1
|
Gantenbein B, Oswald KAC, Erbach GF, Croft AS, Bermudez-Lekerika P, Strunz F, Bigdon SF, Albers CE. The bone morphogenetic protein 2 analogue L51P enhances spinal fusion in combination with BMP2 in an in vivo rat tail model. Acta Biomater 2024; 177:148-156. [PMID: 38325708 DOI: 10.1016/j.actbio.2024.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
Bone morphogenic protein 2 (BMP2) is known to induce osteogenesis and is applied clinically to enhance spinal fusion despite adverse effects. BMP2 needs to be used in high doses to be effective due to the presence of BMP2 inhibitors. L51P is a BMP2 analogue that acts by inhibition of BMP2 inhibitors. Here, we hypothesized that mixtures of BMP2 and L51P could achieve better spinal fusion outcomes regarding ossification. To test whether mixtures of both cytokines are sufficient to improve ossification, 45 elderly Wistar rats (of which 21 were males) were assigned to seven experimental groups, all which received spinal fusion surgery, including discectomy at the caudal 4-5 level using an external fixator and a porous β-tricalcium phosphate (βTCP) carrier. These βTCP carriers were coated with varying concentrations of BMP2 and L51P. X-rays were taken immediately after surgery and again six and twelve weeks post-operatively. Histological sections and µCT were analyzed after twelve weeks. Spinal fusion was assessed using X-ray, µCT and histology according to the Bridwell scale by voxel-based quantification and a semi-quantitative histological score, respectively. The results were congruent across modalities and revealed high ossification for high-dose BMP2 (10 µg), while PBS induced no ossification. Low-dose BMP2 (1 µg) or 10 µg L51P alone did not induce relevant bone formation. However, all combinations of low-dose BMP2 with L51P (1 µg + 1/5/10 µg) were able to induce similar ossificationas high-dose BMP2. These results are of high clinical relevance, as they indicate L51P is sufficient to increase the efficacy of BMP2 and thus lower the required dose for spinal fusion. STATEMENT OF SIGNIFICANCE: Spinal fusion surgery is frequently applied to treat spinal pathologies. Bone Morphogenic Protein-2 (BMP2) has been approved by the U .S. Food and Drug Administration (FDA-) and by the "Conformité Européenne" (CE)-label. However, its application is expensive and high concentrations cause side-effects. This research targets the improvement of the efficacy of BMP2 in spinal fusion surgery.
Collapse
Affiliation(s)
- Benjamin Gantenbein
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland; Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland.
| | - Katharina A C Oswald
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | - Georg F Erbach
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | - Andreas S Croft
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Franziska Strunz
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Sebastian F Bigdon
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | - Christoph E Albers
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Oliveira JE, Suzuki MF, Damiani R, Lima ER, Amaral KC, Santos AMS, Magalhães GS, Faverani LP, Pereira LAVD, Bartolini P. Synthesis of Human Bone Morphogenetic Protein-2 (hBMP-2) in E. coli Periplasmic Space: Its Characterization and Preclinical Testing. Cells 2021; 10:3525. [PMID: 34944033 PMCID: PMC8699916 DOI: 10.3390/cells10123525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Human BMP-2, a homodimeric protein that belongs to the TGF- β family, is a recognized osteoinductor due to its capacity of inducing bone regeneration and ectopic bone formation. The administration of its recombinant form is an alternative to autologous bone grafting. A variety of E. coli-derived hBMP-2 has been synthesized through refolding of cytoplasmic inclusion bodies. The present work reports the synthesis, purification, and characterization of periplasmic hBMP-2, obtained directly in its correctly folded and authentic form, i.e., without the initial methionine typical of the cytoplasmic product that can induce undesired immunoreactivity. A bacterial expression vector was constructed including the DsbA signal peptide and the cDNA of hBMP-2. The periplasmic fluid was extracted by osmotic shock and analyzed via SDS-PAGE, Western blotting, and reversed-phase high-performance liquid chromatography (RP-HPLC). The purification was carried out by heparin affinity chromatography, followed by high-performance size-exclusion chromatography (HPSEC). HPSEC was used for qualitative and quantitative analysis of the final product, which showed >95% purity. The classical in vitro bioassay based on the induction of alkaline phosphatase activity in myoblastic murine C2C12 cells and the in vivo bioassay consisting of treating calvarial critical-size defects in rats confirmed its bioactivity, which matched the analogous literature data for hBMP-2.
Collapse
Affiliation(s)
- João E. Oliveira
- Instituto de Pesquisas Energéticas e Nucleares, IPEN–CNEN, Av. Prof. Lineu Prestes 2242, São Paulo 05508-000, SP, Brazil; (J.E.O.); (M.F.S.); (K.C.A.)
| | - Miriam F. Suzuki
- Instituto de Pesquisas Energéticas e Nucleares, IPEN–CNEN, Av. Prof. Lineu Prestes 2242, São Paulo 05508-000, SP, Brazil; (J.E.O.); (M.F.S.); (K.C.A.)
| | - Renata Damiani
- Biosintesis P & D, São Paulo 05508-000, SP, Brazil; (R.D.); (E.R.L.)
| | - Eliana R. Lima
- Biosintesis P & D, São Paulo 05508-000, SP, Brazil; (R.D.); (E.R.L.)
| | - Kleicy C. Amaral
- Instituto de Pesquisas Energéticas e Nucleares, IPEN–CNEN, Av. Prof. Lineu Prestes 2242, São Paulo 05508-000, SP, Brazil; (J.E.O.); (M.F.S.); (K.C.A.)
| | - Anderson M. S. Santos
- Department of Diagnosis and Surgery, School of Dentistry, Sao Paulo State University, UNESP, Araçatuba 16015-050, SP, Brazil; (A.M.S.S.); (L.P.F.)
| | - Geraldo S. Magalhães
- Immunopathology Laboratory, Instituto Butantan, São Paulo 05503-900, SP, Brazil;
| | - Leonardo P. Faverani
- Department of Diagnosis and Surgery, School of Dentistry, Sao Paulo State University, UNESP, Araçatuba 16015-050, SP, Brazil; (A.M.S.S.); (L.P.F.)
| | - Luís A. V. D. Pereira
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, UNICAMP, Campinas 13083-970, SP, Brazil;
| | - Paolo Bartolini
- Instituto de Pesquisas Energéticas e Nucleares, IPEN–CNEN, Av. Prof. Lineu Prestes 2242, São Paulo 05508-000, SP, Brazil; (J.E.O.); (M.F.S.); (K.C.A.)
| |
Collapse
|
3
|
Gipson GR, Goebel EJ, Hart KN, Kappes EC, Kattamuri C, McCoy JC, Thompson TB. Structural perspective of BMP ligands and signaling. Bone 2020; 140:115549. [PMID: 32730927 PMCID: PMC7502536 DOI: 10.1016/j.bone.2020.115549] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
The Bone Morphogenetic Proteins (BMPs) are the largest class signaling molecules within the greater Transforming Growth Factor Beta (TGFβ) family, and are responsible for a wide array of biological functions, including dorsal-ventral patterning, skeletal development and maintenance, as well as cell homeostasis. As such, dysregulation of BMPs results in a number of diseases, including fibrodysplasia ossificans progressiva (FOP) and pulmonary arterial hypertension (PAH). Therefore, understanding BMP signaling and regulation at the molecular level is essential for targeted therapeutic intervention. This review discusses the recent advances in the structural and biochemical characterization of BMPs, from canonical ligand-receptor interactions to co-receptors and antagonists. This work aims to highlight how BMPs differ from other members of the TGFβ family, and how that information can be used to further advance the field. Lastly, this review discusses several gaps in the current understanding of BMP structures, with the aim that discussion of these gaps will lead to advancements in the field.
Collapse
Affiliation(s)
- Gregory R Gipson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Erich J Goebel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Kaitlin N Hart
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Emily C Kappes
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Chandramohan Kattamuri
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Jason C McCoy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA.
| |
Collapse
|
4
|
Rosenberg M, Shilo D, Galperin L, Capucha T, Tarabieh K, Rachmiel A, Segal E. Bone Morphogenic Protein 2-Loaded Porous Silicon Carriers for Osteoinductive Implants. Pharmaceutics 2019; 11:E602. [PMID: 31726775 PMCID: PMC6920899 DOI: 10.3390/pharmaceutics11110602] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are probably the most important growth factors in bone formation and healing. However, the utilization of BMPs in clinical applications is mainly limited due to the protein poor solubility at physiological pH, rapid clearance and relatively short biological half-life. Herein, we develop degradable porous silicon (PSi)-based carriers for sustained delivery of BMP-2. Two different loading approaches are examined, physical adsorption and covalent conjugation, and their effect on the protein loading and release rate is thoroughly studied. The entrapment of the protein within the PSi nanostructures preserved its bioactivity for inducing osteogenic differentiation of rabbit bone marrow mesenchymal stems cells (BM-MSCs). BM-MSCs cultured with the BMP-2 loaded PSi carriers exhibit a relatively high alkaline phosphatase (ALP) activity. We also demonstrate that exposure of MSCs to empty PSi (no protein) carriers generates some extent of differentiation due to the ability of the carrier's degradation products to induce osteoblast differentiation. Finally, we demonstrate the integration of these promising BMP-2 carriers within a 3D-printed patient-specific implant, constructed of poly(caprolactone) (PCL), as a potential bone graft for critical size bone defects.
Collapse
Affiliation(s)
- Michal Rosenberg
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (M.R.); (L.G.)
| | - Dekel Shilo
- Department of Oral and Maxillofacial Surgery, Rambam Health Care Campus, Haifa 3109601, Israel; (D.S.); (T.C.); (K.T.); (A.R.)
- Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3109601, Israel
| | - Leonid Galperin
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (M.R.); (L.G.)
| | - Tal Capucha
- Department of Oral and Maxillofacial Surgery, Rambam Health Care Campus, Haifa 3109601, Israel; (D.S.); (T.C.); (K.T.); (A.R.)
| | - Karim Tarabieh
- Department of Oral and Maxillofacial Surgery, Rambam Health Care Campus, Haifa 3109601, Israel; (D.S.); (T.C.); (K.T.); (A.R.)
| | - Adi Rachmiel
- Department of Oral and Maxillofacial Surgery, Rambam Health Care Campus, Haifa 3109601, Israel; (D.S.); (T.C.); (K.T.); (A.R.)
- Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3109601, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (M.R.); (L.G.)
- Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
5
|
Hauser M, Siegrist M, Denzer A, Saulacic N, Grosjean J, Bohner M, Hofstetter W. Bisphosphonates reduce biomaterial turnover in healing of critical-size rat femoral defects. J Orthop Surg (Hong Kong) 2019; 26:2309499018802487. [PMID: 30270749 DOI: 10.1177/2309499018802487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Treatment of osteoporotic patients with bisphosphonates (BPs) preserves bone mass and microarchitecture. The high prescription rate of the drugs brings about increases in the numbers of fractures and bone defects requiring surgical interventions in these patients. Currently, critical-size defects are filled with biomaterials and healing is supported with bone morphogenetic proteins (BMP). It is hypothesized that BPs interfere with biomaterial turnover during BMP-supported repair of defects filled with β-tricalcium phosphate (βTCP) ceramics. To test this hypothesis, retired breeder rats were ovariectomized ( OVX). After 8 weeks, treatment with alendronate (ALN) commenced. Five weeks later, 6 mm diaphyseal femoral defects were applied and stabilized with locking plates. βTCP cylinders loaded with 1 μg and 10 μg BMP2, 10 μg L51P, an inhibitor of BMP antagonists and 1 μg BMP2/10 μg L51P were fitted into the defects. Femora were collected 16 weeks post-implantation. In groups receiving calcium phosphate implants loaded with 10 μg BMP2 and 1 μg BMP2/10 μg L51P, the volume of bone was increased and βTCP was decreased compared to groups receiving implants with 1 μg BMP2 and 10 μg L51P. Treatment of animals with ALN caused a decrease in βTCP turnover. The results corroborate the synergistic effects of BMP2 and L51P on bone augmentation. Administration of ALN caused a reduction in implant turnover, demonstrating the dependence of βTCP removal on osteoclast activity, rather than on chemical solubility. Based on these data, it is suggested that in patients treated with BPs, healing of biomaterial-filled bone defects may be impaired because of the failure to remove the implant and its replacement by authentic bone.
