1
|
Zhong X, Peddada N, Wang J, Moresco JJ, Zhan X, Shelton JM, SoRelle JA, Keller K, Lazaro DR, Moresco EMY, Choi JH, Beutler B. OVOL2 sustains postnatal thymic epithelial cell identity. Nat Commun 2023; 14:7786. [PMID: 38012144 PMCID: PMC10682436 DOI: 10.1038/s41467-023-43456-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Distinct pathways and molecules may support embryonic versus postnatal thymic epithelial cell (TEC) development and maintenance. Here, we identify a mechanism by which TEC numbers and function are maintained postnatally. A viable missense allele (C120Y) of Ovol2, expressed ubiquitously or specifically in TECs, results in lymphopenia, in which T cell development is compromised by loss of medullary TECs and dysfunction of cortical TECs. We show that the epithelial identity of TECs is aberrantly subverted towards a mesenchymal state in OVOL2-deficient mice. We demonstrate that OVOL2 inhibits the epigenetic regulatory BRAF-HDAC complex, specifically disrupting RCOR1-LSD1 interaction. This causes inhibition of LSD1-mediated H3K4me2 demethylation, resulting in chromatin accessibility and transcriptional activation of epithelial genes. Thus, OVOL2 controls the epigenetic landscape of TECs to enforce TEC identity. The identification of a non-redundant postnatal mechanism for TEC maintenance offers an entry point to understanding thymic involution, which normally begins in early adulthood.
Collapse
Affiliation(s)
- Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Nagesh Peddada
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - James J Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Xiaowei Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
- Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8821, USA
| | - John M Shelton
- Intermal Medicine-Histopathology Core, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Jeffrey A SoRelle
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9072, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9063, USA
| | - Katie Keller
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Danielle Renee Lazaro
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA.
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA.
| |
Collapse
|
2
|
Zhang Z, Jiang Y, Su L, Ludwig S, Zhang X, Tang M, Li X, Anderton P, Zhan X, Choi M, Russell J, Bu CH, Lyon S, Xu D, Hildebrand S, Scott L, Quan J, Simpson R, Sun Q, Qin B, Collie T, Tadesse M, Moresco EMY, Beutler B. Obesity caused by an OVOL2 mutation reveals dual roles of OVOL2 in promoting thermogenesis and limiting white adipogenesis. Cell Metab 2022; 34:1860-1874.e4. [PMID: 36228616 PMCID: PMC9633419 DOI: 10.1016/j.cmet.2022.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/30/2022] [Accepted: 09/17/2022] [Indexed: 01/11/2023]
Abstract
Using random germline mutagenesis in mice, we identified a viable hypomorphic allele (boh) of the transcription-factor-encoding gene Ovol2 that resulted in obesity, which initially developed with normal food intake and physical activity but decreased energy expenditure. Fat weight was dramatically increased, while lean weight was reduced in 12-week-old boh homozygous mice, culminating by 24 weeks in massive obesity, hepatosteatosis, insulin resistance, and diabetes. The Ovol2boh/boh genotype augmented obesity in Lepob/ob mice, and pair-feeding failed to normalize obesity in Ovol2boh/boh mice. OVOL2-deficient mice were extremely cold intolerant. OVOL2 is essential for brown/beige adipose tissue-mediated thermogenesis. In white adipose tissues, OVOL2 limited adipogenesis by blocking C/EBPα engagement of its transcriptional targets. Overexpression of OVOL2 in adipocytes of mice fed with a high-fat diet reduced total body and liver fat and improved insulin sensitivity. Our data reveal that OVOL2 plays dual functions in thermogenesis and adipogenesis to maintain energy balance.
Collapse
Affiliation(s)
- Zhao Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Yiao Jiang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lijing Su
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xuechun Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Miao Tang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Priscilla Anderton
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mihwa Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jamie Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun-Hui Bu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stephen Lyon
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Darui Xu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara Hildebrand
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lindsay Scott
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiexia Quan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rochelle Simpson
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qihua Sun
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Baifang Qin
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tiffany Collie
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meron Tadesse
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Wu RS, Lin J, Xing YM, Gao WL, Jiang YX, Chen LX, Zhang XP, Dai ZL. OVOL2 inhibits macrophage M2 polarization by regulating IL-10 transcription, and thus inhibits the tumor metastasis by modulating the tumor microenvironment. Immunol Lett 2021; 242:17-26. [PMID: 34033850 DOI: 10.1016/j.imlet.2021.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/18/2021] [Accepted: 05/16/2021] [Indexed: 01/09/2023]
Abstract
Invasion and metastasis of breast cancer cells is an important cause of death in breast cancer patients. In the tumor microenvironment, M2 polarization of macrophages can promote the invasion and metastasis of tumor cells. OVOL2 is an evolutionarily conserved transcription regulator, but its effect in macrophages has not been described previously. The aim of this study was to investigate the effects of OVOL2 on macrophage polarity and the role of these effects in the tumor metastasis. We found that overexpression of OVOL2 in macrophages significantly inhibited M2 polarization and thus inhibits breast cancer metastasis. We propose a novel mechanism in which OVOL2 inhibits M2 polarization of macrophages and thus reduces their ability to induce invasion and metastasis of breast cancer. By shedding new light on the regulation of metastasis in cancers, our study provides a new strategy for the targeted therapy of cancer.
