1
|
Lee HT, Kim YA, Lee S, Jung YE, Kim H, Kim TW, Kwak S, Kim J, Lee CH, Cha SS, Choi J, Cho EJ, Youn HD. Phosphorylation-mediated disassembly of C-terminal binding protein 2 tetramer impedes epigenetic silencing of pluripotency in mouse embryonic stem cells. Nucleic Acids Res 2024; 52:13706-13722. [PMID: 39588763 DOI: 10.1093/nar/gkae1076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 11/23/2024] [Indexed: 11/27/2024] Open
Abstract
Cells need to overcome both intrinsic and extrinsic threats. Although pluripotency is associated with damage responses, how stem cells respond to DNA damage remains controversial. Here, we elucidate that DNA damage activates Chk2, leading to the phosphorylation of serine 164 on C-terminal binding protein 2 (Ctbp2). The phosphorylation of Ctbp2 induces the disruption of Ctbp2 tetramer, weakening interactions with zinc finger proteins, leading to the dissociation of phosphorylated Ctbp2 from chromatin. This transition to a monomeric state results in the separation of histone deacetylase 1 from Ctbp2, consequently slowing the rate of H3K27 deacetylation. In contrast to the nucleosome remodeling and deacetylase complex, phosphorylated Ctbp2 increased binding affinity to polycomb repressive complex (PRC)2, interacting through the N-terminal domain of Suz12. Through this domain, Ctbp2 competes with Jarid2, inhibiting the function of PRC2. Thus, the phosphorylation of Ctbp2 under stress conditions represents a precise mechanism aimed at preserving stemness traits by inhibiting permanent transcriptional shutdown.
Collapse
Affiliation(s)
- Han-Teo Lee
- Stochastic Stemness Research Center, Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Young Ah Kim
- Stochastic Stemness Research Center, Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sangho Lee
- Stochastic Stemness Research Center, Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ye-Eun Jung
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hanbyeol Kim
- Stochastic Stemness Research Center, Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Pharmacology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Tae Wan Kim
- Department of Interdisciplinary Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Sojung Kwak
- Developmental Biology Laboratory, Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jaehyeon Kim
- Stochastic Stemness Research Center, Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chul-Hwan Lee
- Stochastic Stemness Research Center, Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
- Department of Pharmacology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
- R&D Division, TODD PHARM CO. LTD., Seoul 03760, Republic of Korea
| | - Jinmi Choi
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eun-Jung Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hong-Duk Youn
- Stochastic Stemness Research Center, Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| |
Collapse
|
2
|
Guo S, Wang L, Cao K, Li Z, Song M, Huang S, Li Z, Wang C, Chen P, Wang Y, Dai X, Chen X, Fu X, Feng D, He J, Huo Y, Xu Y. Endothelial nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome regulation in atherosclerosis. Cardiovasc Res 2024; 120:883-898. [PMID: 38626254 DOI: 10.1093/cvr/cvae071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/31/2023] [Accepted: 10/07/2023] [Indexed: 04/18/2024] Open
Abstract
AIMS The activation of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome in endothelial cells (ECs) contributes to vascular inflammation in atherosclerosis. Considering the high glycolytic rate of ECs, we delineated whether and how glycolysis determines endothelial NLRP3 inflammasome activation in atherosclerosis. METHODS AND RESULTS Our results demonstrated a significant up-regulation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), a key regulator of glycolysis, in human and mouse atherosclerotic endothelium, which positively correlated with NLRP3 levels. Atherosclerotic stimuli up-regulated endothelial PFKFB3 expression via sterol regulatory element-binding protein 2 (SREBP2) transactivation. EC-selective haplodeficiency of Pfkfb3 in Apoe-/- mice resulted in reduced endothelial NLRP3 inflammasome activation and attenuation of atherogenesis. Mechanistic investigations revealed that PFKFB3-driven glycolysis increased the NADH content and induced oligomerization of C-terminal binding protein 1 (CtBP1), an NADH-sensitive transcriptional co-repressor. The monomer form, but not the oligomer form, of CtBP1 was found to associate with the transcriptional repressor Forkhead box P1 (FOXP1) and acted as a transrepressor of inflammasome components, including NLRP3, caspase-1, and interleukin-1β (IL-1β). Interfering with NADH-induced CtBP1 oligomerization restored its binding to FOXP1 and inhibited the glycolysis-dependent up-regulation of NLRP3, Caspase-1, and IL-1β. Additionally, EC-specific overexpression of NADH-insensitive CtBP1 alleviates atherosclerosis. CONCLUSION Our findings highlight the existence of a glycolysis-dependent NADH/CtBP/FOXP1-transrepression pathway that regulates endothelial NLRP3 inflammasome activation in atherogenesis. This pathway represents a potential target for selective PFKFB3 inhibitors or strategies aimed at disrupting CtBP1 oligomerization to modulate atherosclerosis.
Collapse
Affiliation(s)
- Shuai Guo
- School of Basic Medical Sciences, State Key Lab of Respiratory Disease, Guangzhou Medical University, 195 Dongfeng W Rd, Yue Xiu Qu, Guang Zhou Shi, Guang Dong Sheng, China, 510180
| | - Litao Wang
- School of Basic Medical Sciences, State Key Lab of Respiratory Disease, Guangzhou Medical University, 195 Dongfeng W Rd, Yue Xiu Qu, Guang Zhou Shi, Guang Dong Sheng, China, 510180
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kaixiang Cao
- School of Basic Medical Sciences, State Key Lab of Respiratory Disease, Guangzhou Medical University, 195 Dongfeng W Rd, Yue Xiu Qu, Guang Zhou Shi, Guang Dong Sheng, China, 510180
| | - Ziling Li
- School of Basic Medical Sciences, State Key Lab of Respiratory Disease, Guangzhou Medical University, 195 Dongfeng W Rd, Yue Xiu Qu, Guang Zhou Shi, Guang Dong Sheng, China, 510180
| | - Mingchuan Song
- School of Basic Medical Sciences, State Key Lab of Respiratory Disease, Guangzhou Medical University, 195 Dongfeng W Rd, Yue Xiu Qu, Guang Zhou Shi, Guang Dong Sheng, China, 510180
| | - Shuqi Huang
- School of Basic Medical Sciences, State Key Lab of Respiratory Disease, Guangzhou Medical University, 195 Dongfeng W Rd, Yue Xiu Qu, Guang Zhou Shi, Guang Dong Sheng, China, 510180
| | - Zou Li
- School of Basic Medical Sciences, State Key Lab of Respiratory Disease, Guangzhou Medical University, 195 Dongfeng W Rd, Yue Xiu Qu, Guang Zhou Shi, Guang Dong Sheng, China, 510180
| | - Cailing Wang
- School of Basic Medical Sciences, State Key Lab of Respiratory Disease, Guangzhou Medical University, 195 Dongfeng W Rd, Yue Xiu Qu, Guang Zhou Shi, Guang Dong Sheng, China, 510180
| | - Peiling Chen
- School of Basic Medical Sciences, State Key Lab of Respiratory Disease, Guangzhou Medical University, 195 Dongfeng W Rd, Yue Xiu Qu, Guang Zhou Shi, Guang Dong Sheng, China, 510180
| | - Yong Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoyan Dai
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xianglin Chen
- Department of Neurosurgery, The People's Hospital of Qingyuan, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xiaodong Fu
- School of Basic Medical Sciences, State Key Lab of Respiratory Disease, Guangzhou Medical University, 195 Dongfeng W Rd, Yue Xiu Qu, Guang Zhou Shi, Guang Dong Sheng, China, 510180
| | - Du Feng
- School of Basic Medical Sciences, State Key Lab of Respiratory Disease, Guangzhou Medical University, 195 Dongfeng W Rd, Yue Xiu Qu, Guang Zhou Shi, Guang Dong Sheng, China, 510180
| | - Jun He
- Department of Rehabilitation Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Sanders Building, CB-3919A1459 Laney Walker Blvd, Augusta, GA 30912-2500, USA
| | - Yiming Xu
- School of Basic Medical Sciences, State Key Lab of Respiratory Disease, Guangzhou Medical University, 195 Dongfeng W Rd, Yue Xiu Qu, Guang Zhou Shi, Guang Dong Sheng, China, 510180
| |
Collapse
|
3
|
Parfenyev SE, Shabelnikov SV, Tolkunova EN, Barlev NA, Mittenberg AG. p53 Affects Zeb1 Interactome of Breast Cancer Stem Cells. Int J Mol Sci 2023; 24:9806. [PMID: 37372954 DOI: 10.3390/ijms24129806] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
P53 is a critical tumor suppressor that protects the integrity of genome and prevents cells from malignant transformation, including metastases. One of the driving forces behind the onset of metastases is the epithelial to mesenchymal transition (EMT) program. Zeb1 is one of the key transcription factors that govern EMT (TF-EMT). Therefore, the interaction and mutual influence of p53 and Zeb1 plays a critical role in carcinogenesis. Another important feature of tumors is their heterogeneity mediated by the presence of so-called cancer stem cells (CSCs). To this end, we have developed a novel fluorescent reporter-based approach to enrich the population of CSCs in MCF7 cells with inducible expression of Zeb1. Using these engineered cell lines, we studied the effect of p53 on Zeb1 interactomes isolated from both CSCs and regular cancer cells. By employing co-immunoprecipitations followed by mass spectrometry, we found that the composition of Zeb1 interactome was affected not only by the p53 status but also by the level of Oct4/Sox2 expression, indicating that stemness likely affects the specificity of Zeb1 interactions. This study, together with other proteomic studies of TF-EMT interactomes, provides a framework for future molecular analyses of biological functions of Zeb1 at all stages of oncogenesis.
Collapse
Affiliation(s)
- Sergey E Parfenyev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Sergey V Shabelnikov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Elena N Tolkunova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Nickolai A Barlev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 20000, Kazakhstan
| | - Alexey G Mittenberg
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
4
|
Bi CL, Cheng Q, Yan LY, Wu HY, Wang Q, Wang P, Cheng L, Wang R, Yang L, Li J, Tie F, Xie H, Fang M. A prominent gene activation role for C-terminal binding protein in mediating PcG/trxG proteins through Hox gene regulation. Development 2022; 149:275613. [DOI: 10.1242/dev.200153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/28/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The evolutionarily conserved C-terminal binding protein (CtBP) has been well characterized as a transcriptional co-repressor. Herein, we report a previously unreported function for CtBP, showing that lowering CtBP dosage genetically suppresses Polycomb group (PcG) loss-of-function phenotypes while enhancing that of trithorax group (trxG) in Drosophila, suggesting that the role of CtBP in gene activation is more pronounced in fly development than previously thought. In fly cells, we show that CtBP is required for the derepression of the most direct PcG target genes, which are highly enriched by homeobox transcription factors, including Hox genes. Using ChIP and co-IP assays, we demonstrate that CtBP is directly required for the molecular switch between H3K27me3 and H3K27ac in the derepressed Hox loci. In addition, CtBP physically interacts with many proteins, such as UTX, CBP, Fs(1)h and RNA Pol II, that have activation roles, potentially assisting in their recruitment to promoters and Polycomb response elements that control Hox gene expression. Therefore, we reveal a prominent activation function for CtBP that confers a major role for the epigenetic program of fly segmentation and development.
