1
|
Abstract
Centromeric proteins are the foundation for assembling the kinetochore, a macromolecular complex that is essential for accurate chromosome segregation during mitosis. Anti-centromere antibodies (ACAs) are polyclonal autoantibodies targeting centromeric proteins (CENP-A, CENP-B, CENP-C), predominantly CENP-B, and are highly associated with rheumatologic disease (lcSSc/CREST syndrome). CENP-B autoantibodies have also been reported in cancer patients without symptoms of rheumatologic disease. The rise of oncoimmunotherapy stimulates inquiry into how and why anti-CENP-B autoantibodies are formed. In this review, we describe the clinical correlations between anti-CENP-B autoantibodies, rheumatologic disease, and cancer; the molecular features of CENP-B; possible explanations for autoantigenicity; and, finally, a possible mechanism for induction of autoantibody formation.
Collapse
|
2
|
Liu X, Wang H, Zhao G. Centromere Protein A Goes Far Beyond the Centromere in Cancers. Mol Cancer Res 2021; 20:3-10. [PMID: 34465586 DOI: 10.1158/1541-7786.mcr-21-0311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/05/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022]
Abstract
Centromere dysfunctions leading to numerical chromosome alterations are believed to be closely related to human cancers. As a centromere-specific protein, centromere protein A (CENP-A) replaces the histone H3 in centromeres and is therefore considered a key factor of centromere identity. Researches have shown that CENP-A is overexpressed in many types of human cancers. However, the behavior and function of CENP-A in tumorigenesis have not yet been systematically summarized. In this article, we describe the pleiotropic roles of CENP-A in human cells. Moreover, we provide a comprehensive review of the current knowledge on the relationship between aberrant expression and ectopic localization of CENP-A and tumorigenesis, and the mechanism of the ectopic deposition of CENP-A in cancers. Furthermore, we note that some oncogenic viruses can modulate the expression and localization of this centromere protein along with its chaperone. At last, we also discuss the therapeutic potential of targeting CENP-A for cancer therapy.
Collapse
Affiliation(s)
- Xiaolan Liu
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, Hubei, China. .,Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, China
| | - Haiping Wang
- School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Guojun Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Bergmann JH, Jakubsche JN, Martins NM, Kagansky A, Nakano M, Kimura H, Kelly DA, Turner BM, Masumoto H, Larionov V, Earnshaw WC. Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function. J Cell Sci 2012; 125:411-21. [PMID: 22331359 DOI: 10.1242/jcs.090639] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Human kinetochores are transcriptionally active, producing very low levels of transcripts of the underlying alpha-satellite DNA. However, it is not known whether kinetochores can tolerate acetylated chromatin and the levels of transcription that are characteristic of housekeeping genes, or whether kinetochore-associated 'centrochromatin', despite being transcribed at a low level, is essentially a form of repressive chromatin. Here, we have engineered two types of acetylated chromatin within the centromere of a synthetic human artificial chromosome. Tethering a minimal NF-κB p65 activation domain within kinetochore-associated chromatin produced chromatin with high levels of histone H3 acetylated on lysine 9 (H3K9ac) and an ~10-fold elevation in transcript levels, but had no substantial effect on kinetochore assembly or function. By contrast, tethering the herpes virus VP16 activation domain produced similar modifications in the chromatin but resulted in an ~150-fold elevation in transcripts, approaching the level of transcription of an endogenous housekeeping gene. This rapidly inactivated kinetochores, causing a loss of assembled CENP-A and blocking further CENP-A assembly. Our data reveal that functional centromeres in vivo show a remarkable plasticity--kinetochores tolerate profound changes to their chromatin environment, but appear to be critically sensitive to the level of centromeric transcription.
Collapse
Affiliation(s)
- Jan H Bergmann
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Building, Mayfield Road, Edinburgh EH9 3JR, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Rajput AB, Hu N, Varma S, Chen CH, Ding K, Park PC, Chapman JAW, SenGupta SK, Madarnas Y, Elliott BE, Feilotter HE. Immunohistochemical Assessment of Expression of Centromere Protein-A (CENPA) in Human Invasive Breast Cancer. Cancers (Basel) 2011; 3:4212-27. [PMID: 24213134 PMCID: PMC3763419 DOI: 10.3390/cancers3044212] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 11/24/2011] [Accepted: 11/30/2011] [Indexed: 01/12/2023] Open
Abstract
Abnormal cell division leading to the gain or loss of entire chromosomes and consequent genetic instability is a hallmark of cancer. Centromere protein –A (CENPA) is a centromere-specific histone-H3-like variant gene involved in regulating chromosome segregation during cell division. CENPA is one of the genes included in some of the commercially available RNA based prognostic assays for breast cancer (BCa)—the 70 gene signature MammaPrint® and the five gene Molecular Grade Index (MGISM). Our aim was to assess the immunohistochemical (IHC) expression of CENPA in normal and malignant breast tissue. Clinically annotated triplicate core tissue microarrays of 63 invasive BCa and 20 normal breast samples were stained with a monoclonal antibody against CENPA and scored for percentage of visibly stained nuclei. Survival analyses with Kaplan–Meier (KM) estimate and Cox proportional hazards regression models were applied to assess the associations between CENPA expression and disease free survival (DFS). Average percentage of nuclei visibly stained with CENPA antibody was significantly higher (p = 0.02) in BCa than normal tissue. The 3-year DFS in tumors over-expressing CENPA (>50% stained nuclei) was 79% compared to 85% in low expression tumors (<50% stained nuclei). On multivariate analysis, IHC expression of CENPA showed weak association with DFS (HR > 60.07; p = 0.06) within our small cohort. To the best of our knowledge, this is the first published report evaluating the implications of increased IHC expression of CENPA in paraffin embedded breast tissue samples. Our finding that increased CENPA expression may be associated with shorter DFS in BCa supports its exploration as a potential prognostic biomarker.