Collapse
Affiliation(s)
- Rong-Si Wu
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China; Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, 518020, Guangdong, China
| | - Juan Lin
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China; Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, 518020, Guangdong, China
| | - Yan-Mei Xing
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China; Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, 518020, Guangdong, China
| | - Wen-Li Gao
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China; Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, 518020, Guangdong, China
| | - Yuan-Xu Jiang
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China; Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, 518020, Guangdong, China
| | - Li-Xin Chen
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China.
| | - Xue-Ping Zhang
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China; Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, 518020, Guangdong, China.
| | - Zhong-Liang Dai
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China; Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
4
|
Zhang J, Dong J, Qin W, Cao C, Wen Y, Tang Y, Yuan S. Ovol2, a zinc finger transcription factor, is dispensable for spermatogenesis in mice. Reprod Biol Endocrinol 2019; 17:98. [PMID: 31759386 PMCID: PMC6875160 DOI: 10.1186/s12958-019-0542-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/12/2019] [Indexed: 11/23/2022] Open
Abstract
Ovol2, a mouse homolog of Drosophila ovo, was identified as a zinc finger transcription factor predominantly expressed in testis. However, the function of Ovol2 in postnatal male germ cell development remains enigmatic. Here, we firstly examined the mRNA and protein levels of Ovol2 in developing mouse testes by RT-qPCR and western blot and found that both mRNA and protein of Ovol2 are continually expressed in postnatal developing testes from postnatal day 0 (P0) testes to adult testes (P56) and exhibits its higher level at adult testis. Further testicular immuno-staining revealed that OVOL2 is highly expressed in the spermatogonia, spermatocytes and round spermatids. Interestingly, our conditional ovol2 knockout mouse model show that loss of ovol2 in embryonic germ cells does not affect fecundity in mice. Our data also show that Ovol1 may have compensated for the loss of Ovol2 functions in germ cells. Overall, our data indicate that ovol2 is dispensable for germ cell development and spermatogenesis.
Collapse
Affiliation(s)
- Jin Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Juan Dong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, People's Republic of China
| | - Congcong Cao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yunge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, People's Republic of China.
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, People's Republic of China.
| |
Collapse
|
5
|
Wu RS, Hong JJ, Wu JF, Yan S, Wu D, Liu N, Liu QF, Wu QW, Xie YY, Liu YJ, Zheng ZZ, Chan EC, Zhang ZM, Li BA. OVOL2 antagonizes TGF-β signaling to regulate epithelial to mesenchymal transition during mammary tumor metastasis. Oncotarget 2018; 8:39401-39416. [PMID: 28455959 PMCID: PMC5503621 DOI: 10.18632/oncotarget.17031] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/09/2017] [Indexed: 12/12/2022] Open
Abstract
Great progress has been achieved in the study of the role of TGF-β signaling in triggering epithelial-mesenchymal transition (EMT) in a variety of cancers; however, the regulation of TGF-β signaling during EMT in mammary tumor metastasis has not been completely defined. In the present study, we demonstrated that OVOL2, a zinc finger transcription factor, inhibits TGF-β signaling-induced EMT in mouse and human mammary tumor cells, as well as in mouse tumor models. Data from the Oncomine databases indicated a strong negative relationship between OVOL2 expression and breast cancer progression. Moreover, our experiments revealed that OVOL2 inhibits TGF-β signaling at multiple levels, including inhibiting Smad4 mRNA expression and inducing Smad7 mRNA expression, blocking the binding between Smad4 and target DNA, and interfering with complex formation between Smad4 and Smad2/3. These findings reveal a novel mechanism that controls the TGF-β signaling output level in vitro and in vivo. The modulation of these molecular processes may represent a strategy for inhibiting breast cancer invasion by restoring OVOL2 expression.
