1
|
High Levels of ROS Impair Lysosomal Acidity and Autophagy Flux in Glucose-Deprived Fibroblasts by Activating ATM and Erk Pathways. Biomolecules 2020; 10:biom10050761. [PMID: 32414146 PMCID: PMC7277562 DOI: 10.3390/biom10050761] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022] Open
Abstract
Under glucose deprivation, cells heavily mobilize oxidative phosphorylation to maintain energy homeostasis. This leads to the generation of high levels of ATP, as well as reactive oxygen species (ROS), from mitochondria. In nutrient starvation, autophagy is activated, likely to facilitate resource recycling, but recent studies suggest that autophagy flux is inhibited in cells undergoing glucose deprivation. In this study, we analyzed the status of autophagic flux in glucose-deprived human fibroblasts. Although lysosomes increased in quantity due in part to an increase of biogenesis, a large population of them suffered low acidity in the glucose-deprived cells. Autophagosomes also accumulated due to poor autolysis in these cells. A treatment of antioxidants not only restored lysosomal acidity but also released the flux blockade. The inhibition of ataxia telangiectasia mutated (ATM) serine/threonine kinase, which is activated by ROS, also attenuated the impairment of lysosomal acidity and autophagic flux, suggesting an effect of ROS that might be mediated through ATM activation. In addition, the activity of extracellular signal-regulated kinase (Erk) increased upon glucose deprivation, but this was also compromised by a treatment of antioxidants. Furthermore, the Erk inhibitor treatment also alleviated the failure in lysosomal acidity and autophagic flux. These together indicate that, upon glucose deprivation, cells undergo a failure of autophagy flux through an impairment of lysosomal acidity and that a high-level ROS-induced activation of Erk and ATM is involved in this impairment.
Collapse
|
2
|
Cloninger CR, Cloninger KM, Zwir I, Keltikangas-Järvinen L. The complex genetics and biology of human temperament: a review of traditional concepts in relation to new molecular findings. Transl Psychiatry 2019; 9:290. [PMID: 31712636 PMCID: PMC6848211 DOI: 10.1038/s41398-019-0621-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/25/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
Recent genome-wide association studies (GWAS) have shown that temperament is strongly influenced by more than 700 genes that modulate associative conditioning by molecular processes for synaptic plasticity and long-term learning and memory. The results were replicated in three independent samples despite variable cultures and environments. The identified genes were enriched in pathways activated by behavioral conditioning in animals, including the two major molecular pathways for response to extracellular stimuli, the Ras-MEK-ERK and the PI3K-AKT-mTOR cascades. These pathways are activated by a wide variety of physiological and psychosocial stimuli that vary in positive and negative valence and in consequences for health and survival. Changes in these pathways are orchestrated to maintain cellular homeostasis despite changing conditions by modulating temperament and its circadian and seasonal rhythms. In this review we first consider traditional concepts of temperament in relation to the new genetic findings by examining the partial overlap of alternative measures of temperament. Then we propose a definition of temperament as the disposition of a person to learn how to behave, react emotionally, and form attachments automatically by associative conditioning. This definition provides necessary and sufficient criteria to distinguish temperament from other aspects of personality that become integrated with it across the life span. We describe the effects of specific stimuli on the molecular processes underlying temperament from functional, developmental, and evolutionary perspectives. Our new knowledge can improve communication among investigators, increase the power and efficacy of clinical trials, and improve the effectiveness of treatment of personality and its disorders.
Collapse
Affiliation(s)
- C Robert Cloninger
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
- School of Arts and Sciences, Department of Psychological and Brain Sciences, and School of Medicine, Department of Genetics, Washington University, St. Louis, MO, USA.
- Anthropedia Foundation, St. Louis, MO, USA.
| | | | - Igor Zwir
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Computer Science, University of Granada, Granada, Spain
| | | |
Collapse
|
3
|
The Role of AMPK in the Regulation of Skeletal Muscle Size, Hypertrophy, and Regeneration. Int J Mol Sci 2018; 19:ijms19103125. [PMID: 30314396 PMCID: PMC6212977 DOI: 10.3390/ijms19103125] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022] Open
Abstract
AMPK (5’-adenosine monophosphate-activated protein kinase) is heavily involved in skeletal muscle metabolic control through its regulation of many downstream targets. Because of their effects on anabolic and catabolic cellular processes, AMPK plays an important role in the control of skeletal muscle development and growth. In this review, the effects of AMPK signaling, and those of its upstream activator, liver kinase B1 (LKB1), on skeletal muscle growth and atrophy are reviewed. The effect of AMPK activity on satellite cell-mediated muscle growth and regeneration after injury is also reviewed. Together, the current data indicate that AMPK does play an important role in regulating muscle mass and regeneration, with AMPKα1 playing a prominent role in stimulating anabolism and in regulating satellite cell dynamics during regeneration, and AMPKα2 playing a potentially more important role in regulating muscle degradation during atrophy.
Collapse
|
4
|
Tanokashira D, Kurata E, Fukuokaya W, Kawabe K, Kashiwada M, Takeuchi H, Nakazato M, Taguchi A. Metformin treatment ameliorates diabetes-associated decline in hippocampal neurogenesis and memory via phosphorylation of insulin receptor substrate 1. FEBS Open Bio 2018; 8:1104-1118. [PMID: 29988567 PMCID: PMC6026705 DOI: 10.1002/2211-5463.12436] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/28/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
Age‐related reduction in adult hippocampal neurogenesis is correlated with cognitive impairment. Diabetes is a chronic systemic disease that negatively affects adult neural stem cells and memory functions in the hippocampus. Despite growing concern regarding the potential role of diabetic drugs in neural abnormalities, their effects on progressive deterioration of neurogenesis and cognitive functions remain unknown. Here, we show that the combination of aging and diabetes in mice causes a marked decrease in hippocampal neurogenesis along with memory impairment and elevated neuroinflammation. Prolonged treatment with metformin, a biguanide antidiabetic medication, promotes cell proliferation and neuronal differentiation and inhibits aging‐ and diabetes‐associated microglial activation, which is related to homeostatic neurogenesis, leading to enhanced hippocampal neurogenesis in middle‐aged diabetic mice. Although chronic therapy with metformin fails to achieve recovery from hyperglycemia, a key feature of diabetes in middle‐aged diabetic mice, it improves hippocampal‐dependent spatial memory functions accompanied by increased phosphorylation of adenosine monophosphate‐activated protein kinase (AMPK), atypical protein kinase C ζ (aPKC ζ), and insulin receptor substrate 1 (IRS1) at selective serine residues in the hippocampus. Our findings suggest that signaling networks acting through long‐term metformin‐stimulated phosphorylation of AMPK, aPKC ζ/λ, and IRS1 serine sites contribute to neuroprotective effects on hippocampal neurogenesis and cognitive function independent of a hypoglycemic effect.
Collapse
Affiliation(s)
- Daisuke Tanokashira
- Department of Integrative Aging Neuroscience National Center for Geriatrics and Gerontology Obu Japan
| | - Eiko Kurata
- Department of Neurology, Respirology, Endocrinology and Metabolism Miyazaki University School of Medicine Japan
| | - Wataru Fukuokaya
- Department of Neurology, Respirology, Endocrinology and Metabolism Miyazaki University School of Medicine Japan
| | - Kenshiro Kawabe
- Department of Neurology, Respirology, Endocrinology and Metabolism Miyazaki University School of Medicine Japan
| | - Mana Kashiwada
- Department of Integrative Aging Neuroscience National Center for Geriatrics and Gerontology Obu Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine Yokohama City University Graduate School of Medicine Japan
| | - Masamitsu Nakazato
- Department of Neurology, Respirology, Endocrinology and Metabolism Miyazaki University School of Medicine Japan
| | - Akiko Taguchi
- Department of Integrative Aging Neuroscience National Center for Geriatrics and Gerontology Obu Japan.,Department of Neurology, Respirology, Endocrinology and Metabolism Miyazaki University School of Medicine Japan
| |
Collapse
|
5
|
Chang CJ, Lin JF, Hsiao CY, Chang HH, Li HJ, Chang HH, Lee GA, Hung CF. Lutein Induces Autophagy via Beclin-1 Upregulation in IEC-6 Rat Intestinal Epithelial Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1273-1291. [DOI: 10.1142/s0192415x17500707] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lutein is a carotenoid with anti-oxidant properties. Autophagy, an evolutionarily conserved catabolic cellular pathway for coping with stress conditions, is responsive to reactive oxygen species (ROS) and degrades damaged organelles. We previously demonstrated that lutein can induce anti-oxidant enzymes to relieve methotrexate-induced ROS stress. We therefore hypothesized that lutein, which activates ROS-scavenging enzymes, can also induce autophagy for cell survival. In this study, we demonstrated that lutein treatment attenuated the reduction in cell viability caused by H2O2. Lutein dose-dependently induced the processing of microtubule-associated protein light chain 3 (LC3)-II, an autophagy marker protein, and accumulation of LC3-positive puncta in rat intestinal IEC-6 cells. Furthermore, (a) direct observation of autophagosome formation through transmission electron microscopy, (b) upregulation of autophagy-related genes including ATG4A, ATG5, ATG7, ATG12, and beclin-1 (BENC1), and (c) increased BECN1/Bcl-2 ratio confirmed the induction of autophagy by lutein. The results revealed that bafilomycin-A1-induced inhibition of autophagy reduced cell viability and increased apoptosis in lutein-treated cells, indicating a protective role of lutein-induced autophagy. Lutein treatment also activated adenosine monophosphate–activated protein kinase (AMPK), c-Jun N-terminal kinase (JNK), and p-38, but had no effects on the induction of extracellular signal-related kinase or inhibition of mTOR; however, the inhibition of activated AMPK, JNK, or p-38 did not attenuate lutein-induced autophagy. Finally, increased BECN1 expression levels were detected in lutein-treated cells, and BECN1 knockdown abolished autophagy induction. These results suggest that lutein-induced autophagy was mediated by the upregulation of BECN1 in IEC-6 cells. We are the first to demonstrate that lutein induces autophagy. Elevated autophagy in lutein-treated IEC-6 cells may have a protective role against various stresses, and this warrants further investigation.