Collapse
Affiliation(s)
- Ashish B. Rajput
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada; E-Mails: (A.B.R.); (S.V.); (C.H.C.); (P.C.P.); (S.K.S.); (B.E.E.)
| | - Nianping Hu
- Cancer Research institute, Queen's University, Kingston, ON K7L 3N6, Canada; E-Mails: (N.H.); (Y.M.)
| | - Sonal Varma
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada; E-Mails: (A.B.R.); (S.V.); (C.H.C.); (P.C.P.); (S.K.S.); (B.E.E.)
| | - Chien-Hung Chen
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada; E-Mails: (A.B.R.); (S.V.); (C.H.C.); (P.C.P.); (S.K.S.); (B.E.E.)
| | - Keyue Ding
- NCIC Clinical Trials Group, Queen's University, Kingston, ON K7L 3N6, Canada; E-Mails: (K.D.); (J.-A.W.C.)
| | - Paul C. Park
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada; E-Mails: (A.B.R.); (S.V.); (C.H.C.); (P.C.P.); (S.K.S.); (B.E.E.)
| | - Judy-Anne W. Chapman
- NCIC Clinical Trials Group, Queen's University, Kingston, ON K7L 3N6, Canada; E-Mails: (K.D.); (J.-A.W.C.)
| | - Sandip K. SenGupta
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada; E-Mails: (A.B.R.); (S.V.); (C.H.C.); (P.C.P.); (S.K.S.); (B.E.E.)
| | - Yolanda Madarnas
- Cancer Research institute, Queen's University, Kingston, ON K7L 3N6, Canada; E-Mails: (N.H.); (Y.M.)
- Department of Oncology, Cancer Center of Southeastern Ontario, Kingston, ON K7L 2V7, Canada
| | - Bruce E. Elliott
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada; E-Mails: (A.B.R.); (S.V.); (C.H.C.); (P.C.P.); (S.K.S.); (B.E.E.)
| | - Harriet E. Feilotter
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada; E-Mails: (A.B.R.); (S.V.); (C.H.C.); (P.C.P.); (S.K.S.); (B.E.E.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-613-548-1302; Fax: +1-613-548-1356
| |
Collapse
|
5
|
Valdivia MM, Hamdouch K, Ortiz M, Astola A. CENPA a genomic marker for centromere activity and human diseases. Curr Genomics 2011; 10:326-35. [PMID: 20119530 PMCID: PMC2729997 DOI: 10.2174/138920209788920985] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 05/25/2009] [Accepted: 05/28/2009] [Indexed: 01/15/2023] Open
Abstract
Inheritance of genetic material requires that chromosomes segregate faithfully during cell division. Failure in this process can drive to aneuploidy phenomenon. Kinetochores are unique centromere macromolecular protein structures that attach chromosomes to the spindle for a proper movement and segregation. A unique type of nucleosomes of centromeric chromatin provides the base for kinetochore formation. A specific histone H3 variant, CENPA, replaces conventional histone H3 and together with centromere-specific-DNA-binding factors directs the assembly of active kinetochores. Recent studies on CENPA nucleosomal structure, epigenetic inheritance of centromeric chromatin and transcription of pericentric heterochromatin provide new clues to our understanding of centromere structure and function. This review highlights the role and dynamics of CENPA assembly into centromeres and the potential contribution of this kinetochore protein to autoimmune and cancer diseases in humans.
Collapse
Affiliation(s)
- Manuel M Valdivia
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain.
| | | | | | | |
Collapse
|
6
|
Bergmann JH, Rodríguez MG, Martins NMC, Kimura H, Kelly DA, Masumoto H, Larionov V, Jansen LET, Earnshaw WC. Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J 2011; 30:328-40. [PMID: 21157429 PMCID: PMC3025471 DOI: 10.1038/emboj.2010.329] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/19/2010] [Indexed: 12/16/2022] Open
Abstract
Kinetochores assemble on distinct 'centrochromatin' containing the histone H3 variant CENP-A and interspersed nucleosomes dimethylated on H3K4 (H3K4me2). Little is known about how the chromatin environment at active centromeres governs centromeric structure and function. Here, we report that centrochromatin resembles K4-K36 domains found in the body of some actively transcribed housekeeping genes. By tethering the lysine-specific demethylase 1 (LSD1), we specifically depleted H3K4me2, a modification thought to have a role in transcriptional memory, from the kinetochore of a synthetic human artificial chromosome (HAC). H3K4me2 depletion caused kinetochores to suffer a rapid loss of transcription of the underlying α-satellite DNA and to no longer efficiently recruit HJURP, the CENP-A chaperone. Kinetochores depleted of H3K4me2 remained functional in the short term, but were defective in incorporation of CENP-A, and were gradually inactivated. Our data provide a functional link between the centromeric chromatin, α-satellite transcription, maintenance of CENP-A levels and kinetochore stability.
Collapse
Affiliation(s)
- Jan H Bergmann
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland, UK
| | | | - Nuno M C Martins
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland, UK
| | - Hiroshi Kimura
- Biomolecular Networks Laboratories Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - David A Kelly
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland, UK
| | - Hiroshi Masumoto
- Laboratory of Cell Engineering, Kazusa DNA Research Institute, Chiba, Japan
| | - Vladimir Larionov
- Laboratory of Molecular Pharmacology, National Institutes of Health, Bethesda, MD, USA
| | | | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
7
|
Rocchi L, Braz C, Cattani S, Ramalho A, Christan S, Edlinger M, Ascenzioni F, Laner A, Kraner S, Amaral M, Schindelhauer D. Escherichia coli-cloned CFTR loci relevant for human artificial chromosome therapy. Hum Gene Ther 2010; 21:1077-92. [PMID: 20384480 DOI: 10.1089/hum.2009.225] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Classical gene therapy for cystic fibrosis has had limited success because of immune response against viral vectors and short-term expression of cDNA-based transgenes. These limitations could be overcome by delivering the complete genomic CFTR gene on nonintegrating human artificial chromosomes (HACs). Here, we report reconstruction of the genomic CFTR locus and analyze incorporation into HACs of three P1 phage-based and F factor bacteria-based artificial chromosomes (PACs/BACs) of various sizes: (1) 5A, a large, nonselectable BAC containing the entire wild-type CFTR locus extending into both adjacent genes (296.8-kb insert, from kb -58.4 to +51.4) containing all regulators; (2) CGT21, a small, selectable, telomerized PAC (134.7 kb, from kb -60.7 to + 2) containing a synthetic last exon joining exon 10, EGFP, exon 24, and the 3' untranslated region; and (3) CF225, a midsized, nonselectable PAC (225.3 kb, from kb -60.7 to +9.8) ligated from two PACs with optimized codons and a silent XmaI restriction variant to discriminate transgene from endogenous expression. Cotransfection with telomerized, blasticidin-S-selectable, centromere-proficient α-satellite constructs into HT1080 cells revealed a workable HAC formation rate of 1 per ∼25 lines when using CGT21 or 5A. CF225 was not incorporated into a de novo HAC in 122 lines analyzed, but integrants were expressed. Stability analyses suggest the feasibility of prefabricating a large, tagged CFTR transgene that stably replicates in the proximity of a functional centromere. Although definite conclusions about HAC-proficient construct configurations cannot be drawn at this stage, important transfer resources were generated and characterized, demonstrating the promise of de novo HACs as potentially ideal gene therapy vector systems.