Collapse
Affiliation(s)
- Michel Hauser
- 1 Bone Biology & Orthopaedic Research, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,2 Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mark Siegrist
- 1 Bone Biology & Orthopaedic Research, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Alain Denzer
- 1 Bone Biology & Orthopaedic Research, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Nikola Saulacic
- 3 Clinic for Cranio-Maxillofacial Surgery, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Joël Grosjean
- 4 Urology Research Group, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | | | - Willy Hofstetter
- 1 Bone Biology & Orthopaedic Research, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Stuckensen K, Lamo-Espinosa JM, Muiños-López E, Ripalda-Cemboráin P, López-Martínez T, Iglesias E, Abizanda G, Andreu I, Flandes-Iparraguirre M, Pons-Villanueva J, Elizalde R, Nickel J, Ewald A, Gbureck U, Prósper F, Groll J, Granero-Moltó F. Anisotropic Cryostructured Collagen Scaffolds for Efficient Delivery of RhBMP-2 and Enhanced Bone Regeneration. MATERIALS 2019; 12:ma12193105. [PMID: 31554158 PMCID: PMC6804013 DOI: 10.3390/ma12193105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/22/2023]
Abstract
In the treatment of bone non-unions, an alternative to bone autografts is the use of bone morphogenetic proteins (BMPs), e.g., BMP–2, BMP–7, with powerful osteoinductive and osteogenic properties. In clinical settings, these osteogenic factors are applied using absorbable collagen sponges for local controlled delivery. Major side effects of this strategy are derived from the supraphysiological doses of BMPs needed, which may induce ectopic bone formation, chronic inflammation, and excessive bone resorption. In order to increase the efficiency of the delivered BMPs, we designed cryostructured collagen scaffolds functionalized with hydroxyapatite, mimicking the structure of cortical bone (aligned porosity, anisotropic) or trabecular bone (random distributed porosity, isotropic). We hypothesize that an anisotropic structure would enhance the osteoconductive properties of the scaffolds by increasing the regenerative performance of the provided rhBMP–2. In vitro, both scaffolds presented similar mechanical properties, rhBMP–2 retention and delivery capacity, as well as scaffold degradation time. In vivo, anisotropic scaffolds demonstrated better bone regeneration capabilities in a rat femoral critical-size defect model by increasing the defect bridging. In conclusion, anisotropic cryostructured collagen scaffolds improve bone regeneration by increasing the efficiency of rhBMP–2 mediated bone healing.
Collapse
Affiliation(s)
- Kai Stuckensen
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, D-97070 Würzburg, Germany
| | - José M Lamo-Espinosa
- Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Emma Muiños-López
- Cell Therapy Area. Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Purificación Ripalda-Cemboráin
- Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Cell Therapy Area. Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | | | - Elena Iglesias
- Cell Therapy Area. Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Gloria Abizanda
- Cell Therapy Area. Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Ion Andreu
- Department of Materials CEIT-TECNUN, Universidad de Navarra, 20018 San Sebastian, Spain
| | | | - Juan Pons-Villanueva
- Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Reyes Elizalde
- Department of Materials CEIT-TECNUN, Universidad de Navarra, 20018 San Sebastian, Spain
| | - Joachim Nickel
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Andrea Ewald
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, D-97070 Würzburg, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, D-97070 Würzburg, Germany
| | - Felipe Prósper
- Cell Therapy Area. Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Department of Haematology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, D-97070 Würzburg, Germany.
| | - Froilán Granero-Moltó
- Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
- Cell Therapy Area. Clínica Universidad de Navarra, 31008 Pamplona, Spain.
| |
Collapse
|
7
|
Drouin G, Couture V, Lauzon MA, Balg F, Faucheux N, Grenier G. Muscle injury-induced hypoxia alters the proliferation and differentiation potentials of muscle resident stromal cells. Skelet Muscle 2019; 9:18. [PMID: 31217019 PMCID: PMC6582603 DOI: 10.1186/s13395-019-0202-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background Trauma-induced heterotopic ossification (HO) is a complication that develops under three conditions: the presence of an osteogenic progenitor cell, an inducing factor, and a permissive environment. We previously showed that a mouse multipotent Sca1+ CD31− Lin− muscle resident stromal cell (mrSC) population is involved in the development of HO in the presence of inducing factors, members of the bone morphogenetic protein family. Interestingly, BMP9 unlike BMP2 causes HO only if the muscle is damaged by injection of cardiotoxin. Because acute trauma often results in blood vessel breakdown, we hypothesized that a hypoxic state in damaged muscles may foster mrSCs activation and proliferation and trigger differentiation toward an osteogenic lineage, thus promoting the development of HO. Methods Three- to - six-month-old male C57Bl/6 mice were used to induce muscle damage by injection of cardiotoxin intramuscularly into the tibialis anterior and gastrocnemius muscles. mrSCs were isolated from damaged (hypoxic state) and contralateral healthy muscles and counted, and their osteoblastic differentiation with or without BMP2 and BMP9 was determined by alkaline phosphatase activity measurement. The proliferation and differentiation of mrSCs isolated from healthy muscles was also studied in normoxic incubator and hypoxic conditions. The effect of hypoxia on BMP synthesis and Smad pathway activation was determined by qPCR and/or Western blot analyses. Differences between normally distributed groups were compared using a Student’s paired t test or an unpaired t test. Results The hypoxic state of a severely damaged muscle increased the proliferation and osteogenic differentiation of mrSCs. mrSCs isolated from damaged muscles also displayed greater sensitivity to osteogenic signals, especially BMP9, than did mrSCs from a healthy muscle. In hypoxic conditions, mrSCs isolated from a control muscle were more proliferative and were more prone to osteogenic differentiation. Interestingly, Smad1/5/8 activation was detected in hypoxic conditions and was still present after 5 days, while Smad1/5/8 phosphorylation could not be detected after 3 h of normoxic incubator condition. BMP9 mRNA transcripts and protein levels were higher in mrSCs cultured in hypoxic conditions. Our results suggest that low-oxygen levels in damaged muscle influence mrSC behavior by facilitating their differentiation into osteoblasts. This effect may be mediated partly through the activation of the Smad pathway and the expression of osteoinductive growth factors such as BMP9 by mrSCs. Conclusion Hypoxia should be considered a key factor in the microenvironment of damaged muscle that triggers HO. Electronic supplementary material The online version of this article (10.1186/s13395-019-0202-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Geneviève Drouin
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada.,Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C8, Canada
| | - Vanessa Couture
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Marc-Antoine Lauzon
- Laboratory of 3D Cell Culture Systems, Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul Universite, Sherbrooke, QC, J1K 2R1, Canada
| | - Frédéric Balg
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada.,Department of Orthopedic Surgery, Faculty of Medicine, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Nathalie Faucheux
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada. .,Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul Universite, Sherbrooke, QC, J1K 2R1, Canada.
| | - Guillaume Grenier
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada.,Department of Orthopedic Surgery, Faculty of Medicine, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| |
Collapse
|
8
|
Fahmy-Garcia S, Farrell E, Witte-Bouma J, Robbesom-van den Berge I, Suarez M, Mumcuoglu D, Walles H, Kluijtmans SGJM, van der Eerden BCJ, van Osch GJVM, van Leeuwen JPTM, van Driel M. Follistatin Effects in Migration, Vascularization, and Osteogenesis in vitro and Bone Repair in vivo. Front Bioeng Biotechnol 2019; 7:38. [PMID: 30881954 PMCID: PMC6405513 DOI: 10.3389/fbioe.2019.00038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
The use of biomaterials and signaling molecules to induce bone formation is a promising approach in the field of bone tissue engineering. Follistatin (FST) is a glycoprotein able to bind irreversibly to activin A, a protein that has been reported to inhibit bone formation. We investigated the effect of FST in critical processes for bone repair, such as cell recruitment, osteogenesis and vascularization, and ultimately its use for bone tissue engineering. In vitro, FST promoted mesenchymal stem cell (MSC) and endothelial cell (EC) migration as well as essential steps in the formation and expansion of the vasculature such as EC tube-formation and sprouting. FST did not enhance osteogenic differentiation of MSCs, but increased committed osteoblast mineralization. In vivo, FST was loaded in an in situ gelling formulation made by alginate and recombinant collagen-based peptide microspheres and implanted in a rat calvarial defect model. Two FST variants (FST288 and FST315) with major differences in their affinity to cell-surface proteoglycans, which may influence their effect upon in vivo bone repair, were tested. In vitro, most of the loaded FST315 was released over 4 weeks, contrary to FST288, which was mostly retained in the biomaterial. However, none of the FST variants improved in vivo bone healing compared to control. These results demonstrate that FST enhances crucial processes needed for bone repair. Further studies need to investigate the optimal FST carrier for bone regeneration.
Collapse
Affiliation(s)
- Shorouk Fahmy-Garcia
- Department of Orthopedics, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Janneke Witte-Bouma
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | | | - Melva Suarez
- Institute of Tissue Engineering and Regenerative Medicine, Julius-Maximillians University Würzburg, Würzburg, Germany
| | - Didem Mumcuoglu
- Department of Orthopedics, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Fujifilm Manufacturing Europe B.V., Tilburg, Netherlands
| | - Heike Walles
- Institute of Tissue Engineering and Regenerative Medicine, Julius-Maximillians University Würzburg, Würzburg, Germany
| | | | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Gerjo J V M van Osch
- Department of Orthopedics, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | | | - Marjolein van Driel
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
9
|
Fahmy-Garcia S, Mumcuoglu D, de Miguel L, Dieleman V, Witte-Bouma J, van der Eerden BCJ, van Driel M, Eglin D, Verhaar JAN, Kluijtmans SGJM, van Osch GJVM, Farrell E. Novel In Situ Gelling Hydrogels Loaded with Recombinant Collagen Peptide Microspheres as a Slow-Release System Induce Ectopic Bone Formation. Adv Healthc Mater 2018; 7:e1800507. [PMID: 30230271 DOI: 10.1002/adhm.201800507] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Indexed: 01/06/2023]
Abstract
New solutions for large bone defect repair are needed. Here, in situ gelling slow release systems for bone induction are assessed. Collagen-I based Recombinant Peptide (RCP) microspheres (MSs) are produced and used as a carrier for bone morphogenetic protein 2 (BMP-2). The RCP-MSs are dispersed in three hydrogels: high mannuronate (SLM) alginate, high guluronate (SLG) alginate, and thermoresponsive hyaluronan derivative (HApN). HApN+RCP-MS forms a gel structure at 32 ºC or above, while SLM+RCP-MS and SLG+RCP-MS respond to shear stress displaying thixotropic behavior. Alginate formulations show sustained release of BMP-2, while there is minimal release from HApN. These formulations are injected subcutaneously in rats. SLM+RCP-MS and SLG+RCP-MS loaded with BMP-2 induce ectopic bone formation as revealed by X-ray tomography and histology, whereas HApN+RCP-MS do not. Vascularization occurs within all the formulations studied and is significantly higher in SLG+MS and HApN+RCP-MS than in SLM+RCP-MS. Inflammation (based on macrophage subset staining) decreases over time in both alginate groups, but increases in the HApN+RCP-MS condition. It is shown that a balance between inflammatory cell infiltration, BMP-2 release, and vascularization, achieved in the SLG+RCP-MS alginate condition, is optimal for the induction of de novo bone formation.
