB1.
Collapse
Affiliation(s)
- Keita Ochiai
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | - Tohru Hira
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Peng H, Shahidi F. Cannabis and Cannabis Edibles: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1751-1774. [PMID: 33555188 DOI: 10.1021/acs.jafc.0c07472] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cannabis is an excellent natural source of fiber and various bioactive cannabinoids. So far, at least 120 cannabinoids have been identified, and more novel cannabinoids are gradually being unveiled by detailed cannabis studies. However, cannabinoids in both natural and isolated forms are especially vulnerable to oxygen, heat, and light. Therefore, a diversity of cannabinoids is associated with their chemical instability to a large extent. The research status of structural conversion of cannabinoids is introduced. On the other hand, the use of drug-type cannabis and the phytocannabinoids thereof has been rapidly popularized and plays an indispensable role in both medical therapy and daily recreation. The recent legalization of edible cannabis further extends its application into the food industry. The varieties of legal edible cannabis products in the current commercial market are relatively monotonous due to rigorous restrictions under the framework of Cannabis Regulations and infancy of novel developments. Meanwhile, patents/studies related to the safety and quality assurance systems of cannabis edibles are still rare and need to be developed. Furthermore, along with cannabinoids, many phytochemicals such as flavonoids, lignans, terpenoids, and polysaccharides exist in the cannabis matrix, and these may exhibit prebiotic/probiotic properties and improve the composition of the gut microbiome. During metabolism and excretion, the bioactive phytochemicals of cannabis, mostly the cannabinoids, may be structurally modified during enterohepatic detoxification and gut fermentation. However, the potential adverse effects of both acute and chronic exposure to cannabinoids and their vulnerable groups have been clearly recognized. Therefore, a comprehensive understanding of the chemistry, metabolism, toxicity, commercialization, and regulations regarding cannabinoid edibles is reviewed and updated in this contribution.
Collapse
Affiliation(s)
- Han Peng
- Department of Biochemistry Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X9
| | - Fereidoon Shahidi
- Department of Biochemistry Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X9
| |
Collapse
|
6
|
Abstract
Cannabinoids have been known as the primary component of cannabis for decades, but the characterization of the endocannabinoid system (ECS) in the 1990s opened the doors for cannabis' use in modern medicine. The 2 main receptors of this system, cannabinoid receptors 1 and 2, are found on cells of various tissues, with significant expression in the gastrointestinal (GI) tract. The characterization of the ECS also heralded the understanding of endocannabinoids, naturally occurring compounds synthesized in the human body. Via secondary signaling pathways acting on vagal nerves, nociceptors, and immune cells, cannabinoids have been shown to have both palliative and detrimental effects on the pathophysiology of GI disorders. Although research on the effects of both endogenous and exogenous cannabinoids has been slow due to the complicated legal history of cannabis, discoveries of cannabinoids' treatment potential have been found in various fields of medicine, including the GI world. Medical cannabis has since been offered as a treatment for a myriad of conditions and malignancies, including cancer, human immunodeficiency virus/acquired immunodeficiency syndrome, multiple sclerosis, chronic pain, nausea, posttraumatic stress disorder, amyotrophic lateral sclerosis, cachexia, glaucoma, and epilepsy. This article hopes to create an overview of current research on cannabinoids and the ECS, detail the potential advantages and pitfalls of their use in GI diseases, and explore possible future developments in this field.
Collapse
|
7
|
DeVuono MV, La Caprara O, Sullivan MT, Bath A, Petrie GN, Limebeer CL, Rock EM, Hill MN, Parker LA. Role of the stress response and the endocannabinoid system in Δ 9-tetrahydrocannabinol (THC)-induced nausea. Psychopharmacology (Berl) 2020; 237:2187-2199. [PMID: 32399633 DOI: 10.1007/s00213-020-05529-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
RATIONALE Dysregulation of the endocannabinoid (eCB) system by high doses of Δ9-tetrahydrocannabinol (THC) is hypothesized to generate a dysfunctional hypothalamic-pituitary-adrenal (HPA) axis contributing to cannabinoid hyperemesis syndrome (CHS). OBJECTIVES AND METHODS Using the conditioned gaping model of nausea, we aimed to determine if pre-treatments that interfere with stress, or an anti-emetic drug, interfere with THC-induced nausea in male rats. The corticotropin-releasing hormone (CRH) antagonist, antalarmin, was given to inhibit the HPA axis during conditioning. Since eCBs inhibit stress, MJN110 (which elevates 2-arachidonylglycerol (2-AG)) and URB597 (which elevates anandamide (AEA)) were also tested. Propranolol (β-adrenergic antagonist) and WAY-100635 (5-HT1A antagonist) attenuate HPA activation by cannabinoids and, therefore, were assessed. In humans, CHS symptoms are not alleviated by anti-emetic drugs, such as ondansetron (5-HT3 antagonist); however, benzodiazepines are effective. Therefore, ondansetron and chlordiazepoxide were tested. To determine if HPA activation by THC is dose-dependent, corticosterone (CORT) was analyzed from serum of rats treated with 0.0, 0.5, or 10 mg/kg THC. RESULTS Antalarmin (10 and 20 mg/kg), MJN110 (10 mg/kg), URB597 (0.3 mg/kg), propranolol (2.5 and 5 mg/kg), WAY-100635 (0.5 mg/kg), and chlordiazepoxide (5 mg/kg) interfered with THC-induced conditioned gaping, but the anti-emetic ondansetron (0.1 and 0.01 mg/kg) did not. THC produced significantly higher CORT levels at 10 mg/kg than at 0.0 and 0.5 mg/kg THC. CONCLUSIONS Treatments that interfere with the stress response also inhibit THC-induced conditioned gaping, but a typical anti-emetic drug does not, supporting the hypothesis that THC-induced nausea, and CHS, is a result of a dysregulated stress response.
Collapse
Affiliation(s)
- Marieka V DeVuono
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Olivia La Caprara
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Megan T Sullivan
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Alexandra Bath
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Gavin N Petrie
- Departments of Cell Biology and, Anatomy and Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Cheryl L Limebeer
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Erin M Rock
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Matthew N Hill
- Departments of Cell Biology and, Anatomy and Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
8
|
Abstract
The global movement toward legalization of cannabis is resulting in an ever-increasing public perception that cannabis is safe. Cannabis is not the first drug to be available for nonmedical use, nor is it the first to have such an unfounded safety profile. The safety of long-term exposure to phytocannabinoids is misunderstood by, and under reported to, the general public. There is evidence to suggest that long-term use of recreational cannabis may be associated with an increased risk of undesirable side effects. This evidence warrants both appropriate caution from the general public and investment in further research by government and industry sectors that are profiting from the sale of these potent psychoactive agents. There is no doubt that these compounds have medical potential. However, in addition to the medical potential, we must also remain aware of the adverse health effects that are becoming synonymous with recreational cannabis use. This perspective highlights the privileged role that cannabis has as a perceived “safe drug” in society and summarizes some concerning side effects that are becoming associated with regular nonprescribed cannabis use.
Collapse
Affiliation(s)
- Pauric Bannigan
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - James C Evans
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
DeVuono MV, Parker LA. Cannabinoid Hyperemesis Syndrome: A Review of Potential Mechanisms. Cannabis Cannabinoid Res 2020; 5:132-144. [PMID: 32656345 PMCID: PMC7347072 DOI: 10.1089/can.2019.0059] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Cannabinoids have long been known for their ability to treat nausea and vomiting. Recent reports, however, have highlighted the paradoxical proemetic effects of cannabinoids. Cannabinoid hyperemesis syndrome (CHS) is characterized by cyclical episodes of nausea and vomiting, accompanied by abdominal pain following prolonged, high-dose cannabis use, which is alleviated by hot baths and showers. Little is known about the cause of this syndrome. Discussion: Cannabinoids produce a biphasic effect on nausea and vomiting, with low doses having an antiemetic effect and high doses producing emesis. Presentation and treatment of CHS are similar to cyclical vomiting syndrome as well as chemotherapy-related anticipatory nausea and vomiting, suggesting that these phenomena may share mechanisms. The prevalence of CHS is not known because of the symptomatic overlap with other disorders and the lack of knowledge of the syndrome by the public and physicians. Treatment with typical antiemetic drugs is ineffective for CHS, but anxiolytic and sedative drugs, along with hot showers, seem to be consistently effective at reducing symptoms. The only known way to permanently end CHS, however, is abstinence from cannabinoids. Case studies and limited pre-clinical data on CHS indicate that prolonged high doses of the main psychotropic compound in cannabis, Δ9-tetrahydrocannabinol (THC), result in changes to the endocannabinoid system by acting on the cannabinoid 1 (CB1) receptor. These endocannabinoid system changes can dysregulate stress and anxiety responses, thermoregulation, the transient receptor potential vanilloid system, and several neurotransmitters systems, and are thus potential candidates for mediating the pathophysiology of CHS. Conclusions: Excessive cannabinoid administration disrupts the normal functioning of the endocannabinoid system, which may cause CHS. More clinical and pre-clinical research is needed to fully understand the underlying pathophysiology of this disorder and the negative consequences of prolonged high-dose cannabis use.
Collapse
Affiliation(s)
- Marieka V. DeVuono
- Department of Psychology and Collabortive Neuroscience Program, University of Guelph, Guelph, Canada
| | - Linda A. Parker
- Department of Psychology and Collabortive Neuroscience Program, University of Guelph, Guelph, Canada
| |
Collapse
|
10
|
Ruiz de Azua I, Lutz B. Multiple endocannabinoid-mediated mechanisms in the regulation of energy homeostasis in brain and peripheral tissues. Cell Mol Life Sci 2019; 76:1341-1363. [PMID: 30599065 PMCID: PMC11105297 DOI: 10.1007/s00018-018-2994-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/22/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
The endocannabinoid (eCB) system is widely expressed in many central and peripheral tissues, and is involved in a plethora of physiological processes. Among these, activity of the eCB system promotes energy intake and storage, which, however, under pathophysiological conditions, can favour the development of obesity and obesity-related disorders. It is proposed that eCB signalling is evolutionary beneficial for survival under periods of scarce food resources. Remarkably, eCB signalling is increased both in hunger and in overnutrition conditions, such as obesity and type-2 diabetes. This apparent paradox suggests a role of the eCB system both at initiation and at clinical endpoint of obesity. This review will focus on recent findings about the role of the eCB system controlling whole-body metabolism in mice that are genetically modified selectively in different cell types. The current data in fact support the notion that eCB signalling is not only engaged in the development but also in the maintenance of obesity, whereby specific cell types in central and peripheral tissues are key sites in regulating the entire body's energy homeostasis.