Collapse
Affiliation(s)
- Lucia Rocchi
- Life Sciences Center Weihenstephan, Technical University Munich, Freising, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Arroyo E, Chinchilla N, Molinillo JM, Macias FA, Astola A, Ortiz M, Valdivia MM. Aneugenic effects of benzoxazinones in cultured human cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2010; 695:81-6. [DOI: 10.1016/j.mrgentox.2009.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 07/31/2009] [Accepted: 09/10/2009] [Indexed: 11/16/2022]
|
9
|
Cardinale S, Bergmann JH, Kelly D, Nakano M, Valdivia MM, Kimura H, Masumoto H, Larionov V, Earnshaw WC. Hierarchical inactivation of a synthetic human kinetochore by a chromatin modifier. Mol Biol Cell 2009; 20:4194-204. [PMID: 19656847 DOI: 10.1091/mbc.e09-06-0489] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We previously used a human artificial chromosome (HAC) with a synthetic kinetochore that could be targeted with chromatin modifiers fused to tetracycline repressor to show that targeting of the transcriptional repressor tTS within kinetochore chromatin disrupts kinetochore structure and function. Here we show that the transcriptional corepressor KAP1, a downstream effector of the tTS, can also inactivate the kinetochore. The disruption of kinetochore structure by KAP1 subdomains does not simply result from loss of centromeric CENP-A nucleosomes. Instead it reflects a hierarchical disruption of the outer kinetochore, with CENP-C levels falling before CENP-A levels and, in certain instances, CENP-H being lost more readily than CENP-C. These results suggest that this novel approach to kinetochore dissection may reveal new patterns of protein interactions within the kinetochore.
Collapse
Affiliation(s)
- Stefano Cardinale
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Input DNA ratio determines copy number of the 33 kb Factor IX gene on de novo human artificial chromosomes. Mol Ther 2007; 16:315-23. [PMID: 18059371 DOI: 10.1038/sj.mt.6300361] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Human artificial chromosomes (ACs) are non-integrating vectors that may be useful for gene therapy. They assemble in cultured cells following transfection of human centromeric alpha -satellite DNA and segregate efficiently alongside the host genome. In the present study, a 33 kilobase (kb) Factor IX (FIX) gene was incorporated into mitotically stable ACs in human HT1080 lung derived cells using co-transfection of a bacterial artificial chromosome (BAC) harboring synthetic alpha -satellite DNA and a P1 artificial chromosome(PAC) that spans the FIX locus. ACs were detected in >or=90% of chromosome spreads in 8 of 19 lines expanded from drug resistant colonies. FIX transgene copy number on ACs was determined by input DNA transfection ratios. Furthermore, a low level of FIX transcription was detected from ACs with multiple transgenes but not from those incorporating a single transgene, suggesting that reducing transgene number may limit misexpression. Their potential to segregate cross species was measured by transferring ACs into mouse and hamster cell lines using microcell-mediated chromosome transfer. Lines were obtained where ACs segregated efficiently. The stable segregation of ACs in rodent cells suggests that it should be possible to develop animal models to test the capacity of ACs to rescue FIX deficiency.
Collapse
|
11
|
Spence JM, Phua HH, Mills W, Carpenter AJ, Porter AC, Farr CJ. Depletion of topoisomerase IIalpha leads to shortening of the metaphase interkinetochore distance and abnormal persistence of PICH-coated anaphase threads. J Cell Sci 2007; 120:3952-64. [PMID: 17956945 PMCID: PMC5500177 DOI: 10.1242/jcs.013730] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Topoisomerase II (topo II) is a major component of mitotic chromosomes, and its unique decatenating activity has been implicated in many aspects of chromosome dynamics, of which chromosome segregation is the most seriously affected by loss of topo II activity in living cells. There is considerable evidence that topo II plays a role at the centromere including: the centromere-specific accumulation of topo II protein; cytogenetic/molecular mapping of the catalytic activity of topo II to active centromeres; the influence of sumoylated topo II on sister centromere cohesion; and its involvement in the activation of a Mad2-dependent spindle checkpoint. By using a human cell line with a conditional-lethal mutation in the gene encoding DNA topoisomerase IIalpha, we find that depletion of topo IIalpha, while leading to a disorganised metaphase plate, does not have any overt effect on general assembly of kinetochores. Fluorescence in situ hybridisation suggested that centromeres segregate normally, most segregation errors being chromatin bridges involving longer chromosome arms. Strikingly, a linear human X centromere-based minichromosome also displayed a significantly increased rate of missegregation. This sensitivity to depletion of topo IIalpha might be linked to structural alterations within the centromere domain, as indicated by a significant shortening of the distance across metaphase sister centromeres and the abnormal persistence of PICH-coated connections between segregating chromatids.