Collapse
Affiliation(s)
- Shorouk Fahmy-Garcia
- Department of Orthopedics; Erasmus MC; Wytemaweg 80 3015CN Rotterdam The Netherlands
- Department of Internal Medicine; Erasmus MC; Wytemaweg 80 3015CN Rotterdam The Netherlands
| | - Didem Mumcuoglu
- Department of Orthopedics; Erasmus MC; Wytemaweg 80 3015CN Rotterdam The Netherlands
- Fujifilm Manufacturing Europe B.V.; Oudenstaart 1 5047TK Tilburg The Netherlands
| | - Laura de Miguel
- Fujifilm Manufacturing Europe B.V.; Oudenstaart 1 5047TK Tilburg The Netherlands
| | - Veerle Dieleman
- Department of Oral and Maxillofacial Surgery; Special Dental Care and Orthodontics; Erasmus MC; Wytemaweg 80 3015CN Rotterdam The Netherlands
| | - Janneke Witte-Bouma
- Department of Oral and Maxillofacial Surgery; Special Dental Care and Orthodontics; Erasmus MC; Wytemaweg 80 3015CN Rotterdam The Netherlands
| | | | - Marjolein van Driel
- Department of Internal Medicine; Erasmus MC; Wytemaweg 80 3015CN Rotterdam The Netherlands
| | - David Eglin
- AO Research Institute Davos; Clavadelerstrasse 8 7270 Davos Switzerland
| | - Jan A. N. Verhaar
- Department of Orthopedics; Erasmus MC; Wytemaweg 80 3015CN Rotterdam The Netherlands
| | | | - Gerjo J. V. M. van Osch
- Department of Orthopedics; Erasmus MC; Wytemaweg 80 3015CN Rotterdam The Netherlands
- Department of Otorhinolaryngology; Head and Neck Surgery; Erasmus MC; Wytemaweg 80 3015CN Rotterdam The Netherlands
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery; Special Dental Care and Orthodontics; Erasmus MC; Wytemaweg 80 3015CN Rotterdam The Netherlands
| |
Collapse
|
10
|
Siverino C, Tabisz B, Lühmann T, Meinel L, Müller T, Walles H, Nickel J. Site-Directed Immobilization of Bone Morphogenetic Protein 2 to Solid Surfaces by Click Chemistry. J Vis Exp 2018. [PMID: 29658921 DOI: 10.3791/56616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Different therapeutic strategies for the treatment of non-healing long bone defects have been intensively investigated. Currently used treatments present several limitations that have led to the use of biomaterials in combination with osteogenic growth factors, such as bone morphogenetic proteins (BMPs). Commonly used absorption or encapsulation methods require supra-physiological amounts of BMP2, typically resulting in a so-called initial burst release effect that provokes several severe adverse side effects. A possible strategy to overcome these problems would be to covalently couple the protein to the scaffold. Moreover, coupling should be performed in a site-specific manner in order to guarantee a reproducible product outcome. Therefore, we created a BMP2 variant, in which an artificial amino acid (propargyl-L-lysine) was introduced into the mature part of the BMP2 protein by codon usage expansion (BMP2-K3Plk). BMP2-K3Plk was coupled to functionalized beads through copper catalyzed azide-alkyne cycloaddition (CuAAC). The biological activity of the coupled BMP2-K3Plk was proven in vitro and the osteogenic activity of the BMP2-K3Plk-functionalized beads was proven in cell based assays. The functionalized beads in contact with C2C12 cells were able to induce alkaline phosphatase (ALP) expression in locally restricted proximity of the bead. Thus, by this technique, functionalized scaffolds can be produced that can trigger cell differentiation towards an osteogenic lineage. Additionally, lower BMP2 doses are sufficient due to the controlled orientation of site-directed coupled BMP2. With this method, BMPs are always exposed to their receptors on the cell surface in the appropriate orientation, which is not the case if the factors are coupled via non-site-directed coupling techniques. The product outcome is highly controllable and, thus, results in materials with homogeneous properties, improving their applicability for the repair of critical size bone defects.
Collapse
Affiliation(s)
- Claudia Siverino
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik (IGB), Translationszentrum Würzburg 'Regenerative Therapien für Krebs- und Muskuloskelettale Erkrankung', Institutsteil Würzburg
| | - Barbara Tabisz
- Lehrstuhl für Tissue Engineering und Regenerative Medizin, Universitätsklinikum Würzburg
| | - Tessa Lühmann
- Lehrstuhl für Pharmazeutische Technologie und Biopharmazie, Universität Würzburg
| | - Lorenz Meinel
- Lehrstuhl für Pharmazeutische Technologie und Biopharmazie, Universität Würzburg
| | - Thomas Müller
- Lehrstuhl für molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg
| | - Heike Walles
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik (IGB), Translationszentrum Würzburg 'Regenerative Therapien für Krebs- und Muskuloskelettale Erkrankung', Institutsteil Würzburg; Lehrstuhl für Tissue Engineering und Regenerative Medizin, Universitätsklinikum Würzburg
| | - Joachim Nickel
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik (IGB), Translationszentrum Würzburg 'Regenerative Therapien für Krebs- und Muskuloskelettale Erkrankung', Institutsteil Würzburg; Lehrstuhl für Tissue Engineering und Regenerative Medizin, Universitätsklinikum Würzburg;
| |
Collapse
|
11
|
Collagen I derived recombinant protein microspheres as novel delivery vehicles for bone morphogenetic protein-2. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 29519439 DOI: 10.1016/j.msec.2017.11.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bone morphogenetic protein-2 (BMP-2) is a powerful osteoinductive protein; however, there is a need for the development of a safe and efficient BMP-2 release system for bone regeneration therapies. Recombinant extracellular matrix proteins are promising next generation biomaterials since the proteins are well-defined, reproducible and can be tailored for specific applications. In this study, we have developed a novel and versatile BMP-2 delivery system using microspheres from a recombinant protein based on human collagen I (RCP). In general, a two-phase release pattern was observed while the majority of BMP-2 was retained in the microspheres for at least two weeks. Among different parameters studied, the crosslinking and the size of the RCP microspheres changed the in vitro BMP-2 release kinetics significantly. Increasing the chemical crosslinking (hexamethylene diisocyanide) degree decreased the amount of initial burst release (24h) from 23% to 17%. Crosslinking by dehydrothermal treatment further decreased the burst release to 11%. Interestingly, the 50 and 72μm-sized spheres showed a significant decrease in the burst release compared to 207-μm sized spheres. Very importantly, using a reporter cell line, the released BMP-2 was shown to be bioactive. SPR data showed that N-terminal sequence of BMP-2 was important for the binding and retention of BMP-2 and suggested the presence of a specific binding epitope on RCP (KD: 1.2nM). This study demonstrated that the presented RCP microspheres are promising versatile BMP-2 delivery vehicles.
Collapse
|
12
|
Tabisz B, Schmitz W, Schmitz M, Luehmann T, Heusler E, Rybak JC, Meinel L, Fiebig JE, Mueller TD, Nickel J. Site-Directed Immobilization of BMP-2: Two Approaches for the Production of Innovative Osteoinductive Scaffolds. Biomacromolecules 2017; 18:695-708. [DOI: 10.1021/acs.biomac.6b01407] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Barbara Tabisz
- Lehrstuhl
für Tissue Engineering und Regenerative Medizin, Universitätsklinikum Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
| | | | - Michael Schmitz
- Lehrstuhl
für Funktionswerkstoffe der Medizin und der Zahnheilkunde, Universitätsklinikum Würzburg, Pleicherwall 2, D-97070 Würzburg, Germany
| | | | | | | | | | - Juliane E. Fiebig
- Lehrstuhl
für molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs
Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs-Platz
2, D-97082 Würzburg, Germany
| | - Thomas D. Mueller
- Lehrstuhl
für molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs
Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs-Platz
2, D-97082 Würzburg, Germany
| | - Joachim Nickel
- Lehrstuhl
für Tissue Engineering und Regenerative Medizin, Universitätsklinikum Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
- Translationszentrum
Würzburg “Regenerative Therapien für Krebs- und
Muskuloskelettale Erkrankungen”, Institutsteil Würzburg, Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik (IGB), Röntgenring 11, D-97070 Würzburg, Germany
| |
Collapse
|
13
|
Malik EM, Müller CE. Anthraquinones As Pharmacological Tools and Drugs. Med Res Rev 2016; 36:705-48. [PMID: 27111664 DOI: 10.1002/med.21391] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/09/2016] [Accepted: 02/27/2016] [Indexed: 12/11/2022]
Abstract
Anthraquinones (9,10-dioxoanthracenes) constitute an important class of natural and synthetic compounds with a wide range of applications. Besides their utilization as colorants, anthraquinone derivatives have been used since centuries for medical applications, for example, as laxatives and antimicrobial and antiinflammatory agents. Current therapeutic indications include constipation, arthritis, multiple sclerosis, and cancer. Moreover, biologically active anthraquinones derived from Reactive Blue 2 have been utilized as valuable tool compounds for biochemical and pharmacological studies. They may serve as lead structures for the development of future drugs. However, the presence of the quinone moiety in the structure of anthraquinones raises safety concerns, and anthraquinone laxatives have therefore been under critical reassessment. This review article provides an overview of the chemistry, biology, and toxicology of anthraquinones focusing on their application as drugs.
Collapse
Affiliation(s)
- Enas M Malik
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| |
Collapse
|
14
|
Huang T, Hinck AP. Production, Isolation, and Structural Analysis of Ligands and Receptors of the TGF-β Superfamily. Methods Mol Biol 2016; 1344:63-92. [PMID: 26520118 PMCID: PMC4846357 DOI: 10.1007/978-1-4939-2966-5_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The ability to understand the molecular mechanisms by which secreted signaling proteins of the TGF-β superfamily assemble their cell surface receptors into complexes to initiate downstream signaling is dependent upon the ability to determine atomic-resolution structures of the signaling proteins, the ectodomains of the receptors, and the complexes that they form. The structures determined to date have revealed major differences in the overall architecture of the signaling complexes formed by the TGF-βs and BMPs, which has provided insights as to how they have evolved to fulfill their distinct functions. Such studies, have however, only been applied to a few members of the TGF-β superfamily, which is largely due to the difficulty of obtaining milligram-scale quantities of highly homogenous preparations of the disulfide-rich signaling proteins and receptor ectodomains of the superfamily. Here we describe methods used to produce signaling proteins and receptor ectodomains of the TGF-β superfamily using bacterial and mammalian expression systems and procedures to purify them to homogeneity.
Collapse
Affiliation(s)
- Tao Huang
- Protein Chemistry, Novo Nordisk Research Center China, 20 Life Science Park Rd, Bldg 2, Beijing, 102206, China
| | - Andrew P Hinck
- Protein Chemistry, Novo Nordisk Research Center China, 20 Life Science Park Rd, Bldg 2, Beijing, 102206, China.
| |
Collapse
|
15
|
Nguyen A, Scott MA, Dry SM, James AW. Roles of bone morphogenetic protein signaling in osteosarcoma. INTERNATIONAL ORTHOPAEDICS 2014; 38:2313-22. [PMID: 25209345 DOI: 10.1007/s00264-014-2512-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/14/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE Since the original extraction of bone morphogenetic proteins (BMPs) from bovine bone, research interest and clinical use has increased exponentially. With this, a concomitant analysis of BMP expression in bone tumours has been performed. BMP ligands, receptors, and signaling activity have been observed in diverse benign and malignant bone tumours. However, the reported expression, function, and importance of BMPs in bone tumours, and specifically osteosarcomas, have been far from uniform. This review highlights recent advances in understanding the role of BMP signaling in osteosarcoma biology, focusing on the sometimes divergent findings by various researchers and the challenges inherent in the study of osteosarcoma. METHODS We performed a literature review of all studies examining BMP signaling in osteosarcoma. RESULTS Overall, multiple BMP ligands and receptors are expressed in most osteosarcoma cell lines and subtypes, although BMP signaling may be reduced in comparison with benign bone-forming tumours. Studies suggest that osteosarcomas with different lineages of differentiation may have differential expression of BMP ligands. Although significant disagreement in the literature exists, the presence of BMP signaling in osteosarcoma may impart a worse prognosis. On the cellular level, BMP signaling appears to mediate promigratory effects in osteosarcoma and chondrosarcoma cell types, possibly via interaction and activation of Integrin β1. CONCLUSIONS BMP signaling has clear biologic importance in osteosarcoma, although it is not yet fully understood. Future questions for study include assessing the utility of BMP signaling in prognostication of osteosarcoma and the potential modulation of BMP signaling for inhibition of osteosarcomagenesis, growth and invasion.