Collapse
Affiliation(s)
- Cai-Li Bi
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
- Institute of Translational Medicine 2 , , , Yangzhou 225001 , China
- Medical College 2 , , , Yangzhou 225001 , China
- Yangzhou University 2 , , , Yangzhou 225001 , China
| | - Qian Cheng
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Ling-Yue Yan
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Hong-Yan Wu
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Qiang Wang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Ping Wang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Lin Cheng
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Rui Wang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Lin Yang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Jian Li
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Feng Tie
- Case Western Reserve University 3 Department of Genetics and Genome Sciences , , Cleveland, OH 44106, USA
| | - Hao Xie
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Ming Fang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| |
Collapse
|
5
|
Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat Rev Mol Cell Biol 2022; 23:623-640. [PMID: 35562425 PMCID: PMC9099300 DOI: 10.1038/s41580-022-00483-w] [Citation(s) in RCA: 238] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
Heterochromatin is characterized by dimethylated or trimethylated histone H3 Lys9 (H3K9me2 or H3K9me3, respectively) and is found at transposable elements, satellite repeats and genes, where it ensures their transcriptional silencing. The histone methyltransferases (HMTs) that methylate H3K9 — in mammals Suppressor of variegation 3–9 homologue 1 (SUV39H1), SUV39H2, SET domain bifurcated 1 (SETDB1), SETDB2, G9A and G9A-like protein (GLP) — and the ‘readers’ of H3K9me2 or H3K9me3 are highly conserved and show considerable redundancy. Despite their redundancy, genetic ablation or mistargeting of an individual H3K9 methyltransferase can correlate with impaired cell differentiation, loss of tissue identity, premature aging and/or cancer. In this Review, we discuss recent advances in understanding the roles of the known H3K9-specific HMTs in ensuring transcriptional homeostasis during tissue differentiation in mammals. We examine the effects of H3K9-methylation-dependent gene repression in haematopoiesis, muscle differentiation and neurogenesis in mammals, and compare them with mechanistic insights obtained from the study of model organisms, notably Caenorhabditis elegans and Drosophila melanogaster. In all these organisms, H3K9-specific HMTs have both unique and redundant roles that ensure the maintenance of tissue integrity by restricting the binding of transcription factors to lineage-specific promoters and enhancer elements. Histone H3 Lys9 (H3K9)-methylated heterochromatin ensures transcriptional silencing of repetitive elements and genes, and its deregulation leads to impaired cell and tissue identity, premature aging and cancer. Recent studies in mammals clarified the roles H3K9-specific histone methyltransferases in ensuring transcriptional homeostasis during tissue differentiation.
Collapse
|
6
|
Transcriptomics and Metabolomics Integration Reveals Redox-Dependent Metabolic Rewiring in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13205058. [PMID: 34680207 PMCID: PMC8534001 DOI: 10.3390/cancers13205058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
Rewiring glucose metabolism toward aerobic glycolysis provides cancer cells with a rapid generation of pyruvate, ATP, and NADH, while pyruvate oxidation to lactate guarantees refueling of oxidized NAD+ to sustain glycolysis. CtPB2, an NADH-dependent transcriptional co-regulator, has been proposed to work as an NADH sensor, linking metabolism to epigenetic transcriptional reprogramming. By integrating metabolomics and transcriptomics in a triple-negative human breast cancer cell line, we show that genetic and pharmacological down-regulation of CtBP2 strongly reduces cell proliferation by modulating the redox balance, nucleotide synthesis, ROS generation, and scavenging. Our data highlight the critical role of NADH in controlling the oncogene-dependent crosstalk between metabolism and the epigenetically mediated transcriptional program that sustains energetic and anabolic demands in cancer cells.
Collapse
|
7
|
Birkhoff JC, Huylebroeck D, Conidi A. ZEB2, the Mowat-Wilson Syndrome Transcription Factor: Confirmations, Novel Functions, and Continuing Surprises. Genes (Basel) 2021; 12:1037. [PMID: 34356053 PMCID: PMC8304685 DOI: 10.3390/genes12071037] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
After its publication in 1999 as a DNA-binding and SMAD-binding transcription factor (TF) that co-determines cell fate in amphibian embryos, ZEB2 was from 2003 studied by embryologists mainly by documenting the consequences of conditional, cell-type specific Zeb2 knockout (cKO) in mice. In between, it was further identified as causal gene causing Mowat-Wilson Syndrome (MOWS) and novel regulator of epithelial-mesenchymal transition (EMT). ZEB2's functions and action mechanisms in mouse embryos were first addressed in its main sites of expression, with focus on those that helped to explain neurodevelopmental and neural crest defects seen in MOWS patients. By doing so, ZEB2 was identified in the forebrain as the first TF that determined timing of neuro-/gliogenesis, and thereby also the extent of different layers of the cortex, in a cell non-autonomous fashion, i.e., by its cell-intrinsic control within neurons of neuron-to-progenitor paracrine signaling. Transcriptomics-based phenotyping of Zeb2 mutant mouse cells have identified large sets of intact-ZEB2 dependent genes, and the cKO approaches also moved to post-natal brain development and diverse other systems in adult mice, including hematopoiesis and various cell types of the immune system. These new studies start to highlight the important adult roles of ZEB2 in cell-cell communication, including after challenge, e.g., in the infarcted heart and fibrotic liver. Such studies may further evolve towards those documenting the roles of ZEB2 in cell-based repair of injured tissue and organs, downstream of actions of diverse growth factors, which recapitulate developmental signaling principles in the injured sites. Evident questions are about ZEB2's direct target genes, its various partners, and ZEB2 as a candidate modifier gene, e.g., in other (neuro)developmental disorders, but also the accurate transcriptional and epigenetic regulation of its mRNA expression sites and levels. Other questions start to address ZEB2's function as a niche-controlling regulatory TF of also other cell types, in part by its modulation of growth factor responses (e.g., TGFβ/BMP, Wnt, Notch). Furthermore, growing numbers of mapped missense as well as protein non-coding mutations in MOWS patients are becoming available and inspire the design of new animal model and pluripotent stem cell-based systems. This review attempts to summarize in detail, albeit without discussing ZEB2's role in cancer, hematopoiesis, and its emerging roles in the immune system, how intense ZEB2 research has arrived at this exciting intersection.
Collapse
Affiliation(s)
- Judith C. Birkhoff
- Department of Cell Biology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (J.C.B.); (D.H.)
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (J.C.B.); (D.H.)
- Department of Development and Regeneration, Unit Stem Cell and Developmental Biology, Biomedical Sciences Group, KU Leuven, 3000 Leuven, Belgium
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (J.C.B.); (D.H.)
| |
Collapse
|
8
|
Karaca E, Li X, Lewicki J, Neofytou C, Guérout N, Barnabé-Heider F, Hermanson O. The corepressor CtBP2 is required for proper development of the mouse cerebral cortex. Mol Cell Neurosci 2020; 104:103481. [PMID: 32169478 DOI: 10.1016/j.mcn.2020.103481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022] Open
Abstract
The development of the cerebral cortex depends on numerous parameters, including extracellular cues and microenvironmental factors that also affect gene expression. C-Terminal Binding Proteins (CtBPs) 1 and 2 are transcriptional co-repressors which have been shown to be critically involved in embryonic development. CtBPs are oxygen sensing molecules, and we have previously demonstrated an important role for CtBP1 in integrating oxygen levels and BMP-signaling to influence neural progenitor fate choice. In turn, CtBP2 has been associated with neurodevelopment and neurological disease, and we have shown that CtBP2 acetylation and dimerization, required for proper transcriptional activity, are regulated by microenvironmental oxygen levels. Yet, the putative function of CtBP2 in mammalian cortical development and neurogenesis in vivo is still largely unknown. Here we show that CtBP2 was widely expressed by neural stem and progenitor cells (NSPCs) as well as neurons during cortical development in mice. By using in utero electroporation of siRNA to reduce the levels of CtBP2 mRNA and protein in the developing mouse brain, we found that the NSPC proliferation and migration were largely perturbed, while glial differentiation under these conditions remained unchanged. Our study provides evidence that CtBP2 is required for the maintenance and migration of the NSPCs during mouse cortical development.
Collapse
Affiliation(s)
- Esra Karaca
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Cardiothoracic Surgery, Stanford University, California, USA.
| | - Xiaofei Li
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Jakub Lewicki
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Nicolas Guérout
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Normandie Université, UNIROUEN, EA3830 GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | | | - Ola Hermanson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Sun X, Xiao L, Chen J, Chen X, Chen X, Yao S, Li H, Zhao G, Ma J. DNA methylation is involved in the pathogenesis of osteoarthritis by regulating CtBP expression and CtBP-mediated signaling. Int J Biol Sci 2020; 16:994-1009. [PMID: 32140068 PMCID: PMC7053340 DOI: 10.7150/ijbs.39945] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a common type of arthritis. Chronic inflammation is an important contributor to the pathogenesis of OA. The maturation and secretion of proinflammatory cytokines are controlled by inflammasomes, especially NLRP1 (NLR Family Pyrin Domain Containing 1) and NLRP3. In this study, we identified a transactivation mechanism of NLRP3 mediated by CtBPs (C-terminal-binding proteins). We found that both the mRNA and protein levels of CtBPs were significantly increased in OA biopsies. Analyzing the profiles of differentially expressed genes in CtBP-knockdown and overexpression cells, we found that the expression of NLRP3 was dependent on CtBP levels. By the knockdown or overexpression of transcription factors that potentially bind to the promoter of NLRP3, we found that only AP1 could specifically regulate the expression of NLRP3. Using immunoprecipitation (IP) and Co-IP assays, we found that AP1 formed a transcriptional complex with a histone acetyltransferase p300 and CtBPs. The knockdown of any member of this transcriptional complex resulted in a decrease in the expression of NLRP3. To explore the underlying mechanism of CtBP overexpression, we analyzed their promoters and found that they were abundant in CpG islands. Treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine (AZA) or knockdown of DNMTs (DNA methyltransferases) resulted in the overexpression of CtBPs, while overexpression of DNMTs caused the reverse effects on CtBP expression. Collectively, our results suggest that the decreased DNA methylation levels in the promoters of CtBPs upregulate their expression. Increased CtBPs associated with p300 and AP1 to form a transcriptional complex and activate the expression of NLRP3 and its downstream signaling, eventually aggravating the inflammatory response and leading to the pathogenesis of OA.
Collapse
Affiliation(s)
- Xiangxiang Sun
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Lin Xiao
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Juan Chen
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Xun Chen
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Xinlin Chen
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Shuxin Yao
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Hui Li
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Guanghui Zhao
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Jianbing Ma
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| |
Collapse
|
10
|
Dickherber ML, Garnett-Benson C. NAD-linked mechanisms of gene de-repression and a novel role for CtBP in persistent adenovirus infection of lymphocytes. Virol J 2019; 16:161. [PMID: 31864392 PMCID: PMC6925507 DOI: 10.1186/s12985-019-1265-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/03/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Adenovirus (AdV) infection is ubiquitous in the human population and causes acute infection in the respiratory and gastrointestinal tracts. In addition to lytic infections in epithelial cells, AdV can persist in a latent form in mucosal lymphocytes, and nearly 80% of children contain viral DNA in the lymphocytes of their tonsils and adenoids. Reactivation of latent AdV is thought to be the source of deadly viremia in pediatric transplant patients. Adenovirus latency and reactivation in lymphocytes is not well studied, though immune cell activation has been reported to promote productive infection from latency. Lymphocyte activation induces global changes in cellular gene expression along with robust changes in metabolic state. The ratio of free cytosolic NAD+/NADH can impact gene expression via modulation of transcriptional repressor complexes. The NAD-dependent transcriptional co-repressor C-terminal Binding Protein (CtBP) was discovered 25 years ago due to its high affinity binding to AdV E1A proteins, however, the role of this interaction in the viral life cycle remains unclear. METHODS The dynamics of persistently- and lytically-infected cells are evaluated. RT-qPCR is used to evaluate AdV gene expression following lymphocyte activation, treatment with nicotinamide, or disruption of CtBP-E1A binding. RESULTS PMA and ionomycin stimulation shifts the NAD+/NADH ratio in lymphocytic cell lines and upregulates viral gene expression. Direct modulation of NAD+/NADH by nicotinamide treatment also upregulates early and late viral transcripts in persistently-infected cells. We found differential expression of the NAD-dependent CtBP protein homologs between lymphocytes and epithelial cells, and inhibition of CtBP complexes upregulates AdV E1A expression in T lymphocyte cell lines but not in lytically-infected epithelial cells. CONCLUSIONS Our data provide novel insight into factors that can regulate AdV infections in activated human lymphocytes and reveal that modulation of cellular NAD+/NADH can de-repress adenovirus gene expression in persistently-infected lymphocytes. In contrast, disrupting the NAD-dependent CtBP repressor complex interaction with PxDLS-containing binding partners paradoxically alters AdV gene expression. Our findings also indicate that CtBP activities on viral gene expression may be distinct from those occurring upon metabolic alterations in cellular NAD+/NADH ratios or those occurring after lymphocyte activation.
