1
|
Sugiura Y, Kinoshita Y, Usui M, Tanaka R, Matsushita T, Miyata M. The Suppressive Effect of a Marine Carotenoid, Fucoxanthin, on Mouse Ear Swelling through Regulation of Activities and mRNA Expression of Inflammation-associated Enzymes. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2016. [DOI: 10.3136/fstr.22.227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yoshimasa Sugiura
- The Laboratory of Food Function and Food Biochemistry, Department of Food Science and Technology, National Fisheries University
| | - Yuichi Kinoshita
- The Laboratory of Food Function and Food Biochemistry, Department of Food Science and Technology, National Fisheries University
| | - Masakatsu Usui
- The Laboratory of Food Function and Food Biochemistry, Department of Food Science and Technology, National Fisheries University
| | - Ryusuke Tanaka
- The Laboratory of Food Function and Food Biochemistry, Department of Food Science and Technology, National Fisheries University
| | - Teruo Matsushita
- The Laboratory of Food Function and Food Biochemistry, Department of Food Science and Technology, National Fisheries University
| | - Masaaki Miyata
- The Laboratory of Food Function and Food Biochemistry, Department of Food Science and Technology, National Fisheries University
| |
Collapse
|
2
|
Murakami M, Taketomi Y, Miki Y, Sato H, Hirabayashi T, Yamamoto K. Recent progress in phospholipase A₂ research: from cells to animals to humans. Prog Lipid Res 2010; 50:152-92. [PMID: 21185866 DOI: 10.1016/j.plipres.2010.12.001] [Citation(s) in RCA: 368] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian genomes encode genes for more than 30 phospholipase A₂s (PLA₂s) or related enzymes, which are subdivided into several classes including low-molecular-weight secreted PLA₂s (sPLA₂s), Ca²+-dependent cytosolic PLA₂s (cPLA₂s), Ca²+-independent PLA₂s (iPLA₂s), platelet-activating factor acetylhydrolases (PAF-AHs), lysosomal PLA₂s, and a recently identified adipose-specific PLA. Of these, the intracellular cPLA₂ and iPLA₂ families and the extracellular sPLA₂ family are recognized as the "big three". From a general viewpoint, cPLA₂α (the prototypic cPLA₂ plays a major role in the initiation of arachidonic acid metabolism, the iPLA₂ family contributes to membrane homeostasis and energy metabolism, and the sPLA₂ family affects various biological events by modulating the extracellular phospholipid milieus. The cPLA₂ family evolved along with eicosanoid receptors when vertebrates first appeared, whereas the diverse branching of the iPLA₂ and sPLA₂ families during earlier eukaryote development suggests that they play fundamental roles in life-related processes. During the past decade, data concerning the unexplored roles of various PLA₂ enzymes in pathophysiology have emerged on the basis of studies using knockout and transgenic mice, the use of specific inhibitors, and information obtained from analysis of human diseases caused by mutations in PLA₂ genes. This review focuses on current understanding of the emerging biological functions of PLA₂s and related enzymes.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | | | | | | | | | |
Collapse
|
3
|
Kim JI, Jin JK, Choi EK, Spinner D, Rubenstein R, Carp RI, Kim YS. Increased expression and localization of cyclooxygenase-2 in astrocytes of scrapie-infected mice. J Neuroimmunol 2007; 187:74-82. [PMID: 17524497 DOI: 10.1016/j.jneuroim.2007.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 04/10/2007] [Indexed: 02/02/2023]
Abstract
A number of aspects of the pathogenesis of scrapie, the archetype disease of the transmissible spongiform encephalopathies (prion disorders), remain to be elucidated. There is increasing evidence that there are cerebral based inflammatory processes that may contribute to the pathogenesis and to the progression of a number of neurodegenerative disorders, including prion diseases. In peripheral tissues, a key element that controls the generation of proinflammatory mediators is the highly inducible protein cyclooxygenase-2 (COX-2). In this study, in order to examine the possible association of COX-2 with the pathogenesis of scrapie, we analyzed the expression level and the cellular localization of COX-2 in the brains of control and scrapie-infected mice. The COX-2 mRNA and protein levels were increased significantly compared to the control group of mice. By immunohistological analysis, intense immunoreactivity of COX-2 was localized primarily in reactive astrocytes, with virtually no staining in sections from control mice. The staining for COX-2 was co-localized with the pathological form of the prion protein (PrP(Sc)) and with nuclear factor-kappa B (NF-kappaB). These results suggest that the upregulation of COX-2 expression in astrocytes may be related to the accumulation of PrP(Sc), and that COX-2 may then lead to the progression of scrapie, possibly by propagation of a cerebral inflammatory response.