Collapse
Affiliation(s)
- Jennifer M. Spence
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH UK
| | - Hui Hui Phua
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH UK
| | - Walter Mills
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH UK
| | - Adam J. Carpenter
- Haemostasis and Thrombosis Group, Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Hospital Campus, London W12 ONN UK
| | - Andrew C.G. Porter
- Department of Haematology, Faculty of Medicine, Imperial College, London W12 0NN UK
| | - Christine J. Farr
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH UK
| |
Collapse
|
12
|
Faragher AJ, Sun XM, Butterworth M, Harper N, Mulheran M, Ruchaud S, Earnshaw WC, Cohen GM. Death receptor-induced apoptosis reveals a novel interplay between the chromosomal passenger complex and CENP-C during interphase. Mol Biol Cell 2007; 18:1337-47. [PMID: 17287400 PMCID: PMC1838999 DOI: 10.1091/mbc.e06-05-0409] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 01/10/2007] [Accepted: 01/29/2007] [Indexed: 11/11/2022] Open
Abstract
Despite the fact that the chromosomal passenger complex is well known to regulate kinetochore behavior in mitosis, no functional link has yet been established between the complex and kinetochore structure. In addition, remarkably little is known about how the complex targets to centromeres. Here, in a study of caspase-8 activation during death receptor-induced apoptosis in MCF-7 cells, we have found that cleaved caspase-8 rapidly translocates to the nucleus and that this translocation is correlated with loss of the centromere protein (CENP)-C, resulting in extensive disruption of centromeres. Caspase-8 activates cytoplasmic caspase-7, which is likely to be the primary caspase responsible for cleavage of CENP-C and INCENP, a key chromosomal passenger protein. Caspase-mediated cleavage of CENP-C and INCENP results in their mislocalization and the subsequent mislocalization of Aurora B kinase. Our results demonstrate that the chromosomal passenger complex is displaced from centromeres as a result of caspase activation. Furthermore, mutation of the primary caspase cleavage sites of INCENP and CENP-C and expression of noncleavable CENP-C or INCENP prevent the mislocalization of the passenger complex after caspase activation. Our studies provide the first evidence for a functional interplay between the passenger complex and CENP-C.
Collapse
Affiliation(s)
- Alison J. Faragher
- *MRC Toxicology Unit, University of Leicester, Leicester LE1 9HN, United Kingdom; and
| | - Xiao-Ming Sun
- *MRC Toxicology Unit, University of Leicester, Leicester LE1 9HN, United Kingdom; and
| | - Michael Butterworth
- *MRC Toxicology Unit, University of Leicester, Leicester LE1 9HN, United Kingdom; and
| | - Nick Harper
- *MRC Toxicology Unit, University of Leicester, Leicester LE1 9HN, United Kingdom; and
| | - Mike Mulheran
- *MRC Toxicology Unit, University of Leicester, Leicester LE1 9HN, United Kingdom; and
| | - Sandrine Ruchaud
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3JR Edinburgh, United Kingdom
| | - William C. Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3JR Edinburgh, United Kingdom
| | - Gerald M. Cohen
- *MRC Toxicology Unit, University of Leicester, Leicester LE1 9HN, United Kingdom; and
| |
Collapse
|
13
|
Akbarali Y, Matousek-Ronck J, Hunt L, Staudt L, Reichlin M, Guthridge JM, James JA. Fine specificity mapping of autoantigens targeted by anti-centromere autoantibodies. J Autoimmun 2007; 27:272-80. [PMID: 17210244 PMCID: PMC1906738 DOI: 10.1016/j.jaut.2006.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 10/13/2006] [Accepted: 10/17/2006] [Indexed: 11/18/2022]
Abstract
Autoantibodies to centromeric proteins are commonly found in sera of limited scleroderma and other rheumatic disease patients. To better understand the inciting events and possible pathogenic mechanisms of these autoimmune responses, this study identified the common antigenic targets of CENP-A in scleroderma patient sera. Utilizing samples from 263 anti-centromere immunofluorescence positive patients, 93.5% were found to have anti-CENP-A reactivity and 95.4% had anti-CENP-B reactivity by ELISA. Very few patient samples exclusively targeted CENP-A (2.7%) or CENP-B (4.2%). Select patient sera were tested for reactivity with solid phase overlapping decapeptides of CENP-A. Four distinct epitopes of CENP-A were identified. Epitopes 2 and 3 were confirmed by additional testing of 263 patient sera by ELISA for reactivity with these sequences constructed as multiple antigenic peptides. Inhibition CENP-A Western blots also confirmed the specificity of these humoral peptide immune responses in a subset of patient sera. The first three arginine residues (aa 4-6) of CENP-A appear essential for antibody recognition, as replacing these arginines with glycine residues reduced antibody binding to the expressed CENP-A protein by an average of 93.2% (range 80-100%). In selected patients with serial samples spanning nearly a decade, humoral epitope binding patterns were quite stable and showed no epitope spreading over time. This epitope mapping study identifies key antigenic targets of the anti-centromere response and establishes that the majority of the responses depend on key amino-terminal residues.
Collapse
Affiliation(s)
- Yasmin Akbarali
- Arthritis and Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Spence JM, Mills W, Mann K, Huxley C, Farr CJ. Increased missegregation and chromosome loss with decreasing chromosome size in vertebrate cells. Chromosoma 2005; 115:60-74. [PMID: 16267674 DOI: 10.1007/s00412-005-0032-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 09/01/2005] [Accepted: 09/19/2005] [Indexed: 11/24/2022]
Abstract
Chromosome engineering has allowed the generation of an extensive and well-defined series of linear human X centromere-based minichromosomes, which has been used to investigate the influence of size and structure on chromosome segregation in vertebrate cells. A clear relationship between overall chromosome size and mitotic stability was detected, with decreasing size associated with increasing loss rates. In chicken DT40, the lower size limit for prolonged mitotic stability is approximately 550 kb: at 450 kb, there was a dramatic increase in chromosome loss, while structures of approximately 200 kb could not be recovered. In human HT1080 cells, the size threshold for mitotic stability is approximately 1.6 Mb. Minichromosomes of 0.55-1.0 Mb can be recovered, but display high loss rates. However, all minichromosomes examined exhibited more segregation errors than normal chromosomes in HT1080 cells. This error rate increases with decreased size and correlates with reduced levels of CENP-A and Aurora B. In mouse LA-9 and Indian muntjac FM7 cells, the size requirements for mitotic stability are much greater. In mouse, a human 2.7-Mb minichromosome is rarely able to propagate a kinetochore and behaves acentrically. In Indian muntjac, CENP-C associates with the human minichromosome, but the mitotic apparatus appears unable to handle its segregation.
