1
|
Tripathi R, Ayekpam D, Kanaujia SP. Unveiling multiple copies of MlaC highlights its multifaceted nature. Arch Microbiol 2025; 207:107. [PMID: 40169428 DOI: 10.1007/s00203-025-04308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/26/2025] [Accepted: 03/13/2025] [Indexed: 04/03/2025]
Abstract
The maintenance of the lipid asymmetry (Mla) system plays a critical role in facilitating the transport of phospholipids between the inner and outer membranes of the Gram-negative bacteria. In E. coli, the system consists of six proteins: MlaA-OmpF/C complex (outer membrane), MlaC (periplasm), and MlaFEDB complex (inner membrane). Despite extensive research on the core proteins (MlaFED) of the Mla system, the occurrence of Mla components like MlaA, MlaB, and MlaC in diderm remains uncertain. Therefore, this gap presents a significant opportunity for further investigation, particularly regarding MlaC, which serves as the sole mobile component of the Mla system. This has led to the identification of multiple copies of MlaC in 63 distinct genera of Proteobacteria and related phyla. Interestingly, amongst these genera, the genetic arrangements of the mla operon were observed to be varying and, thus, were further categorized into four distinct groups. The variations among the genetic organization of the mla operons suggest their evolution through various processes, such as duplications, losses, rearrangements, and fusions. Further, the results of this study highlight the MlaC's substrate promiscuity, illuminating new avenues for the Mla system.
Collapse
Affiliation(s)
- Ritu Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Dylan Ayekpam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Montero F, Parra-López M, Rodríguez-Martínez A, Murciano-Calles J, Buzon P, Han Z, Lin LY, Ramos MC, Ruiz-Sanz J, Martinez JC, Radi M, Moog C, Diederich S, Harty RN, Pérez-Sánchez H, Vicente F, Castillo F, Luque I. Exploring the druggability of the UEV domain of human TSG101 in search for broad-spectrum antivirals. Protein Sci 2025; 34:e70005. [PMID: 39724449 DOI: 10.1002/pro.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
The ubiquitin E2 variant domain of TSG101 (TSG101-UEV) plays a pivotal role in protein sorting and virus budding by recognizing PTAP motifs within ubiquitinated proteins. Disruption of TSG101-UEV/PTAP interactions has emerged as a promising strategy for the development of host-oriented broad-spectrum antivirals with low susceptibility to resistance. TSG101 is a challenging target characterized by an extended and flat binding interface, low affinity for PTAP ligands, and complex binding energetics. Here, we assess the druggability of the TSG101-UEV/PTAP binding interface by searching for drug-like inhibitors and evaluating their ability to block PTAP recognition, impair budding, and inhibit viral proliferation. A discovery workflow was established by combining in vitro miniaturized HTS assays and a set of cell-based activity assays including high-content bimolecular complementation, virus-like particle release measurement, and antiviral testing in live virus infection. This approach has allowed us to identify a set of chemically diverse molecules that block TSG101-UEV/PTAP binding with IC50s in the low μM range and are able to disrupt the interaction between full-length TSG101 and viral proteins in human cells and inhibit viral replication. State-of-the-art molecular docking studies reveal that the active compounds exploit binding hotspots at the PTAP binding site, unlocking the full binding potential of the TSG101-UEV binding pockets. These inhibitors represent promising hits for the development of novel broad-spectrum antivirals through targeted optimization and are also valuable tools for investigating the involvement of ESCRT in the proliferation of different virus families and study the secondary effects induced by the disruption of ESCRT/virus interactions.
Collapse
Affiliation(s)
- Fernando Montero
- Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain
| | - Marisa Parra-López
- Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain
| | - Alejandro Rodríguez-Martínez
- Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain
- Structural Bioinformatics and High-Performance Computing (BIO-HPC) Research Group, Universidad Católica de Murcia (UCAM), Guadalupe, Spain
| | - Javier Murciano-Calles
- Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain
| | - Pedro Buzon
- Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain
| | - Ziying Han
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - L-Y Lin
- Laboratoire d'ImmunoRhumatologie Moléculaire, UMR_S 1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | | | - Javier Ruiz-Sanz
- Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain
| | - Jose C Martinez
- Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain
| | - Marco Radi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Christiane Moog
- Laboratoire d'ImmunoRhumatologie Moléculaire, UMR_S 1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Sandra Diederich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald, Germany
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing (BIO-HPC) Research Group, Universidad Católica de Murcia (UCAM), Guadalupe, Spain
| | | | | | - Irene Luque
- Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain
| |
Collapse
|
3
|
Tsitsa I, Krystkowiak I, Davey NE. CompariPSSM: a PSSM-PSSM comparison tool for motif-binding determinant analysis. Bioinformatics 2024; 40:btae644. [PMID: 39471470 PMCID: PMC11639669 DOI: 10.1093/bioinformatics/btae644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/31/2024] [Accepted: 10/27/2024] [Indexed: 11/01/2024] Open
Abstract
MOTIVATION Short linear motifs (SLiMs) are compact functional modules that mediate low-affinity protein-protein interactions. SLiMs direct the function of many dynamic signalling and regulatory complexes playing a central role in most biological processes of the cell. Motif-binding determinants describe the contribution of each residue in a motif-containing peptide to the affinity and specificity of binding to the motif-binding partner. Motif-binding determinants are generally defined as a motif consensus pattern or a position-specific scoring matrix (PSSM) encoding quantitative preferences. Motif-binding determinant comparison is an important motif analysis task and can be applied to motif annotation, classification, clustering, discovery and benchmarking. Currently, binding determinant comparison is generally performed by analysing consensus similarity; however, this ignores important quantitative information in both the consensus and non-consensus positions. RESULTS We have created a new tool, CompariPSSM, that quantifies the similarity between motif-binding determinants using sliding window PSSM-PSSM comparison and scores PSSM similarity using a randomisation-based probabilistic framework. The tool has been benchmarked on curated data from the eukaryotic linear motif database and experimental data from proteomic peptidephage display. CompariPSSM can be used for peptide classification to validate motif classes, peptide clustering to group functionally related conserved disordered regions, and benchmarking experimental motif discovery methods. AVAILABILITY AND IMPLEMENTATION CompariPSSM is available at https://slim.icr.ac.uk/projects/comparipssm.
Collapse
Affiliation(s)
- Ifigenia Tsitsa
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, United Kingdom
| | - Izabella Krystkowiak
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, United Kingdom
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, United Kingdom
| |
Collapse
|
4
|
Rack JGM, Voorneveld J, Longarini EJ, Wijngaarden S, Zhu K, Peters A, Sia JJ, Prokhorova E, Ahel D, Matić I, Filippov DV, Ahel I. Reversal of tyrosine-linked ADP-ribosylation by ARH3 and PARG. J Biol Chem 2024; 300:107838. [PMID: 39342999 PMCID: PMC11541775 DOI: 10.1016/j.jbc.2024.107838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
ADP-ribosylation is an ancient posttranslational modification with exceptional versatility in terms of breadth of modification targets including at least seven different amino acid side chains, various moieties on nucleic acids, and a variety of small chemical compounds. The spatiotemporal signaling dynamic of the different modification variations is tightly regulated and depends on the writers, erases, and readers of each type. Among these, tyrosine ADP-ribosylation (Tyr-ADPr) has been consistently detected as a novel modification type, but systematic analysis of its potential physiological role, modification establishment, and reversal are still lacking. Here we present a re-analysis of recent ADP-ribosylome data and show that Tyr-ADPr sites are conserved and enriched among ribosome biogenesis and mRNA processing proteins and that these sites are affected by the status of the (ADP-ribosyl)hydrolase ARH3. To facilitate the study of Tyr-ADPr, we establish methodologies for the synthesis of well-defined Tyr-ADPr peptides and with these could show that Tyr-ADPr is reversed both by ARH3 and PARG enzymes. Together, our work lays the foundation for the future exploration of the Tyr-ADPr.
Collapse
Affiliation(s)
| | - Jim Voorneveld
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Edoardo José Longarini
- Research Group of Proteomics and ADP-ribosylation Signalling, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Sven Wijngaarden
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Alessandra Peters
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Jia Jhing Sia
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ivan Matić
- Research Group of Proteomics and ADP-ribosylation Signalling, Max Planck Institute for Biology of Ageing, Cologne, Germany; Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Ariza A, Liu Q, Cowieson NP, Ahel I, Filippov DV, Rack JGM. Evolutionary and molecular basis of ADP-ribosylation reversal by zinc-dependent macrodomains. J Biol Chem 2024; 300:107770. [PMID: 39270823 PMCID: PMC11490716 DOI: 10.1016/j.jbc.2024.107770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Dynamic ADP-ribosylation signaling is a crucial pathway that controls fundamental cellular processes, in particular, the response to cellular stresses such as DNA damage, reactive oxygen species, and infection. In some pathogenic microbes, the response to oxidative stress is controlled by a SirTM/zinc-containing macrodomain (Zn-Macro) pair responsible for establishment and removal of the modification, respectively. Targeting this defence mechanism against the host's innate immune response may lead to novel approaches to support the fight against emerging antimicrobial resistance. Earlier studies suggested that Zn-Macros play a key role in the activation of this defence. Therefore, we used phylogenetic, biochemical, and structural approaches to elucidate the functional properties of these enzymes. Using the substrate mimetic asparagine-ADP-ribose as well as the ADP-ribose product, we characterize the catalytic role of the zinc ion in the removal of the ADP-ribosyl modification. Furthermore, we determined structural properties that contribute to substrate selectivity within the different Zn-Macro branches. Together, our data not only give new insights into the Zn-Macro family but also highlight their distinct features that may be exploited for the development of future therapies.
Collapse
Affiliation(s)
- Antonio Ariza
- School of Biosciences, University of Sheffield, Sheffield, UK; Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Qiang Liu
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Beijing, China; Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Beijing, China
| | - Nathan P Cowieson
- Harwell Science and Innovation Campus, Diamond Light Source, Didcot, Oxfordshire, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Dmitri V Filippov
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| | | |
Collapse
|
6
|
Omble A, Mahajan S, Bhoite A, Kulkarni K. Dishevelled2 activates WGEF via its interaction with a unique internal peptide motif of the GEF. Commun Biol 2024; 7:543. [PMID: 38714795 PMCID: PMC11076555 DOI: 10.1038/s42003-024-06194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/15/2024] [Indexed: 05/10/2024] Open
Abstract
The Wnt-planar cell polarity (Wnt-PCP) pathway is crucial in establishing cell polarity during development and tissue homoeostasis. This pathway is found to be dysregulated in many pathological conditions, including cancer and autoimmune disorders. The central event in Wnt-PCP pathway is the activation of Weak-similarity guanine nucleotide exchange factor (WGEF) by the adapter protein Dishevelled (Dvl). The PDZ domain of Dishevelled2 (Dvl2PDZ) binds and activates WGEF by releasing it from its autoinhibitory state. However, the actual Dvl2PDZ binding site of WGEF and the consequent activation mechanism of the GEF have remained elusive. Using biochemical and molecular dynamics studies, we show that a unique "internal-PDZ binding motif" (IPM) of WGEF mediates the WGEF-Dvl2PDZ interaction to activate the GEF. The residues at P2, P0, P-2 and P-3 positions of IPM play an important role in stabilizing the WGEFpep-Dvl2PDZ interaction. Furthermore, MD simulations of modelled Dvl2PDZ-WGEFIPM peptide complexes suggest that WGEF-Dvl2PDZ interaction may differ from the reported Dvl2PDZ-IPM interactions. Additionally, the apo structure of human Dvl2PDZ shows conformational dynamics different from its IPM peptide bound state, suggesting an induced fit mechanism for the Dvl2PDZ-peptide interaction. The current study provides a model for Dvl2 induced activation of WGEF.