Collapse
Affiliation(s)
- Alan Nguyen
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, 10833 Le Conte Ave, CHS A3-251, Los Angeles, CA, 90077, USA
| | | | | | | |
Collapse
|
16
|
Hintze V, Samsonov SA, Anselmi M, Moeller S, Becher J, Schnabelrauch M, Scharnweber D, Pisabarro MT. Sulfated glycosaminoglycans exploit the conformational plasticity of bone morphogenetic protein-2 (BMP-2) and alter the interaction profile with its receptor. Biomacromolecules 2014; 15:3083-92. [PMID: 25029480 DOI: 10.1021/bm5006855] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sulfated glycosaminoglycans (GAGs) can direct cellular processes by interacting with proteins of the extracellular matrix (ECM). In this study we characterize the interaction profiles of chemically sulfated hyaluronan (HA) and chondroitin sulfate (CS) derivatives with bone morphogenetic protein-2 (BMP-2) and investigate their relevance for complex formation with the receptor BMPR-IA. These goals were addressed by surface plasmon resonance (SPR) and ELISA in combination with molecular modeling and dynamics simulation. We found not only the interaction of BMP-2 with GAGs to be dependent on the type and sulfation of GAGs but also BMP-2/GAG/BMPR-IA complex formation. The conformational plasticity of the BMP-2 N-termini plays a key role in the structural and thermodynamic characteristics of the BMP-2/GAG/BMPR-IA system. Hence we propose a model that provides direct insights into the importance of the structural and dynamical properties of the BMP-2/BMPR-IA system for its regulation by sulfated GAGs, in which structural asymmetry plays a key role.
Collapse
Affiliation(s)
- Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden , Budapester Strasse 27, 01069 Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Ghosh-Choudhury N, Mandal CC, Das F, Ganapathy S, Ahuja S, Ghosh Choudhury G. c-Abl-dependent molecular circuitry involving Smad5 and phosphatidylinositol 3-kinase regulates bone morphogenetic protein-2-induced osteogenesis. J Biol Chem 2013; 288:24503-17. [PMID: 23821550 DOI: 10.1074/jbc.m113.455733] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Skeletal remodeling consists of timely formation and resorption of bone by osteoblasts and osteoclasts in a quantitative manner. Patients with chronic myeloid leukemia receiving inhibitors of c-Abl tyrosine kinase often show reduced bone remodeling due to impaired osteoblast and osteoclast function. BMP-2 plays a significant role in bone generation and resorption by contributing to the formation of mature osteoblasts and osteoclasts. The effects of c-Abl on BMP-2-induced bone remodeling and the underlying mechanisms are not well studied. Using a pharmacological inhibitor and expression of a dominant negative mutant of c-Abl, we show an essential role of this tyrosine kinase in the development of bone nodules containing mature osteoblasts and formation of multinucleated osteoclasts in response to BMP-2. Calvarial osteoblasts prepared from c-Abl null mice showed the absolute requirement of this tyrosine kinase in maturation of osteoblasts and osteoclasts. Activation of phosphatidylinositol 3-kinase (PI 3-kinase)/Akt signaling by BMP-2 leads to osteoblast differentiation. Remarkably, inhibition of c-Abl significantly suppressed BMP-2-stimulated PI 3-kinase activity and its downstream Akt phosphorylation. Interestingly, c-Abl regulated BMP-2-induced osteoclastogenic CSF-1 expression. More importantly, we identified the requirements of c-Abl in BMP-2 autoregulation and the expressions of alkaline phosphatase and osterix that are necessary for osteoblast differentiation. c-Abl contributed to BMP receptor-specific Smad-dependent transcription of CSF-1, osterix, and BMP-2. Finally, c-Abl associates with BMP receptor IA and regulates phosphorylation of Smad in response to BMP-2. We propose that activation of c-Abl is an important step, which induces into two signaling pathways involving noncanonical PI 3-kinase and canonical Smads to integrate BMP-2-induced osteogenesis.
Collapse
Affiliation(s)
- Nandini Ghosh-Choudhury
- Veterans Affairs Research, South Texas Veterans Health Care System, San Antonio, Texas 78229, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Sebald HJ, Klenke FM, Siegrist M, Albers CE, Sebald W, Hofstetter W. Inhibition of endogenous antagonists with an engineered BMP-2 variant increases BMP-2 efficacy in rat femoral defect healing. Acta Biomater 2012; 8:3816-20. [PMID: 22750247 DOI: 10.1016/j.actbio.2012.06.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 05/31/2012] [Accepted: 06/25/2012] [Indexed: 11/26/2022]
Abstract
Bone morphogenetic proteins (BMP) have been used successfully by orthopedic clinicians to augment bone healing. However, these osteoinductive proteins must be applied at high concentrations to induce bone formation. The limited therapeutic efficacy may be due to the local expression of BMP antagonists such as Noggin that neutralize exogenous and endogenous BMPs. If so, inhibiting BMP antagonists may provide an attractive option to augment BMP induced bone formation. The engineered BMP-2 variant L51P is deficient in BMP receptor type I binding, but maintains its affinity for BMP receptor type II and BMP antagonists including Noggin, Chordin and Gremlin. This modification makes L51P a BMP receptor-inactive inhibitor of BMP antagonists. We implanted β-tricalcium phosphate ceramics loaded with BMP-2 and/or L51P into a critical size defect model in the rat femur to investigate whether the inhibition of BMP antagonist with L51P enhances the therapeutic efficacy of exogenous BMP-2. Our study reveals that L51P reduces the demand of exogenous BMP-2 to induce bone healing markedly, without promoting bone formation directly when applied alone.
Collapse
|
19
|
Mahlawat P, Ilangovan U, Biswas T, Sun LZ, Hinck AP. Structure of the Alk1 extracellular domain and characterization of its bone morphogenetic protein (BMP) binding properties. Biochemistry 2012; 51:6328-41. [PMID: 22799562 DOI: 10.1021/bi300942x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone morphogenetic proteins (BMPs) are secreted signaling proteins - they transduce their signals by assembling complexes comprised of one of three known type II receptors and one of four known type I receptors. BMP-9 binds and signals through the type I receptor Alk1, but not other Alks, while BMP-2, -4, and -7 bind and signal through Alk3, and the close homologue Alk6, but not Alk1. The present results, which include the determination of the Alk1 structure using NMR and identification of residues important for binding using SPR, show that the β-strand framework of Alk1 is highly similar to Alk3, yet there are significant differences in loops shown previously to be important for binding. The most pronounced difference is in the N-terminal portion of the β4-β5 loop, which is structurally ordered and includes a similarly placed but shorter helix in Alk1 compared to Alk3. The altered conformation of the β4-β5 loop, and to lesser extent β1-β2 loop, cause clashes when Alk1 is positioned onto BMP-9 in the manner that Alk3 is positioned onto BMP-2. This necessitates an alternative manner of binding, which is supported by a model of the BMP-9/Alk1 complex constructed using the program RosettaDock. The model shows that Alk1 is positioned similar to Alk3 but is rotated by 40 deg. The alternate positioning allows Alk1 to bind BMP-9 through a large hydrophobic interface, consistent with mutational analysis that identified several residues in the central portion of the β4-β5 loop that contribute significantly to binding and are nonconservatively substituted relative to the corresponding residues in Alk3.
Collapse
Affiliation(s)
- Pardeep Mahlawat
- Department of Biochemistry and Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Recombinant production has become an invaluable tool for supplying research and therapy with proteins of interest. The target proteins are not in every case soluble and/or correctly folded. That is why different production parameters such as host, cultivation conditions and co-expression of chaperones and foldases are applied in order to yield functional recombinant protein. There has been a constant increase and success in the use of folding promoting agents in recombinant protein production. Recent cases are reviewed and discussed in this chapter. Any impact of such strategies cannot be predicted and has to be analyzed and optimized for the corresponding target protein. The in vivo effects of the agents are at least partially comparable to their in vitro mode of action and have been studied by means of modern systems approaches and even in combination with folding/activity screening assays. Resulting data can be used directly for experimental planning or can be fed into knowledge-based modelling. An overview of such technologies is included in the chapter in order to facilitate a decision about the potential in vivo use of folding promoting agents.
Collapse
Affiliation(s)
- Beatrix Fahnert
- Cardiff School of Biosciences, Cardiff University, Wales, UK.
| |
Collapse
|
21
|
Luong LN, Ramaswamy J, Kohn DH. Effects of osteogenic growth factors on bone marrow stromal cell differentiation in a mineral-based delivery system. Biomaterials 2011; 33:283-94. [PMID: 22014945 DOI: 10.1016/j.biomaterials.2011.09.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 09/21/2011] [Indexed: 11/25/2022]
Abstract
Delivering growth factors from bone-like mineral combines osteoinductivity with osteoconductivity. The effects of individual and sequential exposure of BMP-2 and FGF-2 on osteogenic differentiation, and their release from apatite were studied to design a dual delivery system. Bone marrow stromal cells were seeded on TCPS with the addition of FGF-2 (2.5, 10, 40 ng/ml) or BMP-2 (50, 150, 450 ng/ml) for 6 days. DNA content and osteogenic response were examined weekly for 3 weeks. FGF-2 increased DNA content; however, high concentrations of FGF-2 inhibited/delayed osteogenic differentiation, while a threshold concentration of BMP-2 was required for significant osteogenic enhancement. The sequence of delivery of BMP-2 (300 ng/ml) and FGF-2 (2.5 ng/ml) also had a significant impact on osteogenic differentiation. Delivery of FGF-2 followed by BMP-2 or delivery of BMP-2 followed by BMP-2 and FGF-2 enhanced osteogenic differentiation compared to the simultaneous delivery of both factors. Release of BMP-2 and FGF-2 from bone-like mineral was significantly affected by the concentration used during coprecipitation. BMP-2 also demonstrated a higher "burst" release compared to FGF-2. By integrating the results of the sequential delivery of BMP-2 and FGF-2 in solution, with the release of individual growth factors from mineral, an organic/inorganic delivery system based on coprecipitation can be designed for multiple biomolecules.
Collapse
Affiliation(s)
- Linh N Luong
- Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
22
|
Nickel J, Kotzsch A, Sebald W, Mueller TD. Purification, crystallization and preliminary data analysis of the ligand-receptor complex of the growth and differentiation factor 5 variant R57A (GDF5R57A) and BMP receptor IA (BRIA). Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:551-5. [PMID: 21543859 PMCID: PMC3087638 DOI: 10.1107/s1744309111006907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 02/23/2011] [Indexed: 05/30/2023]
Abstract
The binary ligand-receptor complex of human growth and differentiation factor 5 (GDF5) bound to its type I receptor BMP receptor IA (BRIA) was prepared and crystallized. By utilizing the GDF5 variant R57A, which exhibits a high affinity in the subnanomolar range for BRIA, the binary complex of GDF5R57A bound to the extracellular domain of BRIA could be produced and purified. Crystals of this complex belonged to a monoclinic space group: either I2, with unit-cell parameters a = 63.81, b = 62.85, c = 124.99 Å, β = 95.9°, or C2, with unit-cell parameters a = 132.17, b = 62.78, c = 63.53 Å, β = 112.8°.