Collapse
Affiliation(s)
- Rong-Si Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,Engineering Research Center of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jing-Jing Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,Engineering Research Center of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jia-Fa Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Shen Yan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,Engineering Research Center of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Di Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,Engineering Research Center of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Na Liu
- The First Affiliated Hospital, Xiamen University, Xiamen, Fujian, China
| | - Qing-Feng Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,Engineering Research Center of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qiu-Wan Wu
- The First Affiliated Hospital, Xiamen University, Xiamen, Fujian, China
| | - Yuan-Yuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,Engineering Research Center of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yun-Jia Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,Engineering Research Center of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhong-Zheng Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,Engineering Research Center of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Err-Cheng Chan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Zhi-Ming Zhang
- The First Affiliated Hospital, Xiamen University, Xiamen, Fujian, China
| | - Bo-An Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,Engineering Research Center of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
6
|
Song KA, Faber AC. OVOL2 in metastasis prevention in NPC. Am J Cancer Res 2018; 8:2242-2244. [PMID: 29721076 PMCID: PMC5928884 DOI: 10.7150/thno.25181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 01/30/2018] [Indexed: 12/01/2022] Open
Abstract
Metastasis remains a critical - and largely elusive - target in the race to prevent cancer-related deaths. Such is true in nasopharyngeal carcinoma (NPC), where the presentation or development of metastatic disease is usually fatal. In this edition of Theranostics, Qi et al. demonstrate a critical role of the zinc-finger transcription factor, OVOL2, in suppressing metastasis and maintaining an epithelial phenotype. These data add to the depth of understanding of the metastatic program in NPC, and may eventually lead to a druggable target in late-stage NPC.
Collapse
|
7
|
Galindo-Torres P, García-Gasca A, Llera-Herrera R, Escobedo-Fregoso C, Abreu-Goodger C, Ibarra AM. Sex determination and differentiation genes in a functional hermaphrodite scallop, Nodipecten subnodosus. Mar Genomics 2017; 37:161-175. [PMID: 29239804 DOI: 10.1016/j.margen.2017.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/23/2017] [Accepted: 11/16/2017] [Indexed: 01/12/2023]
Abstract
The lion-paw, Nodipecten subnodosus is one of three scallop species commercially exploited on the west coast of the Peninsula of Baja California. Because nothing is known about sex determination and sexual differentiation in hermaphrodite scallops, in the present work, a global transcriptomic analysis was performed in two early developmental stages, settling eyed-larvae and spat, as well as in three tissues (undifferentiated gonad, digestive gland, and adductor muscle). Over 27 million Illumina paired-end reads were obtained through the MiSeq platform. After processing the reads a total of 243,774 transcripts were assembled with an N50 of 980 and an average length of 775nt. A total of 43,252 proteins were inferred and 36,103 transcripts had at least one homolog in the SwissProt database according to a blastx search. After differential expression analyses and GO annotations it was possible to identify several sex-related genes in the scallop, including one known to be involved in the sex determination pathway of the hermaphrodite model organism Caenorhabditis elegans, N. subnodosus-sex1 (Ns-sex1). Other interesting sex determination and differentiation genes were Ns-dmrta2, Ns-sox9, Ns-wnt4, Ns-doa, Ns-ovo, Ns-vir, among others. Most of these genes were mainly expressed in the testis region, suggesting their participation in male gonad region sex differentiation. These results represent the first available information on the genetics of sex determination and differentiation in a functional hermaphrodite scallop.
Collapse
Affiliation(s)
- Pavel Galindo-Torres
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Aquaculture Genetics and Breeding Laboratory, Ave. Instituto Politécnico Nacional No.195, La Paz, Baja California Sur 23096, Mexico.
| | - Alejandra García-Gasca
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD) Unidad Mazatlán, Av. Sábalo-Cerritos s/n, Estero del Yugo, Mazatlán, Sinaloa 82000, Mexico.
| | - Raúl Llera-Herrera
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD) Unidad Mazatlán, Av. Sábalo-Cerritos s/n, Estero del Yugo, Mazatlán, Sinaloa 82000, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACYT), Av. Insurgentes Sur 1582, Ciudad de México 03940, Mexico.
| | - Cristina Escobedo-Fregoso
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Aquaculture Genetics and Breeding Laboratory, Ave. Instituto Politécnico Nacional No.195, La Paz, Baja California Sur 23096, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACYT), Av. Insurgentes Sur 1582, Ciudad de México 03940, Mexico.
| | - Cei Abreu-Goodger
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y Estudios Avanzados del IPN (Cinvestav), Km 9.6 Libramiento Norte, Irapuato, Guanajuato 36824, Mexico.
| | - Ana M Ibarra
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Aquaculture Genetics and Breeding Laboratory, Ave. Instituto Politécnico Nacional No.195, La Paz, Baja California Sur 23096, Mexico.