Collapse
Affiliation(s)
- Aishwarya Omble
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shrutika Mahajan
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Ashwini Bhoite
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kiran Kulkarni
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Miller KA, Degan S, Wang Y, Cohen J, Ku SY, Goodrich DW, Gelman IH. PTEN-regulated PI3K-p110 and AKT isoform plasticity controls metastatic prostate cancer progression. Oncogene 2024; 43:22-34. [PMID: 37875657 PMCID: PMC10766561 DOI: 10.1038/s41388-023-02875-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023]
Abstract
PTEN loss, one of the most frequent mutations in prostate cancer (PC), is presumed to drive disease progression through AKT activation. However, two transgenic PC models with Akt activation plus Rb loss exhibited different metastatic development: Pten/RbPE:-/- mice produced systemic metastatic adenocarcinomas with high AKT2 activation, whereas RbPE:-/- mice deficient for the Src-scaffolding protein, Akap12, induced high-grade prostatic intraepithelial neoplasias and indolent lymph node dissemination, correlating with upregulated phosphotyrosyl PI3K-p85α. Using PC cells isogenic for PTEN, we show that PTEN-deficiency correlated with dependence on both p110β and AKT2 for in vitro and in vivo parameters of metastatic growth or motility, and with downregulation of SMAD4, a known PC metastasis suppressor. In contrast, PTEN expression, which dampened these oncogenic behaviors, correlated with greater dependence on p110α plus AKT1. Our data suggest that metastatic PC aggressiveness is controlled by specific PI3K/AKT isoform combinations influenced by divergent Src activation or PTEN-loss pathways.
Collapse
Affiliation(s)
- Karina A Miller
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
- American Society of Human Genetics, Rockville, MD, 20852, USA
| | - Seamus Degan
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
| | - Yanqing Wang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
| | - Joseph Cohen
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
- Sequence, Inc., Morrisville, NC, USA
| | - Sheng Yu Ku
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - David W Goodrich
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
| | - Irwin H Gelman
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA.
| |
Collapse
|
8
|
Pepanian A, Binbay FA, Roy S, Nubbemeyer B, Koley A, Rhodes CA, Ammer H, Pei D, Ghosh P, Imhof D. Bicyclic Peptide Library Screening for the Identification of Gαi Protein Modulators. J Med Chem 2023; 66:12396-12406. [PMID: 37587416 PMCID: PMC11000586 DOI: 10.1021/acs.jmedchem.3c00873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Noncanonical G protein activation and inactivation, particularly for the Gαi/s protein subfamilies, have long been a focus of chemical research. Combinatorial libraries were already effectively applied to identify modulators of the guanine-nucleotide exchange, as can be exemplified with peptides such as KB-752 and GPM-1c/d, the so-called guanine-nucleotide exchange modulators. In this study, we identified novel bicyclic peptides from a combinatorial library screening that show prominent properties as molecular switch-on/off modulators of Gαi signaling. Among the series of hits, the exceptional paradigm of GPM-3, a protein and state-specific bicyclic peptide, is the first chemically identified GAP (GTPase-activating protein) modulator with a high binding affinity for Gαi protein. Computational analyses identified and assessed the structure of the bicyclic peptides, novel ligand-protein interaction sites, and their subsequent impact on the nucleotide binding site. This approach can therefore lead the way for the development of efficient chemical biological probes targeting Gαi protein modulation within a cellular context.
Collapse
Affiliation(s)
- Anna Pepanian
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenbeurg 4, Bonn 53121, Germany
| | - Furkan Ayberk Binbay
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenbeurg 4, Bonn 53121, Germany
| | - Suchismita Roy
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, United States
| | - Britta Nubbemeyer
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenbeurg 4, Bonn 53121, Germany
| | - Amritendu Koley
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, Ohio 43210, United States
| | - Curran A Rhodes
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, Ohio 43210, United States
| | - Hermann Ammer
- Institute of Pharmacology Toxicology and Pharmacy, Veterinary Faculty, Ludwig Maximilian University of Munich, Königinstr. 16, Munich 80539, Germany
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, Ohio 43210, United States
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, United States
- Department of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenbeurg 4, Bonn 53121, Germany
| |
Collapse
|
9
|
Denesyuk AI, Permyakov SE, Permyakov EA, Johnson MS, Denessiouk K, Uversky VN. Canonical structural-binding modes in the calmodulin-target protein complexes. J Biomol Struct Dyn 2023; 41:7582-7594. [PMID: 36106955 DOI: 10.1080/07391102.2022.2123391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
Intracellular calcium sensor protein calmodulin (CaM) belongs to the large EF-hand protein superfamily. CaM shows a unique and not fully understood ability to bind to multiple targets, allows them to participate in a variety of regulatory processes. The protein has two approximately symmetrical globular domains (the N- and C-lobes). Analysis of the CaM-binding sites of target proteins showed that they have two hydrophobic 'anchor' amino acids separated by 10 to 17 residues. Consequently, several CaM-binding motifs: {1-10}, {1-11}, {1-13}, {1-14}, {1-16}, {1-17}, differing by the distance between the two anchor residues along the amino acid sequence, have been identified. Despite extensive structural information on the role of target-protein amino acid residues in the formation of complexes with CaM, much less is known about the role of amino acids from CaM contributing to these interactions. In this work, a quantitative analysis of the contact surfaces of CaM and target proteins has been carried out for 35 representative three-dimensional structures. It has been shown that, in addition to the two hydrophobic terminal residues of the target fragment, the interaction also involves residues that are 4 residues earlier in the sequence (binding mode {1-5}). It has also been found that the N- and C-lobes of CaM bind the {1-5} motif located at the ends of the target in a structurally identical manner. Methionine residues at positions 51 (corresponding to 124 in the C-lobe), 71 (144), and 72 (145) of the CaM amino acid sequence are key hydrophobic residues for this interaction. They are located at the N- and C-boundaries of the even EF-hand motifs. The hydrophobic core of CaM ('Ф-quatrefoil') consists of 10 amino acids in the N-lobe (and in the C-lobe): Phe16 (Phe89), Phe19 (Phe92), Ile27 (Ile100), Thr29 (Ala102), Leu32 (Leu105), Ile52 (Ile125), Val55 (Ala128), Ile63 (Val136), Phe65 (Tyr138), and Phe68 (Phe141) and do not intersect with the target-binding methionine residues. CaM belongs to the 'dynamic' group of EF-hand proteins, in which calcium and protein ligand binding causes only global conformational changes but does not alter the conservative 'black' and 'grey' clusters described in our earlier works (PLoS One. 2014; 9(10):e109287). The membership of CaM in the 'dynamic' group is determined by the triggering and protective methionine layer: Met51 (Met124), Met71 (Met144) and Met72 (Met145). HIGHLIGHTSInterchain interactions in the unique 35 CaM complex structures were analyzed.Methionine amino acids of the N- and C-lobes of CaM form triggering and protective layers.Interactions of the target terminal residues with these methionine layers are structurally identical.CaM belonging to the 'dynamic' group is determined by the triggering and protective methionine layer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alexander I Denesyuk
- Institute for Biological Instrumentation of the, Russian Academy of Sciences, Federal Research Center, "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino Moscow Region, Russia
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Sergei E Permyakov
- Institute for Biological Instrumentation of the, Russian Academy of Sciences, Federal Research Center, "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino Moscow Region, Russia
| | - Eugene A Permyakov
- Institute for Biological Instrumentation of the, Russian Academy of Sciences, Federal Research Center, "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino Moscow Region, Russia
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Vladimir N Uversky
- Institute for Biological Instrumentation of the, Russian Academy of Sciences, Federal Research Center, "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino Moscow Region, Russia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
10
|
Miller K, Degan S, Wang Y, Cohen J, Ku SY, Goodrich D, Gelman I. PTEN regulated PI3K-p110 and AKT isoform plasticity controls metastatic prostate cancer progression. RESEARCH SQUARE 2023:rs.3.rs-2924750. [PMID: 37292818 PMCID: PMC10246239 DOI: 10.21203/rs.3.rs-2924750/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PTEN loss, one of the most frequent mutations in prostate cancer (PC), is presumed to drive disease progression through AKT activation. However, two transgenic PC models with Akt activation plus Rb loss exhibited different metastasis development: Pten/RbPE:-/- mice produced systemic metastatic adenocarcinomas with high AKT2 activation, whereas RbPE:-/- mice deficient for the Src-scaffolding protein, Akap12, induced high-grade prostatic intraepithelial neoplasias and indolent lymph node disseminations, correlating with upregulated phosphotyrosyl PI3K-p85α. Using PC cells isogenic for PTEN, we show that PTEN-deficiency correlated with dependence on both p110β and AKT2 for in vitro and in vivo parameters of metastatic growth or motility, and with downregulation of SMAD4, a known PC metastasis suppressor. In contrast, PTEN expression, which dampened these oncogenic behaviors, correlated with greater dependence on p110α plus AKT1. Our data suggest that metastatic PC aggressiveness is controlled by specific PI3K/AKT isoform combinations influenced by divergent Src activation or PTEN-loss pathways.