Collapse
Affiliation(s)
- Megan L Dickherber
- Charlie Garnett-Benson, Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA
| | - Charlie Garnett-Benson
- Charlie Garnett-Benson, Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA.
| |
Collapse
|
11
|
Byun JS, Park S, Yi DI, Shin JH, Hernandez SG, Hewitt SM, Nicklaus MC, Peach ML, Guasch L, Tang B, Wakefield LM, Yan T, Caban A, Jones A, Kabbout M, Vohra N, Nápoles AM, Singhal S, Yancey R, De Siervi A, Gardner K. Epigenetic re-wiring of breast cancer by pharmacological targeting of C-terminal binding protein. Cell Death Dis 2019; 10:689. [PMID: 31534138 PMCID: PMC6751206 DOI: 10.1038/s41419-019-1892-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/17/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023]
Abstract
The C-terminal binding protein (CtBP) is an NADH-dependent dimeric family of nuclear proteins that scaffold interactions between transcriptional regulators and chromatin-modifying complexes. Its association with poor survival in several cancers implicates CtBP as a promising target for pharmacological intervention. We employed computer-assisted drug design to search for CtBP inhibitors, using quantitative structure-activity relationship (QSAR) modeling and docking. Functional screening of these drugs identified 4 compounds with low toxicity and high water solubility. Micro molar concentrations of these CtBP inhibitors produces significant de-repression of epigenetically silenced pro-epithelial genes, preferentially in the triple-negative breast cancer cell line MDA-MB-231. This epigenetic reprogramming occurs through eviction of CtBP from gene promoters; disrupted recruitment of chromatin-modifying protein complexes containing LSD1, and HDAC1; and re-wiring of activating histone marks at targeted genes. In functional assays, CtBP inhibition disrupts CtBP dimerization, decreases cell migration, abolishes cellular invasion, and improves DNA repair. Combinatorial use of CtBP inhibitors with the LSD1 inhibitor pargyline has synergistic influence. Finally, integrated correlation of gene expression in breast cancer patients with nuclear levels of CtBP1 and LSD1, reveals new potential therapeutic vulnerabilities. These findings implicate a broad role for this class of compounds in strategies for epigenetically targeted therapeutic intervention.
Collapse
Affiliation(s)
- Jung S Byun
- National Institute on Minority Health and Health Disparities, Bethesda, MD, 20892, USA
| | - Samson Park
- Genetics Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Dae Ik Yi
- Genetics Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Jee-Hye Shin
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | | | - Stephen M Hewitt
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Marc C Nicklaus
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 20892, USA
| | - Megan L Peach
- Basic Science Program, Chemical Biology Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Laura Guasch
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 20892, USA
| | - Binwu Tang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Lalage M Wakefield
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Tingfen Yan
- National Human Genome Institute, Bethesda, MD, 20892, USA
| | - Ambar Caban
- National Institute on Minority Health and Health Disparities, Bethesda, MD, 20892, USA
| | - Alana Jones
- National Institute on Minority Health and Health Disparities, Bethesda, MD, 20892, USA
| | - Mohamed Kabbout
- National Institute on Minority Health and Health Disparities, Bethesda, MD, 20892, USA
| | - Nasreen Vohra
- Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Anna María Nápoles
- National Institute on Minority Health and Health Disparities, Bethesda, MD, 20892, USA
| | - Sandeep Singhal
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Ryan Yancey
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Adriana De Siervi
- Laboratorio de Oncologıa Molecular y Nuevos Blancos Terapeuticos, Instituto de Biologıa y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Kevin Gardner
- National Institute on Minority Health and Health Disparities, Bethesda, MD, 20892, USA. .,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
12
|
Zhang X, Du K, Lou Z, Ding K, Zhang F, Zhu J, Chang Z. The CtBP1-HDAC1/2-IRF1 transcriptional complex represses the expression of the long noncoding RNA GAS5 in human osteosarcoma cells. Int J Biol Sci 2019; 15:1460-1471. [PMID: 31337976 PMCID: PMC6643137 DOI: 10.7150/ijbs.33529] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/05/2019] [Indexed: 02/06/2023] Open
Abstract
Growth Arrest Specific 5 (GAS5), a long noncoding RNA (lncRNA), functions as a tumor suppressor in multiple cancers. However, its function, downstream targets and upstream regulatory mechanism are still obscure in osteosarcoma cells. Here, we discovered that GAS5 was downregulated in cancerous osteosarcoma tissues and cells. Using a microarray analysis, we identified that GAS5 can regulate the expression of TP53, Bax, Bim, DDB2, TGFB and ROS1 in osteosarcoma cells. Specifically, GAS5 overexpression in the U2OS osteosarcoma cell line induced TP53, Bax and Bim levels but inhibited DDB2, TGFB and ROS1 expression, resulting in the inhibition of cell proliferation, invasion, colony formation and in vivo tumor formation. By analyzing the GAS5 promoter region (-2000), we identified several potential transcription factor-binding sites including NF-ĸB, IK-1, AP-1, SP1 and IRF1. By individually knocking down these transcription factors, we found that only knockdown of IRF1 affected GAS5 expression. Using immunoprecipitation (IP), mass spectrometry assays, and co-IP assays, we identified that IRF1 formed a transcriptional complex with Histone Deacetylase 1 and 2 (HDAC1/2) and C-terminal binding protein 1 (CtBP1). Functional analyses indicated that the CtBP1-HDAC1/2-IRF1 complex specifically bound to the GAS5 promoter and regulated its expression and downstream events. Knockdown of CtBP1 or overexpression of IRF1 in osteosarcoma cells can significantly reverse their oncogenic phenotypes. Altogether, our results indicated that the CtBP1-HDAC1/2-IRF1 transcriptional complex inhibited GAS5-mediated signaling in osteosarcoma cells, and it might be a potential therapeutic target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Xinliang Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University. NO.76 Nanguo Rd, Xi'an City, 710054, Shanxi, China
| | - Kaili Du
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Zhenkai Lou
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Keyuan Ding
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University. NO.76 Nanguo Rd, Xi'an City, 710054, Shanxi, China
| | - Fan Zhang
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jinwen Zhu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University. NO.76 Nanguo Rd, Xi'an City, 710054, Shanxi, China
| | - Zhen Chang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University. NO.76 Nanguo Rd, Xi'an City, 710054, Shanxi, China
| |
Collapse
|
13
|
Blevins MA, Huang M, Zhao R. The Role of CtBP1 in Oncogenic Processes and Its Potential as a Therapeutic Target. Mol Cancer Ther 2018; 16:981-990. [PMID: 28576945 DOI: 10.1158/1535-7163.mct-16-0592] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/11/2016] [Accepted: 02/22/2017] [Indexed: 12/24/2022]
Abstract
Transcriptional corepressor proteins have emerged as an important facet of cancer etiology. These corepressor proteins are often altered by loss- or gain-of-function mutations, leading to transcriptional imbalance. Thus, research directed at expanding our current understanding of transcriptional corepressors could impact the future development of new cancer diagnostics, prognostics, and therapies. In this review, our current understanding of the CtBP corepressors, and their role in both development and disease, is discussed in detail. Importantly, the role of CtBP1 overexpression in adult tissues in promoting the progression of multiple cancer types through their ability to modulate the transcription of developmental genes ectopically is explored. CtBP1 overexpression is known to be protumorigenic and affects the regulation of gene networks associated with "cancer hallmarks" and malignant behavior, including increased cell survival, proliferation, migration, invasion, and the epithelial-mesenchymal transition. As a transcriptional regulator of broad developmental processes capable of promoting malignant growth in adult tissues, therapeutically targeting the CtBP1 corepressor has the potential to be an effective method for the treatment of diverse tumor types. Although efforts to develop CtBP1 inhibitors are still in the early stages, the current progress and the future perspectives of therapeutically targeting this transcriptional corepressor are also discussed. Mol Cancer Ther; 16(6); 981-90. ©2017 AACR.
Collapse
Affiliation(s)
- Melanie A Blevins
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado
| | - Mingxia Huang
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado.
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
14
|
Caby S, Pagliazzo L, Lancelot J, Saliou JM, Bertheaume N, Pierce RJ, Roger E. Analysis of the interactome of Schistosoma mansoni histone deacetylase 8. PLoS Negl Trop Dis 2017; 11:e0006089. [PMID: 29155817 PMCID: PMC5722368 DOI: 10.1371/journal.pntd.0006089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/08/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Histone deacetylase 8 from Schistosoma mansoni (SmHDAC8) is essential to parasite growth and development within the mammalian host and is under investigation as a target for the development of selective inhibitors as novel schistosomicidal drugs. Although some protein substrates and protein partners of human HDAC8 have been characterized, notably indicating a role in the function of the cohesin complex, nothing is known of the partners and biological function of SmHDAC8. METHODOLOGY/PRINCIPAL FINDINGS We therefore employed two strategies to characterize the SmHDAC8 interactome. We first used SmHDAC8 as a bait protein in yeast two-hybrid (Y2H) screening of an S. mansoni cDNA library. This allowed the identification of 49 different sequences encoding proteins. We next performed co-immunoprecipitation (Co-IP) experiments on parasite extracts with an anti-SmHDAC8 antibody. Mass spectrometry (MS) analysis allowed the identification of 160 different proteins. CONCLUSIONS/SIGNIFICANCE SmHDAC8 partners are involved in about 40 different processes, included expected functions such as the cohesin complex, cytoskeleton organization, transcriptional and translational regulation, metabolism, DNA repair, the cell cycle, protein dephosphorylation, proteolysis, protein transport, but also some proteasome and ribosome components were detected. Our results show that SmHDAC8 is a versatile deacetylase, potentially involved in both cytosolic and nuclear processes.