| |
Collapse
|
8
|
Taniguchi H, Katano T, Nishida K, Yao I, Morimoto Y, Matsuda T, Ito S. Expression of hOvol2 in the XY body of human spermatocytes. Andrologia 2016; 49. [DOI: 10.1111/and.12599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2016] [Indexed: 11/30/2022] Open
Affiliation(s)
- H. Taniguchi
- Department of Medical Chemistry; Kansai Medical University; Hirakata Osaka Japan
- Department of Urology and Andrology; Kansai Medical University; Hirakata Osaka Japan
| | - T. Katano
- Department of Medical Chemistry; Kansai Medical University; Hirakata Osaka Japan
| | - K. Nishida
- Department of Medical Chemistry; Kansai Medical University; Hirakata Osaka Japan
| | - I. Yao
- Medical Photonics Research Center; Hamamatsu University School of Medicine; Hamamatsu Shizuoka Japan
| | | | - T. Matsuda
- Department of Urology and Andrology; Kansai Medical University; Hirakata Osaka Japan
| | - S. Ito
- Department of Medical Chemistry; Kansai Medical University; Hirakata Osaka Japan
| |
Collapse
|
9
|
Xue R, Hu X, Zhu L, Cao G, Huang M, Xue G, Song Z, Lu J, Chen X, Gong C. Comparative transcriptomic analysis of silkworm Bmovo-1 and wild type silkworm ovary. Sci Rep 2015; 5:17867. [PMID: 26643037 PMCID: PMC4672304 DOI: 10.1038/srep17867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/03/2015] [Indexed: 12/27/2022] Open
Abstract
The detailed molecular mechanism of Bmovo-1 regulation of ovary size is unclear. To uncover the mechanism of Bmovo-1 regulation of ovarian development and oogenesis using RNA-Seq, we compared the transcriptomes of wild type (WT) and Bmovo-1-overexpressing silkworm (silkworm(+Bmovo-1)) ovaries. Using a pair-end Illumina Solexa sequencing strategy, 5,296,942 total reads were obtained from silkworm(+Bmovo-1) ovaries and 6,306,078 from WT ovaries. The average read length was about 100 bp. Clean read ratios were 98.79% for silkworm(+Bmovo-1) and 98.87% for WT silkworm ovaries. Comparative transcriptome analysis showed 123 upregulated and 111 downregulated genes in silkworm(+Bmovo-1) ovaries. These differentially expressed genes were enriched in the extracellular and extracellular spaces and involved in metabolism, genetic information processing, environmental information processing, cellular processes and organismal systems. Bmovo-1 overexpression in silkworm ovaries might promote anabolism for ovarian development and oogenesis and oocyte proliferation and transport of nutrients to ovaries by altering nutrient partitioning, which would support ovary development. Excessive consumption of nutrients for ovary development alters nutrient partitioning and deters silk protein synthesis.
Collapse
Affiliation(s)
- Renyu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| | - Liyuan Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Guangli Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| | - Moli Huang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Gaoxu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Zuowei Song
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Jiayu Lu
- Suzhou Zhenhua Middle School, Suzhou 215006, China
| | - Xueying Chen
- Suzhou Zhenhua Middle School, Suzhou 215006, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| |
Collapse
|
10
|
Xue R, Hu X, Cao G, Huang M, Xue G, Qian Y, Song Z, Gong C. Bmovo-1 regulates ovary size in the silkworm, Bombyx mori. PLoS One 2014; 9:e104928. [PMID: 25119438 PMCID: PMC4132112 DOI: 10.1371/journal.pone.0104928] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/14/2014] [Indexed: 11/19/2022] Open
Abstract
The regulation of antagonistic OVO isoforms is critical for germline formation and differentiation in Drosophila. However, little is known about genes related to ovary development. In this study, we cloned the Bombyx mori ovo gene and investigated its four alternatively spliced isoforms. BmOVO-1, BmOVO-2 and BmOVO-3 all had four C2H2 type zinc fingers, but differed at the N-terminal ends, while BmOVO-4 had a single zinc finger. Bmovo-1, Bmovo-2 and Bmovo-4 showed the highest levels of mRNA in ovaries, while Bmovo-3 was primarily expressed in testes. The mRNA expression pattern suggested that Bmovo expression was related to ovary development. RNAi and transgenic techniques were used to analyze the biological function of Bmovo. The results showed that when the Bmovo gene was downregulated, oviposition number decreased. Upregulation of Bmovo-1 in the gonads of transgenic silkworms increased oviposition number and elevated the trehalose contents of hemolymph and ovaries. We concluded that Bmovo-1 was involved in protein synthesis, contributing to the development of ovaries and oviposition number in silkworms.
Collapse
Affiliation(s)
- Renyu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| | - Guangli Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| | - Moli Huang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
| | - Gaoxu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
| | - Ying Qian
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
| | - Zuowei Song
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| |
Collapse
|
11
|
Wells J, Lee B, Cai AQ, Karapetyan A, Lee WJ, Rugg E, Sinha S, Nie Q, Dai X. Ovol2 suppresses cell cycling and terminal differentiation of keratinocytes by directly repressing c-Myc and Notch1. J Biol Chem 2009; 284:29125-35. [PMID: 19700410 DOI: 10.1074/jbc.m109.008847] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ovol2 belongs to the Ovo family of evolutionarily conserved zinc finger transcription factors that act downstream of key developmental signaling pathways including Wg/Wnt and BMP/TGF-beta. We previously reported Ovol2 expression in the basal layer of epidermis, where epidermal stem/progenitor cells reside. In this work, we use HaCaT human keratinocytes to investigate the cellular and molecular functions of Ovol2. We show that depletion of Ovol2 leads to transient cell expansion but a loss of cells with long term proliferation potential. Mathematical modeling and experimental findings suggest that both faster cycling and precocious withdrawal from the cell cycle underlie this phenotype. Ovol2 depletion also accelerates extracellular signal-induced terminal differentiation in two- and three-dimensional culture models. By chromatin immunoprecipitation, luciferase reporter, and functional rescue assays, we demonstrate that Ovol2 directly represses two critical downstream targets, c-Myc and Notch1, thereby suppressing keratinocyte transient proliferation and terminal differentiation, respectively. These findings shed light on how an epidermal cell maintains a proliferation-competent and differentiation-resistant state.