Collapse
MESH Headings
- Adipose Tissue/metabolism
- Animals
- Brain/metabolism
- Endocannabinoids/metabolism
- Energy Metabolism
- Muscle, Skeletal/metabolism
- Obesity/metabolism
- Obesity/pathology
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
Collapse
Affiliation(s)
- Inigo Ruiz de Azua
- German Resilience Center (DRZ) and Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 5, 55128, Mainz, Germany.
| | - Beat Lutz
- German Resilience Center (DRZ) and Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 5, 55128, Mainz, Germany
| |
Collapse
|
11
|
Pergolizzi Jr. JV, LeQuang JA, Bisney JF. Cannabinoid Hyperemesis. Med Cannabis Cannabinoids 2019; 1:73-95. [PMID: 34676325 PMCID: PMC8489348 DOI: 10.1159/000494992] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/30/2018] [Indexed: 11/08/2023] Open
Abstract
Cannabinoid hyperemesis syndrome (CHS) is a paradoxical condition in which a long-term cannabis user suffers an episode of intractable vomiting that may last days separated by longer asymptomatic periods of weeks or months. Cannabinoids are often utilized for their antiemetic properties, so CHS can be a puzzling condition, and the diagnosis of CHS may be disputed by patients. Unlike other cyclic vomiting syndromes, CHS can be relieved by hot showers or topical capsaicin. Abstinence from cannabinoids causes CHS to resolve, sometimes in a matter of days or hours. Marijuana users as well as many clinicians are not aware of CHS, and patients may undergo unnecessary tests, scans, and other procedures to get an accurate diagnosis. Symptoms may be severe enough to require hospitalization. With liberalization of marijuana laws and favorable public opinion about the healing properties of cannabis, CHS may be more frequently observed in clinical practice.
Collapse
|
12
|
A Systematic Review and Meta-Analysis of the In Vivo Haemodynamic Effects of Δ⁸-Tetrahydrocannabinol. Pharmaceuticals (Basel) 2018; 11:ph11010013. [PMID: 29385080 PMCID: PMC5874709 DOI: 10.3390/ph11010013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 11/24/2022] Open
Abstract
∆9-Tetrahydrocannabinol (THC) has complex effects on the cardiovascular system. We aimed to systematically review studies of THC and haemodynamic alterations. PubMed, Medline, and EMBASE were searched for relevant studies. Changes in blood pressure (BP), heart rate (HR), and blood flow (BF) were analysed using the Cochrane Review Manager Software. Thirty-one studies met the eligibility criteria. Fourteen publications assessed BP (number, n = 541), 22 HR (n = 567), and 3 BF (n = 45). Acute THC dosing reduced BP and HR in anaesthetised animals (BP, mean difference (MD) −19.7 mmHg, p < 0.00001; HR, MD −53.49 bpm, p < 0.00001), conscious animals (BP, MD −12.3 mmHg, p = 0.0007; HR, MD −30.05 bpm, p < 0.00001), and animal models of stress or hypertension (BP, MD −61.37 mmHg, p = 0.03) and increased cerebral BF in murine stroke models (MD 32.35%, p < 0.00001). Chronic dosing increased BF in large arteries in anaesthetised animals (MD 21.95 mL/min, p = 0.05) and reduced BP in models of stress or hypertension (MD −22.09 mmHg, p < 0.00001). In humans, acute administration increased HR (MD 8.16 bpm, p < 0.00001). THC acts differently according to species and experimental conditions, causing bradycardia, hypotension and increased BF in animals; and causing increased HR in humans. Data is limited, and further studies assessing THC-induced haemodynamic changes in humans should be considered.
Collapse
|
13
|
Lapoint J, Meyer S, Yu CK, Koenig KL, Lev R, Thihalolipavan S, Staats K, Kahn CA. Cannabinoid Hyperemesis Syndrome: Public Health Implications and a Novel Model Treatment Guideline. West J Emerg Med 2017; 19:380-386. [PMID: 29560069 PMCID: PMC5851514 DOI: 10.5811/westjem.2017.11.36368] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/04/2017] [Accepted: 11/05/2017] [Indexed: 12/22/2022] Open
Abstract
Introduction Cannabinoid hyperemesis syndrome (CHS) is an entity associated with cannabinoid overuse. CHS typically presents with cyclical vomiting, diffuse abdominal pain, and relief with hot showers. Patients often present to the emergency department (ED) repeatedly and undergo extensive evaluations including laboratory examination, advanced imaging, and in some cases unnecessary procedures. They are exposed to an array of pharmacologic interventions including opioids that not only lack evidence, but may also be harmful. This paper presents a novel treatment guideline that highlights the identification and diagnosis of CHS and summarizes treatment strategies aimed at resolution of symptoms, avoidance of unnecessary opioids, and ensuring patient safety. Methods The San Diego Emergency Medicine Oversight Commission in collaboration with the County of San Diego Health and Human Services Agency and San Diego Kaiser Permanente Division of Medical Toxicology created an expert consensus panel to establish a guideline to unite the ED community in the treatment of CHS. Results Per the consensus guideline, treatment should focus on symptom relief and education on the need for cannabis cessation. Capsaicin is a readily available topical preparation that is reasonable to use as first-line treatment. Antipsychotics including haloperidol and olanzapine have been reported to provide complete symptom relief in limited case studies. Conventional antiemetics including antihistamines, serotonin antagonists, dopamine antagonists and benzodiazepines may have limited effectiveness. Emergency physicians should avoid opioids if the diagnosis of CHS is certain and educate patients that cannabis cessation is the only intervention that will provide complete symptom relief. Conclusion An expert consensus treatment guideline is provided to assist with diagnosis and appropriate treatment of CHS. Clinicians and public health officials should identity and treat CHS patients with strategies that decrease exposure to opioids, minimize use of healthcare resources, and maximize patient safety.
Collapse
Affiliation(s)
- Jeff Lapoint
- Kaiser Permanente, San Diego Medical Center, Department of Emergency Medicine, San Diego, California
| | - Seth Meyer
- Kaiser Permanente, San Diego Medical Center, Department of Emergency Medicine, San Diego, California
| | - Charles K Yu
- Kaiser Permanente, San Diego Medical Center, Department of Emergency Medicine, San Diego, California
| | - Kristi L Koenig
- County of San Diego, Health & Human Services Agency, Emergency Medical Services, San Diego, California.,University of California Irvine, Department of Emergency Medicine, Orange, California
| | - Roneet Lev
- Scripps Mercy Hospital, Emergency Department, San Diego, California
| | - Sayone Thihalolipavan
- County of San Diego, Health & Human Services Agency, Public Health, San Diego, California
| | - Katherine Staats
- University of California, San Diego, Department of Emergency Medicine, San Diego, California
| | - Christopher A Kahn
- University of California, San Diego, Department of Emergency Medicine, San Diego, California
| |
Collapse
|
14
|
Heard K, Marlin MB, Nappe T, Hoyte CO. Common marijuana-related cases encountered in the emergency department. Am J Health Syst Pharm 2017; 74:1904-1908. [PMID: 28947626 DOI: 10.2146/ajhp160715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Kennon Heard
- University of Colorado School of Medicine, Denver, CO
| | | | - Thomas Nappe
- Rocky Mountain Poison and Drug Center, Denver, CO
| | - Christopher O Hoyte
- University of Colorado School of Medicine, Denver, CO.,Rocky Mountain Poison and Drug Center, Denver, CO
| |
Collapse
|
15
|
Sorensen CJ, DeSanto K, Borgelt L, Phillips KT, Monte AA. Cannabinoid Hyperemesis Syndrome: Diagnosis, Pathophysiology, and Treatment-a Systematic Review. J Med Toxicol 2017; 13:71-87. [PMID: 28000146 PMCID: PMC5330965 DOI: 10.1007/s13181-016-0595-z] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 12/28/2022] Open
Abstract
Cannabinoid hyperemesis syndrome (CHS) is a syndrome of cyclic vomiting associated with cannabis use. Our objective is to summarize the available evidence on CHS diagnosis, pathophysiology, and treatment. We performed a systematic review using MEDLINE, Ovid MEDLINE, Embase, Web of Science, and the Cochrane Library from January 2000 through September 24, 2015. Articles eligible for inclusion were evaluated using the Grading and Recommendations Assessment, Development, and Evaluation (GRADE) criteria. Data were abstracted from the articles and case reports and were combined in a cumulative synthesis. The frequency of identified diagnostic characteristics was calculated from the cumulative synthesis and evidence for pathophysiologic hypothesis as well as treatment options were evaluated using the GRADE criteria. The systematic search returned 2178 articles. After duplicates were removed, 1253 abstracts were reviewed and 183 were included. Fourteen diagnostic characteristics were identified, and the frequency of major characteristics was as follows: history of regular cannabis for any duration of time (100%), cyclic nausea and vomiting (100%), resolution of symptoms after stopping cannabis (96.8%), compulsive hot baths with symptom relief (92.3%), male predominance (72.9%), abdominal pain (85.1%), and at least weekly cannabis use (97.4%). The pathophysiology of CHS remains unclear with a dearth of research dedicated to investigating its underlying mechanism. Supportive care with intravenous fluids, dopamine antagonists, topical capsaicin cream, and avoidance of narcotic medications has shown some benefit in the acute setting. Cannabis cessation appears to be the best treatment. CHS is a cyclic vomiting syndrome, preceded by daily to weekly cannabis use, usually accompanied by symptom improvement with hot bathing, and resolution with cessation of cannabis. The pathophysiology underlying CHS is unclear. Cannabis cessation appears to be the best treatment.
Collapse
Affiliation(s)
- Cecilia J Sorensen
- Denver Health Residency in Emergency Medicine, Denver Health and Hospital Authority, Denver, CO, 80204, USA.
| | - Kristen DeSanto
- Health Sciences Library, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Laura Borgelt
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristina T Phillips
- School of Psychological Sciences, University of Northern Colorado, Greeley, CO, USA
| | - Andrew A Monte
- Denver Health Residency in Emergency Medicine, Denver Health and Hospital Authority, Denver, CO, 80204, USA
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Rocky Mountain Poison & Drug Center, Denver Health and Hospital Authority, Denver, CO, USA
| |
Collapse
|
16
|
Abstract
Inflammatory bowel diseases (IBDs) often take a chronic debilitating course. Given the chronicity of IBD, the limitations of the available medications, their potential side effects, and the impact of the disease on patients' quality of life, it is not surprising IBD patients are ranked among the highest users of complementary and alternative medicine (CAM). Since CAM has become very popular in real-life practice of Western Communities, caregivers must gain more knowledge about these therapies, their mechanism of action, benefits, and risks. This article reviews and discusses up-to-date scientific and clinical data regarding the most prevalent herbal CAM therapies.