Collapse
|
11
|
Hemu X, Chan NY, Liew HT, Hu S, Zhang X, Serra A, Lescar J, Liu CF, Tam JP. Substrate-binding glycine residues are major determinants for hydrolase and ligase activity of plant legumains. THE NEW PHYTOLOGIST 2023; 238:1534-1545. [PMID: 36843268 DOI: 10.1111/nph.18841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Peptide asparaginyl ligases (PALs) are useful tools for precision modifications of proteins and live-cell surfaces by ligating peptides after Asn/Asp (Asx). They share high sequence and structural similarity to plant legumains that are generally known as asparaginyl endopeptidases (AEPs), thus making it challenging to identify PALs from AEPs. In this study, we investigate 875 plant species from algae to seed plants with available sequence data in public databases to identify new PALs. We conducted evolutionary trace analysis on 1500 plant legumains, including eight known PALs, to identify key residues that could differentiate ligases and proteases, followed by recombinant expression and functional validation of 16 novel legumains. Previously, we showed that the substrate-binding sequences flanking the catalytic site can strongly influence the enzymatic direction of a legumain and which we named as ligase-activity determinants (LADs). Here, we show that two conserved substrate-binding Gly residues of LADs are critical, but negative determinants for ligase activity. Our results suggest that specific glycine residues are molecular determinants to identify PALs and AEPs as two different legumain subfamilies, accounting for c. 1% and 88%, respectively.
Collapse
Affiliation(s)
- Xinya Hemu
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
| | - Ning-Yu Chan
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
| | - Heng Tai Liew
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
| | - Side Hu
- NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore City, 637921, Singapore
| | - Xiaohong Zhang
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
| | - Aida Serra
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
- Neuroscience Area, +Pec Proteomics Research Group (+PPRG), Faculty of Medicine, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), University of Lleida, Av. Rovira Roure, 80, Lleida, 25198, Spain
| | - Julien Lescar
- NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore City, 637921, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
| | - James P Tam
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore City, 637921, Singapore
| |
Collapse
|
12
|
Xu D, Chen X, Li Y, Chen Z, Xu W, Wang X, Lv Y, Wang Z, Wu M, Liu G, Wang J. Reconfigurable Peptide Analogs of Apolipoprotein A-I Reveal Tunable Features of Nanodisc Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1262-1276. [PMID: 36626237 DOI: 10.1021/acs.langmuir.2c03082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanodisc (ND)-forming membrane scaffold proteins or peptides developed from apolipoprotein A-I (apoA-I) have led to considerable promise in structural biology and therapeutic applications. However, the rationale and regularity characteristics in peptide sequence design remain inconclusive. Here, we proposed a consensus-based normalization approach through the reversed engineering of apoA-IΔ1-45 to design reconfigurable apoA-I peptide analogs (APAs) for tunable ND assembly. We present extensive morphological validations and computational simulation analyses on divergent APA-NDs that are generated by our method. Fifteen divergent APAs were generated accordingly to study the assembly machinery of NDs. We show that APA designs exhibit multifactorial influence in terms of varying APA tandem repeats, sequence composition, and lipid-to-APA ratio to form tunable diameters of NDs. There is a strong positive correlation between DMPC-to-APA ratios and ND diameters. Longer APA with more tandem repeats tends to yield higher particle size homogeneity. Our results also suggest proline is a dispensable residue for the APA-ND formation. Interestingly, proline-rich substitution not only provides an inward-bending effect in forming smaller NDs but also induces the cumulative chain flexibility that enables larger ND formation at higher lipid ratios. Additionally, proline-tryptophan residues in APAs play a dominant role in forming larger NDs. Molecular simulation shows that enriched basic and acidic residues in APAs evoke abundant hydrogen-bond and salt bridge networks to reinforce the structural stability of APA-NDs. Together, our findings provide a rational basis for understanding APA design. The proposed model could be extended to other apolipoproteins for desired ND engineering.
Collapse
Affiliation(s)
- Daiyun Xu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Xu Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Yongxiao Li
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Zhidong Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Wanting Xu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Xinpei Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Yonghui Lv
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen518033, China
| | - Meiying Wu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen361102, China
| | - Junqing Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| |
Collapse
|
13
|
Klein MT, Krause BM, Neudörfl JM, Kühne R, Schmalz HG. Design and synthesis of a tetracyclic tripeptide mimetic frozen in a polyproline type II (PP2) helix conformation. Org Biomol Chem 2022; 20:9368-9377. [PMID: 36385673 DOI: 10.1039/d2ob01857h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A synthesis of the new tetracyclic scaffold ProM-19, which represents a XPP tripeptide unit frozen in a PPII helix conformation, was developed. As a key building block, N-Boc-protected ethyl (1S,3S,4R)-2-azabicyclo[2.2.1]hept-5-ene-2-carboxylate was prepared through a diastereoselective aza-Diels-Alder reaction and subsequent hydrogenolytic removal of the chiral N-1-phenylethyl substituent under temporary protection of the double bond through dihydroxylation and reconstitution by Corey-Winter olefination. The target compound Boc-[ProM-19]-OMe was then prepared via subsequent peptide coupling and Ru-catalyzed ring-closing metathesis steps employing (S)-N-Boc-allylgylcine and cis-5-vinyl-proline methyl ester as additional building blocks. In addition, Ac-[2-Cl-Phe]-[Pro]-[ProM-19]-OMe was prepared by solution phase peptide synthesis as a potential ligand for the ena-VASP EVH1 domain.
Collapse
Affiliation(s)
- Marco T Klein
- University of Cologne, Department of Chemistry, Greinstrasse 4, 50939 Köln, Germany.
| | - Bernhard M Krause
- University of Cologne, Department of Chemistry, Greinstrasse 4, 50939 Köln, Germany.
| | - Jörg-Martin Neudörfl
- University of Cologne, Department of Chemistry, Greinstrasse 4, 50939 Köln, Germany.
| | - Ronald Kühne
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Hans-Günther Schmalz
- University of Cologne, Department of Chemistry, Greinstrasse 4, 50939 Köln, Germany.
| |
Collapse
|
14
|
Gao G, Guo S, Zhang Q, Zhang H, Zhang C, Peng G. Kiaa1024L/Minar2 is essential for hearing by regulating cholesterol distribution in hair bundles. eLife 2022; 11:e80865. [PMID: 36317962 PMCID: PMC9714970 DOI: 10.7554/elife.80865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022] Open
Abstract
Unbiased genetic screens implicated a number of uncharacterized genes in hearing loss, suggesting some biological processes required for auditory function remain unexplored. Loss of Kiaa1024L/Minar2, a previously understudied gene, caused deafness in mice, but how it functioned in the hearing was unclear. Here, we show that disruption of kiaa1024L/minar2 causes hearing loss in the zebrafish. Defects in mechanotransduction, longer and thinner hair bundles, and enlarged apical lysosomes in hair cells are observed in the kiaa1024L/minar2 mutant. In cultured cells, Kiaa1024L/Minar2 is mainly localized to lysosomes, and its overexpression recruits cholesterol and increases cholesterol labeling. Strikingly, cholesterol is highly enriched in the hair bundle membrane, and loss of kiaa1024L/minar2 reduces cholesterol localization to the hair bundles. Lowering cholesterol levels aggravates, while increasing cholesterol levels rescues the hair cell defects in the kiaa1024L/minar2 mutant. Therefore, cholesterol plays an essential role in hair bundles, and Kiaa1024L/Minar2 regulates cholesterol distribution and homeostasis to ensure normal hearing.
Collapse
Affiliation(s)
- Ge Gao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Shuyu Guo
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Quan Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Hefei Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Cuizhen Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Gang Peng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| |
Collapse
|
15
|
Castillo F, Corbi-Verge C, Murciano-Calles J, Candel AM, Han Z, Iglesias-Bexiga M, Ruiz-Sanz J, Kim PM, Harty RN, Martinez JC, Luque I. Phage display identification of nanomolar ligands for human NEDD4-WW3: Energetic and dynamic implications for the development of broad-spectrum antivirals. Int J Biol Macromol 2022; 207:308-323. [PMID: 35257734 DOI: 10.1016/j.ijbiomac.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
Abstract
The recognition of PPxY viral Late domains by the third WW domain of the human HECT-E3 ubiquitin ligase NEDD4 (NEDD4-WW3) is essential for the budding of many viruses. Blocking these interactions is a promising strategy to develop broad-spectrum antivirals. As all WW domains, NEDD4-WW3 is a challenging therapeutic target due to the low binding affinity of its natural interactions, its high conformational plasticity, and its complex thermodynamic behavior. In this work, we set out to investigate whether high affinity can be achieved for monovalent ligands binding to the isolated NEDD4-WW3 domain. We show that a competitive phage-display set-up allows for the identification of high-affinity peptides showing inhibitory activity of viral budding. A detailed biophysical study combining calorimetry, nuclear magnetic resonance, and molecular dynamic simulations reveals that the improvement in binding affinity does not arise from the establishment of new interactions with the domain, but is associated to conformational restrictions imposed by a novel C-terminal -LFP motif in the ligand, unprecedented in the PPxY interactome. These results, which highlight the complexity of WW domain interactions, provide valuable insight into the key elements for high binding affinity, of interest to guide virtual screening campaigns for the identification of novel therapeutics targeting NEDD4-WW3 interactions.
Collapse
Affiliation(s)
- Francisco Castillo
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain
| | - Carles Corbi-Verge
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain; Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics & Department of Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Javier Murciano-Calles
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain
| | - Adela M Candel
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain
| | - Ziying Han
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Philadelphia, PA 19104, USA
| | - Manuel Iglesias-Bexiga
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain
| | - Javier Ruiz-Sanz
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain
| | - Philip M Kim
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics & Department of Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Philadelphia, PA 19104, USA
| | - Jose C Martinez
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain
| | - Irene Luque
- Department of Physical Chemistry, Institute of Biotechnology and Excelence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n 18071, Granada, Spain.
| |
Collapse
|
16
|
Nubbemeyer B, George AAP, Kühl T, Pepanian A, Beck MS, Maghraby R, Boushehri MS, Muehlhaupt M, Pfeil EM, Annala SK, Ammer H, Imhof D, Pei D. Targeting Gαi/s Proteins with Peptidyl Nucleotide Exchange Modulators. ACS Chem Biol 2022; 17:463-473. [PMID: 35042325 PMCID: PMC11002716 DOI: 10.1021/acschembio.1c00929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemical probes that specifically modulate the activity of heterotrimeric G proteins provide excellent tools for investigating G protein-mediated cell signaling. Herein, we report a family of selective peptidyl Gαi/s modulators derived from peptide library screening and optimization. Conjugation to a cell-penetrating peptide rendered the peptides cell-permeable and biologically active in cell-based assays. The peptides exhibit potent guanine-nucleotide exchange modulator-like activity toward Gαi and Gαs. Molecular docking and dynamic simulations revealed the molecular basis of the protein-ligand interactions and their effects on GDP binding. This study demonstrates the feasibility of developing direct Gαi/s modulators and provides a novel chemical probe for investigating cell signaling through GPCRs/G proteins.