Collapse
Affiliation(s)
- Stéphanie Caby
- Univ. Lille, CNRS UMR 8204, INSERM U1019, CHU Lille, Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille (CIIL), F-59000 Lille, France
| | - Lucile Pagliazzo
- Univ. Lille, CNRS UMR 8204, INSERM U1019, CHU Lille, Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille (CIIL), F-59000 Lille, France
| | - Julien Lancelot
- Univ. Lille, CNRS UMR 8204, INSERM U1019, CHU Lille, Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille (CIIL), F-59000 Lille, France
| | - Jean-Michel Saliou
- Univ. Lille, CNRS UMR 8204, INSERM U1019, CHU Lille, Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille (CIIL), F-59000 Lille, France
| | - Nicolas Bertheaume
- Univ. Lille, CNRS UMR 8204, INSERM U1019, CHU Lille, Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille (CIIL), F-59000 Lille, France
| | - Raymond J. Pierce
- Univ. Lille, CNRS UMR 8204, INSERM U1019, CHU Lille, Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille (CIIL), F-59000 Lille, France
| | - Emmanuel Roger
- Univ. Lille, CNRS UMR 8204, INSERM U1019, CHU Lille, Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille (CIIL), F-59000 Lille, France
- * E-mail:
| |
Collapse
|
15
|
FBXO32 promotes microenvironment underlying epithelial-mesenchymal transition via CtBP1 during tumour metastasis and brain development. Nat Commun 2017; 8:1523. [PMID: 29142217 PMCID: PMC5688138 DOI: 10.1038/s41467-017-01366-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 09/12/2017] [Indexed: 12/12/2022] Open
Abstract
The set of events that convert adherent epithelial cells into migratory cells are collectively known as epithelial–mesenchymal transition (EMT). EMT is involved during development, for example, in triggering neural crest migration, and in pathogenesis such as metastasis. Here we discover FBXO32, an E3 ubiquitin ligase, to be critical for hallmark gene expression and phenotypic changes underlying EMT. Interestingly, FBXO32 directly ubiquitinates CtBP1, which is required for its stability and nuclear retention. This is essential for epigenetic remodeling and transcriptional induction of CtBP1 target genes, which create a suitable microenvironment for EMT progression. FBXO32 is also amplified in metastatic cancers and its depletion in a NSG mouse xenograft model inhibits tumor growth and metastasis. In addition, FBXO32 is essential for neuronal EMT during brain development. Together, these findings establish that FBXO32 acts as an upstream regulator of EMT by governing the gene expression program underlying this process during development and disease. Epithelial-to-mesenchymal transition (EMT) regulates both processes of organism development and changes in cell state causing disease. Here, the authors show that an E3 ubiquitin ligase, FBXO32, regulates EMT via CtBP1 and the transcriptional program, and also mediates cancer metastatic burden and neurogenesis.
Collapse
|
16
|
Diversification of C. elegans Motor Neuron Identity via Selective Effector Gene Repression. Neuron 2017; 93:80-98. [PMID: 28056346 DOI: 10.1016/j.neuron.2016.11.036] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 12/20/2022]
Abstract
A common organizational feature of nervous systems is the existence of groups of neurons that share common traits but can be divided into individual subtypes based on anatomical or molecular features. We elucidate the mechanistic basis of neuronal diversification processes in the context of C.elegans ventral cord motor neurons that share common traits that are directly activated by the terminal selector UNC-3. Diversification of motor neurons into different classes, each characterized by unique patterns of effector gene expression, is controlled by distinct combinations of phylogenetically conserved, class-specific transcriptional repressors. These repressors are continuously required in postmitotic neurons to prevent UNC-3, which is active in all neuron classes, from activating class-specific effector genes in specific motor neuron subsets via discrete cis-regulatory elements. The strategy of antagonizing the activity of broadly acting terminal selectors of neuron identity in a subtype-specific fashion may constitute a general principle of neuron subtype diversification.
Collapse
|
17
|
Korwar S, Morris BL, Parikh HI, Coover RA, Doughty TW, Love IM, Hilbert BJ, Royer WE, Kellogg GE, Grossman SR, Ellis KC. Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal Binding Protein (CtBP). Bioorg Med Chem 2016; 24:2707-15. [PMID: 27156192 DOI: 10.1016/j.bmc.2016.04.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/14/2016] [Accepted: 04/19/2016] [Indexed: 11/30/2022]
Abstract
C-terminal Binding Protein (CtBP) is a transcriptional co-regulator that downregulates the expression of many tumor-suppressor genes. Utilizing a crystal structure of CtBP with its substrate 4-methylthio-2-oxobutyric acid (MTOB) and NAD(+) as a guide, we have designed, synthesized, and tested a series of small molecule inhibitors of CtBP. From our first round of compounds, we identified 2-(hydroxyimino)-3-phenylpropanoic acid as a potent CtBP inhibitor (IC50=0.24μM). A structure-activity relationship study of this compound further identified the 4-chloro- (IC50=0.18μM) and 3-chloro- (IC50=0.17μM) analogues as additional potent CtBP inhibitors. Evaluation of the hydroxyimine analogues in a short-term cell growth/viability assay showed that the 4-chloro- and 3-chloro-analogues are 2-fold and 4-fold more potent, respectively, than the MTOB control. A functional cellular assay using a CtBP-specific transcriptional readout revealed that the 4-chloro- and 3-chloro-hydroxyimine analogues were able to block CtBP transcriptional repression activity. This data suggests that substrate-competitive inhibition of CtBP dehydrogenase activity is a potential mechanism to reactivate tumor-suppressor gene expression as a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Sudha Korwar
- Department of Medicinal Chemistry, School of Pharmacy, The Institute for Structural Biology, Drug Discovery, and Development, and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Benjamin L Morris
- Division of Hematology, Oncology, & Palliative Care, Department of Human and Molecular Genetics, and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Hardik I Parikh
- Department of Medicinal Chemistry, School of Pharmacy, The Institute for Structural Biology, Drug Discovery, and Development, and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Robert A Coover
- Department of Medicinal Chemistry, School of Pharmacy, The Institute for Structural Biology, Drug Discovery, and Development, and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Tyler W Doughty
- Department of Molecular, Cell, & Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Ian M Love
- Division of Hematology, Oncology, & Palliative Care, Department of Human and Molecular Genetics, and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Brendan J Hilbert
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - William E Royer
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Glen E Kellogg
- Department of Medicinal Chemistry, School of Pharmacy, The Institute for Structural Biology, Drug Discovery, and Development, and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Steven R Grossman
- Division of Hematology, Oncology, & Palliative Care, Department of Human and Molecular Genetics, and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States.
| | - Keith C Ellis
- Department of Medicinal Chemistry, School of Pharmacy, The Institute for Structural Biology, Drug Discovery, and Development, and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
18
|
Wang L, Di LJ. Wnt/β-Catenin Mediates AICAR Effect to Increase GATA3 Expression and Inhibit Adipogenesis. J Biol Chem 2015; 290:19458-68. [PMID: 26109067 DOI: 10.1074/jbc.m115.641332] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 11/06/2022] Open
Abstract
A better understanding of the mechanism and manipulation of the tightly regulated cellular differentiation process of adipogenesis may contribute to a reduction in obesity and diabetes. Multiple transcription factors and signaling pathways are involved in the regulation of adipogenesis. Here, we report that the AMP-activated protein kinase activator, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) can activate AMPK in preadipocytes and thus increase the expression of GATA3, an anti-adipogenic factor. However, AICAR-increased GATA3 is mediated by the stimulation of Wnt/β-catenin signaling in preadipocytes. Mechanistically, AICAR-activated AMPK inhibits GSK3β through a phosphorylation process that stabilizes β-catenin. This stabilized β-catenin then translocates into nucleus where it interacts with T-cell factors (TCF), leading to the increased β-catenin/TCF transcriptional activity that induces GATA3 expression. In addition, AICAR also relieves the repressing effect of the C-terminal-binding protein (CtBP) co-repressor by diverting CtBP away from the β-catenin·TCF complex at the GATA3 promoter. The anti-adipogenic effect of GATA3 and AICAR is consistently attenuated by the disruption of Wnt/β-catenin signaling. Furthermore, GATA3 suppresses key adipogenic regulators by binding to the promoters of these regulators, such as the peroxisome proliferator-activated receptor-γ (PPARγ) gene, and the disruption of Wnt/β-catenin signaling reduces the GATA3 binding at the PPARγ promoter. In differentiated adipocytes, GATA3 expression inhibition is facilitated by the down-regulation of β-catenin levels, the reduction in β-catenin binding, and the increase in CtBP binding at the GATA3 promoter. Our findings shed light on the molecular mechanism of adipogenesis by suggesting that different regulation pathways and adipogenic regulators collectively modulate adipocyte differentiation through cross-talk.
Collapse
Affiliation(s)
- Li Wang
- From the Metabolomics Core, Faculty of Health Sciences, University of Macau, Macau SAR (Special Administrative Region), China and
| | - Li-jun Di
- the Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
19
|
Upadhyai P, Campbell G. Brinker possesses multiple mechanisms for repression because its primary co-repressor, Groucho, may be unavailable in some cell types. Development 2013; 140:4256-65. [PMID: 24086079 DOI: 10.1242/dev.099366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcriptional repressors function primarily by recruiting co-repressors, which are accessory proteins that antagonize transcription by modifying chromatin structure. Although a repressor could function by recruiting just a single co-repressor, many can recruit more than one, with Drosophila Brinker (Brk) recruiting the co-repressors CtBP and Groucho (Gro), in addition to possessing a third repression domain, 3R. Previous studies indicated that Gro is sufficient for Brk to repress targets in the wing, questioning why it should need to recruit CtBP, a short-range co-repressor, when Gro is known to be able to function over longer distances. To resolve this we have used genomic engineering to generate a series of brk mutants that are unable to recruit Gro, CtBP and/or have 3R deleted. These reveal that although the recruitment of Gro is necessary and can be sufficient for Brk to make an almost morphologically wild-type fly, it is insufficient during oogenesis, where Brk must utilize CtBP and 3R to pattern the egg shell appropriately. Gro insufficiency during oogenesis can be explained by its downregulation in Brk-expressing cells through phosphorylation downstream of EGFR signaling.
Collapse
Affiliation(s)
- Priyanka Upadhyai
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
20
|
Zalmas LP, Coutts AS, Helleday T, La Thangue NB. E2F-7 couples DNA damage-dependent transcription with the DNA repair process. Cell Cycle 2013; 12:3037-51. [PMID: 23974101 PMCID: PMC3875678 DOI: 10.4161/cc.26078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The cellular response to DNA damage, mediated by the DNA repair process, is essential in maintaining the integrity and stability of the genome. E2F-7 is an atypical member of the E2F family with a role in negatively regulating transcription and cell cycle progression under DNA damage. Surprisingly, we found that E2F-7 makes a transcription-independent contribution to the DNA repair process, which involves E2F-7 locating to and binding damaged DNA. Further, E2F-7 recruits CtBP and HDAC to the damaged DNA, altering the local chromatin environment of the DNA lesion. Importantly, the E2F-7 gene is a target for somatic mutation in human cancer and tumor-derived mutant alleles encode proteins with compromised transcription and DNA repair properties. Our results establish that E2F-7 participates in 2 closely linked processes, allowing it to directly couple the expression of genes involved in the DNA damage response with the DNA repair machinery, which has relevance in human malignancy.
Collapse
|
21
|
C-Terminal Binding Protein: A Molecular Link between Metabolic Imbalance and Epigenetic Regulation in Breast Cancer. Int J Cell Biol 2013; 2013:647975. [PMID: 23762064 PMCID: PMC3671672 DOI: 10.1155/2013/647975] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/14/2013] [Accepted: 04/15/2013] [Indexed: 12/21/2022] Open
Abstract
The prevalence of obesity has given rise to significant global concerns as numerous population-based studies demonstrate an incontrovertible association between obesity and breast cancer. Mechanisms proposed to account for this linkage include exaggerated levels of carbohydrate substrates, elevated levels of circulating mitogenic hormones, and inflammatory cytokines that impinge on epithelial programming in many tissues. Moreover, recently many scientists have rediscovered the observation, first described by Otto Warburg nearly a century ago, that most cancer cells undergo a dramatic metabolic shift in energy utilization and expenditure that fuels and supports the cellular expansion associated with malignant proliferation. This shift in substrate oxidation comes at the cost of sharp changes in the levels of the high energy intermediate, nicotinamide adenine dinucleotide (NADH). In this review, we discuss a novel example of how shifts in the concentration and flux of substrates metabolized and generated during carbohydrate metabolism represent components of a signaling network that can influence epigenetic regulatory events in the nucleus. We refer to this regulatory process as "metabolic transduction" and describe how the C-terminal binding protein (CtBP) family of NADH-dependent nuclear regulators represents a primary example of how cellular metabolic status can influence epigenetic control of cellular function and fate.