Collapse
|
15
|
Grimes BR, Babcock J, Rudd MK, Chadwick B, Willard HF. Assembly and characterization of heterochromatin and euchromatin on human artificial chromosomes. Genome Biol 2004; 5:R89. [PMID: 15535865 PMCID: PMC545780 DOI: 10.1186/gb-2004-5-11-r89] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 08/31/2004] [Accepted: 09/22/2004] [Indexed: 01/07/2023] Open
Abstract
An assay of the formation of heterochromatin and euchromatin on de novo human artificial chromosomes containing alpha satellite DNA revealed that only a small amount of heterochromatin may be required for centromere function and that replication late in S phase is not a requirement for centromere function. Background Human centromere regions are characterized by the presence of alpha-satellite DNA, replication late in S phase and a heterochromatic appearance. Recent models propose that the centromere is organized into conserved chromatin domains in which chromatin containing CenH3 (centromere-specific H3 variant) at the functional centromere (kinetochore) forms within regions of heterochromatin. To address these models, we assayed formation of heterochromatin and euchromatin on de novo human artificial chromosomes containing alpha-satellite DNA. We also examined the relationship between chromatin composition and replication timing of artificial chromosomes. Results Heterochromatin factors (histone H3 lysine 9 methylation and HP1α) were enriched on artificial chromosomes estimated to be larger than 3 Mb in size but depleted on those smaller than 3 Mb. All artificial chromosomes assembled markers of euchromatin (histone H3 lysine 4 methylation), which may partly reflect marker-gene expression. Replication timing studies revealed that the replication timing of artificial chromosomes was heterogeneous. Heterochromatin-depleted artificial chromosomes replicated in early S phase whereas heterochromatin-enriched artificial chromosomes replicated in mid to late S phase. Conclusions Centromere regions on human artificial chromosomes and host chromosomes have similar amounts of CenH3 but exhibit highly varying degrees of heterochromatin, suggesting that only a small amount of heterochromatin may be required for centromere function. The formation of euchromatin on all artificial chromosomes demonstrates that they can provide a chromosome context suitable for gene expression. The earlier replication of the heterochromatin-depleted artificial chromosomes suggests that replication late in S phase is not a requirement for centromere function.
Collapse
Affiliation(s)
- Brenda R Grimes
- Department of Genetics, Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106, USA
- Current address: Indiana University, School of Medicine, Department of Medical and Molecular Genetics, Medical Research Building 130, 975 West Walnut Street, Indianapolis, IN 46202-5251, USA
| | - Jennifer Babcock
- Department of Genetics, Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | - M Katharine Rudd
- Department of Genetics, Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106, USA
- Institute for Genome Sciences and Policy and Department of Molecular Genetics and Microbiology, Duke University, 103 Research Drive, Durham, NC 27710, USA
| | - Brian Chadwick
- Department of Genetics, Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106, USA
- Institute for Genome Sciences and Policy and Department of Molecular Genetics and Microbiology, Duke University, 103 Research Drive, Durham, NC 27710, USA
| | - Huntington F Willard
- Department of Genetics, Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106, USA
- Institute for Genome Sciences and Policy and Department of Molecular Genetics and Microbiology, Duke University, 103 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
16
|
Parra MT, Viera A, Gómez R, Page J, Benavente R, Santos JL, Rufas JS, Suja JA. Involvement of the cohesin Rad21 and SCP3 in monopolar attachment of sister kinetochores during mouse meiosis I. J Cell Sci 2004; 117:1221-34. [PMID: 14970259 DOI: 10.1242/jcs.00947] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SCP3 is a meiosis-specific structural protein appearing at axial elements and lateral elements of the synaptonemal complex. We have analysed the behaviour of SCP3 and the cohesin subunit Rad21 in mouse spermatocytes by means of a squashing technique. Our results demonstrate that both proteins colocalize and are partially released from chromosome arms during late prophase I stages, although they persist at the interchromatid domain of metaphase I bivalents. Thus, Rad21 cannot be considered a `mitotic'-specific variant, but coexists with Rec8. During late prophase I SCP3 and Rad21 accumulate at centromeres, and together with the chromosomal passenger proteins INCENP and aurora-B kinase, show a complex `double cornet'-like distribution at the inner domain of metaphase I centromeres beneath the associated sister kinetochores. We have observed that Rad21 and SCP3 are displaced from centromeres during telophase I when sister kinetochores separate, and are not present at metaphase II centromeres. Thus, we hypothesise that Rad21, and the superimposed SCP3 and SCP2, are involved in the monopolar attachment of sister kinetochores during meiosis I, and are not responsible for the maintenance of sister-chromatid centromere cohesion during meiosis II as previously suggested.
Collapse
Affiliation(s)
- María Teresa Parra
- Departamento de Biología, Edificio de Biológicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Spence JM, Critcher R, Ebersole TA, Valdivia MM, Earnshaw WC, Fukagawa T, Farr CJ. Co-localization of centromere activity, proteins and topoisomerase II within a subdomain of the major human X alpha-satellite array. EMBO J 2002; 21:5269-80. [PMID: 12356743 PMCID: PMC129033 DOI: 10.1093/emboj/cdf511] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2002] [Revised: 08/06/2002] [Accepted: 08/06/2002] [Indexed: 11/12/2022] Open
Abstract
Dissection of human centromeres is difficult because of the lack of landmarks within highly repeated DNA. We have systematically manipulated a single human X centromere generating a large series of deletion derivatives, which have been examined at four levels: linear DNA structure; the distribution of constitutive centromere proteins; topoisomerase IIalpha cleavage activity; and mitotic stability. We have determined that the human X major alpha-satellite locus, DXZ1, is asymmetrically organized with an active subdomain anchored approximately 150 kb in from the Xp-edge. We demonstrate a major site of topoisomerase II cleavage within this domain that can shift if juxtaposed with a telomere, suggesting that this enzyme recognizes an epigenetic determinant within the DXZ1 chromatin. The observation that the only part of the DXZ1 locus shared by all deletion derivatives is a highly restricted region of <50 kb, which coincides with the topo isomerase II cleavage site, together with the high levels of cleavage detected, identify topoisomerase II as a major player in centromere biology.