Collapse
Affiliation(s)
- Britta Nubbemeyer
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Ajay Abisheck Paul George
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
- BioSolveIT GmbH, An der Ziegelei 79, 53757, Sankt Augustin, Germany
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Anna Pepanian
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Maximilian Steve Beck
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Rahma Maghraby
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Maryam Shetab Boushehri
- Pharmaceutical Technology and Biopharmacy, University of Bonn, Gerhard-Domagk-Str. 3, 53121, Bonn, Germany
| | - Maximilian Muehlhaupt
- Institute of Pharmacology, Toxicology and Pharmacy, Veterinary Faculty, Ludwig Maximilian University of Munich, Königinstr. 16, 80539, Munich, Germany
| | - Eva Marie Pfeil
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Suvi Katariina Annala
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Hermann Ammer
- Institute of Pharmacology, Toxicology and Pharmacy, Veterinary Faculty, Ludwig Maximilian University of Munich, Königinstr. 16, 80539, Munich, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biosciences Building, 484 W 12 Avenue, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Xia P, Dutta A, Gupta K, Batish M, Parashar V. Structural basis of cyclic oligoadenylate binding to the transcription factor Csa3 outlines cross talk between type III and type I CRISPR systems. J Biol Chem 2022; 298:101591. [PMID: 35038453 PMCID: PMC8844856 DOI: 10.1016/j.jbc.2022.101591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/28/2023] Open
Abstract
RNA interference by type III CRISPR systems results in the synthesis of cyclic oligoadenylate (cOA) second messengers, which are known to bind and regulate various CARF domain-containing nuclease receptors. The CARF domain-containing Csa3 family of transcriptional factors associated with the DNA-targeting type I CRISPR systems regulate expression of various CRISPR and DNA repair genes in many prokaryotes. In this study, we extend the known receptor repertoire of cOA messengers to include transcriptional factors by demonstrating specific binding of cyclic tetra-adenylate (cA4) to Saccharolobus solfataricus Csa3 (Csa3Sso). Our 2.0-Å resolution X-ray crystal structure of cA4-bound full-length Csa3Sso reveals the binding of its CARF domain to an elongated conformation of cA4. Using cA4 binding affinity analyses of Csa3Sso mutants targeting the observed Csa3Sso•cA4 structural interface, we identified a Csa3-specific cA4 binding motif distinct from a more widely conserved cOA-binding CARF motif. Using a rational surface engineering approach, we increased the cA4 binding affinity of Csa3Sso up to ∼145-fold over the wildtype, which has potential applications for future second messenger-driven CRISPR gene expression and editing systems. Our in-solution Csa3Sso structural analysis identified cA4-induced allosteric and asymmetric conformational rearrangement of its C-terminal winged helix-turn-helix effector domains, which could potentially be incompatible to DNA binding. However, specific in vitro binding of the purified Csa3Sso to its putative promoter (PCas4a) was found to be cA4 independent, suggesting a complex mode of Csa3Sso regulation. Overall, our results support cA4-and Csa3-mediated cross talk between type III and type I CRISPR systems.
Collapse
Affiliation(s)
- Pengjun Xia
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Anirudha Dutta
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Kushol Gupta
- The Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mona Batish
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Vijay Parashar
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA.
| |
Collapse
|
18
|
Kotthoff M, Bauer J, Haag F, Krautwurst D. Conserved C-terminal motifs in odorant receptors instruct their cell surface expression and cAMP signaling. FASEB J 2021; 35:e21274. [PMID: 33464692 DOI: 10.1096/fj.202000182rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 11/11/2022]
Abstract
The highly individual plasma membrane expression and cAMP signaling of odorant receptors have hampered their ligand assignment and functional characterization in test cell systems. Chaperones have been identified to support the cell surface expression of only a portion of odorant receptors, with mechanisms remaining unclear. The presence of amino acid motifs that might be responsible for odorant receptors' individual intracellular retention or cell surface expression, and thus, for cAMP signaling, is under debate: so far, no such protein motifs have been suggested. Here, we demonstrate the existence of highly conserved C-terminal amino acid motifs, which discriminate at least between class-I and class-II odorant receptors, with their numbers of motifs increasing during evolution, by comparing C-terminal protein sequences from 4808 receptors across eight species. Truncation experiments and mutation analysis of C-terminal motifs, largely overlapping with helix 8, revealed single amino acids and their combinations to have differential impact on the cell surface expression and on stimulus-dependent cAMP signaling of odorant receptors in NxG 108CC15 cells. Our results demonstrate class-specific and individual C-terminal motif equipment of odorant receptors, which instruct their functional expression in a test cell system, and in situ may regulate their individual cell surface expression and intracellular cAMP signaling.
Collapse
Affiliation(s)
| | - Julia Bauer
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Franziska Haag
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| |
Collapse
|
19
|
Yin R, Zhang Y, Zhou X, Kwoh CK. Time series computational prediction of vaccines for influenza A H3N2 with recurrent neural networks. J Bioinform Comput Biol 2021; 18:2040002. [PMID: 32336247 DOI: 10.1142/s0219720020400028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Influenza viruses are persistently threatening public health, causing annual epidemics and sporadic pandemics due to rapid viral evolution. Vaccines are used to prevent influenza infections but the composition of the influenza vaccines have to be updated regularly to ensure its efficacy. Computational tools and analyses have become increasingly important in guiding the process of vaccine selection. By constructing time-series training samples with splittings and embeddings, we develop a computational method for predicting suitable strains as the recommendation of the influenza vaccines using recurrent neural networks (RNNs). The Encoder-decoder architecture of RNN model enables us to perform sequence-to-sequence prediction. We employ this model to predict the prevalent sequence of the H3N2 viruses sampled from 2006 to 2017. The identity between our predicted sequence and recommended vaccines is greater than 98% and the Pepitope<0.2 indicates their antigenic similarity. The multi-step vaccine prediction further demonstrates the robustness of our method which achieves comparable results in contrast to single step prediction. The results show significant matches of the recommended vaccine strains to the circulating strains. We believe it would facilitate the process of vaccine selection and surveillance of seasonal influenza epidemics.
Collapse
Affiliation(s)
- Rui Yin
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu Zhang
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xinrui Zhou
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
20
|
Yanguas F, Valdivieso MH. Analysis of the SNARE Stx8 recycling reveals that the retromer-sorting motif has undergone evolutionary divergence. PLoS Genet 2021; 17:e1009463. [PMID: 33788833 PMCID: PMC8041195 DOI: 10.1371/journal.pgen.1009463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 04/12/2021] [Accepted: 03/03/2021] [Indexed: 11/25/2022] Open
Abstract
Fsv1/Stx8 is a Schizosaccharomyces pombe protein similar to mammalian syntaxin 8. stx8Δ cells are sensitive to salts, and the prevacuolar endosome (PVE) is altered in stx8Δ cells. These defects depend on the SNARE domain, data that confirm the conserved function of syntaxin8 and Stx8 in vesicle fusion at the PVE. Stx8 localizes at the trans-Golgi network (TGN) and the prevacuolar endosome (PVE), and its recycling depends on the retromer component Vps35, and on the sorting nexins Vps5, Vps17, and Snx3. Several experimental approaches demonstrate that Stx8 is a cargo of the Snx3-retromer. Using extensive truncation and alanine scanning mutagenesis, we identified the Stx8 sorting signal. This signal is an IEMeaM sequence that is located in an unstructured protein region, must be distant from the transmembrane (TM) helix, and where the 133I, 134E, 135M, and 138M residues are all essential for recycling. This sorting motif is different from those described for most retromer cargoes, which include aromatic residues, and resembles the sorting motif of mammalian polycystin-2 (PC2). Comparison of Stx8 and PC2 motifs leads to an IEMxx(I/M) consensus. Computer-assisted screening for this and for a loose Ψ(E/D)ΨXXΨ motif (where Ψ is a hydrophobic residue with large aliphatic chain) shows that syntaxin 8 and PC2 homologues from other organisms bear variation of this motif. The phylogeny of the Stx8 sorting motifs from the Schizosaccharomyces species shows that their divergence is similar to that of the genus, showing that they have undergone evolutionary divergence. A preliminary analysis of the motifs in syntaxin 8 and PC2 sequences from various organisms suggests that they might have also undergone evolutionary divergence, what suggests that the presence of almost-identical motifs in Stx8 and PC2 might be a case of convergent evolution. Eukaryotes possess membranous intracellular compartments, whose communication is essential for cellular homeostasis. Protein complexes that facilitate the generation, transport, and fusion of coated vesicles mediate this communication. Since alterations in these processes lead to human disease, their characterization is of biological and medical interest. Retromer is a protein complex that facilitates retrograde trafficking from the prevacuolar endosome to the Golgi, being essential for the functionality of the endolysosomal system. SNAREs are required for vesicle fusion and, after facilitating membrane merging, are supposed to return to their donor organelle for new rounds of fusion. However, little is known about this recycling. We have found that Stx8, a fungal SNARE similar to human syntaxin 8, is a retromer cargo, and have identified its retromer binding motif. Sequence screening and comparison has determined that this sorting motif is conserved mainly in fungal Stx8 sequences. Notably, this motif is similar to the retromer sorting motif that is present in a family of vertebrate ion transporters. Our initial phylogenetic analyses suggest that, although retromer and some of its cargoes are conserved, the sorting motif in the cargoes might have undergone evolutionary divergence.
Collapse
Affiliation(s)
- Francisco Yanguas
- Departamento de Microbiología y Genética, Universidad de Salamanca. Salamanca. Spain
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC). Salamanca. Spain
| | - M.-Henar Valdivieso
- Departamento de Microbiología y Genética, Universidad de Salamanca. Salamanca. Spain
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC). Salamanca. Spain
- * E-mail:
| |
Collapse
|
21
|
Weeratunga S, Paul B, Collins BM. Recognising the signals for endosomal trafficking. Curr Opin Cell Biol 2020; 65:17-27. [PMID: 32155566 DOI: 10.1016/j.ceb.2020.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/08/2020] [Indexed: 12/11/2022]
Abstract
The endosomal compartment is a major sorting station controlling the balance between endocytic recycling and lysosomal degradation, and its homeostasis is emerging as a central factor in various neurodegenerative diseases such as Alzheimer's and Parkinson's. Membrane trafficking is generally coordinated by the recognition of specific signals in transmembrane protein cargos by different transport machineries. A number of different protein trafficking complexes are essential for sequence-specific recognition and retrieval of endosomal cargos, recycling them to other compartments and acting to counter-balance the default endosomal sorting complex required for transport-mediated degradation pathway. In this review, we provide a summary of the key endosomal transport machineries, and the molecular mechanisms by which different cargo sequences are specifically recognised.