Collapse
Affiliation(s)
- Joachim Nickel
- Lehrstuhl für Physiologische Chemie II, Theodor-Boveri-Institut für Biowissenschaften (Biozentrum) der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Alexander Kotzsch
- Lehrstuhl für Botanik I – Molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs-Institut für Biowissenschaften (Biozentrum) der Universität Würzburg, Julius-von-Sachs Platz 2, D-97082 Würzburg, Germany
| | - Walter Sebald
- Lehrstuhl für Physiologische Chemie II, Theodor-Boveri-Institut für Biowissenschaften (Biozentrum) der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Thomas D. Mueller
- Lehrstuhl für Botanik I – Molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs-Institut für Biowissenschaften (Biozentrum) der Universität Würzburg, Julius-von-Sachs Platz 2, D-97082 Würzburg, Germany
| |
Collapse
|
23
|
Hagihara M, Endo M, Hata K, Higuchi C, Takaoka K, Yoshikawa H, Yamashita T. Neogenin, a receptor for bone morphogenetic proteins. J Biol Chem 2010; 286:5157-65. [PMID: 21149453 DOI: 10.1074/jbc.m110.180919] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) regulate many mammalian physiologic and pathophysiologic processes. These proteins bind with the kinase receptors BMPR-I and BMPR-II, thereby activating Smad transcription factor. In this study, we demonstrate that neogenin, a receptor for netrins and proteins of the repulsive guidance molecule family, is a receptor for BMPs and modulates Smad signal transduction. Neogenin was found to bind directly with BMP-2, BMP-4, BMP-6, and BMP-7. Knockdown of neogenin in C2C12 cells resulted in the enhancement of the BMP-2-induced processes of osteoblastic differentiation and phosphorylation of Smad1, Smad5, and Smad8. Conversely, overexpression of neogenin in C2C12 cells suppressed these processes. Our results also indicated that BMP-induced activation of RhoA was mediated by neogenin. Inhibition of RhoA promoted BMP-2-induced processes of osteoblastic differentiation and phosphorylation of Smad1/5/8. However, treatment with Y-27632, an inhibitor of Rho-associated protein kinase, did not modulate BMP-induced phosphorylation of Smad1/5/8. Taken together, our findings suggest that neogenin negatively regulates the functions of BMP and that this effect of neogenin is mediated by the activation of RhoA.
Collapse
Affiliation(s)
- Meiko Hagihara
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
De Rosa A, Tirino V, Paino F, Tartaglione A, Mitsiadis T, Feki A, d'Aquino R, Laino L, Colacurci N, Papaccio G. Amniotic fluid-derived mesenchymal stem cells lead to bone differentiation when cocultured with dental pulp stem cells. Tissue Eng Part A 2010; 17:645-53. [PMID: 20919950 DOI: 10.1089/ten.tea.2010.0340] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells are present in many tissues of the human body, including amniotic fluid (AF) and dental pulp (DP). Stem cells of both AF and DP give rise to a variety of differentiated cells. In our experience, DP stem cells (DPSCs) display a high capacity to produce bone. Therefore, our aim was to investigate if AF-derived stem cells (AFSCs) were able to undergo bone differentiation in the presence of DPSCs. AFSCs were seeded under three different conditions: (i) cocultured with DPSCs previously differentiated into osteoblasts; (ii) cultured in the conditioned medium of osteoblast-differentiated DPSCs; (iii) cultured in the osteogenic medium supplemented with vascular endothelial growth factor and bone morphogenetic protein-2 (BMP-2). Results showed that AFSCs were positive for mesenchymal markers, and expressed high levels of Tra1-60, Tra1-80, BMPR1, BMPR2, and BMP-2. In contrast, AFSCs were negative for epithelial and hematopoietic/endothelial markers. When AFSCs were cocultured with DPSCs-derived osteoblasts, they differentiated into osteoblasts. A similar effect was observed when AFSCs were cultured in the presence of a conditioned medium originated from DPSCs. We found that osteoblasts derived from DPSCs released large amounts of BMP-2 and vascular endothelial growth factor into the culture medium and that those morphogens significantly upregulate RUNX-2 gene, stimulating osteogenesis. This study highlights the mechanisms of osteogenesis and strongly suggests that the combination of AFSCs with DPSCs may provide a rich source of soluble proteins useful for bone engineering purposes.
Collapse
Affiliation(s)
- Alfredo De Rosa
- Dipartimento di Discipline Odontostomatologiche, Ortodontiche e Chirurgiche, Secondo Ateneo di Napoli, Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
A selection fit mechanism in BMP receptor IA as a possible source for BMP ligand-receptor promiscuity. PLoS One 2010; 5. [PMID: 20927405 PMCID: PMC2946932 DOI: 10.1371/journal.pone.0013049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 09/02/2010] [Indexed: 11/29/2022] Open
Abstract
Background Members of the TGF-β superfamily are characterized by a highly promiscuous ligand-receptor interaction as is readily apparent from the numeral discrepancy of only seven type I and five type II receptors available for more than 40 ligands. Structural and functional studies have been used to address the question of how specific signals can be deduced from a limited number of receptor combinations and to unravel the molecular mechanisms underlying the protein-protein recognition that allow such limited specificity. Principal Findings In this study we have investigated how an antigen binding antibody fragment (Fab) raised against the extracellular domain of the BMP receptor type IA (BMPR-IA) recognizes the receptor's BMP-2 binding epitope and thereby neutralizes BMP-2 receptor activation. The crystal structure of the complex of the BMPR-IA ectodomain bound to the Fab AbD1556 revealed that the contact surface of BMPR-IA overlaps extensively with the contact surface for BMP-2 interaction. Although the structural epitopes of BMPR-IA to both binding partners coincides, the structures of BMPR-IA in the two complexes differ significantly. In contrast to the structural differences, alanine-scanning mutagenesis of BMPR-IA showed that the functional determinants for binding to the antibody and BMP-2 are almost identical. Conclusions Comparing the structures of BMPR-IA bound to BMP-2 or bound to the Fab AbD1556 with the structure of unbound BMPR-IA shows that binding of BMPR-IA to its interaction partners follows a selection fit mechanism, possibly indicating that the ligand promiscuity of BMPR-IA is inherently encoded by structural adaptability. The functional and structural analysis of the BMPR-IA binding antibody AbD1556 mimicking the BMP-2 binding epitope may thus pave the way for the design of low-molecular weight synthetic receptor binders/inhibitors.
Collapse
|
26
|
Harth S, Kotzsch A, Sebald W, Mueller TD. Crystallization of BMP receptor type IA bound to the antibody Fab fragment AbD1556. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:964-8. [PMID: 20693682 PMCID: PMC2917305 DOI: 10.1107/s1744309110024681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 06/24/2010] [Indexed: 11/10/2022]
Abstract
An antibody Fab fragment, AbD1556, was selected against the extracellular domain of BMP receptor type IA, which blocks the binding of BMP-2 to BMPR-IA and thereby neutralizes BMP-2 activity. To study the mechanism by which BMPR-IA is recognized and bound by the Fab fragment, the complex of AbD1556 bound to BMPR-IA was prepared and crystallized. Crystals of this binary complex belonged to the monoclinic space group P2(1), with unit-cell parameters a=89.32, b=129.25, c=100.24 A, beta=92.27 degrees.
Collapse
Affiliation(s)
- Stefan Harth
- Lehrstuhl für Physiologische Chemie II, Biozentrum der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Alexander Kotzsch
- Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs Institut der Universität Würzburg, Julius-von-Sachs Platz 2, D-97082 Würzburg, Germany
| | - Walter Sebald
- Lehrstuhl für Physiologische Chemie II, Biozentrum der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Thomas Dieter Mueller
- Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs Institut der Universität Würzburg, Julius-von-Sachs Platz 2, D-97082 Würzburg, Germany
| |
Collapse
|
27
|
Abstract
Genetic and functional studies indicate that common components of the bone morphogenetic protein (BMP) signaling pathway play critical roles in regulating vascular development in the embryo and in promoting vascular homeostasis and disease in the adult. However, discrepancies between in vitro and in vivo findings and distinct functional properties of the BMP signaling pathway in different vascular beds, have led to controversies in the field that have been difficult to reconcile. This review attempts to clarify some of these issues by providing an up to date overview of the biology and genetics of BMP signaling relevant to the intact vasculature.
Collapse
Affiliation(s)
- Jonathan W Lowery
- Department of Cell and Developmental Biology and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
28
|
Isaacs MJ, Kawakami Y, Allendorph GP, Yoon BH, Izpisua Belmonte JC, Choe S. Bone morphogenetic protein-2 and -6 heterodimer illustrates the nature of ligand-receptor assembly. Mol Endocrinol 2010; 24:1469-77. [PMID: 20484413 DOI: 10.1210/me.2009-0496] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
TGF-beta superfamily ligands are homo- or heterodimeric and recruit two type I and two type II Ser/Thr kinase receptors to initiate a transmembrane signaling cascade. Even with the known structure of the homodimer ligands in complex with extracellular domains of both receptor types, the sequential assembly of the signaling complex with its cognate receptors in the cell membrane remains elusive. We generated a bone morphogenetic protein-2/-6 heterodimer carrying two asymmetric interfaces for each receptor type. We demonstrate that the heterodimer possesses high affinity to both receptor types and increased Smad1-dependent signaling activity by both cell-based and chondrogenesis assays. Furthermore, we find that the minimal signaling complex consists of two type II receptors and one type I receptor per dimer. Our study reveals how the engineered heterodimers may use their independent binding interfaces to differentially recruit the different receptors for each receptor type to create new biological properties.
Collapse
Affiliation(s)
- Michael J Isaacs
- Structural Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
29
|
Heinecke K, Seher A, Schmitz W, Mueller TD, Sebald W, Nickel J. Receptor oligomerization and beyond: a case study in bone morphogenetic proteins. BMC Biol 2009; 7:59. [PMID: 19735544 PMCID: PMC2749821 DOI: 10.1186/1741-7007-7-59] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 09/07/2009] [Indexed: 11/13/2022] Open
Abstract
Background Transforming growth factor (TGF)β superfamily members transduce signals by oligomerizing two classes of serine/threonine kinase receptors, termed type I and type II. In contrast to the large number of ligands only seven type I and five type II receptors have been identified in mammals, implicating a prominent promiscuity in ligand-receptor interaction. Since a given ligand can usually interact with more than one receptor of either subtype, differences in binding affinities and specificities are likely important for the generation of distinct ligand-receptor complexes with different signaling properties. Results In vitro interaction analyses showed two different prototypes of binding kinetics, 'slow on/slow off' and 'fast on/fast off'. Surprisingly, the binding specificity of ligands to the receptors of one subtype is only moderate. As suggested from the dimeric nature of the ligands, binding to immobilized receptors shows avidity due to cooperative binding caused by bivalent ligand-receptor interactions. To compare these in vitro observations to the situation in vivo, binding studies on whole cells employing homodimeric as well as heterodimeric bone morphogenetic protein 2 (BMP2) mutants were performed. Interestingly, low and high affinity binding sites were identified, as defined by the presence of either one or two BMP receptor (BMPR)-IA receptor chains, respectively. Both sites contribute to different cellular responses in that the high affinity sites allow a rapid transient response at low ligand concentrations whereas the low affinity sites facilitate sustained signaling but higher ligand concentrations are required. Conclusion Binding of a ligand to a single high affinity receptor chain functioning as anchoring molecule and providing sufficient complex stability allows the subsequent formation of signaling competent complexes. Another receptor of the same subtype, and up to two receptors of the other subtype, can then be recruited. Thus, the resulting receptor arrangement can principally consist of four different receptors, which is consistent with our interaction analysis showing low ligand-receptor specificity within one subtype class. For BMP2, further complexity is added by the fact that heterooligomeric signaling complexes containing only one type I receptor chain can also be found. This indicates that despite prominent ligand receptor promiscuity a manifold of diverse signals might be generated in this receptor limited system.