Collapse
Affiliation(s)
- Jae-Il Kim
- New York State Institute for Basic Research, Staten Island, New York, USA.
| | | | | | | | | | | | | |
Collapse
|
4
|
Wijewickrama GT, Kim JH, Kim YJ, Abraham A, Oh Y, Ananthanarayanan B, Kwatia M, Ackerman SJ, Cho W. Systematic Evaluation of Transcellular Activities of Secretory Phospholipases A2. J Biol Chem 2006; 281:10935-44. [PMID: 16476735 DOI: 10.1074/jbc.m512657200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanisms by which secretory phospholipase A2 (PLA2) exerts cellular effects are not fully understood. To elucidate these mechanisms, we systematically and quantitatively assessed the activities of human group IIA, V, and X PLA2s on originating and neighboring cells using orthogonal fluorogenic substrates in various mixed cell systems. When HEK293 cells stably expressing each of these PLA2s were mixed with non-transfected HEK293 cells, group V and X PLA2s showed strong transcellular lipolytic activity, whereas group IIA PLA2 exhibited much lower transcellular activity. The transcellular activity of group V PLA2 was highly dependent on the presence of cell surface heparan sulfate proteoglycans of acceptor cells. Activation of RBL-2H3 and DLD-1 cells that express endogenous group V PLA2 led to the secretion of group V PLA2 and its transcellular action on neighboring human neutrophils and eosinophils, respectively. Similarly, activation of human bronchial epithelial cells, BEAS-2B, caused large increases in arachidonic acid and leukotriene C4 release from neighboring human eosinophils. Collectively, these studies show that group V and X PLA2s can act transcellularly on mammalian cells and suggest that group V PLA2 released from neighboring cells may function in triggering the activation of inflammatory cells under physiological conditions.
Collapse
|
5
|
Itoh Y, Sendo T, Yano T, Saito M, Kubota T, Oishi R. Comparison of cellular mechanisms underlying histamine release from rat mast cells induced by ionic and nonionic radiographic contrast media. Invest Radiol 2004; 39:455-61. [PMID: 15257206 DOI: 10.1097/01.rli.0000128656.13658.60] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To determine the cellular mechanisms underlying mast cell histamine release induced by ionic and nonionic radiographic contrast media. MATERIALS AND METHODS Histamine release from rat pulmonary mast cells was measured after incubation with various radiographic contrast media. The cellular cAMP content was determined by an enzymatic immunoassay. RESULTS Both ionic and nonionic contrast media stimulated the histamine release, although the former was more potent than the latter. Dibutyryl cAMP suppressed histamine release evoked by ionic but not nonionic contrast media in a manner dependent on A kinase. The cellular cAMP content was lowered only by ionic contrast media. However, a secretory phospholipase A2 inhibitor p-bromophenacyl bromide inhibited both ionic and nonionic contrast media-evoked histamine releases. CONCLUSION We demonstrated for the first time the difference and similarity in the cellular mechanisms underlying histamine release induced by ionic and nonionic contrast media, in which the reduction in cAMP was specific for ionic materials and the activation of secretory phospholipase A2 may be common to both agents.
Collapse
Affiliation(s)
- Yoshinori Itoh
- Department of Hospital Pharmacy, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
6
|
Capper EA, Marshall LA. Mammalian phospholipases A(2): mediators of inflammation, proliferation and apoptosis. Prog Lipid Res 2001; 40:167-97. [PMID: 11275266 DOI: 10.1016/s0163-7827(01)00002-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- E A Capper
- SmithKline Beecham Pharmaceuticals, Department of Immunology, Upper Merion, 709 Swedeland Road, King of Prussia, PA 19406, USA.
