1
|
Pouliquen DL, Trošelj KG, Anto RJ. Curcuminoids as Anticancer Drugs: Pleiotropic Effects, Potential for Metabolic Reprogramming and Prospects for the Future. Pharmaceutics 2023; 15:1612. [PMID: 37376060 DOI: 10.3390/pharmaceutics15061612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The number of published studies on curcuminoids in cancer research, including its lead molecule curcumin and synthetic analogs, has been increasing substantially during the past two decades. Insights on the diversity of inhibitory effects they have produced on a multitude of pathways involved in carcinogenesis and tumor progression have been provided. As this wealth of data was obtained in settings of various experimental and clinical data, this review first aimed at presenting a chronology of discoveries and an update on their complex in vivo effects. Secondly, there are many interesting questions linked to their pleiotropic effects. One of them, a growing research topic, relates to their ability to modulate metabolic reprogramming. This review will also cover the use of curcuminoids as chemosensitizing molecules that can be combined with several anticancer drugs to reverse the phenomenon of multidrug resistance. Finally, current investigations in these three complementary research fields raise several important questions that will be put among the prospects for the future research related to the importance of these molecules in cancer research.
Collapse
Affiliation(s)
- Daniel L Pouliquen
- Université d'Angers, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Koraljka Gall Trošelj
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ruby John Anto
- Molecular Bioassay Laboratory, Institute of Advanced Virology, Thiruvananthapuram 695317, India
| |
Collapse
|
2
|
Lin Q, Le QA, Takebayashi K, Hirata M, Tanihara F, Thongkittidilok C, Sawamoto O, Kikuchi T, Otoi T. Viability and developmental potential of porcine blastocysts preserved for short term in a chemically defined medium at ambient temperature. Reprod Domest Anim 2022; 57:556-563. [DOI: 10.1111/rda.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Qingyi Lin
- Bio‐Innovation Research Center Tokushima University Tokushima Japan
- Faculty of Bioscience and Bioindustry Tokushima University Tokushima Japan
| | - Quynh Anh Le
- Bio‐Innovation Research Center Tokushima University Tokushima Japan
- Faculty of Bioscience and Bioindustry Tokushima University Tokushima Japan
| | - Koki Takebayashi
- Bio‐Innovation Research Center Tokushima University Tokushima Japan
- Faculty of Bioscience and Bioindustry Tokushima University Tokushima Japan
| | - Maki Hirata
- Bio‐Innovation Research Center Tokushima University Tokushima Japan
- Faculty of Bioscience and Bioindustry Tokushima University Tokushima Japan
| | - Fuminori Tanihara
- Faculty of Bioscience and Bioindustry Tokushima University Tokushima Japan
| | - Chommanart Thongkittidilok
- Bio‐Innovation Research Center Tokushima University Tokushima Japan
- Faculty of Bioscience and Bioindustry Tokushima University Tokushima Japan
| | - Osamu Sawamoto
- Research and Development Center Otsuka Pharmaceutical Factory, Inc Naruto Tokushima Japan
| | - Takeshi Kikuchi
- Research and Development Center Otsuka Pharmaceutical Factory, Inc Naruto Tokushima Japan
| | - Takeshige Otoi
- Bio‐Innovation Research Center Tokushima University Tokushima Japan
- Faculty of Bioscience and Bioindustry Tokushima University Tokushima Japan