Collapse
Affiliation(s)
- Kai Heinecke
- Physiologische Chemie II, Biozentrum, Universität Würzburg, Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Kotzsch A, Nickel J, Sebald W, Mueller TD. Purification, crystallization and preliminary data analysis of ligand-receptor complexes of growth and differentiation factor 5 (GDF5) and BMP receptor IB (BRIB). Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:779-83. [PMID: 19652338 DOI: 10.1107/s1744309109024142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2008] [Accepted: 06/24/2009] [Indexed: 11/10/2022]
Abstract
The ligand-receptor complex of GDF5 bound to its type I and type II receptors BRIB and ActRIIB was produced and crystallized. Crystals of the GDF5-BRIB complex could only be obtained if a ternary complex comprising GDF5, BRIB and the extracellular domain of the type II receptor ActRIIB was used in crystallization; however, the type II receptor ActRIIB was lost during crystallization. Crystals of this complex belonged to the tetragonal space group P4(2)2(1)2, with unit-cell parameters a = b = 76.46, c = 82.78 A. Small changes in the crystallization condition resulted in crystals with a different morphology. These crystals consisted of the full ternary complex GDF5-BRIB-ActRIIB, but only diffracted to low resolution.
Collapse
Affiliation(s)
- Alexander Kotzsch
- Lehrstuhl für Botanik I - Molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs-Institut für Biowissenschaften (Biozentrum) der Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | | | | | | |
Collapse
|
31
|
Functional analysis of saxophone, the Drosophila gene encoding the BMP type I receptor ortholog of human ALK1/ACVRL1 and ACVR1/ALK2. Genetics 2009; 183:563-79, 1SI-8SI. [PMID: 19620392 DOI: 10.1534/genetics.109.105585] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In metazoans, bone morphogenetic proteins (BMPs) direct a myriad of developmental and adult homeostatic events through their heterotetrameric type I and type II receptor complexes. We examined 3 existing and 12 newly generated mutations in the Drosophila type I receptor gene, saxophone (sax), the ortholog of the human Activin Receptor-Like Kinase1 and -2 (ALK1/ACVRL1 and ALK2/ACVR1) genes. Our genetic analyses identified two distinct classes of sax alleles. The first class consists of homozygous viable gain-of-function (GOF) alleles that exhibit (1) synthetic lethality in combination with mutations in BMP pathway components, and (2) significant maternal effect lethality that can be rescued by an increased dosage of the BMP encoding gene, dpp+. In contrast, the second class consists of alleles that are recessive lethal and do not exhibit lethality in combination with mutations in other BMP pathway components. The alleles in this second class are clearly loss-of-function (LOF) with both complete and partial loss-of-function mutations represented. We find that one allele in the second class of recessive lethals exhibits dominant-negative behavior, albeit distinct from the GOF activity of the first class of viable alleles. On the basis of the fact that the first class of viable alleles can be reverted to lethality and on our ability to independently generate recessive lethal sax mutations, our analysis demonstrates that sax is an essential gene. Consistent with this conclusion, we find that a normal sax transcript is produced by saxP, a viable allele previously reported to be null, and that this allele can be reverted to lethality. Interestingly, we determine that two mutations in the first class of sax alleles show the same amino acid substitutions as mutations in the human receptors ALK1/ACVRl-1 and ACVR1/ALK2, responsible for cases of hereditary hemorrhagic telangiectasia type 2 (HHT2) and fibrodysplasia ossificans progressiva (FOP), respectively. Finally, the data presented here identify different functional requirements for the Sax receptor, support the proposal that Sax participates in a heteromeric receptor complex, and provide a mechanistic framework for future investigations into disease states that arise from defects in BMP/TGF-beta signaling.
Collapse
|
32
|
Fujisawa T, Huang Y, Sebald W, Zhang JL. The binding of von Willebrand factor type C domains of Chordin family proteins to BMP-2 and Tsg is mediated by their SD1 subdomain. Biochem Biophys Res Commun 2009; 385:215-9. [PMID: 19450552 DOI: 10.1016/j.bbrc.2009.05.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 05/11/2009] [Indexed: 11/16/2022]
Abstract
The VWC domain of Chordin family proteins consists of subdomains SD1 and SD2. In previous experiments with VWC1 from CV-2 SD-1 was shown to be crucial for BMP interaction. Now the SD1 from VWC1 and VWC3 of Chordin and CHL2 were established to confer BMP affinity and specificity to these proteins also. In addition, these SD1 subdomains are mediating binding to Tsg. Mutational analysis revealed similar binding epitopes of the various SD1 proteins for BMP-2 and Tsg. Inhibitory activity of CHL2 in C2C12 cells is reduced by mutations in SD1 of VWC1 and even more of VWC3. These results together provide strong evidence that the SD1 subdomain module of about 40 residues represents the crucial binding partner for BMPs and Tsg in these Chordin family proteins and likely in other BMP-binding VWC domains also.
Collapse
Affiliation(s)
- Takuo Fujisawa
- Department of Physiological Chemistry II, University of Wuerzburg, Am Hubland, Wuerzburg, Germany
| | | | | | | |
Collapse
|
33
|
Klages J, Kotzsch A, Coles M, Sebald W, Nickel J, Müller T, Kessler H. The solution structure of BMPR-IA reveals a local disorder-to-order transition upon BMP-2 binding. Biochemistry 2008; 47:11930-9. [PMID: 18937504 DOI: 10.1021/bi801059j] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structure of the extracellular domain of BMP receptor IA was determined in solution by NMR spectroscopy and compared to its structure when bound to its ligand BMP-2. While most parts of the secondary structure are highly conserved between the bound and unbound forms, large conformational rearrangements can be observed in the beta4beta5 loop of BMPR-IA, which is in contact with BMP-2 and harbors the main binding determinants for the BMPR-IA-BMP-2 interaction. In its unbound form, helix alpha1 in BMPR-IA, which is in the center of the binding epitope for BMP-2, is missing. Since BMP-2 also shows conformational changes in the type I receptor epitope upon binding to BMPR-IA, both binding partners pass through an induced fit mechanism to adapt their binding interfaces to a given interaction surface. The inherent flexibility of both partners possibly explains the promiscuous ligand-receptor interaction observed in the BMP protein superfamily.
Collapse
Affiliation(s)
- Jochen Klages
- Center of Integrated Protein Science (CIPSM) at the Technische Universitat Munchen, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Saremba S, Nickel J, Seher A, Kotzsch A, Sebald W, Mueller TD. Type I receptor binding of bone morphogenetic protein 6 is dependent on N-glycosylation of the ligand. FEBS J 2007; 275:172-83. [DOI: 10.1111/j.1742-4658.2007.06187.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
35
|
Allendorph GP, Isaacs MJ, Kawakami Y, Izpisua Belmonte JC, Choe S. BMP-3 and BMP-6 Structures Illuminate the Nature of Binding Specificity with Receptors,. Biochemistry 2007; 46:12238-47. [DOI: 10.1021/bi700907k] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- George P. Allendorph
- Structural Biology Laboratory and Gene Expression Laboratory, Salk Institute for Biology Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, Department of Chemistry and Biochemistry and Divison of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92037, and Center for Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Michael J. Isaacs
- Structural Biology Laboratory and Gene Expression Laboratory, Salk Institute for Biology Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, Department of Chemistry and Biochemistry and Divison of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92037, and Center for Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Yasuhiko Kawakami
- Structural Biology Laboratory and Gene Expression Laboratory, Salk Institute for Biology Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, Department of Chemistry and Biochemistry and Divison of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92037, and Center for Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Juan Carlos Izpisua Belmonte
- Structural Biology Laboratory and Gene Expression Laboratory, Salk Institute for Biology Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, Department of Chemistry and Biochemistry and Divison of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92037, and Center for Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Senyon Choe
- Structural Biology Laboratory and Gene Expression Laboratory, Salk Institute for Biology Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, Department of Chemistry and Biochemistry and Divison of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92037, and Center for Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003 Barcelona, Spain
| |
Collapse
|
36
|
Zhang JL, Huang Y, Qiu LY, Nickel J, Sebald W. von Willebrand Factor Type C Domain-containing Proteins Regulate Bone Morphogenetic Protein Signaling through Different Recognition Mechanisms. J Biol Chem 2007; 282:20002-14. [PMID: 17483092 DOI: 10.1074/jbc.m700456200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein (BMP) function is regulated in the extracellular space by many modulator proteins, including those containing a von Willebrand factor type C (VWC) domain. The function of the VWC domain-containing proteins in development and diseases has been extensively studied. The structural basis, however, for the mechanism by which BMP is regulated by these proteins is still poorly understood. By analyzing chordin, CHL2 (chordin-like 2), and CV2 (crossveinless 2) as well as their individual VWC domains, we show that the VWC domain is a versatile binding module that in its multiple forms and environments can expose a variety of binding specificities. Three of four, two of three, and one of five VWCs from chordin, CHL2, and CV2, respectively, can bind BMPs. Using an array of BMP-2 mutant proteins, it can be demonstrated that the binding-competent VWC domains all use a specific subset of BMP-2 binding determinants that overlap with the binding site for the type II receptors (knuckle epitope) or for the type I receptors (wrist epitope). This explains the competition between modulator proteins and receptors for BMP binding and therefore the inhibition of BMP signaling. A subset of VWC domains from CHL2 binds to the Tsg (twisted gastrulation) protein similar to chordin. A stable ternary complex consisting of BMP-2, CHL2, and Tsg can be formed, thus making CHL2 a more efficient BMP-2 inhibitor. The VWCs of CV2, however, do not interact with Tsg. The present results show that chordin, CHL2, and CV2 regulate BMP-2 signaling by different recognition mechanisms.
Collapse
Affiliation(s)
- Jin-Li Zhang
- Department of Physiological Chemistry II, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
| | | | | | | | | |
Collapse
|
37
|
Graziano A, d'Aquino R, Cusella-De Angelis MG, Laino G, Piattelli A, Pacifici M, De Rosa A, Papaccio G. Concave pit-containing scaffold surfaces improve stem cell-derived osteoblast performance and lead to significant bone tissue formation. PLoS One 2007; 2:e496. [PMID: 17551577 PMCID: PMC1876259 DOI: 10.1371/journal.pone.0000496] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 05/09/2007] [Indexed: 01/02/2023] Open
Abstract
Background Scaffold surface features are thought to be important regulators of stem cell performance and endurance in tissue engineering applications, but details about these fundamental aspects of stem cell biology remain largely unclear. Methodology and Findings In the present study, smooth clinical-grade lactide-coglyolic acid 85:15 (PLGA) scaffolds were carved as membranes and treated with NMP (N-metil-pyrrolidone) to create controlled subtractive pits or microcavities. Scanning electron and confocal microscopy revealed that the NMP-treated membranes contained: (i) large microcavities of 80–120 µm in diameter and 40–100 µm in depth, which we termed primary; and (ii) smaller microcavities of 10–20 µm in diameter and 3–10 µm in depth located within the primary cavities, which we termed secondary. We asked whether a microcavity-rich scaffold had distinct bone-forming capabilities compared to a smooth one. To do so, mesenchymal stem cells derived from human dental pulp were seeded onto the two types of scaffold and monitored over time for cytoarchitectural characteristics, differentiation status and production of important factors, including bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF). We found that the microcavity-rich scaffold enhanced cell adhesion: the cells created intimate contact with secondary microcavities and were polarized. These cytological responses were not seen with the smooth-surface scaffold. Moreover, cells on the microcavity-rich scaffold released larger amounts of BMP-2 and VEGF into the culture medium and expressed higher alkaline phosphatase activity. When this type of scaffold was transplanted into rats, superior bone formation was elicited compared to cells seeded on the smooth scaffold. Conclusion In conclusion, surface microcavities appear to support a more vigorous osteogenic response of stem cells and should be used in the design of therapeutic substrates to improve bone repair and bioengineering applications in the future.