Collapse
|
17
|
Gyires K, Zádori ZS. Role of Cannabinoids in Gastrointestinal Mucosal Defense and Inflammation. Curr Neuropharmacol 2017; 14:935-951. [PMID: 26935536 PMCID: PMC5333598 DOI: 10.2174/1570159x14666160303110150] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/14/2015] [Accepted: 02/26/2016] [Indexed: 02/06/2023] Open
Abstract
Modulating the activity of the endocannabinoid system influences various gastrointestinal physiological and pathophysiological processes, and cannabinoid receptors as well as regulatory enzymes responsible for the synthesis or degradation of endocannabinoids representing potential targets to reduce the development of gastrointestinal mucosal lesions, hemorrhage and inflammation. Direct activation of CB1 receptors by plant-derived, endogenous or synthetic cannabinoids effectively reduces both gastric acid secretion and gastric motor activity, and decreases the formation of gastric mucosal lesions induced by stress, pylorus ligation, nonsteroidal anti-inflammatory drugs (NSAIDs) or alcohol, partly by peripheral, partly by central mechanisms. Similarly, indirect activation of cannabinoid receptors through elevation of endocannabinoid levels by globally acting or peripherally restricted inhibitors of their metabolizing enzymes (FAAH, MAGL) or by inhibitors of their cellular uptake reduces the gastric mucosal lesions induced by NSAIDs in a CB1 receptor-dependent fashion. Dual inhibition of FAAH and cyclooxygenase enzymes induces protection against both NSAID-induced gastrointestinal damage and intestinal inflammation. Moreover, in intestinal inflammation direct or indirect activation of CB1 and CB2 receptors exerts also multiple beneficial effects. Namely, activation of both CB receptors was shown to ameliorate intestinal inflammation in various murine colitis models, to decrease visceral hypersensitivity and abdominal pain, as well as to reduce colitis-associated hypermotility and diarrhea. In addition, CB1 receptors suppress secretory processes and also modulate intestinal epithelial barrier functions. Thus, experimental data suggest that the endocannabinoid system represents a promising target in the treatment of inflammatory bowel diseases, and this assumption is also confirmed by preliminary clinical studies.
Collapse
Affiliation(s)
- Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvarad ter 4., 1089, Budapest, Hungary
| | | |
Collapse
|
18
|
Ligresti A, De Petrocellis L, Di Marzo V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol Rev 2016; 96:1593-659. [DOI: 10.1152/physrev.00002.2016] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.
Collapse
Affiliation(s)
- Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| |
Collapse
|
19
|
Abstract
Cannabis has been used medicinally for centuries to treat a variety of disorders, including those associated with the gastrointestinal tract. The discovery of our bodies' own "cannabis-like molecules" and associated receptors and metabolic machinery - collectively called the endocannabinoid system - enabled investigations into the physiological relevance for the system, and provided the field with evidence of a critical function for this endogenous signaling pathway in health and disease. Recent investigations yield insight into a significant participation for the endocannabinoid system in the normal physiology of gastrointestinal function, and its possible dysfunction in gastrointestinal pathology. Many gaps, however, remain in our understanding of the precise neural and molecular mechanisms across tissue departments that are under the regulatory control of the endocannabinoid system. This review highlights research that reveals an important - and at times surprising - role for the endocannabinoid system in the control of a variety of gastrointestinal functions, including motility, gut-brain mediated fat intake and hunger signaling, inflammation and gut permeability, and dynamic interactions with gut microbiota.
Collapse
Affiliation(s)
- Nicholas V. DiPatrizio
- Address correspondence to: Nicholas V. DiPatrizio, PhD, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave., Riverside, CA 92521, E-mail:
| |
Collapse
|
20
|
Abstract
The endocannabinoid system consists of endogenous cannabinoids (endocannabinoids), the enzymes that synthesize and degrade endocannabinoids, and the receptors that transduce the effects of endocannabinoids. Much of what we know about the function of endocannabinoids comes from studies that combine localization of endocannabinoid system components with physiological or behavioral approaches. This review will focus on the localization of the best-known components of the endocannabinoid system for which the strongest anatomical evidence exists.
Collapse
|
21
|
Cluny NL, Keenan CM, Reimer RA, Le Foll B, Sharkey KA. Prevention of Diet-Induced Obesity Effects on Body Weight and Gut Microbiota in Mice Treated Chronically with Δ9-Tetrahydrocannabinol. PLoS One 2015; 10:e0144270. [PMID: 26633823 PMCID: PMC4669115 DOI: 10.1371/journal.pone.0144270] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/16/2015] [Indexed: 01/14/2023] Open
Abstract
Objective Acute administration of cannabinoid CB1 receptor agonists, or the ingestion of cannabis, induces short-term hyperphagia. However, the incidence of obesity is lower in frequent cannabis users compared to non-users. Gut microbiota affects host metabolism and altered microbial profiles are observed in obese states. Gut microbiota modifies adipogenesis through actions on the endocannabinoid system. This study investigated the effect of chronic THC administration on body weight and gut microbiota in diet-induced obese (DIO) and lean mice. Methods Adult male DIO and lean mice were treated daily with vehicle or THC (2mg/kg for 3 weeks and 4 mg/kg for 1 additional week). Body weight, fat mass, energy intake, locomotor activity, whole gut transit and gut microbiota were measured longitudinally. Results THC reduced weight gain, fat mass gain and energy intake in DIO but not lean mice. DIO-induced changes in select gut microbiota were prevented in mice chronically administered THC. THC had no effect on locomotor activity or whole gut transit in either lean or DIO mice. Conclusions Chronic THC treatment reduced energy intake and prevented high fat diet-induced increases in body weight and adiposity; effects that were unlikely to be a result of sedation or altered gastrointestinal transit. Changes in gut microbiota potentially contribute to chronic THC-induced actions on body weight in obesity.
Collapse
Affiliation(s)
- Nina L. Cluny
- Hotchkiss Brain Institute and Snyder Institute of Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Catherine M. Keenan
- Hotchkiss Brain Institute and Snyder Institute of Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Raylene A. Reimer
- Faculty of Kinesiology and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Keith A. Sharkey
- Hotchkiss Brain Institute and Snyder Institute of Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
22
|
Gyires K, Rónai AZ, Zádori ZS, Tóth VE, Németh J, Szekeres M, Hunyady L. Angiotensin II-induced activation of central AT1 receptors exerts endocannabinoid-mediated gastroprotective effect in rats. Mol Cell Endocrinol 2014; 382:971-8. [PMID: 24145131 DOI: 10.1016/j.mce.2013.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 10/01/2013] [Accepted: 10/01/2013] [Indexed: 12/29/2022]
Abstract
The aim of the present study was to analyze whether angiotensin II via the endocannabinoid system can induce gastric mucosal protection, since transactivation of cannabinoid CB1 receptors by angiotensin AT1 receptor in CHO cells was described. Experimental ulcer was induced by acidified ethanol given orally in male Wistar rats, CB1(+/+) wild type and CB1(-/-) knockout mice. The compounds were administered intracerebroventricularly. It was found, that 1. Angiotensin II inhibited the ethanol-induced gastric lesions (11.9-191pmol); the effect of angiotensin II (191pmol) was inhibited by the CB1 receptor inverse agonist AM 251 (1.8nmol) and the inhibitor of diacylglycerol lipase (DAGL), tetrahydrolipstatin (0.2nmol). 2. Angiotensin II exerted gastroprotection in wild type, but not in CB1(-/-) mice. 3. The gastroprotective effect of angiotensin II (191pmol) was reduced by atropine (1mg/kg i.v.) and bilateral cervical vagotomy. In conclusion, stimulation of central angiotensin AT1 receptors via activation of cannabinoid CB1 receptors induces gastroprotection in a DAGL-dependent and vagus-mediated mechanism.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Atropine/pharmacology
- CHO Cells
- Cricetulus
- Ethanol
- Gastric Mucosa/metabolism
- Gene Expression Regulation
- Injections, Intraventricular
- Lactones/pharmacology
- Lipoprotein Lipase/antagonists & inhibitors
- Lipoprotein Lipase/genetics
- Lipoprotein Lipase/metabolism
- Male
- Mice
- Mice, Knockout
- Orlistat
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- Rats
- Rats, Wistar
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Signal Transduction
- Stomach/drug effects
- Stomach/pathology
- Stomach Ulcer/chemically induced
- Stomach Ulcer/drug therapy
- Stomach Ulcer/metabolism
- Stomach Ulcer/pathology
- Vagotomy
- Vagus Nerve
Collapse
Affiliation(s)
- Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary.
| | - András Z Rónai
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary
| | - Viktória E Tóth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary
| | - József Németh
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary
| | - Mária Szekeres
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó u. 37-47., 1094 Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó u. 37-47., 1094 Budapest, Hungary; Laboratory of Molecular Physiology, Semmelweis University and Hungarian Academy of Sciences, Tűzoltó u. 37-47., 1094 Budapest, Hungary
| |
Collapse
|
23
|
Sun Y, Chen JD. Rimonabant, gastrointestinal motility and obesity. Curr Neuropharmacol 2013; 10:212-8. [PMID: 23449551 PMCID: PMC3468875 DOI: 10.2174/157015912803217297] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 06/04/2012] [Accepted: 07/09/2012] [Indexed: 01/09/2023] Open
Abstract
Background: Obesity and overweight affect more than half of the US population and are associated with a number of diseases. Rimonabant, a cannabinoid receptor 1 blocker in the endocannabinoid (EC) system, was indicated in Europe for the treatment of obesity and overweight patients with associated risk factors but withdrawn on Jan, 2009 because of side effects. Many studies have reported the effects of rimonabant on gastrointestinal (GI) motility and food intake. The aims of this review are: to review the relationship of EC system with GI motility and food intake; to review the
studies of rimonabant on GI motility, food intake and obesity; and to report the tolerance and side effects of rimonabant.
Methods: the literature (Pubmed database) was searched using keywords: rimonabant, obesity and GI motility. Results: GI motility is related with appetite, food intake and nutrients absorption. The EC system inhibits GI motility, reduces emesis and increases food intake; Rimonabant accelerates gastric emptying and intestinal transition but decreases energy metabolism and food intake. There is rapid onset of tolerance to the prokinetic effect of rimonabant. The main side effects of rimonabant are depression and GI symptoms. Conclusions: Rimonabant has significant effects on energy metabolism and food intake, probably mediated via its effects on GI motility.