Collapse
Affiliation(s)
- Chi-Jen Chang
- Division of Pediatric Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City, Taiwan
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Ji-Fan Lin
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chien-Yu Hsiao
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Hsun-Hao Chang
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City, Taiwan
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City, Taiwan
- Department of Cardiology, Tainan Municipal Hospital, Tainan, Taiwan
| | - Hsin-Ju Li
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City, Taiwan
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Hsun-Hsien Chang
- Children's Hospital Informatics Program, Harvard-Massachusetts, Institute of Technology/Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA
| | - Gon-Ann Lee
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City, Taiwan
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Tamarkin-Ben-Harush A, Vasseur JJ, Debart F, Ulitsky I, Dikstein R. Cap-proximal nucleotides via differential eIF4E binding and alternative promoter usage mediate translational response to energy stress. eLife 2017; 6. [PMID: 28177284 PMCID: PMC5308895 DOI: 10.7554/elife.21907] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/20/2017] [Indexed: 01/25/2023] Open
Abstract
Transcription start-site (TSS) selection and alternative promoter (AP) usage contribute to gene expression complexity but little is known about their impact on translation. Here we performed TSS mapping of the translatome following energy stress. Assessing the contribution of cap-proximal TSS nucleotides, we found dramatic effect on translation only upon stress. As eIF4E levels were reduced, we determined its binding to capped-RNAs with different initiating nucleotides and found the lowest affinity to 5'cytidine in correlation with the translational stress-response. In addition, the number of differentially translated APs was elevated following stress. These include novel glucose starvation-induced downstream transcripts for the translation regulators eIF4A and Pabp, which are also translationally-induced despite general translational inhibition. The resultant eIF4A protein is N-terminally truncated and acts as eIF4A inhibitor. The induced Pabp isoform has shorter 5'UTR removing an auto-inhibitory element. Our findings uncovered several levels of coordination of transcription and translation responses to energy stress. DOI:http://dx.doi.org/10.7554/eLife.21907.001 The production of new proteins is a complex process that occurs in two steps known as transcription and translation. During transcription, the cell copies a section of DNA to make molecules of messenger ribonucleic acid (or mRNA for short) in the nucleus of the cell. The mRNA then leaves the nucleus and enters another cell compartment called the cytoplasm, where it serves as a template to make proteins during translation. A mRNA molecule contains a sequence of building blocks known as nucleotides. There are four different types of nucleotides in mRNA and the order they appear in the sequence determines how the protein is built. Both transcription and translation consume a lot of energy so they are highly regulated and sensitive to environmental changes. However, since transcription and translation happen in different cell compartments, it is not known if and how they are coordinated under stress. Tamarkin-Ben-Harush et al. studied transcription and translation in mouse cells that were starved of glucose. The experiments show that the identity of the very first nucleotide in the mRNA – which is dictated during transcription – has a dramatic influence on the translation of the mRNA, especially when the cells are starved of glucose. This first nucleotide affects the ability of a protein called eIF4E, which recruits the machinery needed for translation, to bind to the mRNA. The experiments also show that there is a dramatic increase in the number of distinct mRNAs that are transcribed from the same section of DNA but translated in a different way during glucose starvation. The findings of Tamarkin-Ben-Harush et al. show that transcription and translation are highly coordinated when cells are starved of glucose, allowing the cells to cope with the stress. The next step is to further analyze the data to find out more about how transcription and translation are linked. DOI:http://dx.doi.org/10.7554/eLife.21907.002
Collapse
Affiliation(s)
| | - Jean-Jacques Vasseur
- Department of Nucleic Acids, IBMM UMR 5247, CNRS-Université Montpellier-ENSCM, Montpellier, France
| | - Françoise Debart
- Department of Nucleic Acids, IBMM UMR 5247, CNRS-Université Montpellier-ENSCM, Montpellier, France
| | - Igor Ulitsky
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Howell JJ, Hellberg K, Turner M, Talbott G, Kolar MJ, Ross DS, Hoxhaj G, Saghatelian A, Shaw RJ, Manning BD. Metformin Inhibits Hepatic mTORC1 Signaling via Dose-Dependent Mechanisms Involving AMPK and the TSC Complex. Cell Metab 2017; 25:463-471. [PMID: 28089566 PMCID: PMC5299044 DOI: 10.1016/j.cmet.2016.12.009] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/02/2016] [Accepted: 12/10/2016] [Indexed: 02/08/2023]
Abstract
Metformin is the most widely prescribed drug for the treatment of type 2 diabetes. However, knowledge of the full effects of metformin on biochemical pathways and processes in its primary target tissue, the liver, is limited. One established effect of metformin is to decrease cellular energy levels. The AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) are key regulators of metabolism that are respectively activated and inhibited in acute response to cellular energy depletion. Here we show that metformin robustly inhibits mTORC1 in mouse liver tissue and primary hepatocytes. Using mouse genetics, we find that at the lowest concentrations of metformin that inhibit hepatic mTORC1 signaling, this inhibition is dependent on AMPK and the tuberous sclerosis complex (TSC) protein complex (TSC complex). Finally, we show that metformin profoundly inhibits hepatocyte protein synthesis in a manner that is largely dependent on its ability to suppress mTORC1 signaling.
Collapse
Affiliation(s)
- Jessica J Howell
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kristina Hellberg
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Marc Turner
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - George Talbott
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Matthew J Kolar
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Debbie S Ross
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Gerta Hoxhaj
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Reuben J Shaw
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Brendan D Manning
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Walter C, Clemens LE, Müller AJ, Fallier-Becker P, Proikas-Cezanne T, Riess O, Metzger S, Nguyen HP. Activation of AMPK-induced autophagy ameliorates Huntington disease pathology in vitro. Neuropharmacology 2016; 108:24-38. [DOI: 10.1016/j.neuropharm.2016.04.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 01/11/2023]
|
9
|
Regulation of Carbohydrate Metabolism, Lipid Metabolism, and Protein Metabolism by AMPK. EXPERIENTIA SUPPLEMENTUM (2012) 2016; 107:23-43. [PMID: 27812975 DOI: 10.1007/978-3-319-43589-3_2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter summarizes AMPK function in the regulation of substrate and energy metabolism with the main emphasis on carbohydrate and lipid metabolism, protein turnover, mitochondrial biogenesis, and whole-body energy homeostasis. AMPK acts as whole-body energy sensor and integrates different signaling pathway to meet both cellular and body energy requirements while inhibiting energy-consuming processes but also activating energy-producing ones. AMPK mainly promotes glucose and fatty acid catabolism, whereas it prevents protein, glycogen, and fatty acid synthesis.
Collapse
|
10
|
Meijer AJ, Lorin S, Blommaart EF, Codogno P. Regulation of autophagy by amino acids and MTOR-dependent signal transduction. Amino Acids 2015; 47:2037-63. [PMID: 24880909 PMCID: PMC4580722 DOI: 10.1007/s00726-014-1765-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/12/2014] [Indexed: 01/05/2023]
Abstract
Amino acids not only participate in intermediary metabolism but also stimulate insulin-mechanistic target of rapamycin (MTOR)-mediated signal transduction which controls the major metabolic pathways. Among these is the pathway of autophagy which takes care of the degradation of long-lived proteins and of the elimination of damaged or functionally redundant organelles. Proper functioning of this process is essential for cell survival. Dysregulation of autophagy has been implicated in the etiology of several pathologies. The history of the studies on the interrelationship between amino acids, MTOR signaling and autophagy is the subject of this review. The mechanisms responsible for the stimulation of MTOR-mediated signaling, and the inhibition of autophagy, by amino acids have been studied intensively in the past but are still not completely clarified. Recent developments in this field are discussed.
Collapse
Affiliation(s)
- Alfred J Meijer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| | - Séverine Lorin
- UPRES EA4530, Université Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry Cedex, France
| | - Edward F Blommaart
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Patrice Codogno
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, 14 rue Maria Helena Vieira Da Silva CS61431, 75993, Paris Cedex 14, France
| |
Collapse
|
11
|
Haimov O, Sinvani H, Dikstein R. Cap-dependent, scanning-free translation initiation mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1313-8. [PMID: 26381322 DOI: 10.1016/j.bbagrm.2015.09.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 12/11/2022]
Abstract
Eukaryotic translation initiation is an intricate and multi-step process that includes 43S Pre-Initiation Complex (PIC) assembly, attachment of the PIC to the mRNA, scanning, start codon selection and 60S subunit joining. Translation initiation of most mRNAs involves recognition of a 5'end m7G cap and ribosomal scanning in which the 5' UTR is checked for complementarity with the AUG. There is however an increasing number of mRNAs directing translation initiation that deviate from the predominant mechanism. In this review we summarize the canonical translation initiation process and describe non-canonical mechanisms that are cap-dependent but operate without scanning. In particular we focus on several examples of translation initiation driven either by mRNAs with extremely short 5' leaders or by highly complex 5' UTRs that promote ribosome shunting.