| |
Collapse
|
3
|
Jaber S, Nemska V, Iliev I, Ivanova E, Foteva T, Georgieva N, Givechev I, Naydenova E, Karadjova V, Danalev D. Synthesis and Biological Studies on (KLAKLAK) 2-NH 2 Analog Containing Unnatural Amino Acid β-Ala and Conjugates with Second Pharmacophore. Molecules 2021; 26:7321. [PMID: 34885902 PMCID: PMC8658989 DOI: 10.3390/molecules26237321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
(1) Background: Peptides are good candidates for anticancer drugs due to their natural existence in the body and lack of secondary effects. (KLAKLAK)2 is an antimicrobial peptide that also shows good anticancer properties. (2) Methods: The Solid Phase Peptide Synthesis (Fmoc-strategy) was used for the synthesis of target molecules, analogs of (KLAKLAK)2-NH2. The purity of all compounds was monitored by HPLC, and their structures were proven using mass spectrometry. Cytotoxicity and antiproliferative effects were studied using 3T3 NRU and MTT tests, respectively. For determination of antimicrobial activity, the disc-diffusion method was used. Hydrolytic stability at three pH values, which mimic the physiological pH in the body, was investigated by means of the HPLC technique. (3) Results: A good selective index against MCF-7 tumor cell lines, combined with good cytotoxicity and antiproliferative properties, was revealed for conjugates NphtG-(KLAKLAK)2-NH2 and Caf-(KLAKLAK)2-NH2. The same compounds showed very good antifungal properties and complete hydrolytic stability for 72 h. The compound Caf-(KLβ-AKLβ-AK)2-NH2 containing β-Ala in its structures exhibited good antimicrobial activity against Escherichia coli K12 407 and Bacillus subtilis 3562, in combination with very good antiproliferative and cytotoxic properties, as well as hydrolytic stability. (4) Conclusions: The obtained results reveal that all synthesized conjugates could be useful for medical practice as anticancer or antimicrobial agents.
Collapse
Affiliation(s)
- Sirine Jaber
- University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd, 1756 Sofia, Bulgaria; (S.J.); (V.N.); (T.F.); (N.G.); (E.N.); (V.K.)
| | - Veronica Nemska
- University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd, 1756 Sofia, Bulgaria; (S.J.); (V.N.); (T.F.); (N.G.); (E.N.); (V.K.)
| | - Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 25 A, 1113 Sofia, Bulgaria; (I.I.); (E.I.)
| | - Elena Ivanova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 25 A, 1113 Sofia, Bulgaria; (I.I.); (E.I.)
| | - Tsvetelina Foteva
- University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd, 1756 Sofia, Bulgaria; (S.J.); (V.N.); (T.F.); (N.G.); (E.N.); (V.K.)
| | - Nelly Georgieva
- University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd, 1756 Sofia, Bulgaria; (S.J.); (V.N.); (T.F.); (N.G.); (E.N.); (V.K.)
| | - Ivan Givechev
- Testing Center Global Test Ltd., 31 Krushovski vrah Street, 1618 Sofia, Bulgaria;
| | - Emilia Naydenova
- University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd, 1756 Sofia, Bulgaria; (S.J.); (V.N.); (T.F.); (N.G.); (E.N.); (V.K.)
| | - Veronika Karadjova
- University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd, 1756 Sofia, Bulgaria; (S.J.); (V.N.); (T.F.); (N.G.); (E.N.); (V.K.)
| | - Dancho Danalev
- University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd, 1756 Sofia, Bulgaria; (S.J.); (V.N.); (T.F.); (N.G.); (E.N.); (V.K.)