Collapse
Affiliation(s)
- Julie Wells
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Unezaki S, Horai R, Sudo K, Iwakura Y, Ito S. Ovol2/Movo, a homologue of Drosophila ovo, is required for angiogenesis, heart formation and placental development in mice. Genes Cells 2007; 12:773-85. [PMID: 17573777 DOI: 10.1111/j.1365-2443.2007.01084.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The zinc-finger transcription factor Ovol2 (Movo, Movo2) is a mouse homologue of Drosophila ovo, which is essential for the survival and differentiation of female germ line cells. To elucidate OVOL2 function in mammals, we generated Ovol2-deficient mice by gene targeting. The Ovol2 mutants died at embryonic days 9.5-10.5 (E9.5-E10.5), as a result of defects in extraembryonic and embryonic vascularization, and in heart formation. Although the Ovol2 expression was weak, severe defects were detected in extraembryonic and embryonic vascularization, and in heart formation at E8.5-E9.5. In Ovol2(-/-) placentas, allantoic blood vessel expansion and development of the labyrinthine layer were impaired at E10.5. In an endothelial cell line, siRNAs for Ovol2 reduced the expression of Ovol2 and inhibited the capillary-like network formation on Matrigel in vitro. These results demonstrate that Ovol2 may play a critical role in vascular angiogenesis during early embryogenesis.
Collapse
Affiliation(s)
- Sawako Unezaki
- Department of Medical Chemistry, Kansai Medical University, Moriguchi, 570-8506, Japan
| | | | | | | | | |
Collapse
|
13
|
Li B, Nair M, Mackay DR, Bilanchone V, Hu M, Fallahi M, Song H, Dai Q, Cohen PE, Dai X. Ovol1 regulates meiotic pachytene progression during spermatogenesis by repressing Id2 expression. Development 2005; 132:1463-73. [PMID: 15716349 PMCID: PMC2898142 DOI: 10.1242/dev.01658] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies have shown that a targeted deletion of Ovol1 (previously known as movo1), encoding a member of the Ovo family of zinc-finger transcription factors, leads to germ cell degeneration and defective sperm production in adult mice. To explore the cellular and molecular mechanism of Ovol1 function, we have examined the mutant testis phenotype during the first wave of spermatogenesis in juvenile mice. Consistent with the detection of Ovol1 transcripts in pachytene spermatocytes of the meiotic prophase, Ovol1-deficient germ cells were defective in progressing through the pachytene stage. The pachytene arrest was accompanied by an inefficient exit from proliferation, increased apoptosis and an abnormal nuclear localization of the G2-M cell cycle regulator cyclin B1, but was not associated with apparent chromosomal or recombination defects. Transcriptional profiling and northern blot analysis revealed reduced expression of pachytene markers in the mutant, providing molecular evidence that pachytene differentiation was defective. In addition, the expression of Id2 (inhibitor of differentiation 2), a known regulator of spermatogenesis, was upregulated in Ovol1-deficient pachytene spermatocytes and repressed by Ovol1 in reporter assays. Taken together, our studies demonstrate a role for Ovol1 in regulating pachytene progression of male germ cells, and identify Id2 as a Ovol1 target.