Collapse
Affiliation(s)
- Yan Sun
- Veterans Research and Education Foundation, VA Medical Center, Oklahoma City, OK
| | | |
Collapse
|
24
|
Mostafeezur RM, Zakir HM, Takatsuji H, Yamada Y, Yamamura K, Kitagawa J. Cannabinoids facilitate the swallowing reflex elicited by the superior laryngeal nerve stimulation in rats. PLoS One 2012; 7:e50703. [PMID: 23209814 PMCID: PMC3507745 DOI: 10.1371/journal.pone.0050703] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 10/25/2012] [Indexed: 12/03/2022] Open
Abstract
Cannabinoids have been reported to be involved in affecting various biological functions through binding with cannabinoid receptors type 1 (CB1) and 2 (CB2). The present study was designed to investigate whether swallowing, an essential component of feeding behavior, is modulated after the administration of cannabinoid. The swallowing reflex evoked by the repetitive electrical stimulation of the superior laryngeal nerve in rats was recorded before and after the administration of the cannabinoid receptor agonist, WIN 55-212-2 (WIN), with or without CB1 or CB2 antagonist. The onset latency of the first swallow and the time intervals between swallows were analyzed. The onset latency and the intervals between swallows were shorter after the intravenous administration of WIN, and the strength of effect of WIN was dose-dependent. Although the intravenous administration of CB1 antagonist prior to intravenous administration of WIN blocked the effect of WIN, the administration of CB2 antagonist did not block the effect of WIN. The microinjection of the CB1 receptor antagonist directly into the nucleus tractus solitarius (NTS) prior to intravenous administration of WIN also blocked the effect of WIN. Immunofluorescence histochemistry was conducted to assess the co-localization of CB1 receptor immunoreactivity to glutamic acid decarboxylase 67 (GAD67) or glutamate in the NTS. CB1 receptor was co-localized more with GAD67 than glutamate in the NTS. These findings suggest that cannabinoids facilitate the swallowing reflex via CB1 receptors. Cannabinoids may attenuate the tonic inhibitory effect of GABA (gamma-aminobuteric acid) neurons in the central pattern generator for swallowing.
Collapse
Affiliation(s)
- Rahman Md. Mostafeezur
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hossain Md. Zakir
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hanako Takatsuji
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshiaki Yamada
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Junichi Kitagawa
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
25
|
Cannabinoid receptor 1 in the vagus nerve is dispensable for body weight homeostasis but required for normal gastrointestinal motility. J Neurosci 2012; 32:10331-7. [PMID: 22836266 DOI: 10.1523/jneurosci.4507-11.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cannabinoid receptor 1 (CB(1)R) is required for body weight homeostasis and normal gastrointestinal motility. However, the specific cell types expressing CB(1)R that regulate these physiological functions are unknown. CB(1)R is widely expressed, including in neurons of the parasympathetic branches of the autonomic nervous system. The vagus nerve has been implicated in the regulation of several aspects of metabolism and energy balance (e.g., food intake and glucose balance), and gastrointestinal functions including motility. To directly test the relevance of CB(1)R in neurons of the vagus nerve on metabolic homeostasis and gastrointestinal motility, we generated and characterized mice lacking CB(1)R in afferent and efferent branches of the vagus nerve (Cnr1(flox/flox); Phox2b-Cre mice). On a chow or on a high-fat diet, Cnr1(flox/flox); Phox2b-Cre mice have similar body weight, food intake, energy expenditure, and glycemia compared with Cnr1(flox/flox) control mice. Also, fasting-induced hyperphagia and after acute or chronic pharmacological treatment with SR141716 [N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole carboxamide] (CB(1)R inverse agonist) paradigms, mutants display normal body weight and food intake. Interestingly, Cnr1(flox/flox); Phox2b-Cre mice have increased gastrointestinal motility compared with controls. These results unveil CB(1)R in the vagus nerve as a key component underlying normal gastrointestinal motility.
Collapse
|
26
|
Percie du Sert N, Ho WSV, Rudd JA, Andrews PLR. Cannabinoid-induced reduction in antral pacemaker frequency: a telemetric study in the ferret. Neurogastroenterol Motil 2010; 22:1257-66, e324. [PMID: 20731777 DOI: 10.1111/j.1365-2982.2010.01581.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The gastric myoelectric activity (GMA) is the electrical pacesetter potential, which drives gastric motility. Cannabinoids have broad-spectrum antiemetic and antinauseant activity. Paradoxically, they inhibit intestinal peristalsis and reduce gastric motility but their effect on GMA remains unknown. METHODS Ferrets were surgically implanted with radiotelemetry transmitters to record GMA, body temperature and heart rate. The effect of WIN 55,212-2 (1 mg kg(-1), i.p.), an agonist at the cannabinoid type 1 and 2 receptors was examined in conscious, unrestrained ferrets. WIN 55,212-2 was also compared to the anandamide upregulator URB 597 (5 mg kg(-1), i.p.) for a potential to modulate the emetic response and behavioral changes induced by apomorphine (0.25 mg kg(-1), s.c.). KEY RESULTS WIN 55,212-2 decreased GMA frequency (8.1 ± 0.4 cpm, compared to 9.6 ± 0.1 cpm in vehicle-treated animals, n = 6, P < 0.01). Apomorphine induced 9.0 ± 1.6 emetic episodes, WIN 55,212-2 inhibited the emetic response (3.3 ± 1.0 episodes, n = 6, P < 0.05) but URB 597 had no effect (9.0 ± 1.5 episodes). Apomorphine-induced hyperactivity in vehicle-treated animals (6.5 ± 3.6-16.6 ± 4.9 active behavior counts, n = 6, P < 0.01), which was reduced by WIN 55,212-2 (5.0 ± 1.5 counts, n = 6, P < 0.05). CONCLUSIONS & INFERENCES WIN 55,212-2 demonstrated clear antiemetic efficacy, which extends the broad-spectrum antiemetic efficacy of cannabinoids to dopamine receptor agonists in the ferret. Our results, however, suggest a more limited spectrum of action for URB 597. WIN 55,212-2 decreased the frequency of the antral electrical pacemaker, which reveals new insights into the mechanism regulating the decrease in motility induced by cannabinoids.
Collapse
Affiliation(s)
- N Percie du Sert
- Division of Basic Medical Sciences, St George's University of London, London, UK.
| | | | | | | |
Collapse
|
27
|
Darmani NA. Mechanisms of Broad-Spectrum Antiemetic Efficacy of Cannabinoids against Chemotherapy-Induced Acute and Delayed Vomiting. Pharmaceuticals (Basel) 2010; 3:2930-2955. [PMID: 27713384 PMCID: PMC4034105 DOI: 10.3390/ph3092930] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/26/2010] [Accepted: 08/30/2010] [Indexed: 01/02/2023] Open
Abstract
Chemotherapy-induced nausea and vomiting (CINV) is a complex pathophysiological condition and consists of two phases. The conventional CINV neurotransmitter hypothesis suggests that the immediate phase is mainly due to release of serotonin (5-HT) from the enterochromaffin cells in the gastrointestinal tract (GIT), while the delayed phase is a consequence of release of substance P (SP) in the brainstem. However, more recent findings argue against this simplistic neurotransmitter and anatomical view of CINV. Revision of the hypothesis advocates a more complex, differential and overlapping involvement of several emetic neurotransmitters/modulators (e.g. dopamine, serotonin, substance P, prostaglandins and related arachidonic acid derived metabolites) in both phases of emesis occurring concomitantly in the brainstem and in the GIT enteric nervous system (ENS) [1]. No single antiemetic is currently available to completely prevent both phases of CINV. The standard antiemetic regimens include a 5-HT₃ antagonist plus dexamethasone for the prevention of acute emetic phase, combined with an NK1 receptor antagonist (e.g. aprepitant) for the delayed phase. Although NK1 antagonists behave in animals as broad-spectrum antiemetics against different emetogens including cisplatin-induced acute and delayed vomiting, by themselves they are not very effective against CINV in cancer patients. Cannabinoids such as D⁸-THC also behave as broad-spectrum antiemetics against diverse emetic stimuli as well as being effective against both phases of CINV in animals and patients. Potential side effects may limit the clinical utility of direct-acting cannabinoid agonists which could be avoided by the use of corresponding indirect-acting agonists. Cannabinoids (both phyto-derived and synthetic) behave as agonist antiemetics via the activation of cannabinoid CB₁ receptors in both the brainstem and the ENS emetic loci. An endocannabinoid antiemetic tone may exist since inverse CB₁ agonists (but not the corresponding silent antagonists) cause nausea and vomiting.
Collapse
Affiliation(s)
- Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
28
|
Cluny NL, Keenan CM, Duncan M, Fox A, Lutz B, Sharkey KA. Naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone (SAB378), a peripherally restricted cannabinoid CB1/CB2 receptor agonist, inhibits gastrointestinal motility but has no effect on experimental colitis in mice. J Pharmacol Exp Ther 2010; 334:973-80. [PMID: 20571060 DOI: 10.1124/jpet.110.169946] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The endocannabinoid system is involved in the regulation of gastrointestinal (GI) motility and inflammation. Using the peripherally restricted cannabinoid (CB)(1)/CB(2) receptor agonist naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone (SAB378), we investigated the role of peripheral cannabinoid receptors in the regulation of GI motility and the development of colitis in mice. The actions of SAB378 on whole gut transit, upper GI transit, colonic propulsion, and locomotor activity were investigated in C57BL/6N, CB(1) receptor knockout, and CB(2) receptor knockout mice. The potential for SAB378 to modify inflammation was studied by using dextran sulfate sodium (DSS) and 2,4,6-trinitrobenzene sulfonic acid (TNBS) models of experimental colitis. SAB378 did not modify locomotor activity. SAB378 slowed all parameters of GI motility, and these effects were significantly reduced by the CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3 carboxamide (AM251), but not by the CB(2) receptor antagonist 6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H- indol-3-yl](4-methoxyphenyl)methanone (AM630). SAB378 did not inhibit GI transit or colonic propulsion in CB(1) receptor knockout mice, whereas its effects were observed in CB(2) receptor knockout mice. SAB378 did not reduce the degree of colitis induced by DSS or TNBS. The actions of SAB378 on GI motility are mediated by peripherally located CB(1) receptors. SAB378 was not effective against two models of experimental colitis, which may indicate that peripheral cannabinoid receptor stimulation alone may not be sufficient to mediate the anti-inflammatory effects of cannabinoids.