| |
Collapse
|
4
|
Lee H, Bang JB, Na YG, Lee JY, Cho CW, Baek JS, Lee HK. Development and Evaluation of Tannic Acid-Coated Nanosuspension for Enhancing Oral Bioavailability of Curcumin. Pharmaceutics 2021; 13:pharmaceutics13091460. [PMID: 34575537 PMCID: PMC8468675 DOI: 10.3390/pharmaceutics13091460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
Curcumin (CUR) has been used in the treatment of various diseases such as cough, fever, skin disease, and infection because of various biological benefits such as anti-inflammatory, antiviral, antibacterial, and antitumor activity. However, CUR is a BCS class 4 group and has a limitation of low bioavailability due to low solubility and permeability. Therefore, the purpose of this study is to prepare a nanosuspension (NSP) loaded with CUR (CUR-NSP) using a statistical design approach to improve the oral bioavailability of CUR, and then to develop CUR-NSP coated with tannic acid to increase the mucoadhesion in the GI tract. Firstly, the optimized CUR-NSP, composed of sodium dodecyl sulfate (SDS) and polyvinylpyrrolidone/vinyl acetate (PVP/VA), was modified with tannic acid (TA). The particle size and polydispersity index of the formulation measured by laser scattering analyzer were 127.7 ± 1.3 nm and 0.227 ± 0.010, respectively. In addition, the precipitation in distilled water (DW) was 1.52 ± 0.58%. Using a differential scanning calorimeter and X-ray diffraction analysis, the stable amorphous form of CUR was confirmed in the formulation, and it was confirmed that CUR-NSP formulation was coated with TA through a Fourier transform-infrared spectroscopy. In the mucoadhesion assay using the turbidity, it was confirmed that TA-CUR-NSP had higher affinity for mucus than CUR-NSP under all pH conditions. This means that the absorption of CUR can be improved by increasing the retention time in the GI tract of the formulation. In addition, the drug release profile showed more than 80% release, and in the cellular uptake study, the absorption of the formulation (TA-CUR-NSP) containing TA acting as an inhibitor of P-gp was increased by 1.6-fold. In the evaluation of antioxidant activity, the SOD activity of TA-CUR-NSP was remarkably high due to TA, which improves cellular uptake and has antioxidant activity. In the pharmacokinetic evaluation, the maximum drug plasma concentration of the TA-coated NSP formulation was 7.2-fold higher than that of the pure drug. In all experiments, it was confirmed that the TA-CUR-NSP is a promising approach to overcome the low oral bioavailability of CUR.
Collapse
Affiliation(s)
- Hyeonmin Lee
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.L.); (J.-B.B.); (Y.-G.N.); (J.-Y.L.)
| | - Jun-Bae Bang
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.L.); (J.-B.B.); (Y.-G.N.); (J.-Y.L.)
| | - Young-Guk Na
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.L.); (J.-B.B.); (Y.-G.N.); (J.-Y.L.)
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.L.); (J.-B.B.); (Y.-G.N.); (J.-Y.L.)
- Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Cheong-Weon Cho
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.L.); (J.-B.B.); (Y.-G.N.); (J.-Y.L.)
- Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
- Correspondence: (C.-W.C.); (J.-S.B.); (H.-K.L.); Tel.: +82-42-821-5934 (C.-W.C.); Fax: +82-42-823-6566 (C.-W.C.)
| | - Jong-Suep Baek
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea
- Department of Herbal Medicine Resource, Kangwon National University, 346 Hwangjo-gil, Dogye-eup, Samcheok-si 25949, Korea
- Correspondence: (C.-W.C.); (J.-S.B.); (H.-K.L.); Tel.: +82-42-821-5934 (C.-W.C.); Fax: +82-42-823-6566 (C.-W.C.)
| | - Hong-Ki Lee
- Animal Model Research Group, Jeonbuk Branch, Korea Institute of Toxicology (KIT), Jeongeup 53212, Korea
- Correspondence: (C.-W.C.); (J.-S.B.); (H.-K.L.); Tel.: +82-42-821-5934 (C.-W.C.); Fax: +82-42-823-6566 (C.-W.C.)
| |
Collapse
|
5
|
Song HY, McClements DJ. Nano-enabled-fortification of salad dressings with curcumin: Impact of nanoemulsion-based delivery systems on physicochemical properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Grover M, Behl T, Sachdeva M, Bungao S, Aleya L, Setia D. Focus on Multi-targeted Role of Curcumin: a Boon in Therapeutic Paradigm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18893-18907. [PMID: 33595796 DOI: 10.1007/s11356-021-12809-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Curcumin is a polyphenolic compound that exhibited good anticancer potential against different types of cancers through its multi-targeted effect like the termination of cell proliferation, inflammation, angiogenesis, and metastasis, thereby acting as antiproliferative and cytotoxic in nature. The present review surveys the various drug combination tried with curcumin or its synthetic analogues and also the mechanism by which curcumin potentiates the effect of almost every drug. In addition, this article also focuses on aromatherapy which is gaining much popularity in cancer patients. After thoroughly studying several articles on combination therapy of curcumin through authenticated book chapters, websites, research, and review articles available at PubMed, ScienceDirect, etc., it has been observed that multi-targeted curcumin possess enormous anticancer potential and, with whatever drug it is given in combination, has always resulted in enhanced effect with reduced dose as well as side effects. It is also capable enough in overcoming the problem of chemoresistance. Besides this, aromatherapy also proved its potency in reducing cancer-related side effects. Combining all the factors together, we can conclude that combination therapy of drugs with curcumin should be explored extensively. In addition, aromatherapy can be used as an adjuvant or supplementary therapy to reduce the cancer complications in patients.