Collapse
|
22
|
Kim JH, Choi SY, Kang BH, Lee SM, Park HS, Kang GY, Bang JY, Cho EJ, Youn HD. AMP-activated protein kinase phosphorylates CtBP1 and down-regulates its activity. Biochem Biophys Res Commun 2013; 431:8-13. [DOI: 10.1016/j.bbrc.2012.12.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/18/2012] [Indexed: 12/11/2022]
|
23
|
Rajabi H, Ahmad R, Jin C, Kosugi M, Alam M, Joshi MD, Kufe D. MUC1-C oncoprotein induces TCF7L2 transcription factor activation and promotes cyclin D1 expression in human breast cancer cells. J Biol Chem 2012; 287:10703-10713. [PMID: 22318732 DOI: 10.1074/jbc.m111.323311] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
MUC1 is a heterodimeric glycoprotein that is overexpressed in breast cancers. The present studies demonstrate that the oncogenic MUC1 C-terminal subunit (MUC1-C) associates with the TCF7L2 transcription factor. The MUC1-C cytoplasmic domain (MUC1-CD) binds directly to the TCF7L2 C-terminal region. MUC1-C blocks the interaction between TCF7L2 and the C-terminal-binding protein (CtBP), a suppressor of TCF7L2-mediated transcription. TCF7L2 and MUC1-C form a complex on the cyclin D1 gene promoter and MUC1-C promotes TCF7L2-mediated transcription by the recruitment of β-catenin and p300. Silencing MUC1-C in human breast cancer cells down-regulated activation of the cyclin D1 promoter and decreased cyclin D1 expression. In addition, a MUC1-C inhibitor blocked the interaction with TCF7L2 and suppressed cyclin D1 levels. These findings indicate that the MUC1-C oncoprotein contributes to TCF7L2 activation and thereby promotes cyclin D1 expression in breast cancer cells.
Collapse
Affiliation(s)
- Hasan Rajabi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Rehan Ahmad
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Caining Jin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Michio Kosugi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Maroof Alam
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Maya Datt Joshi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
24
|
Liao CC, Tsai CY, Chang WC, Lee WH, Wang JM. RB·E2F1 complex mediates DNA damage responses through transcriptional regulation of ZBRK1. J Biol Chem 2010; 285:33134-33143. [PMID: 20713352 PMCID: PMC2963368 DOI: 10.1074/jbc.m110.143461] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 07/29/2010] [Indexed: 11/06/2022] Open
Abstract
RB plays an essential role in DNA damage-induced growth arrest and regulates the expression of several factors essential for DNA repair machinery. However, how RB coordinates DNA damage response through transcriptional regulation of genes involved in growth arrest remains largely unexplored. We examined whether RB can mediate the response to DNA damage through modulation of ZBRK1, a zinc finger-containing transcriptional repressor that can modulate the expression of GADD45A, a DNA damage response gene, to induce cell cycle arrest in response to DNA damage. We found that the ZBRK1 promoter contains an authentic E2F-recognition sequence that specifically binds E2F1, but not E2F4 or E2F6, together with chromatin remodeling proteins CtIP and CtBP to form a repression complex that suppresses ZBRK1 transcription. Furthermore, loss of RB-mediated transcriptional repression led to an increase in ZBRK1 transcript levels, correlating with increased sensitivity to ultraviolet (UV) and methyl methanesulfonate-induced DNA damage. Taken together, these results suggest that the RB·CtIP (CtBP interacting protein)/CtBP (C terminus-binding protein) /E2F1 complex plays a critical role in ZBRK1 transcriptional repression, and loss of this repression may contribute to cellular sensitivity of DNA damage, ultimately leading to carcinogenesis.
Collapse
Affiliation(s)
- Ching-Chun Liao
- From the Institute of Basic Medical Sciences, Tainan, Taiwan
| | - Connie Y Tsai
- Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Wen-Chang Chang
- Institute of Pharmacology, College of Medicine, Tainan, Taiwan; Center for Gene Regulation and Signal Transduction Research, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Hwa Lee
- Department of Biological Chemistry, University of California, Irvine, California 92697.
| | - Ju-Ming Wang
- Center for Gene Regulation and Signal Transduction Research, National Cheng Kung University, Tainan, Taiwan; Institute of Biosignal Transduction, Tainan, Taiwan.
| |
Collapse
|
25
|
Straza MW, Paliwal S, Kovi RC, Rajeshkumar B, Trenh P, Parker D, Whalen GF, Lyle S, Schiffer CA, Grossman SR. Therapeutic targeting of C-terminal binding protein in human cancer. Cell Cycle 2010; 9:3740-50. [PMID: 20930544 DOI: 10.4161/cc.9.18.12936] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The CtBP transcriptional corepressors promote cancer cell survival and migration/invasion. CtBP senses cellular metabolism via a regulatory dehydrogenase domain, and is antagonized by p14/p19(ARF) tumor suppressors. The CtBP dehydrogenase substrate 4-methylthio-2-oxobutyric acid (MTOB) can act as a CtBP inhibitor at high concentrations, and is cytotoxic to cancer cells. MTOB induced apoptosis was p53-independent, correlated with the derepression of the proapoptotic CtBP repression target Bik, and was rescued by CtBP overexpression or Bik silencing. MTOB did not induce apoptosis in mouse embryonic fibroblasts (MEFs), but was increasingly cytotoxic to immortalized and transformed MEFs, suggesting that CtBP inhibition may provide a suitable therapeutic index for cancer therapy. In human colon cancer cell peritoneal xenografts, MTOB treatment decreased tumor burden and induced tumor cell apoptosis. To verify the potential utility of CtBP as a therapeutic target in human cancer, the expression of CtBP and its negative regulator ARF was studied in a series of resected human colon adenocarcinomas. CtBP and ARF levels were inversely-correlated, with elevated CtBP levels (compared with adjacent normal tissue) observed in greater than 60% of specimens, with ARF absent in nearly all specimens exhibiting elevated CtBP levels. Targeting CtBP may represent a useful therapeutic strategy in human malignancies.
Collapse
Affiliation(s)
- Michael W Straza
- Department of Cancer Biology, University of Massachusetts Medical School and UMass Memorial Cancer Center, Worcester, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Streamlined analysis schema for high-throughput identification of endogenous protein complexes. Proc Natl Acad Sci U S A 2010; 107:2431-6. [PMID: 20133760 DOI: 10.1073/pnas.0912599106] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Immunoprecipitation followed by mass spectrometry (IP/MS) has recently emerged as a preferred method in the analysis of protein complex components and cellular protein networks. Targeting endogenous protein complexes of higher eukaryotes, particularly in large-scale efforts, has been challenging due to cellular heterogeneity, high proteome complexity, and, compared to lower organisms, lack of efficient in-locus epitope-tagging techniques. It is further complicated by variability in nonspecific identifications and cross-reactivity of primary antibodies. Still, the study of endogenous human protein networks is highly desired despite its challenges. Here we describe a streamlined IP/MS protocol for the purification and identification of extended endogenous protein complexes. We investigate the sources of nonspecific protein binding and develop semiquantitative specificity filters that are based on peptide spectral count measurements. We also outline logical constraints for the derivation of accurate complex composition from IP/MS data and demonstrate the effectiveness of this approach by presenting our analyses of different transcriptional coregulator complexes. We show consistent purification of novel components for the Integrator complex, analyze the composition of the Mediator complex solely from our data to demonstrate the wide usability of spectral counts, and deconvolute heterogeneous HDAC1/2 networks into core complex modules and several novel subcomplex interactions.
Collapse
|
27
|
Abstract
The proteolytic cleavages elicited by activation of the Notch receptor release an intracellular fragment, Notch intracellular domain, which enters the nucleus to activate the transcription of targets. Changes in transcription are therefore a major output of this pathway. However, the Notch outputs clearly differ from cell type to cell type. In this review we discuss current understanding of Notch targets, the mechanisms involved in their transcriptional regulation, and what might underlie the activation of different sets of targets in different cell types.
Collapse
Affiliation(s)
- Sarah Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
28
|
Abstract
The p53 protein is one of the most important tumor suppressor proteins. Normally, the p53 protein is in a latent state. However, when its activity is required, e.g. upon DNA damage, nucleotide depletion or hypoxia, p53 becomes rapidly activated and initiates transcription of pro-apoptotic and cell cycle arrest-inducing target genes. The activity of p53 is regulated both by protein abundance and by post-translational modifications of pre-existing p53 molecules. In the 30 years of p53 research, a plethora of modifications and interaction partners that modulate p53's abundance and activity have been identified and new ones are continuously discovered. This review will summarize our current knowledge on the regulation of p53 abundance and activity.
Collapse
Affiliation(s)
- Karen A Boehme
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Karlsruhe, Germany
| | | |
Collapse
|
29
|
Cai Y, Laughon A. The Drosophila Smad cofactor Schnurri engages in redundant and synergistic interactions with multiple corepressors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:232-45. [PMID: 19437622 DOI: 10.1016/j.bbagrm.2009.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In Drosophila a large zinc finger protein, Schnurri, functions as a Smad cofactor required for repression of brinker and other negative targets in response to signaling by the transforming growth factor beta ligand, Decapentaplegic. Schnurri binds to the silencer-bound Smads through a cluster of zinc fingers located near its carboxy-terminus and silences via a separate repression domain adjacent to this zinc-finger cluster. Here we show that this repression domain functions through interaction with two corepressors, dCtBP and dSin3A, and that either interaction is sufficient for repression. We also report that Schnurri contains additional repression domains that function through interaction with dCtBP, Groucho, dSin3A and SMRTER. By testing for the ability to rescue a shn RNAi phenotype we provide evidence that these diverse repression domains are both cooperative and partially redundant. In addition we find that Shn harbors a region capable of transcriptional activation, consistent with evidence that Schnurri can function as an activator as well as a repressor.
Collapse
Affiliation(s)
- Yi Cai
- Laboratory of Genetics, University of Wisconsin, 425G Henry Mall, Madison, WI 53706, USA
| | | |
Collapse
|
30
|
ZEB-1, a repressor of the semaphorin 3F tumor suppressor gene in lung cancer cells. Neoplasia 2009; 11:157-66. [PMID: 19177200 DOI: 10.1593/neo.81074] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 10/30/2008] [Accepted: 10/31/2008] [Indexed: 02/07/2023] Open
Abstract
SEMA3F is a secreted semaphorin with potent antitumor activity, which is frequently downregulated in lung cancer. In cancer cell lines, SEMA3F overexpression decreases hypoxia-induced factor 1alpha protein and vascular endothelial growth factor mRNA, and inhibits multiple signaling components. Therefore, understanding how SEMA3F expression is inhibited in cancer cells is important. We previously defined the promoter organization of SEMA3F and found that chromatin remodeling by a histone deacetylase inhibitor was sufficient to activate SEMA3F expression. In lung cancer, we have also shown that ZEB-1, an E-box transcription repressor, is predominantly responsible for loss of E-Cadherin associated with a poor prognosis and resistance to epidermal growth factor receptor inhibitors. In the present study, we demonstrated that ZEB-1 also inhibits SEMA3F in lung cancer cells. Levels of ZEB-1, but not ZEB-2, Snail or Slug, significantly correlate with SEMA3F inhibition, and overexpression or inhibition of ZEB-1 correspondingly affected SEMA3F expression. Four conserved E-box sites were identified in the SEMA3F gene. Direct ZEB-1 binding was confirmed by chromatin immunoprecipitation assays for two of these, and ZEB-1 binding was reduced when cells were treated with a histone deacetylase inhibitor. These results demonstrate that ZEB-1 directly inhibits SEMA3F expression in lung cancer cells. SEMA3F loss was associated with changes in cell signaling: increased phospho-AKT in normoxia and increase of hypoxia-induced factor 1alpha protein in hypoxia. Moreover, exogenous addition of SEMA3F could modulate ZEB-1-induced angiogenesis in a chorioallantoic membrane assay. Together, these data provide further support for the importance of SEMA3F and ZEB-1 in lung cancer progression.