Collapse
Affiliation(s)
| | | | - Thomas A. Ebersole
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH,
Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK, Laboratory of Biosystems and Cancer Genome Structure and Function Section, National Cancer Institute, NIH, Building 49, Room 4A56, Bethesda, MD 20892-4471, USA, Department of Biochemistry and Molecular Biology, University of Cadiz, 11510 Puerto Real, Cadiz, Spain and PRESTO of the Japan Science and Technology Corporation, National Institute of Genetics and Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan Corresponding author e-mail:
| | - Manuel M. Valdivia
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH,
Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK, Laboratory of Biosystems and Cancer Genome Structure and Function Section, National Cancer Institute, NIH, Building 49, Room 4A56, Bethesda, MD 20892-4471, USA, Department of Biochemistry and Molecular Biology, University of Cadiz, 11510 Puerto Real, Cadiz, Spain and PRESTO of the Japan Science and Technology Corporation, National Institute of Genetics and Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan Corresponding author e-mail:
| | - William C. Earnshaw
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH,
Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK, Laboratory of Biosystems and Cancer Genome Structure and Function Section, National Cancer Institute, NIH, Building 49, Room 4A56, Bethesda, MD 20892-4471, USA, Department of Biochemistry and Molecular Biology, University of Cadiz, 11510 Puerto Real, Cadiz, Spain and PRESTO of the Japan Science and Technology Corporation, National Institute of Genetics and Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan Corresponding author e-mail:
| | - Tatsuo Fukagawa
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH,
Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK, Laboratory of Biosystems and Cancer Genome Structure and Function Section, National Cancer Institute, NIH, Building 49, Room 4A56, Bethesda, MD 20892-4471, USA, Department of Biochemistry and Molecular Biology, University of Cadiz, 11510 Puerto Real, Cadiz, Spain and PRESTO of the Japan Science and Technology Corporation, National Institute of Genetics and Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan Corresponding author e-mail:
| | - Christine J. Farr
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH,
Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK, Laboratory of Biosystems and Cancer Genome Structure and Function Section, National Cancer Institute, NIH, Building 49, Room 4A56, Bethesda, MD 20892-4471, USA, Department of Biochemistry and Molecular Biology, University of Cadiz, 11510 Puerto Real, Cadiz, Spain and PRESTO of the Japan Science and Technology Corporation, National Institute of Genetics and Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan Corresponding author e-mail:
| |
Collapse
|
18
|
Grimes BR, Rhoades AA, Willard HF. Alpha-satellite DNA and vector composition influence rates of human artificial chromosome formation. Mol Ther 2002; 5:798-805. [PMID: 12027565 DOI: 10.1006/mthe.2002.0612] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human artificial chromosomes (HACs) have been proposed as a new class of potential gene transfer and gene therapy vector. HACs can be formed when bacterial cloning vectors containing alpha-satellite DNA are transfected into cultured human cells. We have compared the HAC-forming potential of different sequences to identify features critical to the efficiency of the process. Chromosome 17 or 21 alpha-satellite arrays are highly competent HAC-forming substrates in this assay. In contrast, a Y-chromosome-derived alpha-satellite sequence is inefficient, suggesting that centromere specification is at least partly dependent on DNA sequence. The length of the input array is also an important determinant, as reduction of the chromosome-17-based array from 80 kb to 35 kb reduced the frequency of HAC formation. In addition to the alpha-satellite component, vector composition also influenced HAC formation rates, size, and copy number. The data presented here have a significant impact on the design of future HAC vectors that have potential to be developed for therapeutic applications and as tools for investigating human chromosome structure and function.
Collapse
MESH Headings
- Cell Line
- Centromere/physiology
- Chromosomes, Artificial, Human/genetics
- Chromosomes, Artificial, Human/physiology
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Y
- Cytogenetic Analysis
- DNA, Satellite/genetics
- Genetic Vectors
- Humans
- In Situ Hybridization, Fluorescence
- Kinetochores/physiology
- Mitosis
Collapse
Affiliation(s)
- Brenda R Grimes
- Department of Genetics, Case Western Reserve University School of Medicine, and Center for Human Genetics and Research Institute, University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
19
|
Figueroa J, Pendón C, Valdivia MM. Molecular cloning and sequence analysis of hamster CENP-A cDNA. BMC Genomics 2002; 3:11. [PMID: 12019018 PMCID: PMC113255 DOI: 10.1186/1471-2164-3-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2002] [Accepted: 05/03/2002] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The centromere is a specialized locus that mediates chromosome movement during mitosis and meiosis. This chromosomal domain comprises a uniquely packaged form of heterochromatin that acts as a nucleus for the assembly of the kinetochore a trilaminar proteinaceous structure on the surface of each chromatid at the primary constriction. Kinetochores mediate interactions with the spindle fibers of the mitotic apparatus. Centromere protein A (CENP-A) is a histone H3-like protein specifically located to the inner plate of kinetochore at active centromeres. CENP-A works as a component of specialized nucleosomes at centromeres bound to arrays of repeat satellite DNA. RESULTS We have cloned the hamster homologue of human and mouse CENP-A. The cDNA isolated was found to contain an open reading frame encoding a polypeptide consisting of 129 amino acid residues with a C-terminal histone fold domain highly homologous to those of CENP-A and H3 sequences previously released. However, significant sequence divergence was found at the N-terminal region of hamster CENP-A that is five and eleven residues shorter than those of mouse and human respectively. Further, a human serine 7 residue, a target site for Aurora B kinase phosphorylation involved in the mechanism of cytokinesis, was not found in the hamster protein. A human autoepitope at the N-terminal region of CENP-A described in autoimmune diseases is not conserved in the hamster protein. CONCLUSIONS We have cloned the hamster cDNA for the centromeric protein CENP-A. Significant differences on protein sequence were found at the N-terminal tail of hamster CENP-A in comparison with that of human and mouse. Our results show a high degree of evolutionary divergence of kinetochore CENP-A proteins in mammals. This is related to the high diverse nucleotide repeat sequences found at the centromere DNA among species and support a current centromere model for kinetochore function and structural plasticity.