Collapse
Affiliation(s)
- Baoan Li
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Mahalakshmi Nair
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
- Developmental Biology Center, University of California, Irvine, CA 92697, USA
| | - Douglas R. Mackay
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Virginia Bilanchone
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Ming Hu
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Magid Fallahi
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Hanqiu Song
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Qian Dai
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Paula E. Cohen
- Department of Biomedical Science, Cornell University, Ithaca, NY 14852, USA
| | - Xing Dai
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
- Developmental Biology Center, University of California, Irvine, CA 92697, USA
- Author for correspondence ()
| |
Collapse
|
14
|
Affiliation(s)
- Isabelle Delon
- Centre de Biologie du Développement, UMR 5547, CNRS/Université Paul Sabatier, Bâtiment 4R3, 118 Route de Narbonne, 31062 Toulouse Cedex 04, France
| | | |
Collapse
|
15
|
Unezaki S, Nishizawa M, Okuda-Ashitaka E, Masu Y, Mukai M, Kobayashi S, Sawamoto K, Okano H, Ito S. Characterization of the isoforms of MOVO zinc finger protein, a mouse homologue of Drosophila Ovo, as transcription factors. Gene 2004; 336:47-58. [PMID: 15225875 DOI: 10.1016/j.gene.2004.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 02/19/2004] [Accepted: 03/09/2004] [Indexed: 12/16/2022]
Abstract
We previously described two isoforms (MOVO-A and -B) of a novel zinc finger protein MOVO, a mouse homologue of Drosophila Ovo protein. Here, we isolated cDNA encoding the third isoform MOVO-C, which had a transactivation domain and zinc finger domain, but lacked an N-terminal potential repression domain that was present in MOVO-A. Three isoform mRNAs were expressed highly in mouse testis and also in the ovary at lower levels. The structural analyses of the isolated Movo gene and mRNAs demonstrated that three different Movo transcripts were differentially processed to generate three isoforms. Major mRNA species encoded MOVO-B with a zinc finger domain alone, and minor mRNA species encoded MOVO-A (potential repressor) and MOVO-C (potential activator). To assign MOVO to a transcriptional factor, we characterized DNA-binding and transactivation properties. Random oligonucleotide selection, electrophoretic mobility shift assay and footprinting indicated that MOVO bound to the sequence, 5'-G(G/C/T)GGGGG-3'. These motifs were found in the 5'-flanking regions of Movo and other testis-specific genes. Nuclear proteins binding to this motif were detected in mouse testis, and the expression of MOVO mRNA was restricted in spermatocytes. The luciferase assay demonstrated that MOVO-C activated Movo promoter and MOVO-A repressed it, but MOVO-B had no effects. Mutated MOVO-binding motifs in the Movo promoter reduced the luciferase activity. All the isoforms had no effects on SV40 promoter without MOVO-binding motifs. MOVO-A partially rescued oogenesis of a Drosophila ovo mutant. These results suggest that MOVO isoforms are transcription factors to regulate genes carrying the MOVO-binding motifs in the testis.
Collapse
Affiliation(s)
- Sawako Unezaki
- Department of Medical Chemistry, Kansai Medical University, 10-15 Fumizono, Moriguchi, Osaka 570-8506 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Khila A, El Haidani A, Vincent A, Payre F, Souda SI. The dual function of ovo/shavenbaby in germline and epidermis differentiation is conserved between Drosophila melanogaster and the olive fruit fly Bactrocera oleae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:691-699. [PMID: 12826096 DOI: 10.1016/s0965-1748(03)00063-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The olive fruit fly Bactrocera oleae (B. oleae) is a major olive damaging pest in the Mediterranean area. As a first molecular analysis of a developmental gene in this insect, we characterised the ovo/shavenbaby (ovo/svb) gene. In Drosophila, ovo/svb encodes a family of transcription regulators with two distinct functions: ovo is required for female germline differentiation and svb controls morphogenesis of epidermal cells. Here, we report the cloning and characterisation of ovo/svb in B. oleae, showing that the ovo genomic organisation and complex pattern of germline transcription have been conserved between distantly related Dipterae. We further show that B. oleae svb embryonic expression precisely prefigures the pattern of larval trichomes, supporting the conclusion that regulatory changes in svb transcription underlie evolutionary diversification of trichome patterns seen among Dipterae.
Collapse
Affiliation(s)
- Abderrahman Khila
- Laboratoire de Biotechnologie Végétale et Agro-Alimentaire, Faculté des Sciences et Techniques de Fès-Saïss, Université Sidi Mohammed Ben Abdellah, route de Imouzer, BP2202 Fès, Morocco
| | | | | | | | | |
Collapse
|
17
|
Li B, Dai Q, Li L, Nair M, Mackay DR, Dai X. Ovol2, a mammalian homolog of Drosophila ovo: gene structure, chromosomal mapping, and aberrant expression in blind-sterile mice. Genomics 2002; 80:319-25. [PMID: 12213202 PMCID: PMC2893385 DOI: 10.1006/geno.2002.6831] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The ovo gene family consists of evolutionarily conserved genes including those cloned from Caenorhabditis elegans, Drosophila melanogaster, mouse, and human. Here we report the isolation and characterization of mouse Ovol2 (also known as movol2 or movo2) and provide evidence supporting the existence of multiple Ovol2 transcripts. These transcripts are produced by alternative promoter usage and alternative splicing and encode long and short OVOL2 protein isoforms, whose sequences differ from those previously reported. Mouse and human OVOL2 genes are expressed in overlapping tissues including testis, where Ovol2 expression is developmentally regulated and correlates with the meiotic/postmeiotic stages of spermatogenesis. Mouse Ovol2 maps to chromosome 2 in a region containing blind-sterile (bs), a spontaneous mutation that causes spermatogenic defects and germ cell loss. No mutation has been detected in the coding region of Ovol2 from bs mice, but Ovol2 transcription was dramatically reduced in testes from these mice, suggesting that Ovol2 is expressed in male germ cells.