Collapse
|
31
|
Stöbe P, Stein SMA, Habring-Müller A, Bezdan D, Fuchs AL, Hueber SD, Wu H, Lohmann I. Multifactorial regulation of a hox target gene. PLoS Genet 2009; 5:e1000412. [PMID: 19282966 PMCID: PMC2646128 DOI: 10.1371/journal.pgen.1000412] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 02/09/2009] [Indexed: 01/27/2023] Open
Abstract
Hox proteins play fundamental roles in controlling morphogenetic diversity along the anterior-posterior body axis of animals by regulating distinct sets of target genes. Within their rather broad expression domains, individual Hox proteins control cell diversification and pattern formation and consequently target gene expression in a highly localized manner, sometimes even only in a single cell. To achieve this high-regulatory specificity, it has been postulated that Hox proteins co-operate with other transcription factors to activate or repress their target genes in a highly context-specific manner in vivo. However, only a few of these factors have been identified. Here, we analyze the regulation of the cell death gene reaper (rpr) by the Hox protein Deformed (Dfd) and suggest that local activation of rpr expression in the anterior part of the maxillary segment is achieved through a combinatorial interaction of Dfd with at least eight functionally diverse transcriptional regulators on a minimal enhancer. It follows that context-dependent combinations of Hox proteins and other transcription factors on small, modular Hox response elements (HREs) could be responsible for the proper spatio-temporal expression of Hox targets. Thus, a large number of transcription factors are likely to be directly involved in Hox target gene regulation in vivo.
Collapse
Affiliation(s)
- Petra Stöbe
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sokrates M. A. Stein
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Anette Habring-Müller
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Daniela Bezdan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Aurelia L. Fuchs
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- BIOQUANT Center, Heidelberg, Germany
| | - Stefanie D. Hueber
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Haijia Wu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ingrid Lohmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- BIOQUANT Center, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
32
|
|
33
|
Kwon HS, Ott M. The ups and downs of SIRT1. Trends Biochem Sci 2008; 33:517-25. [PMID: 18805010 DOI: 10.1016/j.tibs.2008.08.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/13/2008] [Accepted: 08/14/2008] [Indexed: 10/21/2022]
Abstract
Reversible acetylation has emerged as a key post-translational modification of proteins. Although the number of acetylated proteins is rapidly growing, the ways in which protein acetyltransferases and deacetylases connect with extracellular stimuli remain unclear. Recently, a regulatory network has emerged that controls the expression and activity of SIRT1, a mammalian class-III protein deacetylase. SIRT1 is an important regulator of metabolism, senescence, cancer and, possibly, longevity and is connected with crucial stress-responsive signal-transduction pathways. These connections provide important clues about how protein acetylation and deacetylation mediate cellular adaptations to extrinsic stress.
Collapse
Affiliation(s)
- Hye-Sook Kwon
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
34
|
Bruton RK, Pelka P, Mapp KL, Fonseca GJ, Torchia J, Turnell AS, Mymryk JS, Grand RJA. Identification of a second CtBP binding site in adenovirus type 5 E1A conserved region 3. J Virol 2008; 82:8476-86. [PMID: 18524818 PMCID: PMC2519622 DOI: 10.1128/jvi.00248-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 05/27/2008] [Indexed: 11/20/2022] Open
Abstract
C-terminal binding protein (CtBP) binds to adenovirus early region 1A (AdE1A) through a highly conserved PXDLS motif close to the C terminus. We now have demonstrated that CtBP1 also interacts directly with the transcriptional activation domain (conserved region 3 [CR3]) of adenovirus type 5 E1A (Ad5E1A) and requires the integrity of the entire CR3 region for optimal binding. The interaction appears to be at least partially mediated through a sequence ((161)RRNTGDP(167)) very similar to a recently characterized novel CtBP binding motif in ZNF217 as well as other regions of CR3. Using reporter assays, we further demonstrated that CtBP1 represses Ad5E1A CR3-dependent transcriptional activation. Ad5E1A also appears to be recruited to the E-cadherin promoter through its interaction with CtBP. Significantly, Ad5E1A, CtBP1, and ZNF217 form a stable complex which requires CR3 and the PLDLS motif. It has been shown that Ad513SE1A, containing the CR3 region, is able to overcome the transcriptional repressor activity of a ZNF217 polypeptide fragment in a GAL4 reporter assay through recruitment of CtBP1. These results suggest a hitherto-unsuspected complexity in the association of Ad5E1A with CtBP, with the interaction resulting in transcriptional activation by recruitment of CR3-bound factors to CtBP1-containing complexes.
Collapse
Affiliation(s)
- Rachel K Bruton
- Cancer Research UK, Institute of Cancer Studies, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Rossi L, Salvetti A, Marincola FM, Lena A, Deri P, Mannini L, Batistoni R, Wang E, Gremigni V. Deciphering the molecular machinery of stem cells: a look at the neoblast gene expression profile. Genome Biol 2007; 8:R62. [PMID: 17445279 PMCID: PMC1896013 DOI: 10.1186/gb-2007-8-4-r62] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/23/2007] [Accepted: 04/20/2007] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mammalian stem cells are difficult to access experimentally; model systems that can regenerate offer an alternative way to characterize stem cell related genes. Planarian regeneration depends on adult pluripotent stem cells--the neoblasts. These cells can be selectively destroyed using X-rays, enabling comparison of organisms lacking stem cells with wild-type worms. RESULTS Using a genomic approach we produced an oligonucleotide microarray chip (the Dj600 chip), which was designed using selected planarian gene sequences. Using this chip, we compared planarians treated with high doses of X-rays (which eliminates all neoblasts) with wild-type worms, which led to identification of a set of putatively neoblast-restricted genes. Most of these genes are involved in chromatin modeling and RNA metabolism, suggesting that epigenetic modifications and post-transcriptional regulation are pivotal in neoblast regulation. Comparing planarians treated with low doses of X-rays (after which some radiotolerant neoblasts re-populate the planarian body) with specimens irradiated with high doses and unirradiated control worms, we identified a group of genes that were upregulated as a consequence of low-dose X-ray treatment. Most of these genes encode proteins that are known to regulate the balance between death and survival of the cell; our results thus suggest that genetic programs that control neoblast cytoprotection, proliferation, and migration are activated by low-dose X-rays. CONCLUSION The broad differentiation potential of planarian neoblasts is unparalleled by any adult stem cells in the animal kingdom. In addition to our validation of the Dj600 chip as a valuable platform, our work contributes to elucidating the molecular mechanisms that regulate the self-renewal and differentiation of neoblasts.
Collapse
Affiliation(s)
- Leonardo Rossi
- Dipartimento di Morfologia Umana e Biologia Applicata, Sezione di Biologia e Genetica, Università di Pisa, Via Volta, Pisa 56126, Italy
| | - Alessandra Salvetti
- Dipartimento di Morfologia Umana e Biologia Applicata, Sezione di Biologia e Genetica, Università di Pisa, Via Volta, Pisa 56126, Italy
| | - Francesco M Marincola
- Department of Transfusion Medicine, Warren G Magnuson Clinical Center, National Institutes of Health, Central Drive, Bethesda, Maryland 20892, USA
| | - Annalisa Lena
- Dipartimento di Morfologia Umana e Biologia Applicata, Sezione di Biologia e Genetica, Università di Pisa, Via Volta, Pisa 56126, Italy
| | - Paolo Deri
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università di Pisa, Via Carducci, Pisa 56010, Italy
| | - Linda Mannini
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università di Pisa, Via Carducci, Pisa 56010, Italy
| | - Renata Batistoni
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università di Pisa, Via Carducci, Pisa 56010, Italy
| | - Ena Wang
- Department of Transfusion Medicine, Warren G Magnuson Clinical Center, National Institutes of Health, Central Drive, Bethesda, Maryland 20892, USA
| | - Vittorio Gremigni
- Dipartimento di Morfologia Umana e Biologia Applicata, Sezione di Biologia e Genetica, Università di Pisa, Via Volta, Pisa 56126, Italy
| |
Collapse
|
36
|
Role of the PLDLS-binding cleft region of CtBP1 in recruitment of core and auxiliary components of the corepressor complex. Mol Cell Biol 2007; 28:269-81. [PMID: 17967884 DOI: 10.1128/mcb.01077-07] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
C-terminal binding protein (CtBP) family proteins CtBP1 and CtBP2 are highly homologous transcriptional corepressors and are recruited by a large number of transcription factors to mediate sequence-specific transcriptional repression. In addition to DNA-binding repressors, the nuclear protein complex of CtBP1 consists of enzymatic constituents such as histone deacetylases (HDAC1/2), histone methyl transferases (HMTases; G9a and GLP), and the lysine-specific demethylase (LSD1). Additionally, CtBPs also recruit the components of the sumoylation machinery. The CtBPs contain two different unique structural elements, a hydrophobic cleft, with which factors that contain motifs related to the E1A PLDLS motif bind, and a surface groove that binds with factors containing motifs related to the sequence RRTGXPPXL (RRT motif). By structure-based functional dissection of CtBP1, we show that the PLDLS-binding cleft region functions as the primary recruitment center for DNA-binding factors and for the core and auxiliary enzymatic constituents of the CtBP1 corepressor complex. We identify HDAC1/2, CoREST/LSD1, and Ubc9 (E2) as the core constituents of the CtBP1 complex, and these components interact with the PLDLS cleft region through non-PLDLS interactions. Among the CtBP core constituents, HDACs contribute predominantly to the repression activity of CtBP1. The auxiliary components include an HMTase complex (G9a/Wiz/CDYL) and two SUMO E3 ligases, HPC2 and PIAS1. The interaction of auxiliary components with CtBP1 is excluded by PLDLS (E1A)-mediated interactions. Although monomeric CtBP1 is proficient in the recruiting of both core and auxiliary components, NAD(H)-dependent dimerization is required for transcriptional repression. We also provide evidence that CtBP1 functions as a platform for sumoylation of cofactors.
Collapse
|
37
|
Molloy DP, Barral PM, Gallimore PH, Grand RJA. The effect of CtBP1 binding on the structure of the C-terminal region of adenovirus 12 early region 1A. Virology 2007; 363:342-56. [PMID: 17335865 DOI: 10.1016/j.virol.2007.01.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 12/21/2006] [Accepted: 01/17/2007] [Indexed: 11/24/2022]
Abstract
Adenovirus early region 1A (AdE1A) binds to the C-terminal binding protein 1 (CtBP1) primarily through a highly conserved PXDLS motif located close to its C-terminus. Purified synthetic peptides equivalent to this region of AdE1A have been shown to form a series of beta-turns. In this present study the effect of CtBP1 binding on the conformation of C-terminal region of Ad12E1A has been investigated. Using one- and two-dimensional (1)H NMR spectroscopy, the conformation of 20-residue peptides equivalent to amino acids I(241)-V(260) and E(247)-N(266) of Ad12E1A were examined in the absence of CtBP1. Whilst the latter peptide forms a series of beta-turns in its C-terminal half as reported previously, the former peptide is alpha-helical over the region D(243)-Q(253). Upon interaction with CtBP1 the conformation of the backbone in the region (255)PVDLCVK(261) of the Ad12E1A E(247)-N(266) peptide reorganises from a predominately beta-turn to an alpha-helical conformation. This structural isomerisation is characterised by a shift upfield of 0.318 ppm for the delta-CH(3) proton resonance of V(256). 2-D NOESY experiments showed new signals in the amide-alpha region which correlate to transferred NOEs from the protein to the peptide residues E(251), V(256) and K(261). In further analyses the contribution of individual amino acids within the sequence (254)VPVDLS(259) was assessed for their importance in determining structure and consequently affinity of the peptide for CtBP. It has been concluded that Ad12E1A residues (255)P-V(260) serve initially as a recognition site for CtBP and then as an anchor through a beta-turns-->alpha-helix conformational rearrangement. In addition it has been predicted that regions N-terminal to the PXDLS motif in AdE1As from different virus serotypes and from mammalian proteins form alpha-helices.