Collapse
Affiliation(s)
- Ora Haimov
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hadar Sinvani
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rivka Dikstein
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
12
|
Zeng Z, Jing D, Zhang X, Duan Y, Xue F. Cyclic mechanical stretch promotes energy metabolism in osteoblast-like cells through an mTOR signaling-associated mechanism. Int J Mol Med 2015; 36:947-56. [PMID: 26251974 PMCID: PMC4564076 DOI: 10.3892/ijmm.2015.2304] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/28/2015] [Indexed: 01/08/2023] Open
Abstract
Energy metabolism is essential for maintaining function and substance metabolism in osteoblasts. However, the role of cyclic stretch in regulating osteoblastic energy metabolism and the underlying mechanisms remain poorly understood. In this study, we found that cyclic stretch (10% elongation at 0.1 Hz) significantly enhanced glucose consumption, lactate levels (determined using a glucose/lactate assay kit), intracellular adenosine triphosphate (ATP) levels (quantified using rLuciferase/Luciferin reagent) and the mRNA expression of energy metabolism-related enzymes [mitochondrial ATP synthase, L-lactate dehydrogenase A (LDHA) and enolase 1; measured by RT-qPCR], and increased the phosphorylation levels of Akt, mammalian target of rapamycin (mTOR) and p70s6k (measured by western blot analysis) in human osteoblast‑like MG‑63 cells. Furthermore, the inhibition of Akt or mTOR with an antagonist (wortmannin or rapamycin) suppressed the stretch-induced increase in glucose consumption, lactate levels, intracellular ATP levels and the expression of mitochondrial ATP synthase and LDHA, indicating the significance of the Akt/mTOR/p70s6k pathway in regulating osteoblastic energy metabolism in response to mechanical stretch. Thus, we concluded that cyclic stretch regulates energy metabolism in MG‑63 cells partially through the Akt/mTOR/p70s6k signaling pathway. The present findings provide novel insight into osteoblastic mechanobiology from the perspective of energy metabolism.
Collapse
Affiliation(s)
- Zhaobin Zeng
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Da Jing
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaodong Zhang
- Department of Stomatology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110015, P.R. China
| | - Yinzhong Duan
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Feng Xue
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
13
|
Sinvani H, Haimov O, Svitkin Y, Sonenberg N, Tamarkin-Ben-Harush A, Viollet B, Dikstein R. Translational tolerance of mitochondrial genes to metabolic energy stress involves TISU and eIF1-eIF4GI cooperation in start codon selection. Cell Metab 2015; 21:479-92. [PMID: 25738462 DOI: 10.1016/j.cmet.2015.02.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/22/2014] [Accepted: 02/09/2015] [Indexed: 11/30/2022]
Abstract
Protein synthesis is a major energy-consuming process, which is rapidly repressed upon energy stress by AMPK. How energy deficiency affects translation of mRNAs that cope with the stress response is poorly understood. We found that mitochondrial genes remain translationally active upon energy deprivation. Surprisingly, inhibition of translation is partially retained in AMPKα1/AMPKα2 knockout cells. Mitochondrial mRNAs are enriched with TISU, a translation initiator of short 5' UTR, which confers resistance specifically to energy stress. Purified 48S preinitiation complex is sufficient for initiation via TISU AUG, when preceded by a short 5' UTR. eIF1 stimulates TISU but inhibits non-TISU-directed initiation. Remarkably, eIF4GI shares this activity and also interacts with eIF1. Furthermore, eIF4F is released upon 48S formation on TISU. These findings describe a specialized translation tolerance mechanism enabling continuous translation of TISU genes under energy stress and reveal that a key step in start codon selection of short 5' UTR is eIF4F release.
Collapse
Affiliation(s)
- Hadar Sinvani
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ora Haimov
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yuri Svitkin
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ana Tamarkin-Ben-Harush
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Benoit Viollet
- University Paris Descartes, Institut Cochin, 75014 Paris, France
| | - Rivka Dikstein
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
14
|
Demeulder B, Zarrinpashneh E, Ginion A, Viollet B, Hue L, Rider MH, Vanoverschelde JL, Beauloye C, Horman S, Bertrand L. Differential regulation of eEF2 and p70S6K by AMPKalpha2 in heart. Biochim Biophys Acta Mol Basis Dis 2013; 1832:780-90. [DOI: 10.1016/j.bbadis.2013.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 02/17/2013] [Accepted: 02/25/2013] [Indexed: 01/13/2023]
|
15
|
Hasenour CM, Berglund ED, Wasserman DH. Emerging role of AMP-activated protein kinase in endocrine control of metabolism in the liver. Mol Cell Endocrinol 2013; 366:152-62. [PMID: 22796337 PMCID: PMC3538936 DOI: 10.1016/j.mce.2012.06.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 03/22/2012] [Accepted: 06/21/2012] [Indexed: 12/11/2022]
Abstract
This review summarizes the emerging role of AMP-activated protein kinase (AMPK) in mediating endocrine regulation of metabolic fluxes in the liver. There are a number of hormones which, when acting on the liver, alter AMPK activation. Here we describe those hormones associated with activation and de-activation of AMPK and the potential mechanisms for changes in AMPK activation state. The actions of these hormones, in many cases, are consistent with downstream effects of AMPK signaling thus strengthening the circumstantial case for AMPK-mediated hormone action. In recent years, genetic mouse models have also been used in an attempt to establish the role of AMPK in hormone-stimulated metabolism in the liver. Few experiments have, however, firmly established a causal relationship between hormone action at the liver and AMPK signaling.
Collapse
Affiliation(s)
- Clinton M Hasenour
- Department of Molecular Physiology and Biophysics and Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
16
|
Chaperon-like Activation of Serum-Inducible Tryptophanyl-tRNA Synthetase Phosphorylation through Refolding as a Tool for Analysis of Clinical Samples. Transl Oncol 2011; 4:377-89. [PMID: 22191002 DOI: 10.1593/tlo.11220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 07/11/2011] [Accepted: 08/22/2011] [Indexed: 01/10/2023] Open
Abstract
Tryptophanyl-tRNA synthetase (TrpRS) expression alters in colorectal (CRC), pancreatic (PC), and cervical (CC) cancers. Here, phosphorylation of unfolded TrpRS and its fragments is stimulated by human cancer sera (CS; n = 13) and serum of rabbit tumor induced by Rous sarcoma virus, unaffected by donor sera (NS; 11/15) and abolished by alkaline phosphatase. At 20 years of follow-up, serum-inducible TrpRS phosphorylation found years before healthy donors (3/15) diagnosed with PC, CRC, or leukemia. I have examined a specificity of serum-inducible TrpRS phosphorylation and found, surprisingly, that serine phosphorylation of unfolded TrpRS is stimulated by anti-TrpRS rabbit antisera but is unaffected by rabbit nonimmune sera and antisera to other antigens. Anti-TrpRS immunoglobulin G (IgG) inhibits phosphorylation of full-length TrpRS and stimulates phosphorylation of its 20-kDa fragment. Phosphorylation of this fragment is stimulated also by CS but not NS. 2-Mercaptoethanol and cyclic AMP exerted synergistic inhibitory effect on TrpRS phosphorylation. Anti-TrpRS sera and casein act as chaperones increasing TrpRS phosphorylation through refolding. Histone-specific protein kinase activity in CS (n = 44) and anti-TrpRS sera was lower than that in NS (n = 11), rabbit nonimmune sera and antisera to other antigens. TrpRS inhibitors, tryptamine, and tryptophanol stimulate in vivo accumulation of enzymatically inactive, nonphosphorylated, aggregated and anti-TrpRS IgG refoldable TrpRS. Phosphorylation of postsurgical tissues (n = 18) reveals TrpRS in ovarian cancer (OVC) and CC but not in normal placenta and liver. In OVC, TrpRS phosphorylation increase correlates with elevated tryptophan-dependent ATP-inorganic pyrophosphate exchange. Although not inducing cancer, TrpRS triggers signaling concomitant with cancer.
Collapse
|
17
|
Beauloye C, Bertrand L, Horman S, Hue L. AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure. Cardiovasc Res 2011; 90:224-33. [PMID: 21285292 DOI: 10.1093/cvr/cvr034] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Heart failure is a progressive muscular disorder leading to a deterioration of the heart characterized by a contractile dysfunction and a chronic energy deficit. As a consequence, the failing heart is unable to meet the normal metabolic and energy needs of the body. The transition between compensated left ventricular hypertrophy and the de-compensated heart is multifactorial, although metabolic disturbances are considered to play a significant role. In this respect, the AMP-activated protein kinase (AMPK) could be a potential target in heart failure development. AMPK senses the energy state of the cell and orchestrates a global metabolic response to energy deprivation. We briefly review here the current knowledge about the chronic energy deficit of the failing heart, as well as the role of AMPK in energy homeostasis and in the control of non-metabolic targets in relation to cardiac hypertrophy and heart failure. The relative importance of energetic and non-metabolic effects in the potential cardioprotective action of AMPK is discussed.