| | | |
Collapse
|
7
|
Enomoto A, Murakami M, Valentin E, Lambeau G, Gelb MH, Kudo I. Redundant and segregated functions of granule-associated heparin-binding group II subfamily of secretory phospholipases A2 in the regulation of degranulation and prostaglandin D2 synthesis in mast cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4007-14. [PMID: 11034411 DOI: 10.4049/jimmunol.165.7.4007] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We herein demonstrate that mast cells express all known members of the group II subfamily of secretory phospholipase A2 (sPLA2) isozymes, and those having heparin affinity markedly enhance the exocytotic response. Rat mastocytoma RBL-2H3 cells transfected with heparin-binding (sPLA2-IIA, -V, and -IID), but not heparin-nonbinding (sPLA2-IIC), enzymes released more granule-associated markers (beta-hexosaminidase and histamine) than mock- or cytosolic PLA2alpha (cPLA2alpha)-transfected cells after stimulation with IgE and Ag. Site-directed mutagenesis of sPLA2-IIA and -V revealed that both the catalytic and heparin-binding domains are essential for this function. Confocal laser and electron microscopic analyses revealed that sPLA2-IIA, which was stored in secretory granules in unstimulated cells, accumulated on the membranous sites where fusion between the plasma membrane and granule membranes occurred in activated cells. These results suggest that the heparin-binding sPLA2s bind to the perigranular membranes through their heparin-binding domain, and lysophospholipids produced in situ by their enzymatic action may facilitate the ongoing membrane fusion. In contrast to the redundant role of sPLA2-IIA, -IID, and -V in the regulation of degranulation, only sPLA2-V had the ability to markedly augment IgE/Ag-stimulated immediate PGD2 production, which reached a level comparable to that elicited by cPLA2alpha. The latter observation reveals an unexplored functional segregation among the three related isozymes expressed in the same cell population.
Collapse
Affiliation(s)
- A Enomoto
- Department of Health Chemistry, Showa University School of Pharmaceutical Sciences, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Murakami M, Tada K, Nakajima K, Kudo I. Regulation of prostaglandin, leukotriene, and platelet-activating factor metabolism in mast cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 469:37-42. [PMID: 10667307 DOI: 10.1007/978-1-4615-4793-8_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- M Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan
| | | | | | | |
Collapse
|
9
|
Shimbara S, Murakami M, Kambe T, Kudo I. Comparison of recombinant types IIA, V and IIC phospholipase A2S, the three related mammalian secretory phospholipase A2 isozymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 469:209-14. [PMID: 10667332 DOI: 10.1007/978-1-4615-4793-8_31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- S Shimbara
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan
| | | | | | | |
Collapse
|
10
|
Bingham CO, Austen KF. Phospholipase A2 enzymes in eicosanoid generation. PROCEEDINGS OF THE ASSOCIATION OF AMERICAN PHYSICIANS 1999; 111:516-24. [PMID: 10591080 DOI: 10.1046/j.1525-1381.1999.99321.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phospholipase A2 (PLA2) enzymes cleave esterified fatty acids from membrane glycerophospholipids. The 20-carbon polyunsaturated fatty acid, arachidonic acid, is used as substrate by intermediate enzymes for the generation of eicosanoids, including leukotrienes and prostanoid products. An expanding number of PLA2 enzymes has now been identified that may participate in arachidonic acid release and thus serve a rate-limiting role in eicosanoid biosynthesis. Cellular PLA2 function for various members is regulated by constitutive or elicited expression, as well as by posttranslational events such as phosphorylation. In addition, the function of some cellular PLA2 enzymes is regulated by a requirement for calcium or by localization to a particular subcellular compartment. Finally, some PLA2 enzymes are secreted from the cell where they may directly interact with plasma membrane or transmembrane receptors to function as autocrine or paracrine mediators. Evaluating the roles of a number of these functionally similar PLA2 enzymes in the biosynthesis of leukotrienes and other eicosanoids is the focus of this review.