Collapse
Affiliation(s)
- Antonio Graziano
- Dipartimento di Medicina Sperimentale, Sezione di Istologia ed Embriologia, Secondo Ateneo di Napoli, Naples, Italy
- * To whom correspondence should be addressed. E-mail:
| | - Riccardo d'Aquino
- Dipartimento di Medicina Sperimentale, Sezione di Istologia ed Embriologia, Secondo Ateneo di Napoli, Naples, Italy
- Dipartimento di Discipline Odontostomatologiche, Ortodontiche e Chirurgiche, Secondo Ateneo di Napoli, Naples, Italy
| | | | - Gregorio Laino
- Dipartimento di Discipline Odontostomatologiche, Ortodontiche e Chirurgiche, Secondo Ateneo di Napoli, Naples, Italy
| | - Adriano Piattelli
- Dipartimento di Scienze Odontostomatologiche, Università degli Studi “G. d'Annunzio”, Chieti, Italy
| | - Maurizio Pacifici
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Alfredo De Rosa
- Dipartimento di Discipline Odontostomatologiche, Ortodontiche e Chirurgiche, Secondo Ateneo di Napoli, Naples, Italy
| | - Gianpaolo Papaccio
- Dipartimento di Medicina Sperimentale, Sezione di Istologia ed Embriologia, Secondo Ateneo di Napoli, Naples, Italy
| |
Collapse
|
38
|
A silent H-bond can be mutationally activated for high-affinity interaction of BMP-2 and activin type IIB receptor. BMC STRUCTURAL BIOLOGY 2007; 7:6. [PMID: 17295905 PMCID: PMC1802081 DOI: 10.1186/1472-6807-7-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 02/12/2007] [Indexed: 02/07/2023]
Abstract
Background Bone morphogenetic proteins (BMPs) are key regulators in the embryonic development and postnatal tissue homeostasis in all animals. Loss of function or dysregulation of BMPs results in severe diseases or even lethality. Like transforming growth factors β (TGF-βs), activins, growth and differentiation factors (GDFs) and other members of the TGF-β superfamily, BMPs signal by assembling two types of serine/threonine-kinase receptor chains to form a hetero-oligomeric ligand-receptor complex. BMP ligand receptor interaction is highly promiscuous, i.e. BMPs bind more than one receptor of each subtype, and a receptor bind various ligands. The activin type II receptors are of particular interest, since they bind a large number of diverse ligands. In addition they act as high-affinity receptors for activins but are also low-affinity receptors for BMPs. ActR-II and ActR-IIB therefore represent an interesting example how affinity and specificity might be generated in a promiscuous background. Results Here we present the high-resolution structures of the ternary complexes of wildtype and a variant BMP-2 bound to its high-affinity type I receptor BMPR-IA and its low-affinity type II receptor ActR-IIB and compare them with the known structures of binary and ternary ligand-receptor complexes of BMP-2. In contrast to activin or TGF-β3 no changes in the dimer architecture of the BMP-2 ligand occur upon complex formation. Functional analysis of the ActR-IIB binding epitope shows that hydrophobic interactions dominate in low-affinity binding of BMPs; polar interactions contribute only little to binding affinity. However, a conserved H-bond in the center of the type II ligand-receptor interface, which does not contribute to binding in the BMP-2 – ActR-IIB interaction can be mutationally activated resulting in a BMP-2 variant with high-affinity for ActR-IIB. Further mutagenesis studies were performed to elucidate the binding mechanism allowing us to construct BMP-2 variants with defined type II receptor binding properties. Conclusion Binding specificity of BMP-2 for its three type II receptors BMPR-II, Act-RII and ActR-IIB is encoded on single amino acid level. Exchange of only one or two residues results in BMP-2 variants with a dramatically altered type II receptor specificity profile, possibly allowing construction of BMP-2 variants that address a single type II receptor. The structure-/function studies presented here revealed a new mechanism, in which the energy contribution of a conserved H-bond is modulated by surrounding intramolecular interactions to achieve a switch between low- and high-affinity binding.
Collapse
|
39
|
Mace PD, Cutfield JF, Cutfield SM. Bacterial expression and purification of the ovine type II bone morphogenetic protein receptor ectodomain. Protein Expr Purif 2006; 52:40-9. [PMID: 16982201 DOI: 10.1016/j.pep.2006.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 07/17/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
Bone morphogenetic proteins (BMPs) are essential for a wide range of developmental processes. They signal through type I and type II serine/threonine kinase receptors, and differ from other TGF-beta family members in that the type II receptor binds with a lower affinity than the type I. Here, we describe the development of various Escherichia coli expression systems for the extracellular domain of the ovine type II bone morphogenetic protein receptor. In order to facilitate disulfide bond formation and protein solubility, BMPRII was expressed fused to bacterial thioredoxin, which, following cleavage, could be purified using several chromatography steps. Although this material migrated as a single band in denaturing PAGE, native-PAGE indicated heterogeneity, and this protein could not be crystallised. When expressed alone, either containing a histidine tag or as an untagged protein, the receptor ectodomain was deposited as insoluble inclusion bodies. Protein subjected to in vitro refolding procedures exhibited multiple species following anion exchange chromatography and size exclusion chromatography, as visualised on native-PAGE. Separation of these species could be achieved using a MonoP chromatofocusing matrix. One of these separated fractions, representing about 5% of the starting material, was amenable to crystallisation, and furthermore exhibited biological activity. Crystals of the histidine-tagged form were shown to diffract weakly, whereas crystals of the native form grew in two different morphologies, and diffracted to a resolution of 1.2A.
Collapse
Affiliation(s)
- Peter D Mace
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin 9001, New Zealand.
| | | | | |
Collapse
|
40
|
Bangi E, Wharton K. Dual function of the Drosophila Alk1/Alk2 ortholog Saxophone shapes the Bmp activity gradient in the wing imaginal disc. Development 2006; 133:3295-303. [PMID: 16887821 DOI: 10.1242/dev.02513] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wing patterning in Drosophila requires a Bmp activity gradient created by two Bmp ligands, Gbb and Dpp, and two Bmp type I receptors, Sax and Tkv. Gbb provides long-range signaling, while Dpp signals preferentially to cells near its source along the anteroposterior (AP) boundary of the wing disc. How each receptor contributes to the signaling activity of each ligand is not well understood. Here, we show that while Tkv mediates signals from both Dpp and Gbb, Sax exhibits a novel function for a Bmp type I receptor: the ability to both promote and antagonize signaling. Given its high affinity for Gbb, this dual function of Sax impacts the function of Gbb in the Bmp activity gradient more profoundly than does Dpp. We propose that this dual function of Sax is dependent on its receptor partner. When complexed with Tkv, Sax facilitates Bmp signaling, but when alone, Sax fails to signal effectively and sequesters Gbb. Overall, our model proposes that the balance between antagonizing and promoting Bmp signaling varies across the wing pouch, modulating the level and effective range, and, thus, shaping the Bmp activity gradient. This previously unknown mechanism for modulating ligand availability and range raises important questions regarding the function of vertebrate Sax orthologs.
Collapse
Affiliation(s)
- Erdem Bangi
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
41
|
Allendorph GP, Vale WW, Choe S. Structure of the ternary signaling complex of a TGF-beta superfamily member. Proc Natl Acad Sci U S A 2006; 103:7643-8. [PMID: 16672363 PMCID: PMC1456805 DOI: 10.1073/pnas.0602558103] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The crystal structure of the complete signaling complex formed between bone morphogenetic protein 2 (BMP-2) and the extracellular domains (ECDs) of its type I receptor [bone morphogenetic protein receptor type Ia (BMPR-Ia)-ECD] and its type II receptor [activin receptor type II (ActRII)-ECD] shows two fundamental structural constraints for receptor assembly. First, the homodimeric BMP-2 ligand assembles two pairs of each receptor symmetrically, where each of the receptor ECDs does not make physical contact. Therefore, conformational communication between receptor ECDs, if any, should be propagated through the central ligand. Second, the type I and II receptor interfaces of the complex, when compared with those of binary complexes such as BMP-2/BMPR Ia-ECD, BMP-7/ActRII-ECD, and activin/ActRIIb-ECD, respectively, show there are common sets of positions repeatedly used by both ligands and receptors. Therefore, specificity-determining amino acid differences at the receptor interfaces should also account for the disparity in affinity of individual receptors for different ligand subunits. We find that a specific mutation to BMP-2 increases its affinity to ActRII-ECD by 5-fold. These results together establish that the specific signaling output is largely determined by two variables, the ligand-receptor pair identity and the mode of cooperative assembly of relevant receptors governed by the ligand flexibility in a membrane-restricted manner.
Collapse
Affiliation(s)
| | - Wylie W. Vale
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, CA 92037
| | | |
Collapse
|
42
|
Wendler J, Hoffmann A, Gross G, Weich HA, Bilitewski U. Development of an enzyme-linked immunoreceptor assay (ELIRA) for quantification of the biological activity of recombinant human bone morphogenetic protein-2. J Biotechnol 2005; 119:425-35. [PMID: 15993504 DOI: 10.1016/j.jbiotec.2005.04.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 04/20/2005] [Accepted: 04/27/2005] [Indexed: 11/24/2022]
Abstract
Human bone morphogenetic protein-2 is a representative of the transforming growth factor-beta (TGF-beta) superfamily of cytokines. It was produced in high-cell-density cultivations of recombinant Escherichia coli leading to the formation of inclusion bodies with aggregated inactive protein so that the protein had to be solubilized and renatured. Thus, the biological activity of the recombinant protein had to be determined. To avoid time-consuming cell-based assays or radioactive labelling of proteins enzyme-linked immunoreceptor assays were developed. They were based on the specific interaction between the biologically active protein and its receptors, of which the extracellular ligand binding domains were tagged with the Fc part of human IgG and expressed in insect cells. The amount of bound ligand, corresponding to the biologically active recombinant protein, was determined via enzyme-labelled antibodies. Application to various batches of protein showed that not only the amount of active protein could be quantified but also the quality of the protein preparations could be evaluated in significantly shorter analysis times than with conventional cell-based assays.
Collapse
Affiliation(s)
- Janine Wendler
- Department of Natural Product Biology, National Research Centre for Biotechnology (GBF), Mascheroder Weg 1, 38124 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
43
|
Zúñiga JE, Groppe JC, Cui Y, Hinck CS, Contreras-Shannon V, Pakhomova ON, Yang J, Tang Y, Mendoza V, López-Casillas F, Sun L, Hinck AP. Assembly of TbetaRI:TbetaRII:TGFbeta ternary complex in vitro with receptor extracellular domains is cooperative and isoform-dependent. J Mol Biol 2005; 354:1052-68. [PMID: 16289576 DOI: 10.1016/j.jmb.2005.10.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 10/01/2005] [Accepted: 10/05/2005] [Indexed: 12/31/2022]
Abstract
Transforming growth factor-beta (TGFbeta) isoforms initiate signaling by assembling a heterotetrameric complex of paired type I (TbetaRI) and type II (TbetaRII) receptors on the cell surface. Because two of the ligand isoforms (TGFbetas 1, 3) must first bind TbetaRII to recruit TbetaRI into the complex, and a third (TGFbeta2) requires a co-receptor, assembly is known to be sequential, cooperative and isoform-dependent. However the source of the cooperativity leading to recruitment of TbetaRI and the universality of the assembly mechanism with respect to isoforms remain unclear. Here, we show that the extracellular domain of TbetaRI (TbetaRI-ED) binds in vitro with high affinity to complexes of the extracellular domain of TbetaRII (TbetaRII-ED) and TGFbetas 1 or 3, but not to either ligand or receptor alone. Thus, recruitment of TbetaRI requires combined interactions with TbetaRII-ED and ligand, but not membrane attachment of the receptors. Cell-based assays show that TbetaRI-ED, like TbetaRII-ED, acts as an antagonist of TGFbeta signaling, indicating that receptor-receptor interaction is sufficient to compete against endogenous, membrane-localized receptors. On the other hand, neither TbetaRII-ED, nor TbetaRII-ED and TbetaRI-ED combined, form a complex with TGFbeta2, showing that receptor-receptor interaction is insufficient to compensate for weak ligand-receptor interaction. However, TbetaRII-ED does bind with high affinity to TGFbeta2-TM, a TGFbeta2 variant substituted at three positions to mimic TGFbetas 1 and 3 at the TbetaRII binding interface. This proves both necessary and sufficient for recruitment of TbetaRI-ED, suggesting that the three different TGFbeta isoforms induce assembly of the heterotetrameric receptor complex in the same general manner.