Collapse
Affiliation(s)
- Christophe Beauloye
- Institut de Recherche Expérimentale et Clinique, Pôle de Recherche Cardio-Vasculaire, Université catholique de Louvain, Brussels, Belgium
| | | | | | | |
Collapse
|
18
|
Zungu M, Schisler JC, Essop MF, McCudden C, Patterson C, Willis MS. Regulation of AMPK by the ubiquitin proteasome system. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:4-11. [PMID: 21224036 DOI: 10.1016/j.ajpath.2010.11.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/13/2010] [Accepted: 08/13/2010] [Indexed: 11/24/2022]
Abstract
The 5'-AMP-activated protein kinase (AMPK) functions as a metabolic fuel gauge that is activated in response to environmental stressors to restore cellular energy balance. In the heart, AMPK coordinates the activation of glucose and fatty acid metabolic pathways to ensure increased production of myocardial ATP when required, such as during cardiac ischemia/reperfusion and hypertrophy, causing an increase in AMPK activity that can be viewed as both protective and maladaptive. While we understand the basic regulation of AMPK activity by kinases, recent studies have introduced the concept that AMPK is regulated by other post-translational modifications, specifically ubiquitination. These studies reported that the ubiquitin ligase cell death-inducing DFFA-like effector a ubiquitinates the β subunit of AMPK to regulate its steady-state protein levels. Other investigators found that AMPK regulatory components, including the AMPK α subunit and AMPK kinases NUAK1 and MARK4, can be ubiquitinated with atypical ubiquitin chains. The USP9X-deubiquitinating enzyme was identified to remove ubiquitination from both NUAK1 and MARK4. Lastly, AMPK activation increases the expression of the ubiquitin ligases MAFBx/Atrogin-1 and MuRF1. These ubiquitin ligases regulate key cardiac transcription factors to control cardiomyocyte mass and remodeling, thus suggesting another mechanism by which AMPK may function in the heart. The relevance of AMPK ubiquitination in cardiac disease has yet to be tested directly, but it likely represents an important mechanism that occurs in common cardiac diseases that may be targeted for therapy.
Collapse
Affiliation(s)
- Makhosazane Zungu
- Discipline of Human Physiology, University of KwaZulu Natal, Durban, South Africa
| | | | | | | | | | | |
Collapse
|
19
|
Hallows KR, Mount PF, Pastor-Soler NM, Power DA. Role of the energy sensor AMP-activated protein kinase in renal physiology and disease. Am J Physiol Renal Physiol 2010; 298:F1067-77. [PMID: 20181668 PMCID: PMC2867412 DOI: 10.1152/ajprenal.00005.2010] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 02/18/2010] [Indexed: 11/22/2022] Open
Abstract
The ultrasensitive energy sensor AMP-activated protein kinase (AMPK) orchestrates the regulation of energy-generating and energy-consuming pathways. AMPK is highly expressed in the kidney where it is reported to be involved in a variety of physiological and pathological processes including ion transport, podocyte function, and diabetic renal hypertrophy. Sodium transport is the major energy-consuming process in the kidney, and AMPK has been proposed to contribute to the coupling of ion transport with cellular energy metabolism. Specifically, AMPK has been identified as a regulator of several ion transporters of significance in renal physiology, including the cystic fibrosis transmembrane conductance regulator (CFTR), the epithelial sodium channel (ENaC), the Na(+)-K(+)-2Cl(-) cotransporter (NKCC), and the vacuolar H(+)-ATPase (V-ATPase). Identified regulators of AMPK in the kidney include dietary salt, diabetes, adiponectin, and ischemia. Activation of AMPK in response to adiponectin is described in podocytes, where it reduces albuminuria, and in tubular cells, where it reduces glycogen accumulation. Reduced AMPK activity in the diabetic kidney is associated with renal accumulation of triglyceride and glycogen and the pathogenesis of diabetic renal hypertrophy. Acute renal ischemia causes a rapid and powerful activation of AMPK, but the functional significance of this observation remains unclear. Despite the recent advances, there remain significant gaps in the present understanding of both the upstream regulating pathways and the downstream substrates for AMPK in the kidney. A more complete understanding of the AMPK pathway in the kidney offers potential for improved therapies for several renal diseases including diabetic nephropathy, polycystic kidney disease, and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Kenneth R Hallows
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
20
|
Adams GR. Insulin-like growth factor I signaling in skeletal muscle and the potential for cytokine interactions. Med Sci Sports Exerc 2010; 42:50-7. [PMID: 20010130 DOI: 10.1249/mss.0b013e3181b07d12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent research has demonstrated that intracellular signaling components associated with several proinflammatory cytokines have the potential to interact with signaling pathways that regulate anabolic processes in skeletal muscle. This presentation and the ensuing brief review are intended to present a selection of the potential interactions between these two critical processes.
Collapse
Affiliation(s)
- Gregory R Adams
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4560, USA.
| |
Collapse
|
21
|
Chotechuang N, Azzout-Marniche D, Bos C, Chaumontet C, Gausserès N, Steiler T, Gaudichon C, Tomé D. mTOR, AMPK, and GCN2 coordinate the adaptation of hepatic energy metabolic pathways in response to protein intake in the rat. Am J Physiol Endocrinol Metab 2009; 297:E1313-23. [PMID: 19738034 DOI: 10.1152/ajpendo.91000.2008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three transduction pathways are involved in amino acid (AA) sensing in liver: mammalian target of rapamycin (mTOR), AMP-activated protein kinase (AMPK), and general control nondepressible kinase 2 (GCN2). However, no study has investigated the involvement of these signaling pathways in hepatic AA sensing. To address the question of liver AA sensing and signaling in response to a high-protein (HP) dietary supply, we investigated the changes in the phosphorylation state of hepatic mTOR (p-mTOR), AMPKalpha (p-AMPKalpha), and GCN2 (p-GCN2) by Western blotting. In rats fed a HP diet for 14 days, the hepatic p-AMPKalpha and p-GCN2 were lower (P < 0.001), and those of both the p-mTOR and eukaryotic initiation factor 4E-binding protein-1 phosphorylation (p-4E-BP1) were higher (P < 0.01) compared with rats receiving a normal protein (NP) diet. In hepatocytes in primary culture, high AA concentration decreased AMPKalpha phosphorylation whether insulin was present or not (P < 0.01). Either AAs or insulin can stimulate p-mTOR, but this is not sufficient for 4E-BP1 phosphorylation that requires both (P < 0.01). As expected, branched-chain AAs (BCAA) or leucine stimulated the phosphorylation of mTOR, but both insulin and BCAA or leucine are required for 4E-BP1 phosphorylation. GCN2 phosphorylation was reduced by both AAs and insulin(P < 0.01), suggesting for the first time that the translation inhibitor GCN2 senses not only the AA deficiency but also the AA increase in the liver. The present findings demonstrate that AAs and insulin exert a coordinated action on translation and involved mTOR, AMPK, and GCN2 transduction pathways.
Collapse
Affiliation(s)
- Nattida Chotechuang
- AgroParisTech, Centre de Recherche en Nutrition Humaine-Ile de France (CRNH-IdF), UMR914, Nutrition Physiology and Ingestive Behavior, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Lee MY, Jo SD, Lee JH, Han HJ. L-leucine increases [3H]-thymidine incorporation in chicken hepatocytes: Involvement of the PKC, PI3K/Akt, ERK1/2, and mTOR signaling pathways. J Cell Biochem 2008; 105:1410-9. [DOI: 10.1002/jcb.21959] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Bodell PW, Kodesh E, Haddad F, Zaldivar FP, Cooper DM, Adams GR. Skeletal muscle growth in young rats is inhibited by chronic exposure to IL-6 but preserved by concurrent voluntary endurance exercise. J Appl Physiol (1985) 2008; 106:443-53. [PMID: 19057004 DOI: 10.1152/japplphysiol.90831.2008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Childhood diseases are often accompanied by chronic inflammation, which is thought to negatively impact growth. Interleukin-6 (IL-6) is typically cited as an indicator of inflammation and is linked to impaired growth. This study was designed to isolate and identify potential effects of chronic IL-6 exposure on skeletal muscle growth during development. A second aim was to determine if endurance exercise, thought to antagonize chronic inflammation, would interact with any effects of IL-6. The muscles of one leg of rapidly growing rats were exposed to IL-6 or vehicle for 14 days. Subgroups of IL-6-infused rats were provided access to running wheels. Local IL-6 infusion resulted in approximately 13% muscle growth deficit (myofibrillar protein levels). Exercise (>4,000 m/day) prevented this deficit. IL-6 infusion increased mRNA for suppressor of cytokine signaling-3 (SOCS3) and tumor necrosis factor-alpha (TNF-alpha), and this was not prevented by exercise. IL-6 infusion increased the mRNAs for atrogin, insulin-like growth factor-I (IGF-I), and IGF binding protein-4 (IGFBP4), and these effects were mitigated by exercise. Exercise stimulated an increase in total RNA ( approximately 19%) only in the IL-6-infused muscle, suggesting that a compensatory increase in translational capacity was required to maintain muscle growth. This study indicates that IL-6 exposure during periods of rapid growth in young animals can retard growth possibly via interactions with key growth factors. Relatively high volumes of endurance-type exercise do not exacerbate the negative effects of IL-6 and in fact were found to be beneficial in protecting muscle growth.