Collapse
Affiliation(s)
- Saroja Weeratunga
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
| | - Blessy Paul
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia; University of Texas Southwestern Medical Center, Department of Cell Biology, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Brett M Collins
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
22
|
Denesyuk AI, Johnson MS, Salo-Ahen OMH, Uversky VN, Denessiouk K. NBCZone: Universal three-dimensional construction of eleven amino acids near the catalytic nucleophile and base in the superfamily of (chymo)trypsin-like serine fold proteases. Int J Biol Macromol 2020; 153:399-411. [PMID: 32151723 PMCID: PMC7124590 DOI: 10.1016/j.ijbiomac.2020.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 10/25/2022]
Abstract
(Chymo)trypsin-like serine fold proteases belong to the serine/cysteine proteases found in eukaryotes, prokaryotes, and viruses. Their catalytic activity is carried out using a triad of amino acids, a nucleophile, a base, and an acid. For this superfamily of proteases, we propose the existence of a universal 3D structure comprising 11 amino acids near the catalytic nucleophile and base - Nucleophile-Base Catalytic Zone (NBCZone). The comparison of NBCZones among 169 eukaryotic, prokaryotic, and viral (chymo)trypsin-like proteases suggested the existence of 15 distinct groups determined by the combination of amino acids located at two "key" structure-functional positions 54T and 55T near the catalytic base His57T. Most eukaryotic and prokaryotic proteases fell into two major groups, [ST]A and TN. Usually, proteases of [ST]A group contain a disulfide bond between cysteines Cys42T and Cys58T of the NBCZone. In contrast, viral proteases were distributed among seven groups, and lack this disulfide bond. Furthermore, only the [ST]A group of eukaryotic proteases contains glycine at position 43T, which is instrumental for activation of these enzymes. In contrast, due to the side chains of residues at position 43T prokaryotic and viral proteases do not have the ability to carry out the structural transition of the eukaryotic zymogen-zyme type.
Collapse
Affiliation(s)
- Alexander I Denesyuk
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia; Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland.
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Outi M H Salo-Ahen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; Pharmaceutical Sciences Laboratory, Pharmacy, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Vladimir N Uversky
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; Pharmaceutical Sciences Laboratory, Pharmacy, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
23
|
Abstract
ADP-ribosylation is an intricate and versatile posttranslational modification involved in the regulation of a vast variety of cellular processes in all kingdoms of life. Its complexity derives from the varied range of different chemical linkages, including to several amino acid side chains as well as nucleic acids termini and bases, it can adopt. In this review, we provide an overview of the different families of (ADP-ribosyl)hydrolases. We discuss their molecular functions, physiological roles, and influence on human health and disease. Together, the accumulated data support the increasingly compelling view that (ADP-ribosyl)hydrolases are a vital element within ADP-ribosyl signaling pathways and they hold the potential for novel therapeutic approaches as well as a deeper understanding of ADP-ribosylation as a whole.
Collapse
Affiliation(s)
| | - Luca Palazzo
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, 80145 Naples, Italy
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
24
|
Yin R, Luusua E, Dabrowski J, Zhang Y, Kwoh CK. Tempel: time-series mutation prediction of influenza A viruses via attention-based recurrent neural networks. Bioinformatics 2020; 36:2697-2704. [DOI: 10.1093/bioinformatics/btaa050] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/01/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract
Motivation
Influenza viruses are persistently threatening public health, causing annual epidemics and sporadic pandemics. The evolution of influenza viruses remains to be the main obstacle in the effectiveness of antiviral treatments due to rapid mutations. The goal of this work is to predict whether mutations are likely to occur in the next flu season using historical glycoprotein hemagglutinin sequence data. One of the major challenges is to model the temporality and dimensionality of sequential influenza strains and to interpret the prediction results.
Results
In this article, we propose an efficient and robust time-series mutation prediction model (Tempel) for the mutation prediction of influenza A viruses. We first construct the sequential training samples with splittings and embeddings. By employing recurrent neural networks with attention mechanisms, Tempel is capable of considering the historical residue information. Attention mechanisms are being increasingly used to improve the performance of mutation prediction by selectively focusing on the parts of the residues. A framework is established based on Tempel that enables us to predict the mutations at any specific residue site. Experimental results on three influenza datasets show that Tempel can significantly enhance the predictive performance compared with widely used approaches and provide novel insights into the dynamics of viral mutation and evolution.
Availability and implementation
The datasets, source code and supplementary documents are available at: https://drive.google.com/drive/folders/15WULR5__6k47iRotRPl3H7ghi3RpeNXH.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Rui Yin
- School of Computer Science and Engineering, Nanyang Technological University, Singapore
| | - Emil Luusua
- Faculty of Science and Engineering, Linköping University, Linköping, Sweden
| | - Jan Dabrowski
- School of Computer Science, Swansea University, Swansea, UK
| | - Yu Zhang
- School of Computer Science and Engineering, Nanyang Technological University, Singapore
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
25
|
Mohammed Y, Palmblad M. Using the Object-Oriented PowerShell for Simple Proteomics Data Analysis. Methods Mol Biol 2020; 2051:389-405. [PMID: 31552639 DOI: 10.1007/978-1-4939-9744-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Scripting languages such as Python and Bash are appreciated for solving simple, everyday tasks in bioinformatics. A more recent, object-oriented command shell and scripting language, PowerShell, has many attractive features: an object-oriented interactive command line, fluent navigation and manipulation of XML files, ability to explore and consume Web services from the command line, consistent syntax and grammar, rich regular expressions, and advanced output formatting. The key difference between classical command shells and scripting languages, such as bash, and object-oriented ones, such as PowerShell, is that in the latter the result of a command is a structured object with inherited properties and methods rather than a simple stream of characters. Conveniently, PowerShell is included in all new releases of Microsoft Windows and is available for Linux and macOS, making any data processing script portable. In this chapter we demonstrate how PowerShell in particular allows easy interaction with mass spectrometry data in XML formats, connection to Web services for tools such as BLAST, and presentation of results as formatted text or graphics. These features make PowerShell much more than "yet another scripting language."
Collapse
Affiliation(s)
- Yassene Mohammed
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada.
| | - Magnus Palmblad
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
26
|
Shah MA, Niaz K, Aslam N, Vargas-de la Cruz C, Kabir A, Khan AH, Khan F, Panichayupakaranant P. Analysis of proteins, peptides, and amino acids. RECENT ADVANCES IN NATURAL PRODUCTS ANALYSIS 2020:723-747. [DOI: 10.1016/b978-0-12-816455-6.00024-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Teyra J, Ernst A, Singer A, Sicheri F, Sidhu SS. Comprehensive analysis of all evolutionary paths between two divergent PDZ domain specificities. Protein Sci 2019; 29:433-442. [PMID: 31654425 DOI: 10.1002/pro.3759] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
To understand the molecular evolution of functional diversity in protein families, we comprehensively investigated the consequences of all possible mutation combinations separating two peptide-binding domains with highly divergent specificities. We analyzed the Erbin PDZ domain (Erbin-PDZ), which exhibits canonical type I specificity, and a synthetic Erbin-PDZ variant (E-14) that differs at six positions and exhibits an atypical specificity that closely resembles that of the natural Pdlim4 PDZ domain (Pdlim4-PDZ). We constructed a panel of 64 PDZ domains covering all possible transitions between Erbin-PDZ and E-14 (i.e., the panel contained variants with all possible combinations of either the Erbin-PDZ or E-14 sequence at the six differing positions). We assessed the specificity profiles of the 64 PDZ domains using a C-terminal phage-displayed peptide library containing all possible genetically encoded heptapeptides. The specificity profiles clustered into six distinct groups, showing that intermediate domains can be nodes for the evolution of divergent functions. Remarkably, three substitutions were sufficient to convert the specificity of Erbin-PDZ to that of Pdlim4-PDZ, whereas Pdlim4-PDZ contains 71 differences relative to Erbin-PDZ. X-ray crystallography revealed the structural basis for specificity transition: a single substitution in the center of the binding site, supported by contributions from auxiliary substitutions, altered the main chain conformation of the peptide ligand to resemble that of ligands bound to Pdlim4-PDZ. Our results show that a very small set of mutations can dramatically alter protein specificity, and these findings support the hypothesis whereby complex protein functions evolve by gene duplication followed by cumulative mutations.
Collapse
Affiliation(s)
- Joan Teyra
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Andreas Ernst
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany
| | - Alex Singer
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev S Sidhu
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Coren LV, Nagashima K, Ott DE. A PLPPV sequence in the p8 region of Gag provides late domain function for mouse mammary tumor virus. Virology 2019; 535:272-278. [PMID: 31357166 PMCID: PMC6952571 DOI: 10.1016/j.virol.2019.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
Abstract
The late (L) domain sequence used by mouse mammary tumor virus (MMTV) remains undefined. Similar to other L domain-containing proteins, MMTV p8 and p14NC proteins are monoubiquitinated, suggesting L domain function. Site-directed mutagenesis of p8, PLPPV, and p14NC, PLPPL, sequences in MMTV Gag revealed a requirement only for the PLPPV sequence in virion release in a position-dependent manner. Electron microscopy of a defective Gag mutant confirmed an L domain budding defect morphology. The equine infectious anemia virus (EIAV) YPDL core L domain sequence and PLPPV provided L domain function in reciprocal MMTV and EIAV Gag exchange mutants, respectively. Alanine scanning of the PLPPV sequence revealed a strict requirement for the valine residue but only minor requirements for any one of the other residues. Thus, PLPPV provides MMTV L domain function, representing a fourth type of retroviral L domain that enables MMTV Gag proteins to co-opt cellular budding pathways for release.