Collapse
Affiliation(s)
- Baoan Li
- Department of Biological Chemistry, University of California, Irvine, California 92697, USA
| | - Qian Dai
- Department of Biological Chemistry, University of California, Irvine, California 92697, USA
| | - Ling Li
- Department of Biological Chemistry, University of California, Irvine, California 92697, USA
| | - Mahalakshmi Nair
- Department of Biological Chemistry, University of California, Irvine, California 92697, USA
| | - Douglas R. Mackay
- Department of Biological Chemistry, University of California, Irvine, California 92697, USA
| | - Xing Dai
- Department of Biological Chemistry, University of California, Irvine, California 92697, USA
- Developmental Biology Center, University of California, Irvine, California 92697, USA
- To whom correspondence and reprint requests should be addressed. Fax: (949) 824-2688.
| |
Collapse
|
18
|
Salles C, Mével-Ninio M, Vincent A, Payre F. A germline-specific splicing generates an extended ovo protein isoform required for Drosophila oogenesis. Dev Biol 2002; 246:366-76. [PMID: 12051822 DOI: 10.1006/dbio.2002.0659] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most regulatory genes are employed multiple times to control different processes during development. The Drosophila Ovo/Shavenbaby (Svb) transcription factor is required both for germline and epidermal differentiation, two roles also found for its ortholog m-ovo1 in mice. In Drosophila, these two distinct functions are contributed by separate control regions directing the expression of Ovo/Svb in the germline (ovo) and soma (svb), respectively. We report here that alternative splicing represents an additional level of the regulation of Ovo/Svb functional specificity. Characterization of the ovo(D1rv23) mutation revealed that the intragenic insertion of a novel retrotransposon, romano, inactivates ovo without altering svb. We provide evidence that this insertion disrupts a germline-specific alternative exon, exon 2b, which encodes a 178-amino-acid internal extension (2B). While both isoforms, Ovo+2B and Ovo-2B, accumulate during oogenesis, only Ovo+2B is able to fulfill germinal ovo functions. Ovo-2B is unable, even when overexpressed, to fully rescue oogenic defects resulting from the absence of wild type ovo product. By contrast, either Ovo+2B or Ovo-2B germline protein can substitute for Svb in the epidermis. Our results emphasize the specific features of splicing in the germline, and reveal its functional importance for the control of ovo/svb-dependent ovarian and epidermal differentiation.
Collapse
Affiliation(s)
- Cathy Salles
- Centre de Biologie du Développement, UMR CNRS 5547, Toulouse, France, 31062 cedex 4
| | | | | | | |
Collapse
|
19
|
Li B, Mackay DR, Dai Q, Li TWH, Nair M, Fallahi M, Schonbaum CP, Fantes J, Mahowald AP, Waterman ML, Fuchs E, Dai X. The LEF1/beta -catenin complex activates movo1, a mouse homolog of Drosophila ovo required for epidermal appendage differentiation. Proc Natl Acad Sci U S A 2002; 99:6064-9. [PMID: 11983900 PMCID: PMC122902 DOI: 10.1073/pnas.092137099] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Drosophila ovo/svb (dovo) is required for epidermal cuticle/denticle differentiation and is genetically downstream of the wg signaling pathway. Similarly, a mouse homolog of dovo, movo1, is required for the proper formation of hair, a mammalian epidermal appendage. Here, we provide biochemical evidence that movo1 encodes a nuclear DNA binding protein (mOvo1a) that binds to DNA sequences similar to those that dOvo binds to, further supporting the notion that mOvo1a and dOvo are genetically and biochemically homologous proteins. Additionally, we show that the movo1 promoter is activated by the lymphoid enhancer factor 1 (LEF1)/beta-catenin complex, a transducer of wnt signaling. Collectively, our findings suggest that movo1 is a developmental target of wnt signaling during hair morphogenesis in mice, and that the wg/wnt-ovo link in epidermal appendage regulatory pathways has been conserved between mice and flies.
Collapse
Affiliation(s)
- Baoan Li
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lü J, Oliver B. Drosophila OVO regulates ovarian tumor transcription by binding unusually near the transcription start site. Development 2001; 128:1671-86. [PMID: 11290304 DOI: 10.1242/dev.128.9.1671] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Evolutionarily conserved ovo loci encode developmentally regulated, sequence-specific, DNA-binding, C(2)H(2)-zinc-finger proteins required in the germline and epidermal cells of flies and mice. The direct targets of OVO activity are not known. Genetic experiments suggest that ovo acts in the same regulatory network as ovarian tumor (otu), but the relative position of these genes in the pathway is controversial. Three OVO-binding sites exist in a compact regulatory region that controls germline expression of the otu gene. Interestingly, the strongest OVO-binding site is very near the otu transcription start, where basal transcriptional complexes must function. Loss-of-function, gain-of-function and promoter swapping constructs demonstrate that OVO binding near the transcription start site is required for OVO-dependent otu transcription in vivo. These data unambiguously identify otu as a direct OVO target gene and raise the tantalizing possibility that an OVO site, at the location normally occupied by basal components, functions as part of a specialized core promoter.