Collapse
Affiliation(s)
- P W Bodell
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4560, USA
| | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Reiter AK, Bolster DR, Crozier SJ, Kimball SR, Jefferson LS. AMPK represses TOP mRNA translation but not global protein synthesis in liver. Biochem Biophys Res Commun 2008; 374:345-50. [PMID: 18638456 DOI: 10.1016/j.bbrc.2008.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 07/08/2008] [Indexed: 01/28/2023]
Abstract
The AMP-activated protein kinase (AMPK) represses signaling through the mammalian target of rapamycin complex 1 (mTORC1). In muscle, repression of mTORC1 leads to a reduction in global protein synthesis. In contrast, repression of mTORC1 in the liver has no immediate effect on global protein synthesis. In the present study, signaling through mTORC1 and translation of specific mRNAs such as those bearing a 5'-terminal oligopyrimidine (TOP) tract and were examined in rat liver following activation of AMPK after treadmill running. Activation of AMPK repressed translation of the TOP mRNAs encoding rpS6, rpS8, and eEF1alpha. In contrast, neither global protein synthesis nor translation of mRNAs encoding GAPDH or beta-actin was changed. Basal phosphorylation of the mTORC1 target 4E-BP1, but not S6K1 or rpS6, was reduced following activation of AMPK. Thus, in liver, AMPK activation repressed translation of TOP mRNAs through a mechanism distinct from downregulated phosphorylation of S6K1 or rpS6.
Collapse
Affiliation(s)
- Ali K Reiter
- Department of Cellular and Molecular Physiology, The Pennsylvania State College of Medicine, PO Box 850, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
27
|
In vivo effect of an antilipolytic drug (3,5'-dimethylpyrazole) on autophagic proteolysis and autophagy-related gene expression in rat liver. Biochem Biophys Res Commun 2007; 366:786-92. [PMID: 18082617 DOI: 10.1016/j.bbrc.2007.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 12/04/2007] [Indexed: 12/19/2022]
Abstract
Autophagy is an intracellular pathway induced by starvation, inhibited by nutrients, that is responsible for degradation of long-lived proteins and altered cell organelles. This process is involved in cell maintenance could be induced by antilipolytic drugs and may have anti-aging effects [A. Donati, The involvement of macroautophagy in aging and anti-aging interventions, Mol. Aspects Med. 27 (2006) 455-470]. We analyzed the effect of an intraperitoneal injection of an antilipolytic agent (3,5'-dimethylpyrazole, DMP, 12mg/kg b.w.), that mimics nutrient shortage on autophagy and expression of autophagic genes in the liver of male 3-month-old Sprague-Dawley albino rats. Autophagy was evaluated by observing electron micrographs of the liver autophagosomal compartment and by monitoring protein degradation assessed by the release of valine into the bloodstream. LC3 gene expression, whose product is one of the best known markers of autophagy, was also monitored. As expected, DMP decreased the plasma levels of free fatty acids, glucose, and insulin and increased autophagic vacuoles and proteolysis. DMP treatment caused an increase in the expression of the LC3 gene although this occurred later than the induction of authophagic proteolysis caused by DMP. Glucose treatment rescued the effects caused by DMP on glucose and insulin plasma levels and negatively affected the rate of autophagic proteolysis, but did not suppress the positive regulatory effect on LC3 mRNA levels. In conclusion, antilipolytic drugs may induce both autophagic proteolysis and higher expression of an autophagy-related gene and the effect on autophagy gene expression might not be secondary to the stimulation of autophagic proteolysis.
Collapse
|
28
|
Effects of contraction and insulin on protein synthesis, AMP-activated protein kinase and phosphorylation state of translation factors in rat skeletal muscle. Pflugers Arch 2007; 455:1129-40. [DOI: 10.1007/s00424-007-0368-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 10/04/2007] [Indexed: 12/22/2022]
|
29
|
Nakashima K, Yakabe Y. AMPK activation stimulates myofibrillar protein degradation and expression of atrophy-related ubiquitin ligases by increasing FOXO transcription factors in C2C12 myotubes. Biosci Biotechnol Biochem 2007; 71:1650-6. [PMID: 17617726 DOI: 10.1271/bbb.70057] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In skeletal muscle, AMP-activated protein kinase (AMPK) is a metabolic master switch regulating glucose and lipid metabolism. Recently, AMPK has been implicated in the control of protein synthesis in skeletal muscle, but the effect of AMPK activation on myofibrillar protein degradation has yet to be elucidated. The present study was designed to examine the effect of 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR)-induced AMPK signaling on effector mechanisms of myofibrillar protein degradation and the expression of atrophy-related genes (atrogin-1/MAFbx, MuRF1, proteasome C2 subunit, calpains, cathepsin B, and caspase-3) in C2C12 myotubes. AICAR stimulated myofibrillar protein degradation (as measured by N(tau)-methylhistidine release), while also increasing the levels of atrogin-1/MAFbx and MuRF1 mRNA, but the expression of other atrophy-related genes was not enhanced by AICAR treatment in C2C12 myotubes. AICAR also stimulated the level of FOXO transcription factors mRNA and protein in C2C12 myotubes. These results indicate that activation of AMPK stimulates myofibrillar protein degradation through the expression of atrogin-1/MAFbx and MuRF1 by increasing FOXO transcription factors in skeletal muscles.
Collapse
Affiliation(s)
- Kazuki Nakashima
- Molecular Nutrition Research Team, National Institute of Livestock and Grassland Science, Ikenoda, Tsukuba, Japan.
| | | |
Collapse
|
30
|
Abstract
The AMP-activated protein kinase (AMPK) has been referred to as an "energy sensor" because it binds to and is regulated by both AMP and ATP. The binding of AMP to AMPK allows it to be phosphorylated by upstream kinases, resulting in its activation. In contrast, the binding of ATP prevents its activation. AMPK regulates a multitude of metabolic processes that cumulatively function to maintain cellular energy homeostasis through repression of a number of energy-consuming processes with simultaneous enhancement of energy-producing processes. One downstream AMPK target that has been recently identified is the mammalian target of rapamycin (mTOR), a positive effector of cell growth and division. The focus of the present review is to briefly summarize current knowledge concerning the regulation of mTOR signaling by AMPK.
Collapse
Affiliation(s)
- Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
31
|
Rider MH, Hussain N, Horman S, Dilworth SM, Storey KB. Stress-induced activation of the AMP-activated protein kinase in the freeze-tolerant frog Rana sylvatica. Cryobiology 2006; 53:297-309. [PMID: 16973146 DOI: 10.1016/j.cryobiol.2006.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 07/20/2006] [Accepted: 08/04/2006] [Indexed: 01/25/2023]
Abstract
Survival in the frozen state depends on biochemical adaptations that deal with multiple stresses on cells including long-term ischaemia and tissue dehydration. We investigated whether the AMP-activated protein kinase (AMPK) could play a regulatory role in the metabolic re-sculpting that occurs during freezing. AMPK activity and the phosphorylation state of translation factors were measured in liver and skeletal muscle of wood frogs (Rana sylvatica) subjected to anoxia, dehydration, freezing, and thawing after freezing. AMPK activity was increased 2-fold in livers of frozen frogs compared with the controls whereas in skeletal muscle, AMPK activity increased 2.5-, 4.5- and 3-fold in dehydrated, frozen and frozen/thawed animals, respectively. Immunoblotting with phospho-specific antibodies revealed an increase in the phosphorylation state of eukaryotic elongation factor-2 at the inactivating Thr56 site in livers from frozen frogs and in skeletal muscles of anoxic frogs. No change in phosphorylation state of eukaryotic initiation factor-2alpha at the inactivating Ser51 site was seen in the tissues under any of the stress conditions. Surprisingly, ribosomal protein S6 phosphorylation was increased 2-fold in livers from frozen frogs and 10-fold in skeletal muscle from frozen/thawed animals. However, no change in translation capacity was detected in cell-free translation assays with skeletal muscle extracts under any of the experimental conditions. The changes in phosphorylation state of translation factors are discussed in relation to the control of protein synthesis and stress-induced AMPK activation.