Collapse
Affiliation(s)
- Madhuri Grover
- B.S. Anangpuria Institute of Pharmacy, Alampur, Haryana, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | | | - Simona Bungao
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Dhruv Setia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
7
|
Cohen L, Livney YD, Assaraf YG. Targeted nanomedicine modalities for prostate cancer treatment. Drug Resist Updat 2021; 56:100762. [PMID: 33857756 DOI: 10.1016/j.drup.2021.100762] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/17/2022]
Abstract
Prostate cancer (PC) is the second most common cause of death amongst men in the USA. Therapy of PC has been transformed in the past decade by introducing novel therapeutics, advanced functional imaging and diagnostic approaches, next generation sequencing, as well as improved application of existing therapies in localized PC. Treatment of PC at the different stages of the disease may include surgery, androgen deprivation therapy (ADT), chemotherapy and radiation therapy. However, although ADT has proven efficacious in PC treatment, its effectiveness may be temporary, as these tumors frequently develop molecular mechanisms of therapy resistance, which allow them to survive and proliferate even under conditions of testosterone deprivation, inhibition of androgen receptor signaling, or cytotoxic drug treatment. Importantly, ADT was found to induce key alterations which frequently result in the formation of metastatic tumors displaying a therapy refractory phenotype. Hence, to overcome these serious therapeutic impediments, novel PC cell-targeted therapeutic strategies are being developed. These include diverse platforms enabling specific enhanced antitumor drug uptake and increased intracellular accumulation. Studies have shown that these novel treatment modalities lead to enhanced antitumor activity and diminished systemic toxicity due to the use of selective targeting and decreased drug doses. The underlying mechanism of targeting and internalization is based upon the interaction between a selective ligand, conjugated to a drug-loaded nanoparticle or directly to an anti-cancer drug, and a specific plasma membrane biomarker, uniquely overexpressed on the surface of PC cells. Another targeted therapeutic approach is the delivery of unique anti-oncogenic signaling pathway-based therapeutic drugs, which are selectively cytotoxic to PC cells. The current paper reviews PC targeted modalities reported in the past 6 years, and discusses both the advantages and limitations of the various targeted treatment strategies.
Collapse
Affiliation(s)
- Lital Cohen
- The Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yoav D Livney
- The Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
8
|
Liu Y, Yan H, Liu H, Liu J, Sun B, Liu M. Molecular dynamics simulation studies on the concentration-dependent interaction of dodecyltrimethylammonium bromide with curcumin. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1844015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yinglin Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Hui Yan
- College of Pharmacy, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - He Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Bin Sun
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, P. R. China
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, Shandong, P. R. China
| |
Collapse
|
9
|
Patanapongpibul M, Chen QH. Immune Modulation of Asian Folk Herbal Medicines and Related Chemical Components for Cancer Management. Curr Med Chem 2019; 26:3042-3067. [DOI: 10.2174/0929867324666170705112644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/16/2016] [Accepted: 12/18/2016] [Indexed: 01/02/2023]
Abstract
Various exciting immunotherapies aiming to address immune deficiency induced
by tumor and treatment hold promise in improving the quality of life and survival
rate of cancer patients. It is thus becoming an important and rewarding arena to develop
some appropriate immune modulators for cancer prevention and/or treatment. Exploitation
of natural products-based immune modulators is of particular imperative because the
potential of numerous traditional herbal medicines and edible mushrooms in boosting
human immune system has long been verified by folklore practices. This review summarizes
the immune modulations of various herbal medicines and edible mushrooms, their
crude extracts, and/or key chemical components that have been, at least partly, associated
with their cancer management. This article also tabulates the origin of species, key
chemical components, and clinical studies of these herbal medicines and edible mushrooms.