Collapse
Affiliation(s)
- Javier Figueroa
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Carlos Pendón
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Manuel M Valdivia
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
20
|
Abstract
Recent studies have highlighted the importance of centromere-specific histone H3-like (CENP-A) proteins in centromere function. We show that Drosophila CID and human CENP-A appear at metaphase as a three-dimensional structure that lacks histone H3. However, blocks of CID/CENP-A and H3 nucleosomes are linearly interspersed on extended chromatin fibers, and CID is close to H3 nucleosomes in polynucleosomal preparations. When CID is depleted by RNAi, it is replaced by H3, demonstrating flexibility of centromeric chromatin organization. Finally, contrary to models proposing that H3 and CID/CENP-A nucleosomes are replicated at different times in S phase, we show that interspersed H3 and CID/CENP-A chromatin are replicated concurrently during S phase in humans and flies. We propose that the unique structural arrangement of CID/CENP-A and H3 nucleosomes presents centromeric chromatin to the poleward face of the condensing mitotic chromosome.
Collapse
Affiliation(s)
- Michael D. Blower
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037
- Department of Biology, University of California, San Diego, La Jolla, California 92037
| | - Beth A. Sullivan
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037
| | - Gary H. Karpen
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037
- Correspondence:
| |
Collapse
|
21
|
Grimes BR, Schindelhauer D, McGill NI, Ross A, Ebersole TA, Cooke HJ. Stable gene expression from a mammalian artificial chromosome. EMBO Rep 2001; 2:910-4. [PMID: 11571265 PMCID: PMC1084075 DOI: 10.1093/embo-reports/kve187] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have investigated the potential of PAC-based vectors as a route to the incorporation of a gene in a mammalian artificial chromosome (MAC). Previously we demonstrated that a PAC (PAC7c5) containing alpha-satellite DNA generated mitotically stable MACs in human cells. To determine whether a functional HPRT gene could be assembled in a MAC, PAC7c5 was co-transfected with a second PAC containing a 140 kb human HPRT gene into HPRT-deficient HT1080 cells. Lines were isolated containing a MAC hybridizing with both alpha-satellite and HPRT probes. The MACs segregated efficiently, associated with kinetochore proteins and stably expressed HPRT message after 60 days without selection. Complementation of the parental HPRT deficiency was confirmed phenotypically by growth on HAT selection. These results suggest that MACs could be further developed for delivering a range of genomic copies of genes into cells and that stable transgene expression can be achieved.
Collapse
Affiliation(s)
- B R Grimes
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | | | | | |
Collapse
|
22
|
Lo AW, Magliano DJ, Sibson MC, Kalitsis P, Craig JM, Choo KH. A novel chromatin immunoprecipitation and array (CIA) analysis identifies a 460-kb CENP-A-binding neocentromere DNA. Genome Res 2001. [PMID: 11230169 DOI: 10.1101/gr.167601] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Centromere protein A (CENP-A) is an essential histone H3-related protein that constitutes the specialized chromatin of an active centromere. It has been suggested that this protein plays a key role in the epigenetic marking and transformation of noncentromeric genomic DNA into functional neocentromeres. Neocentromeres have been identified on more than two-thirds of the human chromosomes, presumably involving different noncentromeric DNA sequences, but it is unclear whether some generalized sequence properties account for these neocentromeric sites. Using a novel method combining chromatin immunoprecipitation and genomic array hybridization, we have identified a 460-kb CENP-A-binding DNA domain of a neocentromere derived from the 20p12 region of an invdup (20p) human marker chromosome. Detailed sequence analysis indicates that this domain contains no centromeric alpha-satellite, classical satellites, or other known pericentric repetitive sequence motifs. Putative gene loci are detected, suggesting that their presence does not preclude neocentromere formation. The sequence is not significantly different from surrounding non-CENP-A-binding DNA in terms of the prevalence of various interspersed repeats and binding sites for DNA-interacting proteins (Topoisomerase II and High-Mobility-Group protein I). Notable variations include a higher AT content similar to that seen in human alpha-satellite DNA and a reduced prevalence of long terminal repeats (LTRs), short interspersed repeats (SINEs), and Alus. The significance of these features in neocentromerization is discussed.
Collapse
Affiliation(s)
- A W Lo
- The Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia 3052
| | | | | | | | | | | |
Collapse
|
23
|
Lo AW, Magliano DJ, Sibson MC, Kalitsis P, Craig JM, Choo KH. A novel chromatin immunoprecipitation and array (CIA) analysis identifies a 460-kb CENP-A-binding neocentromere DNA. Genome Res 2001; 11:448-57. [PMID: 11230169 PMCID: PMC311059 DOI: 10.1101/gr.gr-1676r] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Centromere protein A (CENP-A) is an essential histone H3-related protein that constitutes the specialized chromatin of an active centromere. It has been suggested that this protein plays a key role in the epigenetic marking and transformation of noncentromeric genomic DNA into functional neocentromeres. Neocentromeres have been identified on more than two-thirds of the human chromosomes, presumably involving different noncentromeric DNA sequences, but it is unclear whether some generalized sequence properties account for these neocentromeric sites. Using a novel method combining chromatin immunoprecipitation and genomic array hybridization, we have identified a 460-kb CENP-A-binding DNA domain of a neocentromere derived from the 20p12 region of an invdup (20p) human marker chromosome. Detailed sequence analysis indicates that this domain contains no centromeric alpha-satellite, classical satellites, or other known pericentric repetitive sequence motifs. Putative gene loci are detected, suggesting that their presence does not preclude neocentromere formation. The sequence is not significantly different from surrounding non-CENP-A-binding DNA in terms of the prevalence of various interspersed repeats and binding sites for DNA-interacting proteins (Topoisomerase II and High-Mobility-Group protein I). Notable variations include a higher AT content similar to that seen in human alpha-satellite DNA and a reduced prevalence of long terminal repeats (LTRs), short interspersed repeats (SINEs), and Alus. The significance of these features in neocentromerization is discussed.