Collapse
Affiliation(s)
- Mark H Rider
- Hormone and Metabolic Research Unit, Christian de Duve Institute of Cellular Pathology, University of Louvain Medical School, Avenue Hippocrate 75, B-1200 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
32
|
Noga AA, Soltys CLM, Barr AJ, Kovacic S, Lopaschuk GD, Dyck JRB. Expression of an active LKB1 complex in cardiac myocytes results in decreased protein synthesis associated with phenylephrine-induced hypertrophy. Am J Physiol Heart Circ Physiol 2006; 292:H1460-9. [PMID: 17098823 DOI: 10.1152/ajpheart.01133.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AMP-activated protein kinase (AMPK) is a major metabolic regulator in the cardiac myocyte. Recently, LKB1 was identified as a kinase that regulates AMPK. Using immunoblot analysis, we confirmed high expression of LKB1 in isolated rat cardiac myocytes but show that, under basal conditions, LKB1 is primarily localized to the nucleus, where it is inactive. We examined the role of LKB1 in cardiac myocytes, using adenoviruses that express LKB1, and its binding partners Ste20-related adaptor protein (STRADalpha) and MO25alpha. Infection of neonatal rat cardiac myocytes with all three adenoviruses substantially increased LKB1/STRADalpha/MO25alpha expression, LKB1 activity, and AMPKalpha phosphorylation at its activating phosphorylation site (threonine-172). Since activation of AMPK can inhibit hypertrophic growth and since LKB1 is upstream of AMPK, we hypothesized that expression of an active LKB1 complex would also inhibit protein synthesis associated with hypertrophic growth. Expression of the LKB1/STRADalpha/MO25alpha complex in neonatal rat cardiac myocytes inhibited the increase in protein synthesis observed in cells treated with phenylephrine (measured via [(3)H]phenylalanine incorporation). This was associated with a decreased phosphorylation of p70S6 kinase and its substrate S6 ribosomal protein, key regulators of protein synthesis. In addition, we show that the pathological cardiac hypertrophy in transgenic mice with cardiac-specific expression of activated calcineurin is associated with a significant decrease in LKB1 expression. Together, our data show that increased LKB1 activity in the cardiac myocyte can decrease hypertrophy-induced protein synthesis and suggest that LKB1 activation may be a method for the prevention of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Anna A Noga
- Cardiovascular Research Group, Department of Pediatrics, Faculty of Medicine and Dentistry, Univ of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Meley D, Bauvy C, Houben-Weerts JHPM, Dubbelhuis PF, Helmond MTJ, Codogno P, Meijer AJ. AMP-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem 2006; 281:34870-9. [PMID: 16990266 DOI: 10.1074/jbc.m605488200] [Citation(s) in RCA: 377] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interruption of mTOR-dependent signaling by rapamycin is known to stimulate autophagy, both in mammalian cells and in yeast. Because activation of AMPK also inhibits mTOR-dependent signaling one would expect stimulation of autophagy by AMPK activation. According to the literature, this is true for yeast but, unexpectedly, not for mammalian cells on the basis of the use of AICAR, a pharmacological activator of AMPK. In the present study, carried out with hepatocytes, HT-29 cells, and HeLa cells, we have reexamined the possible role of AMPK in the control of mammalian autophagy. Inhibition of AMPK activity by compound C or by transfection with a dominant negative form of AMPK almost completely inhibited autophagy. These results suggest that the inhibition of autophagy by AICAR is not related to its ability to activate AMPK. We conclude that in mammalian cells, as in yeast, AMPK is required for autophagy.
Collapse
Affiliation(s)
- Daniel Meley
- INSERM U756, Faculté de Pharmacie, Université Paris-Sud 11, 92296 Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Luong N, Davies CR, Wessells RJ, Graham SM, King MT, Veech R, Bodmer R, Oldham SM. Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity. Cell Metab 2006; 4:133-42. [PMID: 16890541 DOI: 10.1016/j.cmet.2006.05.013] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 04/07/2006] [Accepted: 05/19/2006] [Indexed: 11/21/2022]
Abstract
Reducing insulin/IGF signaling allows for organismal survival during periods of inhospitable conditions by regulating the diapause state, whereby the organism stockpiles lipids, reduces fertility, increases stress resistance, and has an increased lifespan. The Target of Rapamycin (TOR) responds to changes in growth factors, amino acids, oxygen tension, and energy status; however, it is unclear how TOR contributes to physiological homeostasis and disease conditions. Here, we show that reducing the function of Drosophila TOR results in decreased lipid stores and glucose levels. Importantly, this reduction of dTOR activity blocks the insulin resistance and metabolic syndrome phenotypes associated with increased activity of the insulin responsive transcription factor, dFOXO. Reduction in dTOR function also protects against age-dependent decline in heart function and increases longevity. Thus, the regulation of dTOR activity may be an ancient "systems biological" means of regulating metabolism and senescence, that has important evolutionary, physiological, and clinical implications.
Collapse
Affiliation(s)
- Nancy Luong
- The Burnham Institute for Medical Research, Cancer Research Center, Neuroscience and Aging Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Insulin- and amino acid-induced signalling by the mammalian target of rapamycin (mTOR) involves hyperphosphorylation of the p70 ribosomal S6 protein kinase (p70S6-kinase) and the eukaryotic initiation factor 4E (eIF4E) binding protein 4E-BP1 and contributes to regulation of protein metabolism. This review considers the impact of cell hydration on mTOR-dependent signalling. Although hypoosmotic hepatocyte swelling in some instances activates p70S6-kinase, the hypoosmolarity-induced proteolysis inhibition in perfused rat liver is insensitive to mTOR inhibition by rapamycin. Likewise, swelling-dependent proteolysis inhibition by insulin and swelling-independent proteolysis inhibition by leucine, a potent activator of p70S6-kinase and 4E-BP1 hyperphosphorylation, in perfused rat liver is insensitive to rapamycin, indicating that at least rapamycin-sensitive mTOR signalling is not involved. Hyperosmotic dehydration in different cell types produces inactivation of signalling components around mTOR, thereby attenuating insulin-induced glucose uptake, glycogen synthesis, and lipogenesis in adipocytes, and MAP-kinase phosphatase MKP-1 expression in hepatoma cells. Direct inactivation of mTOR, stimulation of the AMP-activated protein kinase, and the destabilization of individual proteins may impair mTOR signalling under dehydrating conditions. Further investigation of the crosstalk between the mTOR pathway(s) and hyperosmotic signalling will improve our understanding about the contribution of cell hydration changes in health and disease and will provide further rationale for fluid therapy of insulin-resistant states.
Collapse
Affiliation(s)
- F Schliess
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University, Düsseldorf, and San Francisco Hospital, Department for Internal Medicine, Cologne, Germany.
| | | | | | | |
Collapse
|
36
|
Long YC, Zierath JR. Fine-tuning insulin and nitric oxide signalling by turning up the AMPs: new insights into AMP-activated protein kinase signalling. Diabetologia 2005; 48:2451-3. [PMID: 16283241 DOI: 10.1007/s00125-005-0032-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Indexed: 10/25/2022]
Affiliation(s)
- Y C Long
- Section for Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institute, von Eulers väg 4, II, SE-171 77, Stockholm, Sweden
| | | |
Collapse
|
37
|
Horman S, Hussain N, Dilworth SM, Storey KB, Rider MH. Evaluation of the role of AMP-activated protein kinase and its downstream targets in mammalian hibernation. Comp Biochem Physiol B Biochem Mol Biol 2005; 142:374-82. [PMID: 16202635 DOI: 10.1016/j.cbpb.2005.08.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 08/28/2005] [Accepted: 08/29/2005] [Indexed: 01/29/2023]
Abstract
Mammalian hibernation requires an extensive reorganization of metabolism that typically includes a greater than 95% reduction in metabolic rate, selective inhibition of many ATP-consuming metabolic activities and a change in fuel use to a primary dependence on the oxidation of lipid reserves. We investigated whether the AMP-activated protein kinase (AMPK) could play a regulatory role in this reorganization. AMPK activity and the phosphorylation state of multiple downstream targets were assessed in five organs of thirteen-lined ground squirrels (Spermophilus tridecemlineatus) comparing euthermic animals with squirrels in deep torpor. AMPK activity was increased 3-fold in white adipose tissue from hibernating ground squirrels compared with euthermic controls, but activation was not seen in liver, skeletal muscle, brown adipose tissue or brain. Immunoblotting with phospho-specific antibodies revealed an increase in phosphorylation of eukaryotic elongation factor-2 at the inactivating Thr56 site in white adipose tissue, liver and brain of hibernators, but not in other tissues. Acetyl-CoA carboxylase phosphorylation at the inactivating Ser79 site was markedly increased in brown adipose tissue from hibernators, but no change was seen in white adipose tissue. No change was seen in the level of phosphorylation of the Ser565 AMPK site of hormone-sensitive lipase in adipose tissues of hibernating animals. In conclusion, AMPK does not appear to participate in the metabolic re-organization and/or the metabolic rate depression that occurs during ground squirrel hibernation.
Collapse
Affiliation(s)
- Sandrine Horman
- Hormone and Metabolic Research Unit, Christian de Duve Institute of Cellular Pathology and University of Louvain Medical School, Avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
38
|
Samari H, Møller M, Holden L, Asmyhr T, Seglen P. Stimulation of hepatocytic AMP-activated protein kinase by okadaic acid and other autophagy-suppressive toxins. Biochem J 2005; 386:237-44. [PMID: 15461583 PMCID: PMC1134787 DOI: 10.1042/bj20040609] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Autophagic activity in isolated rat hepatocytes is strongly suppressed by OA (okadaic acid) and other PP (protein phosphatase)-inhibitory toxins as well as by AICAR (5-aminoimidazole-4-carboxamide riboside), a direct activator of AMPK (AMP-activated protein kinase). To investigate whether AMPK is a mediator of the effects of the toxin, a phosphospecific antibody directed against the activation of phosphorylation of the AMPK alpha (catalytic)-subunit at Thr172 was used to assess the activation status of this enzyme. AICAR as well as all the toxins tested (OA, microcystin-LR, calyculin A, cantharidin and tautomycin) induced strong, dose-dependent AMPKalpha phosphorylation, correlating with AMPK activity in situ (in intact hepatocytes) as measured by the AMPK-dependent phosphorylation of acetyl-CoA carboxylase at Ser79. All treatments induced the appearance of multiple, phosphatase-sensitive, low-mobility forms of the AMPK alpha-subunit, consistent with phosphorylation at several sites other than Thr172. The flavonoid naringin, an effective antagonist of OA-induced autophagy suppression, inhibited the AMPK phosphorylation and mobility shifting induced by AICAR, OA or microcystin, but not the changes induced by calyculin A or cantharidin. AMPK may thus be activated both by a naringin-sensitive and a naringin-resistant mechanism, probably involving the PPs PP2A and PP1 respectively. Neither the Thr172-phosphorylating protein kinase LKB1 nor the Thr172-dephosphorylating PP, PP2C, were mobility-shifted after treatment with toxins or AICAR, whereas a slight mobility shifting of the regulatory AMPK beta-subunit was indicated. Immunoblotting with a phosphospecific antibody against pSer108 at the beta-subunit revealed a naringin-sensitive phosphorylation induced by OA, microcystin and AICAR and a naringin-resistant phosphorylation induced by calyculin A and cantharidin, suggesting that beta-subunit phosphorylation could play a role in AMPK activation. Naringin antagonized the autophagy-suppressive effects of AICAR and OA, but not the autophagy suppression caused by cantharidin, consistent with AMPK-mediated inhibition of autophagy by toxins as well as by AICAR.