Collapse
Affiliation(s)
- Nina L Cluny
- Hotchkiss Brain Institute and Snyder Institute of Infection, Immunity, and Inflammation, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Darmani NA. Cannabinoid-Induced Hyperemesis: A Conundrum-From Clinical Recognition to Basic Science Mechanisms. Pharmaceuticals (Basel) 2010; 3:2163-2177. [PMID: 27713347 PMCID: PMC4036650 DOI: 10.3390/ph3072163] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 06/25/2010] [Accepted: 06/29/2010] [Indexed: 12/14/2022] Open
Abstract
Cannabinoids are used clinically on a subacute basis as prophylactic agonist antiemetics for the prevention of nausea and vomiting caused by chemotherapeutics. Cannabinoids prevent vomiting by inhibition of release of emetic neurotransmitters via stimulation of presynaptic cannabinoid CB₁ receptors. Cannabis-induced hyperemesis is a recently recognized syndrome associated with chronic cannabis use. It is characterized by repeated cyclical vomiting and learned compulsive hot water bathing behavior. Although considered rare, recent international publications of numerous case reports suggest the contrary. The syndrome appears to be a paradox and the pathophysiological mechanism(s) underlying the induced vomiting remains unknown. Although some traditional hypotheses have already been proposed, the present review critically explores the basic science of these explanations in the clinical setting and provides more current mechanisms for the induced hyperemesis. These encompass: (1) pharmacokinetic factors such as long half-life, chronic exposure, lipid solubility, individual variation in metabolism/excretion leading to accumulation of emetogenic cannabinoid metabolites, and/or cannabinoid withdrawal; and (2) pharmacodynamic factors including switching of the efficacy of Δ⁸-THC from partial agonist to antagonist, differential interaction of Δ⁸-THC with Gs and Gi signal transduction proteins, CB₁ receptor desensitization or downregulation, alterations in tissue concentrations of endocannabinoid agonists/inverse agonists, Δ⁸-THC-induced mobilization of emetogenic metabolites of the arachidonic acid cascade, brainstem versus enteric actions of Δ⁸-THC, and/or hypothermic versus hyperthermic actions of Δ⁸-THC. In addition, human and animal findings suggest that chronic exposure to cannabis may not be a prerequisite for the induction of vomiting but is required for the intensity of emesis.
Collapse
Affiliation(s)
- Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
30
|
Darmani NA, Ray AP. Evidence for a re-evaluation of the neurochemical and anatomical bases of chemotherapy-induced vomiting. Chem Rev 2009; 109:3158-99. [PMID: 19522506 DOI: 10.1021/cr900117p] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766-1854, USA.
| | | |
Collapse
|
31
|
Abalo R, Cabezos PA, López-Miranda V, Vera G, González C, Castillo M, Fernández-Pujol R, Martín MI. Selective lack of tolerance to delayed gastric emptying after daily administration of WIN 55,212-2 in the rat. Neurogastroenterol Motil 2009; 21:1002-e80. [PMID: 19413685 DOI: 10.1111/j.1365-2982.2009.01315.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The use of cannabinoids to treat gastrointestinal (GI) motor disorders has considerable potential. However, it is not clear if tolerance to their actions develops peripherally, as it does centrally. The aim of this study was to examine the chronic effects of the cannabinoid agonist WIN 55,212-2 (WIN) on GI motility, as well as those in the central nervous and cardiovascular systems. WIN was administered for 14 days, at either non-psychoactive or psychoactive doses. Cardiovascular parameters were measured in anaesthetized rats, whereas central effects and alterations in GI motor function were assessed in conscious animals using the cannabinoid tetrad and non-invasive radiographic methods, respectively. Tests were performed after first (acute effects) and last (chronic effects) administration of WIN, and 1 week after discontinuing treatment (residual effects). Food intake and body weight were also recorded throughout treatment. Blood pressure and heart rate remained unchanged after acute or chronic administration of WIN. Central activity and GI motility were acutely depressed at psychoactive doses, whereas non-psychoactive doses only slightly reduced intestinal transit. Most effects were reduced after the last administration. However, delayed gastric emptying was not and could, at least partially, account for a concomitant reduction in food intake and body weight gain. The remaining effects of WIN administration in GI motility were blocked by the CB1 antagonist AM 251, which slightly accelerated motility when administered alone. No residual effects were found 1 week after discontinuing cannabinoid treatment. The different systems show differential sensitivity to cannabinoids and tolerance developed at different rates, with delayed gastric emptying being particularly resistant to attenuation upon chronic treatment.
Collapse
Affiliation(s)
- R Abalo
- Departamento de Ciencias de la Salud III, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kurjak M, Hamel AM, Allescher HD, Schusdziarra V, Storr M. Differential stimulatory effects of cannabinoids on VIP release and NO synthase activity in synaptosomal fractions from rat ileum. Neuropeptides 2008; 42:623-32. [PMID: 18829105 DOI: 10.1016/j.npep.2008.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 08/07/2008] [Accepted: 08/13/2008] [Indexed: 11/19/2022]
Abstract
Cannabinoid-1 (CB1) and CB2 receptors are present on neurons of the enteric nervous system. Our aim was to study whether cannabinoid receptor activation is involved in the regulation of VIP release and NO synthesis in isolated fractions of nerve terminals from rat ileum. VIP was measured by RIA and NO synthesis was analyzed using a L-[3H]arginine assay. Anandamide stimulated VIP release (basal: 245.9+/-12.4pg/mg, 10(-6)M: 307.6+/-11.7pg/mg, [n=6, P<0.05], 10(-7)M: 367.0+/-26.1pg/mg, [n=6, P<0.01]). The cannabinoid receptor agonist WIN 55,212-2 had similar effects (basal: 250.5+/-37.4pg/mg, 10(-6)M: 320.9+/-34.7pg/mg; [n=4, P<0.05]). The stimulatory effect of anandamide was blocked by the selective CB2 receptor antagonist, SR144528 (10(-7)M) (anandamide 10(-6)M: 307.6+/-11.7pg/mg; +SR144528: 249.0+/-26.3pg/mg, [n=6, P<0.05]), whereas the selective CB1 receptor antagonist SR141716 A had no effect. NO synthesis was stimulated by anandamide ([fmol/mg/min] basal: 0.08+/-0.01, 10(-6)M: 0.16+/-0.03; 10(-7)M: 0.13+/-0.02, n=4, P<0.05) and WIN 55,212-2 ([fmol/mg/min] basal: 0.05+/-0.01, 10(-6)M: 0.1+/-0.02, n=4, P<0.05). The anandamide reuptake inhibitor, AM 404 increased basal NOS activity ([fmol/mg/min] control: 0.1+/-0.04, 10(-6)M: 0.28+/-0.08, n=7, P<0.05). The stimulatory effect of anandamide on NO synthase was not antagonized by antagonists at the CB1, CB2 or TRPV1 receptor, respectively. In conclusion, in enteric nerves anandamide stimulates VIP release by activation of a CB2 receptor specific pathway, while the stimulation of NO production suggests the existence of an additional type of cannabinoid receptor in the enteric nervous system.
Collapse
Affiliation(s)
- M Kurjak
- Endooffice Friedenspromenade 40, 81727 Munich, Germany.
| | | | | | | | | |
Collapse
|
33
|
Smid SD. Gastrointestinal endocannabinoid system: multifaceted roles in the healthy and inflamed intestine. Clin Exp Pharmacol Physiol 2008; 35:1383-7. [PMID: 18671715 DOI: 10.1111/j.1440-1681.2008.05016.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. The endogenous cannabinoid (endocannabinoid) system is emerging as a key modulator of intestinal physiology, influencing motility, secretion, epithelial integrity and immune function in the gut, in addition to influencing satiety and emesis. 2. Accumulating evidence suggests that the endocannabinoid system may play a pivotal role in the pathophysiology of gastrointestinal disease, particularly in the light of recent studies demonstrating an effect of endocannabinoids on the development of experimental inflammation and linkages with functional clinical disorders characterized by altered motility. 3. The predominant endocannabinoids, anandamide and 2-arachidonoylglycerol, not only mediate their effects via two recognized cannabinoid receptor subtypes, namely CB(1) and CB(2), but emerging evidence now shows they are also substrates for cyclo-oxygenase (COX)-2, generating a distinct and novel class of prostaglandin ethanolamides (prostamides) and prostaglandin glycerol esters. These compounds are bioactive and may mediate an array of biological effects distinct to those of conventional prostanoids. 4. The effects of prostamides on gastrointestinal motility, secretion, sensation and immune function have not been characterized extensively. Prostamides may play an important role in gastrointestinal inflammation, particularly given the enhanced expression of both COX-2 and endocannabinoids that occurs in the inflamed gut. 5. Further preclinical studies are needed to determine the therapeutic potential of drugs targeting the endocannabinoid system in functional and inflammatory gut disorders, to assist with the determination of feasibility for clinical translation.
Collapse
Affiliation(s)
- Scott D Smid
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
34
|
Di Marzo V, Capasso R, Matias I, Aviello G, Petrosino S, Borrelli F, Romano B, Orlando P, Capasso F, Izzo AA. The role of endocannabinoids in the regulation of gastric emptying: alterations in mice fed a high-fat diet. Br J Pharmacol 2008; 153:1272-80. [PMID: 18223666 DOI: 10.1038/sj.bjp.0707682] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Endocannabinoids (via cannabinoid CB(1) receptor activation) are physiological regulators of intestinal motility and food intake. However, their role in the regulation of gastric emptying is largely unexplored. The purpose of the present study was to investigate the involvement of the endocannabinoid system in the regulation of gastric emptying in mice fed either a standard diet (STD) or a high-fat diet (HFD) for 14 weeks. EXPERIMENTAL APPROACH Gastric emptying was evaluated by measuring the amount of phenol red recovered in the stomach after oral challenge; CB(1) expression was analysed by quantitative reverse transcription-PCR; endocannabinoid (anandamide and 2-arachidonoyl glycerol) levels were measured by liquid chromatography-mass spectrometry. KEY RESULTS Gastric emptying was reduced by anandamide, an effect counteracted by the CB(1) receptor antagonist rimonabant, but not by the CB(2) receptor antagonist SR144528 or by the transient receptor potential vanilloid type 1 (TRPV1) antagonist 5'-iodoresiniferatoxin. The fatty acid amide hydrolase (FAAH) inhibitor N-arachidonoyl-5-hydroxytryptamine (but not the anandamide uptake inhibitor OMDM-2) reduced gastric emptying in a way partly reduced by rimonabant. Compared to STD mice, HFD mice exhibited significantly higher body weight and fasting glucose levels, delayed gastric emptying and lower anandamide and CB(1) mRNA levels. N-arachidonoylserotonin (but not rimonabant) affected gastric emptying more efficaciously in HFD than STD mice. CONCLUSIONS AND IMPLICATIONS Gastric emptying is physiologically regulated by the endocannabinoid system, which is downregulated following a HFD leading to overweight.
Collapse
Affiliation(s)
- V Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Storr MA, Sharkey KA. The endocannabinoid system and gut–brain signalling. Curr Opin Pharmacol 2007; 7:575-82. [PMID: 17904903 DOI: 10.1016/j.coph.2007.08.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 08/22/2007] [Accepted: 08/23/2007] [Indexed: 11/30/2022]
Abstract
The endocannabinoid system (ECS) consists of cannabinoid receptors, endogenous ligands and the biosynthetic and metabolic enzymes for their formation and degradation. Within the gastrointestinal (GI) tract, the ECS is involved in the regulation of motility, secretion, sensation, emesis, satiety and inflammation. Recent studies examining the ECS in the gut-brain axis have shed new light on this system and reveal many facets of regulation that are amenable to targeting by pharmacological interventions that may prove valuable for the treatment of GI disorders. In particular, it has been shown that endocannabinoid levels in the brain and gut vary according to states of satiety, and in conditions of diarrhea, emesis and inflammation. The expression of cannabinoid (CB)(1) receptors on vagal afferents is controlled by the states of satiety and by gut peptides such as cholecystokinin and ghrelin. Vagal control of gut motor function and emesis is regulated by endocannabinoids in the brainstem acting on CB(1), CB(2) and transient receptor potential vanilloid (TRPV)-1 receptors. The ECS is involved in the modulation of visceral sensation and likely contributes to effects of stress on GI function. This review examines recent developments in our understanding of the ECS in gut-brain signalling.