Collapse
Affiliation(s)
- A W Lo
- The Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia 3052
| | | | | | | | | | | |
Collapse
|
24
|
Lomonte P, Sullivan KF, Everett RD. Degradation of nucleosome-associated centromeric histone H3-like protein CENP-A induced by herpes simplex virus type 1 protein ICP0. J Biol Chem 2001; 276:5829-35. [PMID: 11053442 DOI: 10.1074/jbc.m008547200] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cells infected by herpes simplex virus type 1 in the G2 phase of the cell cycle become stalled at an unusual stage of mitosis defined as pseudoprometaphase. This block correlates with the viral immediate-early protein ICP0-induced degradation of the centromere protein CENP-C. However, the observed pseudoprometaphase phenotype of infected mitotic cells suggests that the stability of other centromere proteins may also be affected. Here, we demonstrate that ICP0 also induces the proteasome-dependent degradation of the centromere protein CENP-A. By a series of Western blot and immunofluorescence experiments we show that the endogenous 17-kDa CENP-A and an exogenous tagged version of CENP-A are lost from centromeres and degraded in infected and transfected cells as a result of ICP0 expression. CENP-A is a histone H3-like protein associated with nucleosome structures in the inner plate of the kinetochore. Unlike fully transcribed lytic viral DNA, the transcriptionally repressed latent herpes simplex virus type 1 genome has been reported to have a nucleosomal structure similar to that of cellular chromatin. Because ICP0 plays an essential part in controlling the balance between the lytic and latent outcomes of infection, the ICP0-induced degradation of CENP-A is an intriguing feature connecting different aspects of viral and/or cellular genome regulation.
Collapse
Affiliation(s)
- P Lomonte
- Medical Research Council Virology Unit, Glasgow G11 5JR, Scotland, United Kingdom.
| | | | | |
Collapse
|
25
|
Muro Y, Azuma N, Onouchi H, Kunimatsu M, Tomita Y, Sasaki M, Sugimoto K. Autoepitopes on autoantigen centromere protein-A (CENP-A) are restricted to the N-terminal region, which has no homology with histone H3. Clin Exp Immunol 2000; 120:218-23. [PMID: 10759786 PMCID: PMC1905620 DOI: 10.1046/j.1365-2249.2000.01189.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anti-centromere autoantibodies (ACA) are commonly found in the serum of patients with a limited type of scleroderma and other systemic autoimmune diseases. CENP-A is one of the major antigens against ACA and a histone H3-like protein. To analyse the autoantigenic epitopes of CENP-A, a series of truncated peptides of human CENP-A were expressed in Escherichia coli and immunoblotting analysis was performed with 91 ACA+ sera. Eighty sera (88%) with the ACA reacted to the 52-amino acids N-terminal region which is not homologous to H3, while no sera reacted to the C-terminus which has a sequence similarity with H3. Moreover, ELISA was also employed in this study using two synthetic peptides corresponding to the amino acid sequences 3-17 (peptide A) and 25-38 (peptide B). Peptides A and B were reactive to 78 (86%) and 79 (87%) of ACA, respectively. Core antigens of hepatitis B virus (HBV) and hepatitis C virus (HCV) have similar sequences to peptide A and/or peptide B, but three sera containing HBV without ACA and five sera containing HCV without ACA were found to be reactive to neither peptide. Centromere localization of CENP-A is dependent on the H3-like C-terminal domain which is not autoantigenic, while the antigenic N-terminal domain, which might play unidentified functional roles, should be an important region for the induction of ACA.
Collapse
Affiliation(s)
- Y Muro
- Department of Dermatology, Nagoya University School of Medicine, Nagoya, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Howman EV, Fowler KJ, Newson AJ, Redward S, MacDonald AC, Kalitsis P, Choo KH. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc Natl Acad Sci U S A 2000; 97:1148-53. [PMID: 10655499 PMCID: PMC15551 DOI: 10.1073/pnas.97.3.1148] [Citation(s) in RCA: 318] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centromere protein A (Cenpa for mouse, CENP-A for other species) is a histone H3-like protein that is thought to be involved in the nucleosomal packaging of centromeric DNA. Using gene targeting, we have disrupted the mouse Cenpa gene and demonstrated that the gene is essential. Heterozygous mice are healthy and fertile whereas null mutants fail to survive beyond 6.5 days postconception. Affected embryos show severe mitotic problems, including micronuclei and macronuclei formation, nuclear bridging and blebbing, and chromatin fragmentation and hypercondensation. Immunofluorescence analysis of interphase cells at day 5.5 reveals complete Cenpa depletion, diffuse Cenpb foci, absence of discrete Cenpc signal on centromeres, and dispersion of Cenpb and Cenpc throughout the nucleus. These results suggest that Cenpa is essential for kinetochore targeting of Cenpc and plays an early role in organizing centromeric chromatin at interphase. The evidence is consistent with the proposal of a critical epigenetic function for CENP-A in marking a chromosomal region for centromere formation.
Collapse
Affiliation(s)
- E V Howman
- The Murdoch Institute, Royal Children's Hospital, Flemington Road, Parkville 3052, Australia
| | | | | | | | | | | | | |
Collapse
|
27
|
Martinez A, Sun D, Billings PB, Swiderek KM, Sullivan KF, Hoch SO. Isolation and comparison of natural and recombinant human CENP-A autoantigen. J Autoimmun 1998; 11:611-9. [PMID: 9878083 DOI: 10.1006/jaut.1998.0249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anticentromere antibodies (ACA) are associated with systemic sclerosis (scleroderma) patients exhibiting the more benign or so called limited manifestation of the disease (lSSc). ACA reactivity is directed against multiple polypeptide targets, the smallest of which is designated CENP-A. CENP-A is not an abundant cellular constituent; therefore to maximize recovery, we developed a protocol with a minimum of steps to isolate CENP-A from a human cell line. The trace cellular amount of this protein clearly dictated the production of its recombinant counterpart to facilitate determination of the role of the CENP-A antigen in scleroderma pathogenesis. Here we describe the eukaryotic expression of CENP-A cDNA using baculovirus-mediated infection of insect cells. The non-fusion recombinant protein spans the natural residues of the human CENP-A protein and rCENP-A followed the same chromotographic sequence for purification as did the natural source. The availability of the bona fide antigen provided a critical standard upon which to document authenticity of the recombinant polypeptide. The two forms of this antigen have been compared and shown to exhibit similar physical and antigenic properties.
Collapse
Affiliation(s)
- A Martinez
- The Agouron Institute, La Jolla, CA, 92037, USA
| | | | | | | | | | | |
Collapse
|