Collapse
Affiliation(s)
- Hamid R. Samari
- Proteomics and Mammalian Cell Biology Section, Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Michael T. N. Møller
- Proteomics and Mammalian Cell Biology Section, Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Lise Holden
- Proteomics and Mammalian Cell Biology Section, Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Tonje Asmyhr
- Proteomics and Mammalian Cell Biology Section, Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Per O. Seglen
- Proteomics and Mammalian Cell Biology Section, Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
- To whom correspondence should be addressed (email )
| |
Collapse
|
39
|
Lee WJ, Song KH, Koh EH, Won JC, Kim HS, Park HS, Kim MS, Kim SW, Lee KU, Park JY. Alpha-lipoic acid increases insulin sensitivity by activating AMPK in skeletal muscle. Biochem Biophys Res Commun 2005; 332:885-91. [PMID: 15913551 DOI: 10.1016/j.bbrc.2005.05.035] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 05/09/2005] [Indexed: 12/22/2022]
Abstract
Triglyceride accumulation in skeletal muscle contributes to insulin resistance in obesity. We recently showed that alpha-lipoic acid (ALA) reduces body weight and prevents the development of diabetes in diabetes-prone obese rats by reducing triglyceride accumulation in non-adipose tissues. AMP-activated protein kinase (AMPK) is a major regulator of cellular energy metabolism. We examined whether ALA lowers triglyceride accumulation in skeletal muscle by activating AMPK. Alpha2-AMPK activity was decreased in obese rats compared to control rats. Administration of ALA to obese rats increased insulin-stimulated glucose disposal in whole body and in skeletal muscle. ALA also increased fatty acid oxidation and activated AMPK in skeletal muscle. Adenovirus-mediated administration of dominant negative AMPK into skeletal muscle prevented the ALA-induced increases in fatty acid oxidation and insulin-stimulated glucose uptake. These results suggest that ALA-induced improvement of insulin sensitivity is mediated by activation of AMPK and reduced triglyceride accumulation in skeletal muscle.
Collapse
Affiliation(s)
- Woo Je Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chan AYM, Dyck JRB. Activation of AMP-activated protein kinase (AMPK) inhibits protein synthesis: a potential strategy to prevent the development of cardiac hypertrophy. Can J Physiol Pharmacol 2005; 83:24-8. [PMID: 15759047 DOI: 10.1139/y04-107] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A necessary mediator of cardiac myocyte enlargement is protein synthesis, which is controlled, in part, by the highly energy-consuming process of peptide-chain elongation. Recently, AMP-activated protein kinase (AMPK), which is a key regulator of cellular energy homeostasis, has been shown to phosphorylate a number of enzymes involved in the control of protein synthesis. Since AMPK may inhibit protein synthesis via a number of different pathways, it is possible that AMPK is also a key regulator of cardiac hypertrophy. Recent advances linking AMPK and the energy status of the cell to the regulation of protein synthesis and (or) cardiac myocyte hypertrophy will be discussed.
Collapse
Affiliation(s)
- Anita Y M Chan
- Department of Pediatrics, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
41
|
Lum JJ, DeBerardinis RJ, Thompson CB. Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol 2005; 6:439-48. [PMID: 15928708 DOI: 10.1038/nrm1660] [Citation(s) in RCA: 605] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cells require a constant supply of macromolecular precursors and oxidizable substrates to maintain viability. Unicellular eukaryotes lack the ability to regulate nutrient concentrations in their extracellular environment. So when environmental nutrients are depleted, these organisms catabolize existing cytoplasmic components to support ATP production to maintain survival, a process known as autophagy. By contrast, the environment of metazoans normally contains abundant extracellular nutrients, but a cell's ability to take up these nutrients is controlled by growth factor signal transduction. Despite evolving the ability to maintain a constant supply of extracellular nutrients, metazoans have retained a complete set of autophagy genes. The physiological relevance of autophagy in such species is just beginning to be explored.
Collapse
Affiliation(s)
- Julian J Lum
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Philadelphia 19104, USA
| | | | | |
Collapse
|
42
|
Reiter AK, Bolster DR, Crozier SJ, Kimball SR, Jefferson LS. Repression of protein synthesis and mTOR signaling in rat liver mediated by the AMPK activator aminoimidazole carboxamide ribonucleoside. Am J Physiol Endocrinol Metab 2005; 288:E980-8. [PMID: 15613684 DOI: 10.1152/ajpendo.00333.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The studies described herein were designed to investigate the effects of 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR), an activator of the AMP-activated protein kinase (AMPK), on the translational control of protein synthesis and signaling through the mammalian target of rapamycin (mTOR) in rat liver. Effects of AICAR observed in vivo were compared with those obtained in an in situ perfused liver preparation to investigate activation of AMPK in the absence of accompanying changes in hormones and nutrients. AMPK became hyperphosphorylated, as assessed by a gel-shift analysis, in response to AICAR both in vivo and in situ; however, increased relative phosphorylation at the Thr172 site on the kinase was observed only in perfused liver. Phosphorylation of AMPK either in vivo or in situ was associated with a repression of protein synthesis as well as decreased phosphorylation of a number of targets of mTOR signaling including ribosomal protein S6 kinase 1, eukaryotic initiation factor (eIF)4G, and eIF4E-binding protein (4E-BP)1. The phosphorylation changes in eIF4G and 4E-BP1 were accompanied by a reduction in the amount of eIF4E present in the active eIF4E.eIF4G complex and an increase in the amount present in the inactive eIF4E.4E-BP1 complex. Reduced insulin signaling as well as differences in nutrient availability may have contributed to the effects observed in vivo as AICAR caused a fall in the serum insulin concentration. Overall, however, the results from both experimental models support a scenario in which AICAR directly represses protein synthesis and mTOR signaling in the liver through an AMPK-dependent mechanism.
Collapse
Affiliation(s)
- Ali K Reiter
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
43
|
Kimura M, Ogihara M. Effects of branched-chain amino acids on DNA synthesis and proliferation in primary cultures of adult rat hepatocytes. Eur J Pharmacol 2005; 510:167-80. [PMID: 15763240 DOI: 10.1016/j.ejphar.2005.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 01/03/2005] [Accepted: 01/06/2005] [Indexed: 11/23/2022]
Abstract
We investigated the effects of branched-chain amino acids on DNA synthesis and proliferation in primary cultures of adult rat hepatocytes. Of the branched-chain amino acids, only leucine (10(-5)-10(-3) M) induced hepatocyte DNA synthesis and proliferation in a time- and dose-dependent manner. The addition of valine or isoleucine on its own had no significant effects on the hepatocyte DNA synthesis and proliferation. When combined, isoleucine competitively antagonized leucine-stimulated hepatocyte mitogenesis. U73122 (10(-6) M), AG1478 (10(-7) M), wortmannin (10(-7) M), PD98059 (10(-6) M) and rapamycin (10 ng/ml) inhibited the ability of leucine to stimulate the hepatocyte DNA synthesis and proliferation, suggesting that phospholipase C, tyrosine kinase, phosphatidylinositol 3-kinase, mitogen-activated protein (MAP) kinase, and p70 S6 kinase are involved in leucine signaling. The mitogenic effects of leucine are completely abolished by the addition of anti-transforming growth factor-alpha (TGF-alpha) antibody to the culture medium. Furthermore, leucine stimulated TGF-alpha secretion into the culture medium and the leucine effect was inhibited by U73122. Isoleucine alone had no significant effect on TGF-alpha secretion but this agent blocked leucine-induced TGF-alpha secretion. The results suggest that leucine triggers TGF-alpha secretion through a putative leucine receptor. The secreted TGF-alpha then stimulates hepatocyte DNA synthesis and proliferation through activation of TGF-alpha receptor to induce tyrosine kinase/MAP kinase activity and other downstream growth-related signal transducers.