Collapse
MESH Headings
- Activin Receptors, Type I/chemistry
- Activin Receptors, Type I/isolation & purification
- Activin Receptors, Type I/metabolism
- Amino Acid Sequence
- Animals
- Cattle
- Cell Division/drug effects
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Escherichia coli/genetics
- Female
- Genes, Reporter
- Genetic Variation
- Humans
- In Vitro Techniques
- Ligands
- Luciferases/metabolism
- Mice
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Molecular Weight
- Nuclear Magnetic Resonance, Biomolecular
- Phosphorylation
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Structure, Tertiary
- Receptor, Transforming Growth Factor-beta Type I
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/chemistry
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/isolation & purification
- Receptors, Transforming Growth Factor beta/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Signal Transduction
- Smad2 Protein/analysis
- Smad2 Protein/metabolism
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta/pharmacology
Collapse
Affiliation(s)
- Jorge E Zúñiga
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wendler J, Vallejo LF, Rinas U, Bilitewski U. Application of an SPR-based receptor assay for the determination of biologically active recombinant bone morphogenetic protein-2. Anal Bioanal Chem 2005; 381:1056-64. [PMID: 15744518 DOI: 10.1007/s00216-004-3016-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Indexed: 11/25/2022]
Abstract
Human bone morphogenetic protein-2 (hBMP-2) is a member of the human transforming growth factor-beta superfamily. Biologically active bone morphogenetic protein-2 (BMP-2) is a dimeric protein that binds in the first step of the signal transduction cascade to specific receptors on the cell-surface. This specific interaction of the dimeric protein with the extracellular ligand-binding domain (ECD) of the receptor was used to develop a receptor-based assay based on an optical biosensor system (Biacore 2000, Biacore AB, Uppsala, Sweden). The ECD of the BMP-receptor type IA, tagged with the Fc part of IgG (BMPR-IA-Fc), was immobilised on the surface of a dextran-protein A-coated sensor chip. Calibration curves were obtained with purified and biologically active recombinant hBMP-2 (rhBMP-2) that showed a linear range from approximately 5 to 250 nM rhBMP-2. Moreover, this assay was used to quantitatively follow the generation of biologically active protein during the renaturation from unfolded and reduced monomers to biologically active dimers. A refolding mixture containing renatured dimeric rhBMP-2 and not correctly folded monomers, was used as the sample solution without any further pre-treatment. It was proven that only the biologically active dimers were recognised by the immobilised receptor, so the generation of biologically active rhBMP-2 during the renaturation process could be monitored directly and rapidly. Furthermore, the results from the optical sensor obtained during the renaturation process showed a good correlation with the data obtained by non-reducing SDS-PAGE analysis carried out at the end of the renaturation process. These data show that the disulphide-bonded dimer corresponds to the biologically active protein capable of binding the BMP-receptor type IA.
Collapse
Affiliation(s)
- Janine Wendler
- Division of Natural Products, National Research Centre for Biotechnology (GBF), Mascheroder Weg 1, 38124, Braunschweig, Germany.
| | | | | | | |
Collapse
|
45
|
Keller S, Nickel J, Zhang JL, Sebald W, Mueller TD. Molecular recognition of BMP-2 and BMP receptor IA. Nat Struct Mol Biol 2004; 11:481-8. [PMID: 15064755 DOI: 10.1038/nsmb756] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 03/13/2004] [Indexed: 11/09/2022]
Abstract
Bone morphogenetic protein-2 (BMP-2) and other members of the TGF-beta superfamily regulate the development, maintenance and regeneration of tissues and organs. Binding epitopes for these extracellular signaling proteins have been defined, but hot spots specifying binding affinity and specificity have so far not been identified. In this study, mutational and structural analyses show that epitopes of BMP-2 and the BRIA receptor form a new type of protein-protein interface. The main chain atoms of Leu 51 and Asp53 of BMP-2 represent a hot spot of binding to BRIA. The BMP-2 variant L51P was deficient in type I receptor binding only, whereas its overall structure and its binding to type II receptors and modulator proteins, such as noggin, were unchanged. Thus, the L51P substitution converts BMP-2 into a receptor-inactive inhibitor of noggin. These results are relevant for other proteins of the TGF-beta superfamily and provide useful clues for structure-based drug design.
Collapse
Affiliation(s)
- Sascha Keller
- Lehrstuhl für Physiologische Chemie II, Theodor-Boveri Institut für Biowissenschaften (Biozentrum), Universität Würzburg, Am Hubland, D-97074 Wuerzburg, Germany
| | | | | | | | | |
Collapse
|
46
|
Greenwald J, Groppe J, Gray P, Wiater E, Kwiatkowski W, Vale W, Choe S. The BMP7/ActRII extracellular domain complex provides new insights into the cooperative nature of receptor assembly. Mol Cell 2003; 11:605-17. [PMID: 12667445 DOI: 10.1016/s1097-2765(03)00094-7] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Activins and bone morphogenetic proteins (BMPs) elicit diverse biological responses by signaling through two pairs of structurally related type I and type II receptors. Here we report the crystal structure of BMP7 in complex with the extracellular domain (ECD) of the activin type II receptor. Our structure produces a compelling four-receptor model, revealing that the types I and II receptor ECDs make no direct contacts. Nevertheless, we find that truncated receptors lacking their cytoplasmic domain retain the ability to cooperatively assemble in the cell membrane. Also, the affinity of BMP7 for its low-affinity type I receptor ECD increases 5-fold in the presence of its type II receptor ECD. Taken together, our results provide a view of the ligand-mediated cooperative assembly of BMP and activin receptors that does not rely on receptor-receptor contacts.
Collapse
Affiliation(s)
- Jason Greenwald
- Structural Biology Laboratory, The Salk Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Bone is a dynamic tissue that undergoes significant turnover during the life cycle of an individual. Despite having a significant regenerative capability, trauma and other pathological scenarios commonly require therapeutic intervention to facilitate the healing process. Bone tissue engineering, where cellular and biological processes at a site are deliberately manipulated for a therapeutic outcome, offers a viable option for the treatment of skeletal diseases. In this review paper, we aim to provide a brief synopsis of cellular and molecular basis of bone formation that are pertinent to current efforts of bone healing. Different approaches for engineering bone tissue were presented with special emphasis on the use of soluble (diffusible) therapeutic agents to accelerate bone healing. The latter agents have been used for both local bone repair (i.e. introduction of agents directly to a site of repair) as well as systemic bone regeneration (i.e. delivery for regeneration throughout the skeletal system). Critical drug delivery and targeting issues pertinent for each mode of bone regeneration are provided. In addition, future challenges and opportunities in bone tissue engineering are proposed from the authors' perspective.
Collapse
Affiliation(s)
- S A Gittens
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
48
|
Knaus P, Sebald W. Cooperativity of binding epitopes and receptor chains in the BMP/TGFbeta superfamily. Biol Chem 2001; 382:1189-95. [PMID: 11592400 DOI: 10.1515/bc.2001.149] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bone morphogenetic proteins (BMP) are dimeric factors initiating several distinct signaling cascades by binding to two types of transmembrane serine/threonine kinase receptors (BRI and BRII), and are thus regulating several steps in embryonal development and adult tissue homeostasis. BMP-2 contains two symmetrical pairs of juxtaposed epitopes: the wrist epitope with high affinity to BRI consists of residues from both BMP-2 monomers, while the knuckle epitope resembles the low affinity site for BRII and comprises residues from only one monomer. Here we generated heterodimeric BMP-2 muteins with one monomer mutant in either epitope I for BRI (eI-) or epitope II for BRII (eII-) and the second monomer wild type for receptor interactions (m-). These muteins (B2eI-/B2m- and B2eII-/B2m-) were analyzed by biosensor analysis as well as by measuring their biological activity and compared to their homodimeric forms (either wild type or mutant). Depletion of only one epitope II results in the loss of biological activity as measured byalkaline phosphatase (ALP) activity and Smad induced reportergene assays. However, depletion of only one epitope I shows a reduction of ALP activity to about 25%, while the activation of the Smad pathway remained normal. Homomeric muteins are non-functional for both Smad and ALP activation. This suggests that two functional epitopes II have to be present on one BMP-2 molecule for receptor activation. Futhermore, both pathways (Smad and ALP) are triggered differently by distinct BMP-receptor complexes. Heteromeric BMP-2 mutants therefore allow a distinguishable manipulation of either pathway and thus represent important tools for the generation of specific BMP-2 antagonists or agonists.
Collapse
Affiliation(s)
- P Knaus
- Department of Physiological Chemistry II, Biocenter, University of Würzburg, Germany
| | | |
Collapse
|
49
|
Uludag H, Norrie B, Kousinioris N, Gao T. Engineering temperature-sensitive poly(N-isopropylacrylamide) polymers as carriers of therapeutic proteins. Biotechnol Bioeng 2001; 73:510-21. [PMID: 11344456 DOI: 10.1002/bit.1086] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was carried out to engineer N-isopropylacrylamide (NiPAM) polymers that contain protein-reactive N-acryloxysuccinimide (NASI) and hydrophobic alkylmethacrylates (AMAs). These thermoreversible, protein-conjugating polymers hold potential for retention of therapeutic proteins at an application site where tissue regeneration is desired. The lower critical solution temperatures (LCST) of the polymers were effectively controlled by the AMA mole content. The AMAs with longer side-chains were more effective in lowering the LCST. Polymers without NASI exhibited a stable LCST in phosphate buffer and in serum over a 10-day study period. The LCST of polymers containing NASI was found to increase over time in phosphate buffer, but not in serum-containing medium. The LCST increase in phosphate buffer was proportional to the AMA content. The feasibility of localizing a therapeutic protein, recombinant human bone morphogenetic protein-2 (rhBMP-2), to a site of application was explored in a rat intramuscular injection model. The results indicated that polymers capable of conjugating to rhBMP-2 were most effective in localizing the protein irrespective of the LCST (13-25 degrees C). For polymers with no NASI groups, a lower LCST resulted in a better rhBMP-2 localization. We conclude that thermosensitive polymers can be engineered for delivery of therapeutic proteins to improve their therapeutic efficacy.
Collapse
Affiliation(s)
- H Uludag
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, 1098 EDC Building, University of Alberta, Edmonton, Alberta T6G 2V2 Canada.
| | | | | | | |
Collapse
|
50
|
Kirsch T, Nickel J, Sebald W. BMP-2 antagonists emerge from alterations in the low-affinity binding epitope for receptor BMPR-II. EMBO J 2000; 19:3314-24. [PMID: 10880444 PMCID: PMC313944 DOI: 10.1093/emboj/19.13.3314] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bone morphogenetic protein-2 (BMP-2) induces bone formation and regeneration in adult vertebrates and regulates important developmental processes in all animals. BMP-2 is a homodimeric cysteine knot protein that, as a member of the transforming growth factor-beta (TGF-beta) superfamily, signals by oligomerizing type I and type II receptor serine-kinases in the cell membrane. The binding epitopes of BMP-2 for BMPR-IA (type I) and BMPR-II or ActR-II (type II) were characterized using BMP-2 mutant proteins for analysis of interactions with receptor ectodomains. A large epitope 1 for high-affinity BMPR-IA binding was detected spanning the interface of the BMP-2 dimer. A smaller epitope 2 for the low-affinity binding of BMPR-II was found to be assembled by determinants of a single monomer. Symmetry-related pairs of the two juxtaposed epitopes occur near the BMP-2 poles. Mutations in both epitopes yielded variants with reduced biological activity in C2C12 cells; however, only epitope 2 variants behaved as antagonists partially or completely inhibiting BMP-2 activity. These findings provide a framework for the molecular description of receptor recognition and activation in the BMP/TGF-beta superfamily.
Collapse
Affiliation(s)
- T Kirsch
- Lehrstuhl für Physiologische Chemie II, Theodor-Boveri-Institut für Biowissenschaften (Biozentrum) der Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | | | |
Collapse
|