Collapse
Affiliation(s)
- Manee Patanapongpibul
- Department of Chemistry, California State University Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, United States
| | - Qiao-Hong Chen
- Department of Chemistry, California State University Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, United States
| |
Collapse
|
10
|
Ayyanaar S, Kesavan MP, Sivaraman G, Maddiboyina B, Annaraj J, Rajesh J, Rajagopal G. A novel curcumin-loaded PLGA micromagnetic composite system for controlled and pH-responsive drug delivery. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Trotta T, Panaro MA, Prifti E, Porro C. Modulation of Biological Activities in Glioblastoma Mediated by Curcumin. Nutr Cancer 2019; 71:1241-1253. [PMID: 31007066 DOI: 10.1080/01635581.2019.1604978] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Curcumin is an alkaloid with various pharmacologic properties; numerous investigations have suggested that in the Central Nervous System, Curcumin has anti-inflammatory, antimicrobial, antioxidant, and antitumor effects. Gliomas are the most common primary intracranial tumors in adults. The prognosis of glioblastoma is still dismal. In this review, we profile that Curcumin could suppress cell proliferation and induce apoptosis of cancer cells and genomic modulation. In particular, Curcumin could exert its therapeutic effect via modulating miRNA, affecting a variety of miRNAs involved in the response to cancer therapy. The combination of Curcumin with chemotherapeutic drugs or radiotherapy could prime the sensitivity of cancer cells to chemotherapy or radiotherapy. We also discuss the use of exosomes as Curcumin delivery vehicles. In this context, exosomes containing Curcumin may change the behavior of recipient cells by targeting a sequence of cellular and molecular pathways. Hence, the application of exosomes containing Curcumin may prove to be an emerging area of research in cancer therapy.
Collapse
Affiliation(s)
- Teresa Trotta
- Department of Clinical and Experimental Medicine, University of Foggia , Foggia , Italy
| | - Maria A Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics University of Bari , Bari , Italy
| | - Elona Prifti
- Department of Clinical Materies, University of Elbasan "Aleksander Xhuvani", Faculty of Medical and Technical Science , Albania
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia , Foggia , Italy
| |
Collapse
|
12
|
Yu X, Chen L, Tang M, Yang Z, Fu A, Wang Z, Wang H. Revealing the Effects of Curcumin on SH-SY5Y Neuronal Cells: A Combined Study from Cellular Viability, Morphology, and Biomechanics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4273-4279. [PMID: 30929442 DOI: 10.1021/acs.jafc.9b00314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, the effects of curcumin on the viability, morphology, and nanomechanics of SH-SY5Y neuronal cells were investigated using a conventional cell viability test kit (CCK-8) and sophisticated AFM imaging and force measurement techniques. CCK-8 tests show that SH-SY5Y neuronal cells have a dose-response to curcumin in terms of viability that is dependent on the exposure durations. When exposed to a maximum dosage of 32 μg/mL used in the present study for 4 h, 24 h, and 48 h, the cell viability dropped to 73.4 ± 4.5%, 9.1 ± 3.2%, and 2.5 ± 1.2% of the control, correspondingly. AFM studies show that curcumin can induce the disappearance of synapses of the cells and the change of biomechanics. After exposure for 24 h at the concentration of 16 μg/mL, the viscous deformation of the cells decreased from 2.15 ± 0.02 to 1.58 ± 0.03 (×10-15 N·m), the elastic deformation increased from 1.26 ± 0.04 to 1.72 ± 0.07 (×10-15 N·m), and adhesion work decreased from 0.56 ± 0.07 to 0.39 ± 0.04 (×10-16 N·m). The morphological and mechanical changes obtained using AFM can be interpreted from optically observed cellular structural changes. The present study provides insights into the effects of curcumin on neuronal cells from both biological and biophysical aspects, which can help more comprehensively understand the interactions between curcumin and SH-SY5Y cells. The demonstrated techniques can be potentially used to assess the efficacy of bioactive constituents on cells or help screen drugs.