Collapse
Affiliation(s)
- Lori V Coren
- AIDS and Cancer Virus Program, National Cancer Institute at Frederick, Frederick, MD, 21702-1201, USA.
| | - Kunio Nagashima
- Advanced Technology Program, National Cancer Institute at Frederick, Frederick, MD, 21702-1201, USA
| | - David E Ott
- AIDS and Cancer Virus Program, National Cancer Institute at Frederick, Frederick, MD, 21702-1201, USA
| |
Collapse
|
29
|
Lyon KF, Cai X, Young RJ, Mamun AA, Rajasekaran S, Schiller MR. Minimotif Miner 4: a million peptide minimotifs and counting. Nucleic Acids Res 2019; 46:D465-D470. [PMID: 29140456 PMCID: PMC5753208 DOI: 10.1093/nar/gkx1085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/09/2017] [Indexed: 12/27/2022] Open
Abstract
Minimotif Miner (MnM) is a database and web system for analyzing short functional peptide motifs, termed minimotifs. We present an update to MnM growing the database from ∼300 000 to >1 000 000 minimotif consensus sequences and instances. This growth comes largely from updating data from existing databases and annotation of articles with high-throughput approaches analyzing different types of post-translational modifications. Another update is mapping human proteins and their minimotifs to know human variants from the dbSNP, build 150. Now MnM 4 can be used to generate mechanistic hypotheses about how human genetic variation affect minimotifs and outcomes. One example of the utility of the combined minimotif/SNP tool identifies a loss of function missense SNP in a ubiquitylation minimotif encoded in the excision repair cross-complementing 2 (ERCC2) nucleotide excision repair gene. This SNP reaches genome wide significance for many types of cancer and the variant identified with MnM 4 reveals a more detailed mechanistic hypothesis concerning the role of ERCC2 in cancer. Other updates to the web system include a new architecture with migration of the web system and database to Docker containers for better performance and management. Weblinks:minimotifminer.org and mnm.engr.uconn.edu
Collapse
Affiliation(s)
- Kenneth F Lyon
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada, Las Vegas, 89154 4004 NV, USA
| | - Xingyu Cai
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269 2155, USA
| | - Richard J Young
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada, Las Vegas, 89154 4004 NV, USA
| | - Abdullah-Al Mamun
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269 2155, USA
| | - Sanguthevar Rajasekaran
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269 2155, USA
| | - Martin R Schiller
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada, Las Vegas, 89154 4004 NV, USA
| |
Collapse
|
30
|
Liang Z, Yu X, Zhong W. Peptide Sequence Influence on the Differentiation of Valine and Norvaline by Hot Electron Capture Dissociation. Anal Chem 2019; 91:4381-4387. [PMID: 30786210 DOI: 10.1021/acs.analchem.8b04808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Isomeric amino acid residues such as valine (Val) and norvaline (Nva) are common in recombinant proteins. The mis-incorporation of Nva for leucine (Leu) causes heterogeneity and in some cases even toxicity. Previous studies have shown that hot electron capture dissociation (HECD) is able to differentiate Val from Nva by producing diagnostic w ions on custom designed synthetic model peptides. To broaden the utilization of HECD in proteomic studies and to define the critical structural features, a thorough investigation was performed on representative peptides including specifically designed synthetic peptides as well as biological peptides bearing tryptic digest-like features and peptides with post-translational modifications. Experimental evidence confirmed that the formation of a w ion is directly dependent upon the presence of the corresponding z ion. The results suggested that a charge carrier residue at the C-terminus is promoting the formation of diagnostic w ions for Nva. Thus, peptides resulting from trypsin digestion, with arginine (Arg) or lysine (Lys) at the C-terminus, can be analyzed using the HECD method. Post-translational modification (PTM) such as phosphorylation did not prevent the generation of the requisite side chain fragmentation w ions. These results suggest the general applicability of HECD for unambiguous identification of Val and Nva especially in structure characterization of therapeutic proteins.
Collapse
Affiliation(s)
- Zhidan Liang
- Analytical Research & Development, Merck Research Laboratories , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Xiang Yu
- Department of Pharmacokinetics, Pharmacodynamics, & Drug Metabolism (PPDM), Merck Research Laboratories , Merck & Co., Inc. , West Point , Pennsylvania 19486 , United States
| | - Wendy Zhong
- Analytical Research & Development, Merck Research Laboratories , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| |
Collapse
|
31
|
Hacker B, Schultheiß C, Kurzik-Dumke U. Sequential cleavage of the proteins encoded by HNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, results in products acting in distinct cellular compartments. Hum Mol Genet 2018; 27:4231-4248. [PMID: 30192950 DOI: 10.1093/hmg/ddy315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/04/2018] [Indexed: 11/12/2022] Open
Abstract
This study provides first insights into the biosynthesis, structure, biochemistry and complex processing of the proteins encoded by hNOT/ALG3, the human counterpart of the Drosophila Neighbour of TID (NOT) and the yeast asparagine linked glycosylation 3 gene (ALG3), which encodes a mannosyltransferase. Unambiguous evidence that both the fly and human proteins act as mannosyltransferases has not been provided yet. Previously, we showed that hNOT/ALG3 encodes two alternatively spliced main transcripts, hNOT-1/ALG3-1 and hNOT-4/ALG3-4, and their 15 truncated derivatives that lack diverse sets of exons and/or carry point mutations that result in premature termination codons. Here we show that the truncated transcripts are not translated. The two main forms hNOT-1/ALG3-1 and -4, distinguishable by alternative exon 1, encode full-length precursors that undergo a complex posttranslational processing. To specifically detect the two full-length hNOT/ALG3 proteins and their distinct derivatives and to examine their expression profiles and cellular location we generated polyclonal antibodies against diverse parts of the putative full-length proteins. We provide experimental evidence for the N-glycosylation of the two precursors. This modification seems to be a prerequisite for their sequential cleavage resulting in derivatives destined to distinct cellular compartments and links them with the N-glycosylation machinery not as its functional component but as molecules functionally dependent on its action. We present the expression profiles and subcellular location of the two full-length proteins, their N-glycosylated forms and distinct cleavage products. Furthermore, using diverse bioinformatics tools, we characterize the properties and predict the 2D and 3D structure of the two proteins and, for comparative purposes, of their Drosophila counterpart.
Collapse
Affiliation(s)
- Benedikt Hacker
- Institute of Medical Microbiology and Hygiene, Laboratory for Comparative Tumour Biology, University Medical Centre, Johannes Gutenberg University, Obere Zahlbacher, Mainz, Germany
| | - Christoph Schultheiß
- Institute of Medical Microbiology and Hygiene, Laboratory for Comparative Tumour Biology, University Medical Centre, Johannes Gutenberg University, Obere Zahlbacher, Mainz, Germany
| | - Ursula Kurzik-Dumke
- Institute of Medical Microbiology and Hygiene, Laboratory for Comparative Tumour Biology, University Medical Centre, Johannes Gutenberg University, Obere Zahlbacher, Mainz, Germany
| |
Collapse
|
32
|
Krystkowiak I, Manguy J, Davey NE. PSSMSearch: a server for modeling, visualization, proteome-wide discovery and annotation of protein motif specificity determinants. Nucleic Acids Res 2018; 46:W235-W241. [PMID: 29873773 PMCID: PMC6030969 DOI: 10.1093/nar/gky426] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/11/2018] [Accepted: 05/15/2018] [Indexed: 11/29/2022] Open
Abstract
There is a pressing need for in silico tools that can aid in the identification of the complete repertoire of protein binding (SLiMs, MoRFs, miniMotifs) and modification (moiety attachment/removal, isomerization, cleavage) motifs. We have created PSSMSearch, an interactive web-based tool for rapid statistical modeling, visualization, discovery and annotation of protein motif specificity determinants to discover novel motifs in a proteome-wide manner. PSSMSearch analyses proteomes for regions with significant similarity to a motif specificity determinant model built from a set of aligned motif-containing peptides. Multiple scoring methods are available to build a position-specific scoring matrix (PSSM) describing the motif specificity determinant model. This model can then be modified by a user to add prior knowledge of specificity determinants through an interactive PSSM heatmap. PSSMSearch includes a statistical framework to calculate the significance of specificity determinant model matches against a proteome of interest. PSSMSearch also includes the SLiMSearch framework's annotation, motif functional analysis and filtering tools to highlight relevant discriminatory information. Additional tools to annotate statistically significant shared keywords and GO terms, or experimental evidence of interaction with a motif-recognizing protein have been added. Finally, PSSM-based conservation metrics have been created for taxonomic range analyses. The PSSMSearch web server is available at http://slim.ucd.ie/pssmsearch/.
Collapse
Affiliation(s)
- Izabella Krystkowiak
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jean Manguy
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
- Food for Health Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Norman E Davey
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
33
|
Hacker B, Schultheiß C, Döring M, Kurzik-Dumke U. Molecular partners of hNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, suggest its involvement in distinct cellular processes relevant to congenital disorders of glycosylation, cancer, neurodegeneration and a variety of further pathologies. Hum Mol Genet 2018; 27:1858-1878. [DOI: 10.1093/hmg/ddy087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/06/2018] [Indexed: 01/04/2023] Open
Affiliation(s)
- Benedikt Hacker
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Christoph Schultheiß
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Michael Döring
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Ursula Kurzik-Dumke
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
34
|
Goyal RK, Tulpan D, Chomistek N, González-Peña Fundora D, West C, Ellis BE, Frick M, Laroche A, Foroud NA. Analysis of MAPK and MAPKK gene families in wheat and related Triticeae species. BMC Genomics 2018; 19:178. [PMID: 29506469 PMCID: PMC5838963 DOI: 10.1186/s12864-018-4545-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 02/13/2018] [Indexed: 12/16/2022] Open
Abstract
Background The mitogen-activated protein kinase (MAPK) family is involved in signal transduction networks that underpin many different biological processes in plants, ranging from development to biotic and abiotic stress responses. To date this class of enzymes has received little attention in Triticeae species, which include important cereal crops (wheat, barley, rye and triticale) that represent over 20% of the total protein food-source worldwide. Results The work presented here focuses on two subfamilies of Triticeae MAPKs, the MAP kinases (MPKs), and the MAPK kinases (MKKs) whose members phosphorylate the MPKs. In silico analysis of multiple Triticeae sequence databases led to the identification of 152 MAPKs belonging to these two sub-families. Some previously identified MAPKs were renamed to reflect the literature consensus on MAPK nomenclature. Two novel MPKs, MPK24 and MPK25, have been identified, including the first example of a plant MPK carrying the TGY activation loop sequence common to mammalian p38 MPKs. An EF-hand calcium-binding domain was found in members of the Triticeae MPK17 clade, a feature that appears to be specific to Triticeae species. New insights into the novel MEY activation loop identified in MPK11s are offered. When the exon-intron patterns for some MPKs and MKKs of wheat, barley and ancestors of wheat were assembled based on transcript data in GenBank, they showed deviations from the same sequence predicted in Ensembl. The functional relevance of MAPKs as derived from patterns of gene expression, MPK activation and MKK-MPK interaction is discussed. Conclusions A comprehensive resource of accurately annotated and curated Triticeae MPK and MKK sequences has been created for wheat, barley, rye, triticale, and two ancestral wheat species, goat grass and red wild einkorn. The work we present here offers a central information resource that will resolve existing confusion in the literature and sustain expansion of MAPK research in the crucial Triticeae grains. Electronic supplementary material The online version of this article (10.1186/s12864-018-4545-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ravinder K Goyal
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - Dan Tulpan
- Information and Communication Technologies, National Research Council of Canada, 100 des Aboiteaux Street, Moncton, New Brunswick, E1A 7R1, Canada
| | - Nora Chomistek
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - Dianevys González-Peña Fundora
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - Connor West
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - Brian E Ellis
- Michael Smith Laboratories, University of British Columbia, #301 - 2185 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Michele Frick
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - André Laroche
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - Nora A Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada.