Collapse
Affiliation(s)
- David P Molloy
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT UK
| | | | | | | |
Collapse
|
38
|
Chinnadurai G. Transcriptional regulation by C-terminal binding proteins. Int J Biochem Cell Biol 2007; 39:1593-607. [PMID: 17336131 DOI: 10.1016/j.biocel.2007.01.025] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 01/31/2007] [Accepted: 01/31/2007] [Indexed: 01/23/2023]
Abstract
C-terminal binding protein family members function predominantly as transcriptional corepressors in association with sequence specific DNA-binding transcriptional repressors. The vertebrates have two CtBP genes while the invertebrates contain a single gene. Genetic studies indicate that the CtBP genes play pivotal roles in animal development. The vertebrate C-terminal binding proteins (CtBP1 and CtBP2) are highly related and are functionally redundant for certain developmental processes and non-redundant for others. The animal C-terminal binding proteins exhibit structural and functional similarity to d-isomer-specific 2-hydroxy acid dehydrogenases (D2-HDH). They function as dimers, recruiting transcriptional regulators through two protein-binding interfaces in each monomer. The corepressor complex of CtBP1 contains enzymatic constituents that mediate coordinated histone modification by deacetylation and methylation of histone H3-Lysine 9 and demethylation of histone H3-Lysine 4. CtBP also recruits the small ubiquitin-related modifier (SUMO) conjugating E2 enzyme UBC9 and a SUMO E3 ligase (HPC2), suggesting that CtBP-mediated transcriptional regulation may also involve SUMOylation of transcription factors. In addition to gene-specific transcriptional repression, CtBP1 appears to antagonize the activity of the global transcriptional coactivators, p300/CBP. Genetic evidence also suggests that the fly CtBP (dCtBP) and the vertebrate CtBP2 might activate transcription in a context-dependent manner. The transcriptional regulatory activity of CtBP is modulated by the nuclear NADH/NAD+ ratio and hence appears to be influenced by the metabolic status of the cell. The nuclear dinucleotide ratio may differentially influence the repression activities of factors that recruit CtBP through PLDLS-like motifs and those through non-PLDLS-motifs.
Collapse
Affiliation(s)
- G Chinnadurai
- Institute for Molecular Virology, Saint Louis University Health Sciences Center, 3681 Park Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
39
|
Molloy D, Mapp KL, Webster R, Gallimore PH, Grand RJA. Acetylation at a lysine residue adjacent to the CtBP binding motif within adenovirus 12 E1A causes structural disruption and limited reduction of CtBP binding. Virology 2006; 355:115-26. [PMID: 16919702 DOI: 10.1016/j.virol.2006.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 01/09/2006] [Accepted: 05/02/2006] [Indexed: 10/24/2022]
Abstract
C-terminal binding protein (CtBP) has been shown to bind to a highly conserved five-amino-acid motif (PXDLS) located very close to the C-terminus of adenovirus early region 1A proteins. It has also been demonstrated that amino acids C-terminal and N-terminal to this original proposed binding site contribute to the interaction. However, conflicting evidence has been presented to show that acetylation of an adjacent lysine residue in Ad5E1A may or may not influence binding. It has now been demonstrated here that acetylation of a lysine, equivalent to position 261 in Ad12 E1A and position 285 in Ad5E1A, in a synthetic peptide disrupts the binding to CtBP1 and CtBP2 and alters the K(i) of the peptide, indicative of a reduction in the affinity of the peptide for CtBP1 and CtBP2, but only to a rather limited extent (less than 2-fold). The solution structures of synthetic peptides equivalent to wild-type and acetylated forms of the Ad12 E1A peptide have been determined by proton NMR spectroscopy. The wild-type form of the peptide adopts a series of beta-turns over the region Val(254)-Arg(262). Within the acetylated isoform, the beta-turn conformation is less extensive, Val(260)-Arg(262) adopting a random confirmation. We conclude that secondary structure (beta-turns) and an appropriate series of amino acid side chains over an extended binding site (PXDLSXK) are necessary for recognition by CtBP, acetylation of lysine interfering with both of these features, but not to such an extent as to totally inhibit interaction. Moreover, it is possible that the beta-turn conformation at the C-terminus of AdE1A contributes to binding to alpha importin and nuclear import. Acetylation of lysine (261) could disrupt interaction through structural destabilization as well as charge neutralization and subsequent nuclear localization.
Collapse
Affiliation(s)
- David Molloy
- Thames Valley University, Faculty of Health and Human Sciences, Walpole House 18-20 Bond Street, Ealing, London, W5 5AA, UK
| | | | | | | | | |
Collapse
|
40
|
Markova NG, Pinkas-Sarafova A, Simon M. A Metabolic Enzyme of the Short-Chain Dehydrogenase/Reductase Superfamily May Moonlight in the Nucleus as a Repressor of Promoter Activity. J Invest Dermatol 2006; 126:2019-31. [PMID: 16691198 DOI: 10.1038/sj.jid.5700347] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transcriptional repression often depends on the action of recruited co-repressor complexes with intrinsic enzymatic activities. The composition of these complexes depends on the nicotine amide dinucleotide co-factors and is thus directly reflective of the metabolic state of the cells. This study provides evidence that an enzyme, hRoDH-E2, with cytoplasmic phosphorylated and reduced forms of NAD-dependent retinol dehydrogenase activity may function in the nucleus as a transcriptional repressor. By using the promoter of the epidermal late differentiation marker profilaggrin as a model, we show that both in vivo and in vitro the protein is recruited over the promoter. hRoDH-E2 represses profilaggrin promoter activity by altering the function of other activators, such as Sp1. The repressive function is associated with the ability of nuclear hRoDH-E2 to modulate the acetylation/deacetylation activity in the vicinity of transcription initiation site. These findings add hRoDH-E2 to the small group of metabolic enzymes, which, by being recruited over promoter regions, could directly link the cytoplasmic and nuclear functions within the cell.
Collapse
Affiliation(s)
- Nelli G Markova
- Living Skin Bank, Department of Oral Biology and Pathology, School of Dental Medicine, SUNY Stony Brook, New York 11794, USA.
| | | | | |
Collapse
|
41
|
Quinlan KGR, Verger A, Kwok A, Lee SHY, Perdomo J, Nardini M, Bolognesi M, Crossley M. Role of the C-terminal binding protein PXDLS motif binding cleft in protein interactions and transcriptional repression. Mol Cell Biol 2006; 26:8202-13. [PMID: 16940173 PMCID: PMC1636740 DOI: 10.1128/mcb.00445-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C-terminal binding proteins (CtBPs) are multifunctional proteins that can mediate gene repression. CtBPs contain a cleft that binds Pro-X-Asp-Leu-Ser (PXDLS) motifs. PXDLS motifs occur in numerous transcription factors and in effectors of gene repression, such as certain histone deacetylases. CtBPs have been depicted as bridging proteins that self-associate and link PXDLS-containing transcription factors to PXDLS-containing chromatin-modifying enzymes. CtBPs also recruit effectors that do not contain recognizable PXDLS motifs. We have investigated the importance of the PXDLS binding cleft to CtBP's interactions with various partner proteins and to its ability to repress transcription. We used CtBP cleft mutant and cleft-filled fusion derivatives to distinguish between partner proteins that bind in the cleft and elsewhere on the CtBP surface. Functional assays demonstrate that CtBP mutants that carry defective clefts retain repression activity when fused to heterologous DNA-binding domains. This result suggests that the cleft is not essential for recruiting effectors. In contrast, when tested in the absence of a fused DNA-binding domain, disruption of the cleft abrogates repression activity. These results demonstrate that the PXDLS binding cleft is functionally important but suggest that it is primarily required for localization of the CtBP complex to promoter-bound transcription factors.
Collapse
Affiliation(s)
- Kate G R Quinlan
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Zaidi NF, Kuplast KG, Washicosky KJ, Kajiwara Y, Buxbaum JD, Wasco W. Calsenilin interacts with transcriptional co-repressor C-terminal binding protein(s). J Neurochem 2006; 98:1290-301. [PMID: 16787403 DOI: 10.1111/j.1471-4159.2006.03972.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Calsenilin/potassium channel-interacting protein (KChIP)3/ downstream regulatory element sequence antagonist modulator (DREAM) is a neuronal calcium-binding protein that has been shown to have multiple functions in the cell, including the regulation of presenilin processing, repression of transcription and modulation of A-type potassium channels. To gain a better understanding of the precise role of calsenilin in specific cellular compartments, an interactor hunt for proteins that bind to the N-terminal domain of calsenilin was carried out. Using a yeast two-hybrid system and co-immunoprecipitation studies, we have identified the transcriptional co-repressor C-terminal binding protein (CtBP)2 as an interactor for calsenilin and have shown that the two proteins can interact in vivo. In co-immunoprecipitation studies, calsenilin also interacted with CtBP1, a CtBP2 homolog. Our data also showed a calsenilin-dependent increase in c-fos protein levels in CtBP knockout fibroblasts, suggesting that CtBP may modulate the transcriptional repression of c-fos by calsenilin. Furthermore, the finding that histone deacetylase protein and activity were associated with the calsenilin-CtBP immunocomplex suggests a mechanism by which calsenilin-CtBP may act to repress transcription. Finally, we demonstrated that calsenilin and CtBP are present in synaptic vesicles and can interact in vivo.
Collapse
Affiliation(s)
- Nikhat F Zaidi
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | |
Collapse
|
43
|
Czesak M, Lemonde S, Peterson EA, Rogaeva A, Albert PR. Cell-specific repressor or enhancer activities of Deaf-1 at a serotonin 1A receptor gene polymorphism. J Neurosci 2006; 26:1864-71. [PMID: 16467535 PMCID: PMC6793620 DOI: 10.1523/jneurosci.2643-05.2006] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The serotonin-1A (5-HT1A) receptor is the primary somatodendritic autoreceptor that inhibits the activity of serotonergic raphe neurons and is also expressed in nonserotonergic cortical and limbic neurons. Alterations in 5-HT1A receptor levels are implicated in mood disorders, and a functional C(-1019)G 5-HT1A promoter polymorphism has been associated with depression, suicide, and panic disorder. We examined the cell-specific activity of identified transcription factors, human nuclear deformed epidermal autoregulatory factor-1 (DEAF-1)-related (NUDR)/Deaf-1 and Hes5, at the 5-HT1A C(-1019) site. In serotonergic raphe RN46A cells, Deaf-1 and Hes5 repressed the 5-HT1A receptor gene at the C(-1019)-allele but not the G(-1019)-allele. However, in nonserotonergic cells that express 5-HT1A receptors (septal SN48, neuroblastoma SKN-SH, and neuroblastoma/glioma NG108-15 cells), Deaf-1 enhanced 5-HT1A promoter activity at the C(-1019)-allele but not the G-allele, whereas Hes5 repressed in all cell types. The enhancer activity of Deaf-1 was orientation independent and competed out Hes5 repression. To test whether Deaf-1 activity is intrinsic, the activity of a Gal4DBD (DNA binding domain)-Deaf-1 fusion protein at a heterologous Gal4 DNA element was examined. Gal4DBD-Deaf-1 repressed transcription in RN46A cells but enhanced transcription in SN48 cells, indicating that these opposite activities are intrinsic to Deaf-1. Repressor or enhancer activities of Deaf-1 or Gal4DBD-Deaf-1 were blocked by histone deacetylase inhibitor trichostatin A. Thus, the intrinsic activity of Deaf-1 at the 5-HT1A promoter is opposite in presynaptic versus postsynaptic neuronal cells and requires deacetylation. Cell-specific regulation by Deaf-1 could underlie region-specific alterations in 5-HT1A receptor expression in different mood disorders.