Collapse
Affiliation(s)
- Xiaoting Yu
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology & Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology , Chinese Academy of Sciences , Chongqing 400714 , China
| | - Ligang Chen
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology & Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology , Chinese Academy of Sciences , Chongqing 400714 , China
- School of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , China
| | - Mingjie Tang
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology & Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology , Chinese Academy of Sciences , Chongqing 400714 , China
| | - Zhongbo Yang
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology & Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology , Chinese Academy of Sciences , Chongqing 400714 , China
| | - Ailing Fu
- School of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , China
| | - Zhanzhong Wang
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| | - Huabin Wang
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology & Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology , Chinese Academy of Sciences , Chongqing 400714 , China
| |
Collapse
|
13
|
New insights into alpha-lactalbumin behavior upon interaction with resveratrol and curcumin by spectroscopic and molecular modeling techniques: binary and ternary system comparison. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01608-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
A Review of Antiplatelet Activity of Traditional Medicinal Herbs on Integrative Medicine Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7125162. [PMID: 30719065 PMCID: PMC6335729 DOI: 10.1155/2019/7125162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022]
Abstract
Thrombotic events mainly occurred by platelet activation and aggregation. The vascular occlusion causes serious disease states such as unstable angina, ischemic stroke, and heart attack. Due to the pervading of thrombotic diseases, new antiplatelet drugs are necessary for preventing and treating arterial thrombosis without adverse side effects. Traditional medicinal herbs have been used for the treatment of human ailments for a long time. The clinically useful and safe products from traditional medicinal herbs were identified and developed in numerous pharmacological approaches. A complementary system of traditional medicinal herbs is a good candidate for pharmacotherapy. However, it still has a limitation in its function and efficacy. Thus, it is necessary to study the mode of action of traditional medicinal herbs as alternative therapeutic agents. In this review, we focused on our current understanding of the regulatory mechanisms of traditional medicinal herbs in antiplatelet activity and antithrombotic effect of traditional medicinal herbs on platelet function.
Collapse
|
15
|
Khan S, Imran M, Butt TT, Ali Shah SW, Sohail M, Malik A, Das S, Thu HE, Adam A, Hussain Z. Curcumin based nanomedicines as efficient nanoplatform for treatment of cancer: New developments in reversing cancer drug resistance, rapid internalization, and improved anticancer efficacy. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
The Positive Role of Curcumin-Loaded Salmon Nanoliposomes on the Culture of Primary Cortical Neurons. Mar Drugs 2018; 16:md16070218. [PMID: 29941790 PMCID: PMC6070829 DOI: 10.3390/md16070218] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/31/2018] [Accepted: 06/13/2018] [Indexed: 12/29/2022] Open
Abstract
Curcumin (diferuloylmethane) is a natural bioactive compound with many health-promoting benefits. However, its poor water solubility and bioavailability has limited curcumin’s biomedical application. In the present study, we encapsulated curcumin into liposomes, formed from natural sources (salmon lecithin), and characterized its encapsulation efficiency and release profile. The proposed natural carriers increased the solubility and the bioavailability of curcumin. In addition, various physico-chemical properties of the developed soft nanocarriers with and without curcumin were studied. Nanoliposome-encapsulated curcumin increased the viability and network formation in the culture of primary cortical neurons and decreased the rate of apoptosis.