Collapse
Affiliation(s)
- C O Bingham
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
11
|
Murakami M, Kambe T, Shimbara S, Higashino K, Hanasaki K, Arita H, Horiguchi M, Arita M, Arai H, Inoue K, Kudo I. Different functional aspects of the group II subfamily (Types IIA and V) and type X secretory phospholipase A(2)s in regulating arachidonic acid release and prostaglandin generation. Implications of cyclooxygenase-2 induction and phospholipid scramblase-mediated cellular membrane perturbation. J Biol Chem 1999; 274:31435-44. [PMID: 10531345 DOI: 10.1074/jbc.274.44.31435] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently reported that members of the heparin-binding group II subfamily of secretory PLA(2)s (sPLA(2)s) (types IIA and V), when transfected into 293 cells, released [(3)H]arachidonic acid (AA) preferentially in response to interleukin-1 (IL-1) and acted as "signaling" PLA(2)s that were functionally coupled with prostaglandin biosynthesis. Here we show that these group II subfamily sPLA(2)s and the type X sPLA(2) behave in a different manner, the former being more efficiently coupled with the prostaglandin-biosynthetic pathway than the latter, in 293 transfectants. Type X sPLA(2), which bound only minimally to cell surface proteoglycans, augmented the release of both [(3)H]AA and [(3)H]oleic acid in the presence of serum but not IL-1. Both types IIA and V sPLA(2), the AA released by which was efficiently converted to prostaglandin E(2), markedly augmented IL-1-induced expression of cyclooxygenase (COX)-2 in a heparin-sensitive fashion, whereas type X sPLA(2) lacked the ability to augment COX-2 expression, thereby exhibiting the poor prostaglandin E(2)-biosynthetic response unless either of the COX isozymes was forcibly introduced into type X sPLA(2)-expressing cells. Implication of phospholipid scramblase, an enzyme responsible for the perturbation of plasma membrane asymmetry, revealed that the scramblase-transfected cells became more sensitive to types IIA and V, but not X, sPLA(2), releasing both [(3)H]AA and [(3)H]oleic acid in an IL-1-independent manner. Thus, although phospholipid scramblase-mediated alteration in plasma membrane asymmetry actually led to the increased cellular susceptibility to the group II subfamily of sPLA(2)s, several lines of evidence suggest that it does not entirely mimic their actions on cells after IL-1 signaling. Interestingly, coexpression of type IIA or V, but not X, sPLA(2) and phospholipid scramblase resulted in a marked reduction in cell growth, revealing an unexplored antiproliferative aspect of particular classes of sPLA(2).
Collapse
Affiliation(s)
- M Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bingham CO, Fijneman RJ, Friend DS, Goddeau RP, Rogers RA, Austen KF, Arm JP. Low molecular weight group IIA and group V phospholipase A(2) enzymes have different intracellular locations in mouse bone marrow-derived mast cells. J Biol Chem 1999; 274:31476-84. [PMID: 10531350 DOI: 10.1074/jbc.274.44.31476] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The subcellular location of the enzymes of eicosanoid biosynthesis is critical for their co-ordinate action in the generation of leukotrienes and prostaglandins. This activity is thought to occur predominantly at a perinuclear location. Whereas the subcellular locations of cytosolic phospholipase (PL) A(2) and each of the pathway enzymes of eicosanoid generation have been defined, the distribution of the low molecular weight species of PLA(2) has remained elusive because of the lack of antibodies that distinguish among homologous family members. We have prepared affinity-purified rabbit antipeptide IgG antibodies that distinguish mouse group IIA PLA(2) and group V PLA(2). Immunofluorescence staining and immunogold electron microscopy reveal different subcellular locations for the enzymes. Group IIA(2) PLA(2) is present in the secretory granules of mouse bone marrow-derived mast cells, consistent with its putative role in facilitating secretory granule exocytosis and its consequent extracellular action. In contrast, group V PLA(2) is associated with various membranous organelles including the Golgi apparatus, nuclear envelope, and plasma membrane. The perinuclear location of group V PLA(2) is consistent with a putative interaction with translocated cytosolic PLA(2) in supplying arachidonic acid for generation of eicosanoid products, while the location in Golgi cisternae may also reflect its action as a secreted enzyme. The spatial segregation of group IIA PLA(2) and group V PLA(2) implies that these enzymes are not functionally redundant.
Collapse
Affiliation(s)
- C O Bingham
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Sawada H, Murakami M, Enomoto A, Shimbara S, Kudo I. Regulation of type V phospholipase A2 expression and function by proinflammatory stimuli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:826-35. [PMID: 10469147 DOI: 10.1046/j.1432-1327.1999.00565.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Types IIA and V secretory phospholipase A2 (sPLA2) are structurally related to each other and their genes are tightly linked to the same chromosome locus. An emerging body of evidence suggests that sPLA2-IIA plays an augmentative role in long-term prostaglandin (PG) generation in cells activated by proinflammatory stimuli; however, the mechanism underlying the functional regulation of sPLA2-V remains largely unknown. Here we show that sPLA2-V is more widely expressed than sPLA2-IIA in the mouse, in which its expression is elevated by proinflammatory stimuli such as lipopolysaccharide. In contrast, proinflammatory stimuli induced sPLA2-IIA in marked preference to sPLA2-V in the rat. Cotransfection of sPLA2-V with cyclooxygenase (COX)-2, but not with COX-1, into human embryonic kidney 293 cells dramatically increased the interleukin-1-dependent PGE2 generation occurring over a 24 h of culture period. Rat mastocytoma RBL-2H3 cells overexpressing sPLA2-V exhibited increased IgE-dependent PGD2 generation and accelerated beta-hexosaminidase exocytosis. These results suggest that sPLA2-V acts as a regulator of inflammation-associated cellular responses. This possible compensation of sPLA2-V for sPLA2-IIA in many, if not all, tissues may also explain why some mouse strains with natural disruption of the sPLA2-IIA gene exhibit few abnormalities during their life-spans.