Collapse
Affiliation(s)
- Mitsutoshi Kimura
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Josai University, 1-1, Keyakidai, Sakado City, Saitama 350-0295, Japan
| | | |
Collapse
|
44
|
Atherton PJ, Babraj J, Smith K, Singh J, Rennie MJ, Wackerhage H. Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J 2005; 19:786-8. [PMID: 15716393 DOI: 10.1096/fj.04-2179fje] [Citation(s) in RCA: 342] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endurance training induces a partial fast-to-slow muscle phenotype transformation and mitochondrial biogenesis but no growth. In contrast, resistance training mainly stimulates muscle protein synthesis resulting in hypertrophy. The aim of this study was to identify signaling events that may mediate the specific adaptations to these types of exercise. Isolated rat muscles were electrically stimulated with either high frequency (HFS; 6x10 repetitions of 3 s-bursts at 100 Hz to mimic resistance training) or low frequency (LFS; 3 h at 10 Hz to mimic endurance training). HFS significantly increased myofibrillar and sarcoplasmic protein synthesis 3 h after stimulation 5.3- and 2.7-fold, respectively. LFS had no significant effect on protein synthesis 3 h after stimulation but increased UCP3 mRNA 11.7-fold, whereas HFS had no significant effect on UCP3 mRNA. Only LFS increased AMPK phosphorylation significantly at Thr172 by approximately 2-fold and increased PGC-1alpha protein to 1.3 times of control. LFS had no effect on PKB phosphorylation but reduced TSC2 phosphorylation at Thr1462 and deactivated translational regulators. In contrast, HFS acutely increased phosphorylation of PKB at Ser473 5.3-fold and the phosphorylation of TSC2, mTOR, GSK-3beta at PKB-sensitive sites. HFS also caused a prolonged activation of the translational regulators p70 S6k, 4E-BP1, eIF-2B, and eEF2. These data suggest that a specific signaling response to LFS is a specific activation of the AMPK-PGC-1alpha signaling pathway which may explain some endurance training adaptations. HFS selectively activates the PKB-TSC2-mTOR cascade causing a prolonged activation of translational regulators, which is consistent with increased protein synthesis and muscle growth. We term this behavior the "AMPK-PKB switch." We hypothesize that the AMPK-PKB switch is a mechanism that partially mediates specific adaptations to endurance and resistance training, respectively.
Collapse
Affiliation(s)
- P J Atherton
- School of Life Sciences, University of Dundee, UK
| | | | | | | | | | | |
Collapse
|
45
|
Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 2005; 36:2445-62. [PMID: 15325584 DOI: 10.1016/j.biocel.2004.02.002] [Citation(s) in RCA: 459] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 01/16/2004] [Accepted: 02/05/2004] [Indexed: 01/25/2023]
Abstract
The recent period has witnessed progress in the understanding of the lysosomal autophagic pathway. The discovery of a family of genes conserved from yeast to humans, and involved in the formation of autophagosomes, has unraveled new protein-conjugation systems and has shed light on the importance of autophagy in physiology and pathophysiology. The elucidation of the molecular control of autophagy will also lead to a better understanding of the role of autophagy during cell death. As a great number of extracellular stimuli (starvation, hormonal or therapeutic treatment) as well as intracellular stimuli (accumulation of misfolded proteins, invasion of microorganisms) is able to modulate the autophagic response, it is not surprising that several signaling pathways are involved in the control of autophagy. The mammalian Target of Rapamycin (mTOR) signaling pathway plays a major role in transmitting autophagic stimuli because of its ability to sense nutrient, metabolic and hormonal signals. In addition, autophagy, which is characterized by a flux of membrane from the formation of the autophagosome to the fusion with the lysosome, is regulated by GTPases, similarly to the vesicular transport along the exocytic/endocytic pathway. The aim of the present review is to give an overview of autophagy and to discuss its regulation by activators and effectors of mTOR and GTPases.
Collapse
Affiliation(s)
- Alfred J Meijer
- Department of Biochemistry, Academic Medical Center, University of Amsterdam, Meibergreef 15, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
46
|
Kimball SR, Siegfried BA, Jefferson LS. Glucagon Represses Signaling through the Mammalian Target of Rapamycin in Rat Liver by Activating AMP-activated Protein Kinase. J Biol Chem 2004; 279:54103-9. [PMID: 15494402 DOI: 10.1074/jbc.m410755200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The opposing actions of glucagon and insulin on glucose metabolism within the liver are essential mechanisms for maintaining plasma glucose concentrations within narrow limits. Less well studied are the counterregulatory actions of glucagon on protein metabolism. In the present study, the effect of glucagon on amino acid-induced signaling through the mammalian target of rapamycin (mTOR), an important controller of the mRNA binding step in translation initiation, was examined using the perfused rat liver as an experimental model. The results show that amino acids enhance signaling through mTOR resulting in phosphorylation of eukaryotic initiation factor 4E-binding protein (4E-BP)1, the 70-kDa ribosomal protein (rp)S6 kinase, S6K1, and rpS6. In contrast, glucagon repressed both basal and amino acid-induced signaling through mTOR, as assessed by changes in the phosphorylation of 4E-BP1 and S6K1. The repression was associated with the activation of protein kinase A and enhanced phosphorylation of LKB1 and the AMP-activated protein kinase (AMPK). Surprisingly, the phosphorylation of two S6K1 substrates, rpS6 and eukaryotic initiation factor 4B, was not repressed but instead was increased by glucagon treatment, regardless of the amino acid concentration. The latter finding could be explained by the glucagon-induced phosphorylation of the ERK1 and the 90-kDa rpS6 kinase p90(rsk). Thus, glucagon represses phosphorylation of 4E-BP1 and S6K1 through the activation of a protein kinase A-LKB-AMPK-mTOR signaling pathway, while simultaneously enhancing phosphorylation of other downstream effectors of mTOR through the activation of the extracellular signal-regulated protein kinase 1-p90(rsk) signaling pathway. Amino acids also enhance AMPK phosphorylation, although to a lesser extent than glucagon and amino acids combined.
Collapse
Affiliation(s)
- Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|
47
|
Lindsley JE, Rutter J. Nutrient sensing and metabolic decisions. Comp Biochem Physiol B Biochem Mol Biol 2004; 139:543-59. [PMID: 15581787 DOI: 10.1016/j.cbpc.2004.06.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 06/18/2004] [Accepted: 06/19/2004] [Indexed: 12/20/2022]
Abstract
Cells have several sensory systems that detect energy and metabolic status and adjust flux through metabolic pathways accordingly. Many of these sensors and signaling pathways are conserved from yeast to mammals. In this review, we bring together information about five different nutrient-sensing pathways (AMP kinase, mTOR, PAS kinase, hexosamine biosynthesis and Sir2), highlighting their similarities, differences and roles in disease.
Collapse
Affiliation(s)
- Janet E Lindsley
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-3201, USA.
| | | |
Collapse
|
48
|
Kimball SR, Jefferson LS. Amino acids as regulators of gene expression. Nutr Metab (Lond) 2004; 1:3. [PMID: 15507151 PMCID: PMC524028 DOI: 10.1186/1743-7075-1-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 08/17/2004] [Indexed: 02/04/2023] Open
Abstract
The role of amino acids as substrates for protein synthesis is well documented. However, a function for amino acids in modulating the signal transduction pathways that regulate mRNA translation has only recently been described. Interesting, some of the signaling pathways regulated by amino acids overlap with those classically associated with the cellular response to hormones such as insulin and insulin-like growth factors. The focus of this review is on the signaling pathways regulated by amino acids, with a particular emphasis on the branched-chain amino acid leucine, and the steps in mRNA translation controlled by the signaling pathways.
Collapse
Affiliation(s)
- Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Leonard S Jefferson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
49
|
Tokunaga C, Yoshino KI, Yonezawa K. mTOR integrates amino acid- and energy-sensing pathways. Biochem Biophys Res Commun 2004; 313:443-6. [PMID: 14684182 DOI: 10.1016/j.bbrc.2003.07.019] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The AMP-activated protein kinase (AMPK) exists as a heterotrimetric complex comprising a catalytic alpha subunit and non-catalytic beta and gamma subunits. Under conditions of hypoxia, exercise, ischemia, heat shock, and low glucose, AMPK is activated allosterically by rising cellular AMP and by phosphorylation of the catalytic alpha subunit. The mammalian target of rapamycin (mTOR) controls cellular functions in response to amino acids and growth factors. Recent reports including our study have demonstrated the possible interplay between mTOR and AMPK signaling pathways, supporting a model in which mitochondrial dysfunction caused by the mitochondrial inhibitors or ATP depletion inhibits activation of p70 S6 kinase alpha (p70alpha), a downstream effector of mTOR, by activating AMPK. Leucine may stimulate p70alpha phosphorylation via mTOR pathway, in part, by serving both as a mitochondrial fuel through oxidative carboxylation and an allosteric activation of glutamate dehydrogenase. This hypothesis may support an idea in which leucine modulates mTOR function, in part by regulating mitochondrial function and AMPK. Further understanding of the role of mTOR in coordinating amino acid- and energy-sensing pathways would provide new insights into relationship between nutrients and cellular functions.
Collapse
Affiliation(s)
- Chiharu Tokunaga
- Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | | | | |
Collapse
|
50
|
Meijer AJ, Dubbelhuis PF. Amino acid signalling and the integration of metabolism. Biochem Biophys Res Commun 2004; 313:397-403. [PMID: 14684175 DOI: 10.1016/j.bbrc.2003.07.012] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It has become clear in recent years that amino acids are not only important as substrates for various metabolic pathways but that they can also activate a nutrient-sensitive, mTOR-mediated, signalling pathway in synergy with insulin. Leucine is the most effective amino acid in this regard. The signalling pathway is antagonised by AMP-activated protein kinase. Amino acid signalling stimulates protein synthesis and inhibits (autophagic) proteolysis. In addition, many amino acids cause an increase in cell volume. Cell swelling per se stimulates synthesis of protein, glycogen, and lipid, in part by further stimulating signalling and in part by unrelated mechanisms. Amino acids also stimulate signalling in beta-cells and stimulate beta-cell growth and proliferation. This results in increased production of insulin, which enhances the anabolic (and anti-catabolic) properties of amino acids. Finally, amino acid-dependent signalling controls the production of leptin by adipocytes, and thus contributes to the regulation of appetite.
Collapse
Affiliation(s)
- Alfred J Meijer
- Department of Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | | |
Collapse
|