Collapse
|
17
|
The Role of Curcumin in Prevention and Management of Metastatic Disease. Int J Mol Sci 2018; 19:ijms19061716. [PMID: 29890744 PMCID: PMC6032261 DOI: 10.3390/ijms19061716] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 01/05/2023] Open
Abstract
In the last two decades, targeted therapies have enhanced tumor patient care and treatment success, however, metastatic growth still cannot be stopped efficiently and, therefore, mortality rates remain high. Prevention strategies against formation of metastases are the most promising approach we have, however, due to lack of clinical validation studies, they have not yet entered routine clinical care. In order to smooth the way for efficient prevention, further preclinical and large clinical studies are required. In this context, the underlying molecular mechanisms and factors that lead to metastatic growth have to be explored, and potential preventive agents have to be tested. Thereby, special attention has to be paid to natural bioactive compounds which do not exert major adverse effects, like the plant-derived polyphenol Curcumin, which is known to be a powerful antitumor agent. So far, most of the preclinical studies with Curcumin have focused on its effect on inhibiting tumor cell proliferation and invasion, although, it is known that it also inhibits metastatic spread in vivo. This review discusses the preventive potential of this natural compound not only against tumor onset, but also against formation of metastases.
Collapse
|
18
|
Widyowati R, Agil M. Chemical Constituents and Bioactivities of Several Indonesian Plants Typically Used in Jamu. Chem Pharm Bull (Tokyo) 2018; 66:506-518. [PMID: 29710047 DOI: 10.1248/cpb.c17-00983] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This article reviews the chemical constituents and bioactivities of several Indonesian plants typically used in Jamu prescriptions in Indonesia. Jamu is Indonesia traditional medicine: it consists of either a single ingredient or a mixture of several medicinal plants. One plant family always used in Jamu is Zingiberaceae (ginger), such as Curcuma domestica/C. longa, C. xanthorrhizae, C. heyneana, C. zedoaria, C. aeruginosa, Zingiber aromaticum, Alpinia galanga. We also report other commonly used plant families such as Justicia gendarussa and Cassia siamea, whose activities have been extensively explored by our department.
Collapse
|
19
|
Pathan IB, Jaware BP, Shelke S, Ambekar W. Curcumin loaded ethosomes for transdermal application: Formulation, optimization, in-vitro and in-vivo study. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Pathan IB, Munde SJ, Shelke S, Ambekar W, Mallikarjuna Setty C. Curcumin loaded fish scale collagen-HPMC nanogel for wound healing application: Ex-vivo and In-vivo evaluation. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1429437] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Inayat B. Pathan
- Department of Pharmaceutics, Government College of Pharmacy, Aurangabad, Maharashtra, India
| | - Santosh J. Munde
- Department of Pharmaceutics, Government College of Pharmacy, Aurangabad, Maharashtra, India
| | - Santosh Shelke
- Department of Pharmaceutics, Yash Institute of Pharmacy, Aurangabad, Maharashtra, India
| | - Wahid Ambekar
- Department of Pharmaceutics, Dr. VVPF’s College of Pharmacy, Ahmednagar, Maharashtra, India
| | - C. Mallikarjuna Setty
- Department of Pharmaceutics, The Oxford College of Pharmacy, Pharmaceutics, Hongasandra, Bangalore, India
| |
Collapse
|
21
|
Chen X, Wang J, Fu Z, Zhu B, Wang J, Guan S, Hua Z. Curcumin activates DNA repair pathway in bone marrow to improve carboplatin-induced myelosuppression. Sci Rep 2017; 7:17724. [PMID: 29255221 PMCID: PMC5735145 DOI: 10.1038/s41598-017-16436-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/13/2017] [Indexed: 11/09/2022] Open
Abstract
Carboplatin, a second-generation platinum agent, has been used as a cancer therapy for decades and exhibits strong anti-tumor activity. However, the wide application of carboplatin is largely limited due to its side effects, especially myelosuppression. Here, we combined carboplatin with curcumin, a natural product that improves tumor-induced anemia, for the treatment of fibrosarcoma to improve the side effects of carboplatin. We first examined the synergistic and attenuated effects of the two agents in a T241-bearing mouse model. The combination therapy caused no obvious synergistic effect, but curcumin significantly improved the survival rate of carboplatin-treated mice. Histologic analysis of the kidney and bone marrow revealed that curcumin improved carboplatin-induced myelosuppression but did not affect the kidney. To determine the mechanism involved, we introduced a probe derived from curcumin to identify its targets in bone marrow cells and the results provided us a clue that curcumin might affect the DNA repair pathway. Western blot analysis revealed that curcumin up-regulated BRCA1, BRCA2 and ERCC1 expression in bone marrow. In conclusion, curcumin attenuates carboplatin-induced myelosuppression by activating the DNA repair pathway in bone marrow cells.