Collapse
Affiliation(s)
- H Sawada
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
14
|
Janssen MJ, Verheij HM, Slotboom AJ, Egmond MR. Engineering the disulphide bond patterns of secretory phospholipases A2 into porcine pancreatic isozyme. The effects on folding, stability and enzymatic properties. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:197-207. [PMID: 10103051 DOI: 10.1046/j.1432-1327.1999.00256.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Secretory phospholipases A2 (PLA2s) are small homologous proteins rich in disulphide bridges. These PLA2s have been classified into several groups based on the disulphide bond patterns found [Dennis, E. A. (1997) Trends Biochem. Sci. 22, 1-2]. To probe the effect of the various disulphide bond patterns on folding, stability and enzymatic properties, analogues of the secretory PLA2s were produced by protein engineering of porcine pancreatic PLA2. Refolding experiments indicate that small structural variations play an important role in the folding of newly made PLA2 analogues. Introduction of a C-terminal extension together with disulphide bridge 50-131 gives rise to an enzyme that displays full enzymatic activity having increased conformational stability. In contrast, introduction of a small insertion between positions 88 and 89 together with disulphide bridge 86-89 decreases the catalytic activity significantly, but does not change the stability. Both disulphide bridges 11-77 and 61-91 are important for the kinetic properties and stability of the enzyme. Disulphide bridge 11-77, but not 61-91, was found to be essential to resist tryptic breakdown of native porcine pancreatic PLA2.
Collapse
Affiliation(s)
- M J Janssen
- Department of Enzymology and Protein Engineering (CBLE, Instute of Biomembranes), Faculty of Chemistry, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
15
|
Zaitsu M, Hamasaki Y, Yamamoto S, Kita M, Hayasaki R, Muro E, Kobayashi I, Matsuo M, Ichimaru T, Miyazaki S. Effect of dexamethasone on leukotriene synthesis in DMSO-stimulated HL-60 cells. Prostaglandins Leukot Essent Fatty Acids 1998; 59:385-93. [PMID: 10102384 DOI: 10.1016/s0952-3278(98)90100-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human leukemia (HL) 60 cells were differentiated by dimethylsulfoxide (DMSO) treatment to granulocyte-like cells, leukotriene (LT) synthesizing activity of which was increased in response to the differentiation of the cells. Four synthesizing enzymes, cytosolic phospholipase A2 (cPLA2), 5-lipoxygenase (5-LO), LTA4 hydrolase and LTC4 synthase, and an enzyme associated protein, 5-lipoxygenase activating protein (FLAP) are involved in the generation of LTC4 and LTB4. We examined the expression of messenger RNA (mRNA) for these LT synthesizing enzymes and an associated protein in DMSO differentiated HL-60 cells by reverse transcriptase polymerase chain reaction (RT-PCR). The production of LTC4 and LTB4, measured by radioimmunoassay (RIA), was increased after the incubation with DMSO for more than 3 days. Messenger RNA abundance for 5-LO, LTC4 synthase and LTA4 hydrolase was increased, that for FLAP was stable, but that for cPLA2 was decreased. These results indicate that DMSO induced increase of LT synthesis is associated with the increase of mRNA expression of 5-LO, LTC4 synthase and LTA4 hydrolase, although the precise regulatory mechanisms of the increased mRNA expression are not determined. We also investigated an action of dexamethasone (DEX) on DMSO-induced enhancement of LT synthesis. DEX suppressed DMSO induced increase of LTC4 synthesis, but rather enhanced DMSO induced LTB4 production. The DEX attenuated the DMSO-induced increase of mRNA expression for LTC4 synthase, but showed no effect on that for LTA4 hydrolase. The inhibition of LTC4 synthesis is associated with the suppression of mRNA expression for LTC4 synthase. However, increased LTB4 synthesis by DEX is regulated by the mechanisms which are independent from mRNA level of LTA4 hydrolase.