Collapse
Affiliation(s)
- Martin A Storr
- Department of Medicine, Hotchkiss Brain Institute and Institute of Infection, Immunity and Inflammation, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, Canada
| | | |
Collapse
|
36
|
Sanger GJ. Endocannabinoids and the gastrointestinal tract: what are the key questions? Br J Pharmacol 2007; 152:663-70. [PMID: 17767170 PMCID: PMC2190011 DOI: 10.1038/sj.bjp.0707422] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 06/26/2007] [Accepted: 07/23/2007] [Indexed: 02/03/2023] Open
Abstract
Cannabinoid (CB1) receptor activation acts neuronally, reducing GI motility, diarrhoea, pain, transient lower oesophageal sphincter relaxations (TLESRs) and emesis, and promoting eating. CB2 receptor activation acts mostly via immune cells to reduce inflammation. What are the key questions which now need answering to further understand endocannabinoid pathophysiology? GPR55. Does this receptor have a GI role? Satiety, Nausea, Vomiting, Gastro-Oesophageal Reflux, Gastric Emptying. Endocannabinoids acting at CB1 receptors can increase food intake and body weight, exert anti-emetic activity, reduce gastric acid secretion and TLESRs; CB2 receptors may have a small role in emesis. Question 1: CB1 receptor activation reduces emesis and gastric emptying but the latter is associated with nausea. How is the paradox explained? Q2: Do non-CB receptor actions of endocannabinoids (for example TRPV1) also modulate emesis? Q3: Is pathology necessary (gastritis, gastro-oesophageal reflux) to observe CB2 receptor function? Intestinal Transit and Secretion. Reduced by endocannabinoids at CB1 receptors, but not by CB2 receptor agonists. Q1: Do the effects of endocannabinoids rapidly diminish with repeat-dosing? Q2: Do CB2 receptors need to be pathologically upregulated before they are active? Inflammation. CB1, CB2 and TRPV1 receptors may mediate an ability of endocannabinoids to reduce GI inflammation or its consequences. Q1: Are CB2 receptors upregulated by inflammatory or other pathology? Pain. Colonic bacterial flora may upregulate CB2 receptor expression and thereby increase intestinal sensitivity to noxious stimuli. Q1: Are CB2 receptors the interface between colonic bacteria and enteric- or extrinsic nerve sensitivity? Relevance of endocannabinoids to humans. Perhaps apart from appetite, this is largely unknown.
Collapse
Affiliation(s)
- G J Sanger
- Neurology and Gastrointestinal Centre of Excellence for Drug Discovery, GlaxoSmithKline Research & Development Limited, New Frontiers Science Park, Harlow, UK.
| |
Collapse
|
37
|
Mulè F, Amato A, Baldassano S, Serio R. Involvement of CB1 and CB2 receptors in the modulation of cholinergic neurotransmission in mouse gastric preparations. Pharmacol Res 2007; 56:185-92. [PMID: 17656103 DOI: 10.1016/j.phrs.2007.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 06/14/2007] [Accepted: 06/15/2007] [Indexed: 11/18/2022]
Abstract
While most of the studies concerning the role of cannabinoids on gastric motility have focused the attention on the gastric emptying in in vivo animal models, there is little information about the cannabinoid peripheral influence in the stomach. In addition, the functional features of CB2 receptors in the gastrointestinal tract have been poorly characterized. The purpose of the present study was to investigate the effects of cannabinoid drugs on the excitatory cholinergic and inhibitory non-adrenergic non-cholinergic (NANC) neurotransmission in mouse isolated gastric preparations. Intraluminal pressure from isolated whole stomach was recorded and mechanical responses induced by electrical field stimulation (EFS) were analyzed in different experimental conditions. EFS (0.5ms duration, supramaximal voltage, in trains of 5s, 2-16Hz) caused a cholinergic contraction, which was abolished by atropine or tetrodotoxin (TTX). The cannabinoid receptor agonist, WIN 55,212-2, the endogenous ligand, anandamide, the selective CB1 receptor agonist ACEA, and the selective CB2 receptor agonists, JWH015 and JWH133, produced a concentration-dependent reduction of the EFS-evoked cholinergic contractions. SR141716A, CB1 receptor antagonist, significantly attenuated the inhibitory effects induced by WIN 55,212-2, anandamide or ACEA, without affecting those caused by JWH133. AM630, CB2 receptor antagonist, reduced the inhibitory effects induced by WIN 55,212-2, anandamide, JWH015 or JWH133, without affecting those caused by ACEA. The joint application of SR141716A and AM630 was able of fully preventing the WIN 55,212-2 and anandamide actions. The cannabinoid antagonists failed per se to affect the neurally evoked responses. Cannabinoids did not modify the contractions produced by exogenous carbachol. In the presence of atropine and guanethidine (NANC conditions) EFS-induced TTX-sensitive relaxation consisting in an early and rapid component followed by a second slow phase, which were unaffected by cannabinoid drugs. In conclusion, the present results suggest that cannabinoids play a prejunctional modulatory role on the cholinergic excitatory transmission without affecting the NANC inhibitory transmission. In addition, this study provides experimental evidence that also the activation of CB2 receptors is able to reduce cholinergic neurotransmission in the mouse stomach.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/metabolism
- Arachidonic Acids/pharmacology
- Benzoxazines/pharmacology
- Cannabinoid Receptor Modulators/metabolism
- Cannabinoids/pharmacology
- Cholinergic Fibers/drug effects
- Cholinergic Fibers/metabolism
- Electric Stimulation
- Endocannabinoids
- Excitatory Postsynaptic Potentials
- Gastrointestinal Motility/drug effects
- In Vitro Techniques
- Indoles/pharmacology
- Inhibitory Postsynaptic Potentials
- Male
- Mice
- Mice, Inbred C57BL
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Neuromuscular Junction/drug effects
- Neuromuscular Junction/metabolism
- Piperidines/pharmacology
- Polyunsaturated Alkamides/metabolism
- Pyrazoles/pharmacology
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/drug effects
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Presynaptic/drug effects
- Receptors, Presynaptic/metabolism
- Rimonabant
- Stomach/innervation
- Synaptic Transmission/drug effects
Collapse
Affiliation(s)
- Flavia Mulè
- Dipartimento di Biologia cellulare e dello Sviluppo, Viale delle Scienze, Università di Palermo, 90128 Palermo, Italy.
| | | | | | | |
Collapse
|
38
|
Guagnini F, Cogliati P, Mukenge S, Ferla G, Croci T. Tolerance to cannabinoid response on the myenteric plexus of guinea-pig ileum and human small intestinal strips. Br J Pharmacol 2006; 148:1165-73. [PMID: 16783406 PMCID: PMC1752022 DOI: 10.1038/sj.bjp.0706813] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 05/03/2006] [Accepted: 05/12/2006] [Indexed: 12/17/2022] Open
Abstract
1. We studied tolerance to cannabinoid agonist action by comparing the in vitro inhibition of electrically evoked contractions of longitudinal muscle from small intestine of human and guinea-pig (myenteric plexus preparations) after 48-h incubation with the synthetic agonist (+) WIN 55,212-2. We also investigated the intrinsic response to the selective cannabinoid CB(1) receptor antagonist rimonabant in control and tolerant strips. 2. (+) WIN 55,212-2 inhibited guinea-pig (IC(50) 4.8 nM) and human small intestine (56 nM) contractions with similar potency before or after 48-h incubation in drug-free conditions; this effect was competitively antagonized by rimonabant (pA(2), 8.4, 8.2). A 48-h preincubation with (+) WIN 55,212-2, but not with (-) WIN 55,212-3, completely abolished the acute agonist response in both tissue preparations. The opiate K-receptor agonist U69593 inhibited human small intestine contractions with a similar potency in control and strips tolerant to (+) WIN 55,212-2, IC(50) 39 and 43 nM. 3. Unlike human tissue, in guinea-pig small intestine, which has a high level of endocannabinoids, rimonabant alone increased the twitches induced by the electrical field stimulation (EC(50) 100 nM) with a maximal effect of 123%. 4. In strips tolerant to (+) WIN 55,212-2, rimonabant markedly increased (155%) the electrical twitches in human ileum and in guinea-pig myenteric plexus smooth muscle (133%). 5. This study shows tolerance can be induced to the cannabinoids' action in intestinal strips of human and guinea-pig by long in vitro incubation with the agonist (+) WIN 55,212-2.
Collapse
Affiliation(s)
- Fabio Guagnini
- Research Center Sanofi-Midy, Exploratory Research Department, Sanofi–aventis S.p.A., Via G.B. Piranesi 38, Milan 20137, Italy
| | - Paola Cogliati
- Research Center Sanofi-Midy, Exploratory Research Department, Sanofi–aventis S.p.A., Via G.B. Piranesi 38, Milan 20137, Italy
| | | | | | - Tiziano Croci
- Research Center Sanofi-Midy, Exploratory Research Department, Sanofi–aventis S.p.A., Via G.B. Piranesi 38, Milan 20137, Italy
| |
Collapse
|
39
|
Breyne J, Vanheel B. Methanandamide hyperpolarizes gastric arteries by stimulation of TRPV1 receptors on perivascular CGRP containing nerves. J Cardiovasc Pharmacol 2006; 47:303-9. [PMID: 16495770 DOI: 10.1097/01.fjc.0000205053.53946.10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Endogenous as well as synthetic cannabinoids have potent vasodilatory actions in a variety of vascular preparations. Their precise mechanism of action is as yet unclear, but several studies point to the activation of type 1 vanilloid (TRPV1) receptors on primary afferent perivascular nerves, stimulating the release of calcitonin gene related peptide (CGRP). Given the documented gastroprotective function of these nerves, and the various gastrointestinal effects reported for cannabinoids, we explored a possible link between these systems in the gastric circulation by comparing responses of small gastric arteries to cannabinoids and to calcitonin gene related peptide using conventional microelectrode techniques. Exposure of small gastric arteries to the stable endocannabinoid analogue methanandamide caused a hyperpolarization of the vascular smooth muscle cells, which was completely abolished by the vanilloid receptor antagonist capsazepine (P < 0.01). Exposure to exogenous calcitonin gene related peptide evoked fully reproducible (P > 0.05) hyperpolarizations with similar time course, unaffected by capsazepine. Preincubation with glibenclamide, an inhibitor of ATP-sensitive potassium (KATP) channels, reversed both responses to methanandamide (P < 0.01) and calcitonin gene related peptide (P < 0.05). Similar results were found in rat mesenteric arteries. These findings show that cannabinoids stimulate TRPV1 receptors, presumably causing the release of calcitonin gene related peptide, which hyperpolarizes the smooth muscle cells by activation of KATP channels. Because membrane hyperpolarization is a powerful mediator of vasorelaxation, this novel pathway might prove to be an important mechanism affording gastroprotection.