Collapse
|
44
|
Briones VR, Chen S, Riegel AT, Lechleider RJ. Mechanism of fibroblast growth factor-binding protein 1 repression by TGF-beta. Biochem Biophys Res Commun 2006; 345:595-601. [PMID: 16690027 DOI: 10.1016/j.bbrc.2006.04.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 04/11/2006] [Indexed: 01/04/2023]
Abstract
Transforming growth factor-beta (TGF-beta) is the prototypical member of a family of growth factors that play important roles in normal development and human diseases. We identified the gene for fibroblast growth factor-binding protein 1 (FGF-BP1) as being significantly repressed following TGF-beta treatment. FGF-BP1 is an extracellular matrix bound protein that enhances fibroblast growth factor (FGF) signaling. We demonstrate here that TGF-beta signaling significantly represses FGF-BP1 expression in mesenchymal and neural crest cells undergoing in vitro smooth muscle differentiation. Analysis of the downstream signaling pathways shows that Smad2/3 are crucial for efficient FGF-BP1 repression by TGF-beta. Furthermore, we identified a novel element in the region from -785 to -782 bp of the FGF-BP1 promoter, which represents a known binding site for Hypermethylation in Cancer-1 (Hic-1), necessary for repression of FGF-BP1 by TGF-beta. These data define the molecular mechanism of transcriptional repression of an important target of TGF-beta signaling during angiogenesis.
Collapse
Affiliation(s)
- Victorino R Briones
- Department of Cell Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
45
|
Meloni AR, Lai CH, Yao TP, Nevins JR. A mechanism of COOH-terminal binding protein-mediated repression. Mol Cancer Res 2006; 3:575-83. [PMID: 16254191 DOI: 10.1158/1541-7786.mcr-05-0088] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The E2F4 and E2F5 proteins specifically associate with the Rb-related p130 protein in quiescent cells to repress transcription of various genes encoding proteins important for cell growth. A series of reports has provided evidence that Rb-mediated repression involves both histone deacetylase (HDAC)-dependent and HDAC-independent events. Our previous results suggest that one such mechanism for Rb-mediated repression, independent of recruitment of HDAC, involves the recruitment of the COOH-terminal binding protein (CtBP) corepressor, a protein now recognized to play a widespread role in transcriptional repression. We now find that CtBP can interact with the histone acetyltransferase, cyclic AMP--responsive element--binding protein (CREB) binding protein, and inhibit its ability to acetylate histone. This inhibition is dependent on a NH2-terminal region of CtBP that is also required for transcription repression. These results thus suggest two complementary mechanisms for E2F/p130-mediated repression that have in common the control of histone acetylation at target promoters.
Collapse
Affiliation(s)
- Alison R Meloni
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Box 3054, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
46
|
Zhao LJ, Subramanian T, Zhou Y, Chinnadurai G. Acetylation by p300 Regulates Nuclear Localization and Function of the Transcriptional Corepressor CtBP2. J Biol Chem 2006; 281:4183-9. [PMID: 16356938 DOI: 10.1074/jbc.m509051200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CtBP family members, CtBP1 and CtBP2, are unique transcriptional regulators that adapt a metabolic enzyme fold, and their activities are regulated by NAD(H)-binding. CtBP1 is both cytoplasmic and nuclear, and its subcellular localization is regulated by sumoylation, phosphorylation, and binding to a PDZ protein. In contrast, we showed that CtBP2 is exclusively nuclear. CtBP1 and CtBP2 are highly similar, but differ at the N-terminal 20 amino acid region. Substitution of the N-terminal domain of CtBP1 with the corresponding CtBP2 domain confers a dominant nuclear localization pattern to CtBP1. The N-terminal domain of CtBP2 contains three Lys residues. Our results show that these Lys residues are acetylated by the nuclear acetylase p300. Although all three Lys residues of CtBP2 (Lys-6, Lys-8, and Lys-10) appear to be acetylated, acetylation of Lys-10 is critical for nuclear localization. CtBP2 with a single amino acid substitution at Lys-10 (K10R) is predominantly localized in the cytoplasm. The cytoplasmic localization of the K10R mutant is correlated with enhanced nuclear export that is inhibited by leptomycin B. Furthermore, lack of acetylation at Lys-10 renders CtBP2 to be more efficient in repression of the E-cadherin promoter. Our studies have revealed the important roles of acetylation in regulating subcellular localization and transcriptional activity of CtBP2.
Collapse
Affiliation(s)
- Ling-Jun Zhao
- Institute for Molecular Virology, Saint Louis University Health Sciences Center, Missouri 63110, USA
| | | | | | | |
Collapse
|
47
|
Nagel AC, Krejci A, Tenin G, Bravo-Patiño A, Bray S, Maier D, Preiss A. Hairless-mediated repression of notch target genes requires the combined activity of Groucho and CtBP corepressors. Mol Cell Biol 2005; 25:10433-41. [PMID: 16287856 PMCID: PMC1291231 DOI: 10.1128/mcb.25.23.10433-10441.2005] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 07/28/2005] [Accepted: 09/14/2005] [Indexed: 11/20/2022] Open
Abstract
Notch signal transduction centers on a conserved DNA-binding protein called Suppressor of Hairless [Su(H)] in Drosophila species. In the absence of Notch activation, target genes are repressed by Su(H) acting in conjunction with a partner, Hairless, which contains binding motifs for two global corepressors, CtBP and Groucho (Gro). Usually these corepressors are thought to act via different mechanisms; complexed with other transcriptional regulators, they function independently and/or redundantly. Here we have investigated the requirement for Gro and CtBP in Hairless-mediated repression. Unexpectedly, we find that mutations inactivating one or the other binding motif can have detrimental effects on Hairless similar to those of mutations that inactivate both motifs. These results argue that recruitment of one or the other corepressor is not sufficient to confer repression in the context of the Hairless-Su(H) complex; Gro and CtBP need to function in combination. In addition, we demonstrate that Hairless has a second mode of repression that antagonizes Notch intracellular domain and is independent of Gro or CtBP binding.
Collapse
Affiliation(s)
- Anja C Nagel
- Anette Preiss, Institut für Genetik (240), Universität Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Glasspool RM, Burns S, Hoare SF, Svensson C, Keith WN. The hTERT and hTERC telomerase gene promoters are activated by the second exon of the adenoviral protein, E1A, identifying the transcriptional corepressor CtBP as a potential repressor of both genes. Neoplasia 2005; 7:614-22. [PMID: 16036112 PMCID: PMC1501281 DOI: 10.1593/neo.04766] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 02/17/2005] [Accepted: 02/21/2005] [Indexed: 12/25/2022] Open
Abstract
Telomerase plays a role in the unlimited replicative capacity of the majority of cancer cells and provides a potential anticancer target. The regulation of telomerase is complex but transcriptional control of its two essential components, hTERC (RNA component) and hTERT (reverse transcriptase component), is of major importance. To investigate this further, we have used the adenoviral protein, E1A, as a tool to probe potential pathways involved in the control of telomerase transcription. The second exon of the adenoviral protein E1A activates both telomerase gene promoters in transient transfections. The corepressor, C terminal binding protein, is one of only two proteins known to bind to this region, and we propose that E1A activates both promoters by sequestering CtBP, thereby relieving repression. Activation by exon 2 of E1A involves the SP1 sites in both promoters, and consistent with this, SP1 and CtBP interact in coimmunoprecipitation studies. Modulation of the chromatin environment has been implicated in the regulation of hTERT transcription and appears to involve the SP1 sites. CtBP can be found within a histone-modifying complex and it is possible that a CtBP complex, associating with the SP1 sites, represses transcription from the telomerase promoters by modifying chromatin structure.
Collapse
Affiliation(s)
- Rosalind M Glasspool
- Cancer Research UK Centre for Oncology and Applied Pharmacology, University of Glasgow, Cancer Research UK Beatson Laboratories, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | | | | | | | |
Collapse
|
49
|
Chinnadurai G. CtIP, a candidate tumor susceptibility gene is a team player with luminaries. Biochim Biophys Acta Rev Cancer 2005; 1765:67-73. [PMID: 16249056 DOI: 10.1016/j.bbcan.2005.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 09/19/2005] [Accepted: 09/20/2005] [Indexed: 10/25/2022]
Abstract
CtIP is a nuclear protein conserved among vertebrates that was discovered as a cofactor of the transcriptional corepressor CtBP. CtIP also interacts with the tumor suppressors such as BRCA1 and the pRb family members through binding sites that are frequently mutated in human cancers. CtIP is a target for BRCA1-dependent phosphorylation by the ATM kinase induced by DNA double strand breakage. CtIP plays a role in DNA-damage-induced cell cycle checkpoint control at the G2/M transition. Homozygous inactivation of the Ctip gene causes very early embryonic lethality during mouse development. The Ctip(-/-) embryo cells are arrested in G1 and do not enter S phase. Depletion of Ctip in established mouse embryo fibroblasts arrests cells in G1 and results in an accumulation of hypophosphorylated Rb and the Cdk inhibitor p21, suggesting that CtIP is also a critical regulator of G1/S transition of the cell cycle. The Ctip gene contains a mononucleotide (A9) repeat and one of the alleles is mutated at a high frequency in colon cancers with microsatellite instability. The Ctip(+/-) mice develop multiple types of tumors suggesting that haploid insufficiency of Ctip leads to tumorigenesis. Among the various tumor types observed in Ctip(+/-) heterozygous mice, large lymphomas are prevalent. Recent studies raise the possibility that Ctip may itself be a tumor susceptibility gene and suggest that it might be important for the activities of tumor suppressors BRCA1, pRb family proteins and Ikaros family members.
Collapse
Affiliation(s)
- G Chinnadurai
- Institute for Molecular Virology, Saint Louis University School of Medicine, 3681 Park Avenue, St. Louis, Missouri 63110, USA.
| |
Collapse
|
50
|
Kumar R, Gururaj AE, Vadlamudi RK, Rayala SK. The clinical relevance of steroid hormone receptor corepressors. Clin Cancer Res 2005; 11:2822-31. [PMID: 15837729 DOI: 10.1158/1078-0432.ccr-04-1276] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Steroid hormone receptors are ligand-dependent transcription factors that control a variety of essential physiologic and developmental processes in humans. The functional activity of a steroid receptor is regulated not only by hormones but also by an array of regulatory proteins such as coactivators, corepressors, and chromatin modifiers. Contrary to an earlier notion that corepressors and coactivators exist in separate complexes, these molecules, which have apparently opposite functions, are increasingly being found in the same complex, which allows for efficient transcriptional control mechanisms. These control mechanisms are in turn regulated by an array of post-translational modifications under the influence of upstream and local signaling networks. Because the outcome of steroidal hormone receptor transcriptional complexes is measured in terms of the expression of target genes, any dysregulation of coregulator complexes perturbs normal homeostasis and could contribute to the development and maintenance of malignant phenotypes. Increasing evidence implicating steroid hormone receptors and their coregulators in various pathophysiologic conditions has elicited interest in their structure and biology. Further advances in this field of study should open up a unique window for novel targeted therapies for diseases such as cancer. Here we briefly review the clinical relevance of corepressors, with a particular focus on their role in the development of cancerous phenotypes.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|