Collapse
Affiliation(s)
- M Zaitsu
- Department of Pediatrics, Saga Medical School, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tada K, Murakami M, Kambe T, Kudo I. Induction of Cyclooxygenase-2 by Secretory Phospholipases A2 in Nerve Growth Factor-Stimulated Rat Serosal Mast Cells Is Facilitated by Interaction with Fibroblasts and Mediated by a Mechanism Independent of Their Enzymatic Functions. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.9.5008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Mast cells exhibit a biphasic (immediate and delayed) eicosanoid-biosynthetic response after stimulation with particular cytokines or FcεRI (high affinity receptor for IgE) cross-linking. Treatment of rat serosal connective tissue mast cells (CTMC) with nerve growth factor (NGF) induced only the delayed phase of PGD2 generation that depended on inducible cyclooxygenase-2 (COX-2), but not constitutive COX-1, even though the subcellular distributions of these isoforms were similar. Experiments using several phospholipase A2 (PLA2) isozyme-specific probes and inhibitors suggested that both constitutive cytosolic PLA2 and inducible type IIA secretory PLA2 (sPLA2) are involved in NGF-initiated, COX-2-dependent, delayed PGD2 generation in rat CTMC. A type IIA sPLA2 inhibitor, but neither cytosolic PLA2 nor COX inhibitors, reduced, while adding exogenous type IIA sPLA2 augmented, NGF-induced COX-2 expression and its attendant PGD2 generation, indicating that the sPLA2-mediated increase in delayed PGD2 generation was attributable mainly to enhanced COX-2 expression. Type IIA sPLA2 and its close relative type V sPLA2 associated with fibroblastic cell surfaces increased NGF-induced COX-2 expression more efficiently than the soluble enzymes, revealing a particular juxtacrine sPLA2 presentation route. Surprisingly, catalytically inactive type IIA sPLA2 mutants, which were incapable of promoting arachidonic acid release from cytokine-primed cells, retained the ability to enhance COX-2 expression in CTMC, indicating that the COX-2-inducing activities of sPLA2 are independent of their catalytic functions.
Collapse
Affiliation(s)
- Kinji Tada
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Makoto Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Terumi Kambe
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Ichiro Kudo
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, Hatanodai, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
17
|
Fonteh AN, Samet JM, Surette M, Reed W, Chilton FH. Mechanisms that account for the selective release of arachidonic acid from intact cells by secretory phospholipase A2. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1393:253-66. [PMID: 9748613 DOI: 10.1016/s0005-2760(98)00079-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The current study examined mechanisms that account for the selective release of arachidonic acid (AA) from cells by secretory phospholipase A2 (sPLA2). Initial studies demonstrated that low concentrations of group I and group III PLA2 isotypes and an sPLA2-enriched extract from bone marrow-derived mast cells (BMMC) selectively released AA from mast cells. Much higher concentrations of group II PLA2 were required to release comparable quantities of AA. Group I PLA2 also selectively released AA from another mast cell line (CFTL-15) and a monocytic cell line (THP-1). In contrast, high concentrations of group I PLA2 were required to release fatty acids from a promyelocytic cell line (HL-60) and this release was not selective for AA. Binding studies revealed that cell types (BMMC, CFTL-15 and THP-1) which selectively released AA also had the capacity to specifically bind group I PLA2. However, group II PLA2, which did not selectively release AA from cells, also did not specifically bind to these same cell types. Additional studies revealed that sPLA2 binding to the mast cell receptor was attenuated after stimulation with antigen or ionophore A23187. Reverse transcriptase-polymerase chain reaction analyses indicated the presence of mRNA for the sPLA2 receptor in BMMC, CFTL-15 and THP-1 and the absence of this mRNA in HL-60. Final studies demonstrated that p-aminophenyl-alpha-D-mannopyranoside BSA, a known ligand of the sPLA2 receptor, also selectively released AA from mast cells but not from HL-60 cells. These experiments indicated that receptor occupancy alone (without PLA2 activity) is sufficient to induce the release of AA from mast cells. Together, these data reveal that specific isotypes of sPLA2 have the capacity to selectively release AA from certain cells by their capacity to bind to sPLA2 receptors on the cell surface.
Collapse
Affiliation(s)
- A N Fonteh
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | | | |
Collapse
|