Collapse
Affiliation(s)
- Joke Breyne
- Department of Physiology and Physiopathology, Ghent University, Ghent, Belgium
| | | |
Collapse
|
40
|
Coruzzi G, Adami M, Guaita E, Menozzi A, Bertini S, Giovannini E, Soldani G. Effects of cannabinoid receptor agonists on rat gastric acid secretion: discrepancy between in vitro and in vivo data. Dig Dis Sci 2006; 51:310-7. [PMID: 16534674 DOI: 10.1007/s10620-006-3130-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Accepted: 05/09/2005] [Indexed: 12/09/2022]
Abstract
The effects of the cannabinoid (CB)-receptor agonists WIN55,212-2 and HU-210 and the selective CB(1)-receptor antagonist SR141716A were tested on in vitro and in vivo acid secretion assays from the rat. In the isolated gastric fundus from immature rats, WIN55,212-2 (0.001-30 microM), HU-210 (0.001-10 microM), or SR141716A (0.1-10 microM) did not change the basal acid output or acid responses to histamine, pentagastrin, or electrical field stimulation. HU-210 (0.3 micromol/kg, intravenously) inhibited the acid response to pentagastrin in anesthetized adult, young, or immature rats with lumen-perfused stomachs; moreover, HU-210 reduced vagally induced acid secretion in adult animals, its antisecretory effect being reversed by SR141716A (0.65 micromol/kg, intravenously). In vitro and in vivo data indicate that CB(1) receptors are not located on parietal cells but, rather, on vagal pathways (possibly at preganglionic sites) supplying the gastric mucosa. The lack of effect of CB-receptor ligands in vitro cannot be ascribed to the use of immature rats, since HU-210 inhibited stimulated acid secretion in vivo, irrespective of the animal age.
Collapse
Affiliation(s)
- Gabriella Coruzzi
- Department of Human Anatomy, Pharmacology and Forensic Medicine, Section of Pharmacology, University of Parma, Via Volturno 39, 43100, Parma.
| | | | | | | | | | | | | |
Collapse
|
41
|
Duncan M, Davison JS, Sharkey KA. Review article: endocannabinoids and their receptors in the enteric nervous system. Aliment Pharmacol Ther 2005; 22:667-83. [PMID: 16197488 DOI: 10.1111/j.1365-2036.2005.02648.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The therapeutic actions of cannabinoids have been known for centuries. In the last 25 years this area of research has grown exponentially with the discovery of specific cannabinoid receptors and endogenous ligands. In the enteric nervous system of gastrointestinal tract, cannabinoid receptors are located on enteric nerve terminals where they exert inhibitory actions on neurotransmission to reduce motility and secretion. Endogenous cannabinoids are present in the enteric nervous system, as are the degradative enzymes necessary to inhibit their action. The cellular mechanism of action of endocannabinoids has not been established in the enteric nervous system. Endocannabinoids not only act at cannabinoid receptors, but potentially also at vanilloid and 5-HT3 receptors, both of which are expressed in the gastrointestinal tract. The interactions between endocannabinoids and these other important receptor systems have not been extensively investigated. A greater understanding of the endocannabinoid system in the enteric nervous system could lead to advances with important therapeutic potential in the treatment of gastrointestinal disorders such as irritable bowel syndrome, inflammatory bowel disease, secretory diarrhoea and gastro-oesophageal reflux disease.
Collapse
Affiliation(s)
- M Duncan
- Institute for Infection, Immunity and Inflammation and Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, AB, Canada
| | | | | |
Collapse
|
42
|
Massa F, Storr M, Lutz B. The endocannabinoid system in the physiology and pathophysiology of the gastrointestinal tract. J Mol Med (Berl) 2005; 83:944-54. [PMID: 16133420 DOI: 10.1007/s00109-005-0698-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 06/06/2005] [Indexed: 12/18/2022]
Abstract
Numerous investigations have recently demonstrated the important roles of the endocannabinoid system in the gastrointestinal (GI) tract under physiological and pathophysiological conditions. In the GI tract, cannabinoid type 1 (CB1) receptors are present in neurons of the enteric nervous system and in sensory terminals of vagal and spinal neurons, while cannabinoid type 2 receptors are located in immune cells. Activation of CB1 receptors was shown to modulate several functions in the GI tract, including gastric secretion, gastric emptying and intestinal motility. Under pathophysiological conditions induced experimentally in rodents, the endocannabinoid system conveys protection to the GI tract (e.g. from inflammation and abnormally high gastric and enteric secretions). Such protective activities are largely in agreement with anecdotal reports from folk medicine on the use of Cannabis sativa extracts by subjects suffering from various GI disorders. Thus, the endocannabinoid system may serve as a potentially promising therapeutic target against different GI disorders, including frankly inflammatory bowel diseases (e.g. Crohn's disease), functional bowel diseases (e.g. irritable bowel syndrome) and secretion- and motility-related disorders. As stimulation of this modulatory system by CB1 receptor agonists can lead to unwanted psychotropic side effects, an alternative and promising avenue for therapeutic applications resides in the treatment with CB1 receptor agonists that are unable to cross the blood-brain barrier, or with compounds that inhibit the degradation of endogenous ligands (endocannabinoids) of CB1 receptors, hence prolonging the activity of the endocannabinoid system.
Collapse
Affiliation(s)
- Federico Massa
- Department of Physiological Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 6, 55099 Mainz, Germany
| | | | | |
Collapse
|
43
|
Adami M, Zamfirova R, Sotirov E, Tashev R, Dobrinova Y, Todorov S, Coruzzi G. Gastric antisecretory effects of synthetic cannabinoids after central or peripheral administration in the rat. Brain Res Bull 2005; 64:357-61. [PMID: 15561471 DOI: 10.1016/j.brainresbull.2004.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 09/07/2004] [Accepted: 09/10/2004] [Indexed: 11/16/2022]
Abstract
Previous studies have revealed that cannabinoid (CB)-receptor agonists inhibit gastric acid secretion stimulated by indirectly acting agents, but not by histamine. Aiming to investigate whether central or peripheral mechanisms are involved, the effects of the synthetic CB-receptor agonists WIN55,212-2 and HU-210, administered either intracerebroventricularly (i.c.v.) or intravenously (i.v.) to the anaesthetized rat with lumen-perfused stomach, against gastric acid secretion induced by pentagastrin were tested. Injected i.c.v., both WIN55,212-2 (50 and 100 microg/kg) and HU-210 (25, 50 and 100 microg/kg) were ineffective on either basal secretion or acid output induced by pentagastrin (7.7 microg/kg, i.v.). By contrast, i.v. injections of WIN55,212-2 (100 and 1000 microg/kg) or HU-210 (10-100 microg/kg) significantly inhibited pentagastrin-induced acid secretion, maximal reductions being 75.70 and 82.24% for WIN55,212-2 and HU-210, respectively. The gastric antisecretory effect of HU-210 was prevented by administration of the selective CB(1)-receptor antagonist SR141716A (1000 microg/kg, i.v.). These results show that CB(1)-receptors mediating inhibition of gastric acid secretion in the rat are mainly peripherally located.
Collapse
Affiliation(s)
- Maristella Adami
- Department of Human Anatomy, Pharmacology and Forensic Medicine, Section of Pharmacology, Medical Faculty, University of Parma, Via Volturno 39, I-43100 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
In the digestive tract there is evidence for the presence of high levels of endocannabinoids (anandamide and 2-arachidonoylglycerol) and enzymes involved in the synthesis and metabolism of endocannabinoids. Immunohistochemical studies have shown the presence of CB1 receptors on myenteric and submucosal nerve plexuses along the alimentary tract. Pharmacological studies have shown that activation of CB1 receptors produces relaxation of the lower oesophageal sphincter, inhibition of gastric motility and acid secretion, as well as intestinal motility and secretion. In general, CB1-induced inhibition of intestinal motility and secretion is due to reduced acetylcholine release from enteric nerves. Conversely, endocannabinoids stimulate intestinal primary sensory neurons via the vanilloid VR1 receptor, resulting in enteritis and enhanced motility. The endogenous cannabinoid system has been found to be involved in the physiological control of colonic motility and in some pathophysiological states, including paralytic ileus, intestinal inflammation and cholera toxin-induced diarrhoea. Cannabinoids also possess antiemetic effects mediated by activation of central and peripheral CB1 receptors. Pharmacological modulation of the endogenous cannabinoid system could provide a new therapeutic target for the treatment of a number of gastrointestinal diseases, including nausea and vomiting, gastric ulcers, secretory diarrhoea, paralytic ileus, inflammatory bowel disease, colon cancer and gastro-oesophageal reflux conditions.
Collapse
Affiliation(s)
- A A Izzo
- Department of Experimental Pharmacology, University of Naples Federico II, via D Montesano 49, 80131 Naples, Italy
| | | |
Collapse
|
45
|
Hornby PJ, Prouty SM. Involvement of cannabinoid receptors in gut motility and visceral perception. Br J Pharmacol 2004; 141:1335-45. [PMID: 15100166 PMCID: PMC1574910 DOI: 10.1038/sj.bjp.0705783] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
From a historical perspective to the present day, all the evidence suggests that activation of cannabinoid receptors (CBRs) is beneficial for gut discomfort and pain, which are symptoms related to dysmotility and visceral perception. CBRs comprise G-protein coupled receptors that are predominantly in enteric and central neurones (CB1R) and immune cells (CB2R). In the last decade, evidence obtained from the use of selective agonists and inverse agonists/antagonists indicates that manipulation of CB1R can alter (1) sensory processing from the gut, (2) brain integration of brain-gut axis, (3) extrinsic control of the gut and (4) intrinsic control by the enteric nervous system. The extent to which activation of CB1R is most critical at these different levels is related to the region of the GI tract. The upper GI tract is strongly influenced by CB1R activation on central vagal pathways, whereas intestinal peristalsis can be modified by CB1R activation in the absence of extrinsic input. Actions at multiple levels make the CB1R a target for the treatment of functional bowel disorders, such as IBS. Since low-grade inflammation may act as a trigger for occurrence of IBS, CB2R modulation could be beneficial, but there is little supporting evidence for this yet. The challenge is to accomplish CBR activation while minimizing adverse effects and abuse liabilities. Potential therapeutic strategies involve increasing signaling by endocannabinoids (EC). The pathways involved in the biosynthesis, uptake and degradation of EC provide opportunities for modulation of CB1R and some recent evidence with inhibitors of EC uptake and metabolism suggest that these could be exploited for therapeutic gain.