| |
Collapse
|
35
|
Chiha S, Soicke A, Barone M, Müller M, Bruns J, Opitz R, Neudörfl JM, Kühne R, Schmalz HG. Design and Synthesis of Building Blocks for PPII-Helix Secondary-Structure Mimetics: A Stereoselective Entry to 4-Substituted 5-Vinylprolines. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Slim Chiha
- Department of Chemistry; University of Cologne; Greinstrasse 4 50939 Cologne Germany
| | - Arne Soicke
- Department of Chemistry; University of Cologne; Greinstrasse 4 50939 Cologne Germany
| | - Matthias Barone
- Campus BerlinBuch; Leibniz-Institut für Molekulare Pharmakologie (FMP); 13125 Berlin Germany
| | - Matthias Müller
- Campus BerlinBuch; Leibniz-Institut für Molekulare Pharmakologie (FMP); 13125 Berlin Germany
| | - Judith Bruns
- Department of Chemistry; University of Cologne; Greinstrasse 4 50939 Cologne Germany
| | - Robert Opitz
- Campus BerlinBuch; Leibniz-Institut für Molekulare Pharmakologie (FMP); 13125 Berlin Germany
| | - Jörg-Martin Neudörfl
- Department of Chemistry; University of Cologne; Greinstrasse 4 50939 Cologne Germany
| | - Ronald Kühne
- Campus BerlinBuch; Leibniz-Institut für Molekulare Pharmakologie (FMP); 13125 Berlin Germany
| | - Hans-Günther Schmalz
- Department of Chemistry; University of Cologne; Greinstrasse 4 50939 Cologne Germany
| |
Collapse
|
36
|
Comprehensive Analysis of the Human SH3 Domain Family Reveals a Wide Variety of Non-canonical Specificities. Structure 2017; 25:1598-1610.e3. [DOI: 10.1016/j.str.2017.07.017] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/20/2017] [Accepted: 07/28/2017] [Indexed: 01/31/2023]
|
37
|
Han S, Min MK, Lee SY, Lim CW, Bhatnagar N, Lee Y, Shin D, Chung KY, Lee SC, Kim BG, Lee S. Modulation of ABA Signaling by Altering VxGΦL Motif of PP2Cs in Oryza sativa. MOLECULAR PLANT 2017; 10:1190-1205. [PMID: 28827170 DOI: 10.1016/j.molp.2017.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
The abscisic acid (ABA) signaling pathway is regulated by clade A type 2C protein phosphatases (PP2CAs) in plants. In the presence of ABA, PP2Cs release stress/ABA-activated protein kinases by binding to ABA-bound receptors (PYL/RCARs) for activation. Although the wedging tryptophan in PP2Cs is critical in the interaction with PYL/RCARs in Arabidopsis and rice, it remains elusive as to how other interface regions are involved in the interaction. Here, we report the identification of a conserved region on PP2Cs, termed the VxGΦL motif, which modulates the interaction with PYL/RCARs through its second and fourth residues. The effects of the second and fourth residues on the interaction of OsPP2C50 with several OsPYL/RCAR proteins were investigated by systematic mutagenesis. One OsPP2C50 mutant, VFGML ("FM") mutant, lowered the affinity to OsPYL/RCAR3 by ∼15-fold in comparison with the wild-type. Comparison of the crystal structures of wild-type OsPP2C50:ABA:OsPYL/RCAR3 with those composed of FM mutant revealed local conformational changes near the VxGΦL motif, further supported by hydrogen-deuterium exchange mass spectrometry. In rice protoplasts, ABA signaling was altered by mutations in the VxGΦL motif. Transgenic Arabidopsis plants overexpressing OsPP2C50 and OsPP2C50FM showed altered ABA sensitivity. Taken together, the VxGΦL motif of PP2Cs appears to modulate the affinity of PP2Cs with PYL/RCARs and thus likely to alter the ABA signaling, leading to the differential sensitivity to ABA in planta.
Collapse
Affiliation(s)
- Seungsu Han
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Myung Ki Min
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 55365, Republic of Korea
| | - Su-Youn Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chae Woo Lim
- Department of Life Science, Chung-Ang University, Seoul 06911, Republic of Korea
| | - Nikita Bhatnagar
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 55365, Republic of Korea
| | - Yeongmok Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Donghyuk Shin
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science, Chung-Ang University, Seoul 06911, Republic of Korea
| | - Beom-Gi Kim
- Gene Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 55365, Republic of Korea.
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
38
|
Eshraghi A, Kim J, Walls AC, Ledvina HE, Miller CN, Ramsey KM, Whitney JC, Radey MC, Peterson SB, Ruhland BR, Tran BQ, Goo YA, Goodlett DR, Dove SL, Celli J, Veesler D, Mougous JD. Secreted Effectors Encoded within and outside of the Francisella Pathogenicity Island Promote Intramacrophage Growth. Cell Host Microbe 2017; 20:573-583. [PMID: 27832588 PMCID: PMC5384264 DOI: 10.1016/j.chom.2016.10.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 09/18/2016] [Accepted: 10/13/2016] [Indexed: 01/10/2023]
Abstract
The intracellular bacterial pathogen Francisella tularensis causes tularemia, a zoonosis that can be fatal. The type VI secretion system (T6SS) encoded by the Francisella pathogenicity island (FPI) is critical for the virulence of this organism. Existing studies suggest that the complete repertoire of T6SS effectors delivered to host cells is encoded by the FPI. Using a proteome-wide approach, we discovered that the FPI-encoded T6SS exports at least three effectors encoded outside of the island. These proteins share features with virulence determinants of other pathogens, and we provide evidence that they can contribute to intramacrophage growth. The remaining proteins that we identified are encoded within the FPI. Two of these FPI-encoded proteins constitute effectors, whereas the others form a unique complex required for core function of the T6SS apparatus. The discovery of secreted effectors mediating interactions between Francisella and its host significantly advances our understanding of the pathogenesis of this organism.
Collapse
Affiliation(s)
- Aria Eshraghi
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jungyun Kim
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C Walls
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Hannah E Ledvina
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Cheryl N Miller
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA
| | - Kathryn M Ramsey
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John C Whitney
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Matthew C Radey
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - S Brook Peterson
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Brittany R Ruhland
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Bao Q Tran
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Young Ah Goo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - David R Goodlett
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jean Celli
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA
| | - David Veesler
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Joseph D Mougous
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, School of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
39
|
The AAA+ ATPase p97, a cellular multitool. Biochem J 2017; 474:2953-2976. [PMID: 28819009 PMCID: PMC5559722 DOI: 10.1042/bcj20160783] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 12/17/2022]
Abstract
The AAA+ (ATPases associated with diverse cellular activities) ATPase p97 is essential to a wide range of cellular functions, including endoplasmic reticulum-associated degradation, membrane fusion, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation and chromatin-associated processes, which are regulated by ubiquitination. p97 acts downstream from ubiquitin signaling events and utilizes the energy from ATP hydrolysis to extract its substrate proteins from cellular structures or multiprotein complexes. A multitude of p97 cofactors have evolved which are essential to p97 function. Ubiquitin-interacting domains and p97-binding domains combine to form bi-functional cofactors, whose complexes with p97 enable the enzyme to interact with a wide range of ubiquitinated substrates. A set of mutations in p97 have been shown to cause the multisystem proteinopathy inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia. In addition, p97 inhibition has been identified as a promising approach to provoke proteotoxic stress in tumors. In this review, we will describe the cellular processes governed by p97, how the cofactors interact with both p97 and its ubiquitinated substrates, p97 enzymology and the current status in developing p97 inhibitors for cancer therapy.
Collapse
|
40
|
Reichen C, Hansen S, Forzani C, Honegger A, Fleishman SJ, Zhou T, Parmeggiani F, Ernst P, Madhurantakam C, Ewald C, Mittl PR, Zerbe O, Baker D, Caflisch A, Plückthun A. Computationally Designed Armadillo Repeat Proteins for Modular Peptide Recognition. J Mol Biol 2016; 428:4467-4489. [DOI: 10.1016/j.jmb.2016.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 10/21/2022]
|
41
|
It All Starts with a Sandwich: Identification of Sialidases with Trans-Glycosylation Activity. PLoS One 2016; 11:e0158434. [PMID: 27367145 PMCID: PMC4930215 DOI: 10.1371/journal.pone.0158434] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/15/2016] [Indexed: 11/23/2022] Open
Abstract
Sialidases (3.2.1.18) may exhibit trans-sialidase activity to catalyze sialylation of lactose if the active site topology is congruent with that of the Trypanosoma cruzi trans-sialidase (EC 2.4.1.-). The present work was undertaken to test the hypothesis that a particular aromatic sandwich structure of two amino acids proximal to the active site of the T. cruzi trans-sialidase infers trans-sialidase activity. On this basis, four enzymes with putative trans-sialidase activity were identified through an iterative alignment from 2909 native sialidases available in GenBank, which were cloned and expressed in Escherichia coli. Of these, one enzyme, SialH, derived from Haemophilus parasuis had an aromatic sandwich structure on the protein surface facing the end of the catalytic site (Phe168; Trp366), and was indeed found to exhibit trans-sialidase activity. SialH catalyzed production of the human milk oligosaccharide 3’-sialyllactose as well as the novel trans-sialylation product 3-sialyllactose using casein glycomacropeptide as sialyl donor and lactose as acceptor. The findings corroborated that Tyr119 and Trp312 in the T. cruzi trans-sialidase are part of an aromatic sandwich structure that confers trans-sialylation activity for lactose sialylation. The in silico identification of trans-glycosidase activity by rational active site topology alignment thus proved to be a quick tool for selecting putative trans-sialidases amongst a large group of glycosyl hydrolases. The approach moreover provided data that help understand structure-function relations of trans-sialidases.
Collapse
|
42
|
Zhang Q, Harding R, Hou F, Dong A, Walker JR, Bteich J, Tong Y. Structural Basis of the Recruitment of Ubiquitin-specific Protease USP15 by Spliceosome Recycling Factor SART3. J Biol Chem 2016; 291:17283-92. [PMID: 27255711 DOI: 10.1074/jbc.m116.740787] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Indexed: 12/21/2022] Open
Abstract
Ubiquitin-specific proteases (USPs) USP15 and USP4 belong to a subset of USPs featuring an N-terminal tandem domain in USP (DUSP) and ubiquitin-like (UBL) domain. Squamous cell carcinoma antigen recognized by T-cell 3 (SART3), a spliceosome recycling factor, binds to the DUSP-UBL domain of USP15 and USP4, recruiting them to the nucleus from the cytosol to control deubiquitination of histone H2B and spliceosomal proteins, respectively. To provide structural insight, we solved crystal structures of SART3 in the apo-form and in complex with the DUSP-UBL domain of USP15 at 2.0 and 3.0 Å, respectively. Structural analysis reveals SART3 contains 12 half-a-tetratricopeptide (HAT) repeats, organized into two subdomains, HAT-N and HAT-C. SART3 dimerizes through the concave surface of HAT-C, whereas the HAT-C convex surface binds USP15 in a novel bipartite mode. Isothermal titration calorimetry measurements and mutagenesis analysis confirmed key residues of USP15 involved in the interaction and indicated USP15 binds 20-fold stronger than USP4.