Collapse
Affiliation(s)
- J Lü
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892-2715, USA
| | | |
Collapse
|
21
|
Andrews J, Garcia-Estefania D, Delon I, Lü J, Mével-Ninio M, Spierer A, Payre F, Pauli D, Oliver B. OVO transcription factors function antagonistically in the Drosophila female germline. Development 2000; 127:881-92. [PMID: 10648246 DOI: 10.1242/dev.127.4.881] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OVO controls germline and epidermis differentiation in flies and mice. In the Drosophila germline, alternative OVO-B and OVO-A isoforms have a common DNA-binding domain, but different N-termini. We show that these isoforms are transcription factors with opposite regulatory activities. Using yeast one-hybrid assays, we identified a strong activation domain within a common region and a counteracting repression domain within the OVO-A-specific region. In flies, OVO-B positively regulated the ovarian tumor promoter, while OVO-A was a negative regulator of the ovarian tumor and ovo promoters. OVO-B isoforms supplied ovo(+) function in the female germline and epidermis, while OVO-A isoforms had dominant-negative activity in both tissues. Moreover, elevated expression of OVO-A resulted in maternal-effect lethality while the absence of OVO-A resulted in maternal-effect sterility. Our data indicate that tight regulation of antagonistic OVO-B and OVO-A isoforms is critical for germline formation and differentiation.
Collapse
Affiliation(s)
- J Andrews
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lee S, Garfinkel MD. Characterization of Drosophila OVO protein DNA binding specificity using random DNA oligomer selection suggests zinc finger degeneration. Nucleic Acids Res 2000; 28:826-34. [PMID: 10637336 PMCID: PMC102545 DOI: 10.1093/nar/28.3.826] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Drosophila melanogaster ovo locus codes for several tissue- and stage-specific proteins that all possess a common C-terminal array of four C(2)H(2)zinc fingers. Three fingers conform to the motif framework and are evolutionarily conserved; the fourth diverges considerably. The ovo genetic function affects germ cell viability, sex identity and oogenesis, while the overlapping svb function is a key selector for epidermal structures under the control of wnt and EGF receptor signaling. We isolated synthetic DNA oligomers bound by the OVO zinc finger array from a high complexity starting population and derived a statistically significant 9 bp long DNA consensus sequence, which is nearly identical to a consensus derived from several Drosophila genes known or suspected of being regulated by the ovo function in vivo. The DNA consensus recognized by Drosophila OVO protein is atypical for zinc finger proteins in that it does not conform to many of the 'rules' for the interaction of amino acid contact residues and DNA bases. Additionally, our results suggest that only three of the OVO zinc fingers contribute to DNA-binding specificity.
Collapse
Affiliation(s)
- S Lee
- Division of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| | | |
Collapse
|
23
|
Dai X, Schonbaum C, Degenstein L, Bai W, Mahowald A, Fuchs E. The ovo gene required for cuticle formation and oogenesis in flies is involved in hair formation and spermatogenesis in mice. Genes Dev 1998; 12:3452-63. [PMID: 9808631 PMCID: PMC317232 DOI: 10.1101/gad.12.21.3452] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/1998] [Accepted: 09/09/1998] [Indexed: 11/24/2022]
Abstract
The Drosophila svb/ovo gene gives rise to differentially expressed transcripts encoding a zinc finger protein. svb/ovo has two distinct genetic functions: shavenbaby (svb) is required for proper formation of extracellular projections that are produced by certain epidermal cells in late-stage differentiation; ovo is required for survival and differentiation of female germ cells. We cloned a mouse gene, movo1 encoding a nuclear transcription factor that is highly similar to its fly counterpart in its zinc-finger sequences. In mice, the gene is expressed in skin, where it localizes to the differentiating cells of epidermis and hair follicles, and in testes, where it is present in spermatocytes and spermatids. Using gene targeting, we show that movo1 is required for proper development of both hair and sperm. movo1(-/-) mice are small, produce aberrant hairs, and display hypogenitalism, with a reduced ability to reproduce. These mice also develop abnormalities in kidney, where movo1 is also expressed. Our findings reveal remarkable parallels between mice and flies in epidermal appendage formation and in germ-cell maturation. Furthermore, they uncover a phenotype similar to that of Bardet-Biedl syndrome, a human disorder that maps to the same locus as human ovo1.
Collapse
Affiliation(s)
- X Dai
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637 USA
| | | | | | | | | | | |
Collapse
|