Collapse
Affiliation(s)
- Pamela J Hornby
- Enterology Research Team, Box 776, Johnson & Johnson Pharmaceutical Research and Development LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, U.S.A.
| | | |
Collapse
|
46
|
Derbenev AV, Stuart TC, Smith BN. Cannabinoids suppress synaptic input to neurones of the rat dorsal motor nucleus of the vagus nerve. J Physiol 2004; 559:923-38. [PMID: 15272041 PMCID: PMC1665186 DOI: 10.1113/jphysiol.2004.067470] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cannabinoids bind central type 1 receptors (CB1R) and modify autonomic functions, including feeding and anti-emetic behaviours, when administered peripherally or into the dorsal vagal complex. Western blots and immunohistochemistry indicated the expression of CB1R in the rat dorsal vagal complex, and tissue polymerase chain reaction confirmed that CB1R message was made within the region. To identify a cellular substrate for the central autonomic effects of cannabinoids, whole-cell patch-clamp recordings were made in brainstem slices to determine the effects of CB1R activation on synaptic transmission to neurones of the dorsal motor nucleus of the vagus (DMV). A subset of these neurones was identified as gastric related after being labelled retrogradely from the stomach. The CB1R agonists WIN55,212-2 and anandamide decreased the frequency of spontaneous excitatory or inhibitory postsynaptic currents in a concentration-related fashion, an effect that persisted in the presence of tetrodotoxin. Paired pulse ratios of electrically evoked postsynaptic currents were also increased by WIN55,212-2. The effects of WIN55,212-2 were sensitive to the selective CB1R antagonist AM251. Cannabinoid agonist effects on synaptic input originating from neurones in the nucleus tractus solitarius (NTS) were determined by evoking activity in the NTS with local glutamate application. Excitatory and inhibitory synaptic inputs arising from the NTS were attenuated by WIN55,212-2. Our results indicate that cannabinoids inhibit transfer of synaptic information to the DMV, including that arising from the NTS, in part by acting at receptors located on presynaptic terminals contacting DMV neurones. Inhibition of synaptic input to DMV neurones is likely to contribute to the suppression of visceral motor responses by cannabinoids.
Collapse
Affiliation(s)
- Andrei V Derbenev
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | | | |
Collapse
|
47
|
Carai MAM, Colombo G, Gessa GL. Rapid tolerance to the intestinal prokinetic effect of cannabinoid CB1 receptor antagonist, SR 141716 (Rimonabant). Eur J Pharmacol 2004; 494:221-4. [PMID: 15212978 DOI: 10.1016/j.ejphar.2004.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 04/28/2004] [Accepted: 05/10/2004] [Indexed: 11/17/2022]
Abstract
The cannabinoid CB(1) receptor antagonist, SR 141716 (Rimonabant), has been reported to stimulate, when acutely administered, intestinal motility in mice. The present study was aimed at determining whether tolerance develops to its repeated administration. Mice were treated twice a day for up to 8 consecutive days with 0, 3 and 5.6 mg/kg SR 141716 (i.p.). On days 1, 3, 5 and 8, separate groups of mice were treated intragastrically with a non-absorbable colored marker (carmine). The distance traveled by the head of the marker in the small intestine was recorded. On day 1, SR 141716 markedly activated intestinal peristalsis, but complete tolerance to this effect developed within the third day of treatment. The results may have some relevance to the proposed future clinical use of SR 141716.
Collapse
Affiliation(s)
- Mauro A M Carai
- Bernard B. Brodie Department of Neuroscience, University of Cagliari, Viale Diaz 182, I-09126 Cagliari, Italy.
| | | | | |
Collapse
|
48
|
Partosoedarso ER, Abrahams TP, Scullion RT, Moerschbaecher JM, Hornby PJ. Cannabinoid1 receptor in the dorsal vagal complex modulates lower oesophageal sphincter relaxation in ferrets. J Physiol 2003; 550:149-58. [PMID: 12879865 PMCID: PMC2343023 DOI: 10.1113/jphysiol.2003.042242] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Delta9-tetrahydrocannabinol (delta9-THC) is an effective anti-emetic; however, other potential gastrointestinal therapeutic effects of delta9-THC are less well-known. Here, we report a role of delta9-THC in a vago-vagal reflex that can result in gastro-oesophageal reflux, that is, gastric distension-evoked lower oesophageal sphincter (LOS) relaxation. Oesophageal, LOS and gastric pressures were measured using a miniaturized, manometric assembly in decerebrate, unanaesthetized ferrets.Gastric distension (30 ml) evoked LOS relaxation (70 +/- 8% decrease from baseline). Delta9-THC administered systemically (0.2 mg kg-1, iv.) or directly to the dorsal hindbrain surface (0.002 mg),significantly attenuated the nadir of the gastric distention-evoked LOS relaxation, and time to reach maximal response. Similar increases to maximal effect were observed after treatment with the cannabinoid receptor agonist WIN 55,212-2 (0.2 mg kg-1 iv.). The effect of systemic delta9-THC on gastric distention-evoked LOS relaxation was reversed by a selective cannabinoid1 (CBI) receptor antagonist, SR141617A (1 mg kg-1 i.v.). Since this reflex is vagally mediated, we used a CB1 receptor antiserum and immunocytochemistry to determine its distribution in ferret vagal circuitry. CBI receptor staining was present in cell bodies within the area postrema, nucleus tractus solitarius (NTS) and nodose ganglion. Intense terminal-like staining was noted within the NTS and dorsal motor vagal nucleus (DMN). Neither nodose ganglionectomy nor vagotomy altered the CB1 receptor terminal-like staining in the dorsal vagal complex. Retrogradely labelled gastric- or LOS-projecting DMN neurones did not express CBI receptors within their soma. Therefore, CBI receptor staining in the NTS and DMN is not due to primary vagal afferents or preganglionic neurones. These novel findings suggest that delta9-THC can modulate reflex LOS function and that the most likely site of action is via the CBI receptor within the NTS. This effect of delta9-THC may have implications in treatment of gastro-oesophageal reflux and other upper gut disorders.
Collapse
Affiliation(s)
- E R Partosoedarso
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | | | | | | | |
Collapse
|
49
|
Darmani NA, Sim-Selley LJ, Martin BR, Janoyan JJ, Crim JL, Parekh B, Breivogel CS. Antiemetic and motor-depressive actions of CP55,940: cannabinoid CB1 receptor characterization, distribution, and G-protein activation. Eur J Pharmacol 2003; 459:83-95. [PMID: 12505537 DOI: 10.1016/s0014-2999(02)02815-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dibenzopyran (Delta(9)-tetrahydrocannabinol) and aminoalkylindole [R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrolol[1,2,3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl) methanone mesylate; (WIN55,212-2)] cannabinoids suppress vomiting produced by cisplatin via cannabinoid CB(1) receptors. This study investigates the antiemetic potential of the "nonclassical" cannabinoid CP55,940 [1alpha,2beta-(R)-5alpha]-(-)-5-(1,1-dimethyl)-2-[5-hydroxy-2-(3-hydroxypropyl) cyclohexyl-phenol] against cisplatin-induced vomiting and assesses the presence and functionality of cannabinoid CB(1) receptors in the least shrew (Cryptotis parva) brain. CP55,940 (0.025-0.3 mg/kg) reduced both the frequency of cisplatin-induced emesis (ID(50)=0.025 mg/kg) and the percentage of shrews vomiting (ID(50)=0.09 mg/kg). CP55,940 also suppressed shrew motor behaviors (ID(50)=0.06- 0.21 mg/kg) at such doses. The antiemetic and motor-suppressant actions of CP55,940 were countered by SR141716A [N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide], indicating both effects are cannabinoid CB(1) receptor-mediated. Autoradiographic studies with [3H]-SR141716A and [35S]-GTPgammaS binding revealed that the distribution of the cannabinoid CB(1) receptor and its activation pattern are similar to rodent brain and significant levels are present in brain loci (e.g., nucleus tractus solitarius (NTS)) that control emesis. The affinity rank order of structurally diverse cannabinoid ligands for cannabinoid CB(1) receptor in shrew brain is similar to rodent brain: HU-210=CP55,940=SR141716A>/=WIN55,212-2>/=delta-9-tetrahydrocannabinol>methanandamide=HU-211=cannabidiol=2-arachidonoylglycerol. This affinity order is also similar and is highly correlated to the cannabinoid EC(50) potency rank order for GTPgammaS stimulation except WIN55,212-2 and delta-9-tetrahydrocannabinol potency order were reversed. The affinity and the potency rank order of tested cannabinoids were significantly correlated with their antiemetic ID(50) potency order against cisplatin-induced vomiting (CP55,940>WIN55,212-2=delta-9-tetrahydrocannabinol) as well as emesis produced by 2-arachidonoylglycerol or SR141716A (CP55,940>WIN55,212-2>delta-9-tetrahydrocannabinol).
Collapse
Affiliation(s)
- Nissar A Darmani
- Department of Pharmacology, Kirksville College of Osteopathic Medicine, 800 W. Jefferson Street, Kirksville, MO 63501, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Di Carlo G, Izzo AA. Cannabinoids for gastrointestinal diseases: potential therapeutic applications. Expert Opin Investig Drugs 2003; 12:39-49. [PMID: 12517253 DOI: 10.1517/13543784.12.1.39] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Delta(9)-Tetrahydrocannabinol (the active ingredient of marijuana), as well as endogenous and synthetic cannabinoids, exert many biological functions by activating two types of cannabinoid receptors, CB(1) and CB(2) receptors. CB(1) receptors have been detected on enteric nerves, and pharmacological effects of their activation include gastroprotection, reduction of gastric and intestinal motility and reduction of intestinal secretion. The digestive tract also contains endogenous cannabinoids (i.e., the endocannabinoids anandamide and 2-aracidonylglycerol) and mechanisms for endocannabinoid inactivation (i.e., endocannabinoids uptake and enzymatic degradation). Cannabinoid receptors, endocannabinoids and the proteins involved in endocannabinoids inactivation are collectively referred as the 'endogenous cannabinoid system'. A pharmacological modulation of the endogenous cannabinoid system could provide new therapeutics for the treatment of a number of gastrointestinal diseases, including nausea and vomiting, gastric ulcers, irritable bowel syndrome, Crohn's disease, secretory diarrhoea, paralytic ileus and gastroesophageal reflux disease. Some cannabinoids are already in use clinically, for example, nabilone and delta(9)-tetrahydrocannabinol are used as antiemetics.
Collapse
Affiliation(s)
- Giulia Di Carlo
- Department of Experimental Pharmacology, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | | |
Collapse
|