Collapse
Affiliation(s)
- Qi Zhang
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7
| | - Rachel Harding
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7
| | - Feng Hou
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7
| | - Aiping Dong
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7
| | - John R Walker
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7
| | - Joseph Bteich
- the Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, and
| | - Yufeng Tong
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, the Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
43
|
Sharma S, Toledo O, Hedden M, Lyon KF, Brooks SB, David RP, Limtong J, Newsome JM, Novakovic N, Rajasekaran S, Thapar V, Williams SR, Schiller MR. The Functional Human C-Terminome. PLoS One 2016; 11:e0152731. [PMID: 27050421 PMCID: PMC4822787 DOI: 10.1371/journal.pone.0152731] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/18/2016] [Indexed: 11/24/2022] Open
Abstract
All translated proteins end with a carboxylic acid commonly called the C-terminus. Many short functional sequences (minimotifs) are located on or immediately proximal to the C-terminus. However, information about the function of protein C-termini has not been consolidated into a single source. Here, we built a new "C-terminome" database and web system focused on human proteins. Approximately 3,600 C-termini in the human proteome have a minimotif with an established molecular function. To help evaluate the function of the remaining C-termini in the human proteome, we inferred minimotifs identified by experimentation in rodent cells, predicted minimotifs based upon consensus sequence matches, and predicted novel highly repetitive sequences in C-termini. Predictions can be ranked by enrichment scores or Gene Evolutionary Rate Profiling (GERP) scores, a measurement of evolutionary constraint. By searching for new anchored sequences on the last 10 amino acids of proteins in the human proteome with lengths between 3-10 residues and up to 5 degenerate positions in the consensus sequences, we have identified new consensus sequences that predict instances in the majority of human genes. All of this information is consolidated into a database that can be accessed through a C-terminome web system with search and browse functions for minimotifs and human proteins. A known consensus sequence-based predicted function is assigned to nearly half the proteins in the human proteome. Weblink: http://cterminome.bio-toolkit.com.
Collapse
Affiliation(s)
- Surbhi Sharma
- Nevada Institute of Personalized Medicine, and School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Oniel Toledo
- Nevada Institute of Personalized Medicine, and School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Michael Hedden
- Nevada Institute of Personalized Medicine, and School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Kenneth F. Lyon
- Nevada Institute of Personalized Medicine, and School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Steven B. Brooks
- Nevada Institute of Personalized Medicine, and School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Roxanne P. David
- Nevada Institute of Personalized Medicine, and School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Justin Limtong
- Nevada Institute of Personalized Medicine, and School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Jacklyn M. Newsome
- Nevada Institute of Personalized Medicine, and School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Nemanja Novakovic
- Nevada Institute of Personalized Medicine, and School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Sanguthevar Rajasekaran
- Department of Computer Science and Engineering, University of Connecticut, Storrs, Connecticut 06269–2155, United States of America
| | - Vishal Thapar
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States of America
| | - Sean R. Williams
- Nevada Institute of Personalized Medicine, and School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, and School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| |
Collapse
|
44
|
Abstract
KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease.
Collapse
Affiliation(s)
- Monique N Foster
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - William A Coetzee
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
45
|
Reuter C, Opitz R, Soicke A, Dohmen S, Barone M, Chiha S, Klein MT, Neudörfl JM, Kühne R, Schmalz HG. Design and Stereoselective Synthesis of ProM-2: A Spirocyclic Diproline Mimetic with Polyproline Type II (PPII) Helix Conformation. Chemistry 2015; 21:8464-70. [DOI: 10.1002/chem.201406493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/11/2015] [Indexed: 11/08/2022]
|
46
|
Via A, Uyar B, Brun C, Zanzoni A. How pathogens use linear motifs to perturb host cell networks. Trends Biochem Sci 2014; 40:36-48. [PMID: 25475989 DOI: 10.1016/j.tibs.2014.11.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/03/2014] [Accepted: 11/03/2014] [Indexed: 12/31/2022]
Abstract
Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies.
Collapse
Affiliation(s)
- Allegra Via
- Department of Physics, Sapienza University, 00185 Rome, Italy
| | - Bora Uyar
- Structural and Computational Biology, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Christine Brun
- Inserm, UMR1090 TAGC, Marseille F-13288, France; Aix-Marseille Université, UMR1090 TAGC, Marseille F-13288, France; CNRS, Marseille F-13402, France
| | - Andreas Zanzoni
- Inserm, UMR1090 TAGC, Marseille F-13288, France; Aix-Marseille Université, UMR1090 TAGC, Marseille F-13288, France.
| |
Collapse
|
47
|
Smart HC, Mast FD, Chilije MFJ, Tavassoli M, Dacks JB, Zaremberg V. Phylogenetic analysis of glycerol 3-phosphate acyltransferases in opisthokonts reveals unexpected ancestral complexity and novel modern biosynthetic components. PLoS One 2014; 9:e110684. [PMID: 25340523 PMCID: PMC4207751 DOI: 10.1371/journal.pone.0110684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 09/16/2014] [Indexed: 12/11/2022] Open
Abstract
Glycerolipid synthesis represents a central metabolic process of all forms of life. In the last decade multiple genes coding for enzymes responsible for the first step of the pathway, catalyzed by glycerol 3-phosphate acyltransferase (GPAT), have been described, and characterized primarily in model organisms like Saccharomyces cerevisiae and mice. Notoriously, the fungal enzymes share low sequence identity with their known animal counterparts, and the nature of their homology is unclear. Furthermore, two mitochondrial GPAT isoforms have been described in animal cells, while no such enzymes have been identified in Fungi. In order to determine if the yeast and mammalian GPATs are representative of the set of enzymes present in their respective groups, and to test the hypothesis that metazoan orthologues are indeed absent from the fungal clade, a comparative genomic and phylogenetic analysis was performed including organisms spanning the breadth of the Opisthokonta supergroup. Surprisingly, our study unveiled the presence of ‘fungal’ orthologs in the basal taxa of the holozoa and ‘animal’ orthologues in the basal holomycetes. This includes a novel clade of fungal homologues, with putative peroxisomal targeting signals, of the mitochondrial/peroxisomal acyltransferases in Metazoa, thus potentially representing an undescribed metabolic capacity in the Fungi. The overall distribution of GPAT homologues is suggestive of high relative complexity in the ancestors of the opisthokont clade, followed by loss and sculpting of the complement in the descendent lineages. Divergence from a general versatile metabolic model, present in ancestrally deduced GPAT complements, points to distinctive contributions of each GPAT isoform to lipid metabolism and homeostasis in contemporary organisms like humans and their fungal pathogens.
Collapse
Affiliation(s)
- Heather C. Smart
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Fred D. Mast
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Marjan Tavassoli
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Joel B. Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail: (JBD); (VZ)
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (JBD); (VZ)
| |
Collapse
|
48
|
Engelmann BW, Kim Y, Wang M, Peters B, Rock RS, Nash PD. The development and application of a quantitative peptide microarray based approach to protein interaction domain specificity space. Mol Cell Proteomics 2014; 13:3647-62. [PMID: 25135669 DOI: 10.1074/mcp.o114.038695] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Protein interaction domain (PID) linear peptide motif interactions direct diverse cellular processes in a specific and coordinated fashion. PID specificity, or the interaction selectivity derived from affinity preferences between possible PID-peptide pairs is the basis of this ability. Here, we develop an integrated experimental and computational cellulose peptide conjugate microarray (CPCMA) based approach for the high throughput analysis of PID specificity that provides unprecedented quantitative resolution and reproducibility. As a test system, we quantify the specificity preferences of four Src Homology 2 domains and 124 physiological phosphopeptides to produce a novel quantitative interactome. The quantitative data set covers a broad affinity range, is highly precise, and agrees well with orthogonal biophysical validation, in vivo interactions, and peptide library trained algorithm predictions. In contrast to preceding approaches, the CPCMAs proved capable of confidently assigning interactions into affinity categories, resolving the subtle affinity contributions of residue correlations, and yielded predictive peptide motif affinity matrices. Unique CPCMA enabled modes of systems level analysis reveal a physiological interactome with expected node degree value decreasing as a function of affinity, resulting in minimal high affinity binding overlap between domains; uncover that Src Homology 2 domains bind ligands with a similar average affinity yet strikingly different levels of promiscuity and binding dynamic range; and parse with unprecedented quantitative resolution contextual factors directing specificity. The CPCMA platform promises broad application within the fields of PID specificity, synthetic biology, specificity focused drug design, and network biology.
Collapse
Affiliation(s)
- Brett W Engelmann
- From the ‡The Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637;
| | - Yohan Kim
- ¶The La Jolla Institute for Allergy and Immunology, La Jolla, California 92037
| | - Miaoyan Wang
- ‖The Department of Statistics, The University of Chicago, Chicago, Illinois 60637
| | - Bjoern Peters
- ¶The La Jolla Institute for Allergy and Immunology, La Jolla, California 92037
| | - Ronald S Rock
- From the ‡The Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
| | - Piers D Nash
- **The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
49
|
Koval M, Molina SA, Burt JM. Mix and match: investigating heteromeric and heterotypic gap junction channels in model systems and native tissues. FEBS Lett 2014; 588:1193-204. [PMID: 24561196 DOI: 10.1016/j.febslet.2014.02.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 12/12/2022]
Abstract
This review is based in part on a roundtable discussion session: "Physiological roles for heterotypic/heteromeric channels" at the 2013 International Gap Junction Conference (IGJC 2013) in Charleston, South Carolina. It is well recognized that multiple connexins can specifically co-assemble to form mixed gap junction channels with unique properties as a means to regulate intercellular communication. Compatibility determinants for both heteromeric and heterotypic gap junction channel formation have been identified and associated with specific connexin amino acid motifs. Hetero-oligomerization is also a regulated process; differences in connexin quality control and monomer stability are likely to play integral roles to control interactions between compatible connexins. Gap junctions in oligodendrocyte:astrocyte communication and in the cardiovascular system have emerged as key systems where heterotypic and heteromeric channels have unique physiologic roles. There are several methodologies to study heteromeric and heterotypic channels that are best applied to either heterologous expression systems, native tissues or both. There remains a need to use and develop different experimental approaches in order to understand the prevalence and roles for mixed gap junction channels in human physiology.
Collapse
Affiliation(s)
- Michael Koval
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, United States; Department of Cell Biology, Emory University, Atlanta, GA, United States.
| | - Samuel A Molina
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Janis M Burt
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
50
|
Modular peptide binding: From a comparison of natural binders to designed armadillo repeat proteins. J Struct Biol 2014; 185:147-62. [DOI: 10.1016/j.jsb.2013.07.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 11/23/2022]
|