Collapse
Affiliation(s)
- Xiao Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jigang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.,Department of Biological Science, National University of Singapore, Singapore, 117543, Singapore
| | - Zhongping Fu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China
| | - Bo Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jie Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shengwen Guan
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China. .,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China. .,Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, China.
| |
Collapse
|
22
|
Xiang FF, He JW, Liu ZX, Peng QZ, Wei H. Two new guaiane-type sesquiterpenes from Curcuma kwangsiensis and their inhibitory activity of nitric oxide production in lipopolysaccharide-stimulated macrophages. Nat Prod Res 2017; 32:2670-2675. [PMID: 28931326 DOI: 10.1080/14786419.2017.1378203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Two new guaiane-type sesquiterpenes, kwangsiensis A and B (1-2) were isolated from the roots of Curcuma kwangsiensis. Their structures were elucidated by extensive spectroscopic methods, including NMR, circular dichroism (CD) and high-resolution mass-spectrometry. The anti-inflammatory activity of the two compounds was evaluated on the basis of their inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) production in mouse RAW 264.7 macrophages. Compounds 1 and 2 showed moderate inhibitory activities with IC50 values of 27.4 and 35.1 μM, respectively.
Collapse
Affiliation(s)
- Fang-Fang Xiang
- a College of Biology and Environmental Science , Jishou University , Jishou , China
| | - Jian-Wu He
- a College of Biology and Environmental Science , Jishou University , Jishou , China
| | - Zhu-Xiang Liu
- a College of Biology and Environmental Science , Jishou University , Jishou , China
| | - Qing-Zhong Peng
- a College of Biology and Environmental Science , Jishou University , Jishou , China
| | - Hua Wei
- a College of Biology and Environmental Science , Jishou University , Jishou , China.,b Tujia Medicine Research Center in Hunan , Jishou University , Jishou , China
| |
Collapse
|
23
|
Gera M, Sharma N, Ghosh M, Huynh DL, Lee SJ, Min T, Kwon T, Jeong DK. Nanoformulations of curcumin: an emerging paradigm for improved remedial application. Oncotarget 2017; 8:66680-66698. [PMID: 29029547 PMCID: PMC5630447 DOI: 10.18632/oncotarget.19164] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/29/2017] [Indexed: 12/26/2022] Open
Abstract
Curcumin is a natural polyphenol and essential curcuminoid derived from the rhizome of the medicinal plant Curcuma longa (L.) is universally acknowledged as “Wonder drug of life”. It is a vital consumable and restorative herb, commonly keened for several ailments such as cancer, arthritis, pain, bruises, gastrointestinal quandaries, swelling and much more. Despite its enormous curative potential, the poor aqueous solubility and consequently, minimal systemic bioavailability with rapid degradation are some of the major factors which restrict the utilization of curcumin at medical perspective. However, to improve its clinically relevant parameters, nanoformulation of curcumin is emerging as a novel substitute for their superior therapeutic modality. It enhances its aqueous solubility and targeted delivery to the tissue of interest that prompts to enhance the bioavailability, better drug conveyance, and more expeditious treatment. Subsequent investigations are endeavored to enhance the bio-distribution of native curcumin by modifying with felicitous nano-carriers for encapsulation. In this review, we specifically focus on the recent nanotechnology based implementations applied for overcoming the innate constraints of native curcumin and additionally the associated challenges which restrict its potential therapeutic applications both in vivo and in-vitro studies, as well as their detailed mechanism of action, have additionally been discussed.
Collapse
Affiliation(s)
- Meeta Gera
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmi University of Agricultural Sciences and Technology, R.S. Pura, Jammu, India
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Do Luong Huynh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Sung Jin Lee
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Kangwon National University, Gangwon-do, Republic of Korea
| | - Taesun Min
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Taeho Kwon
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea.,Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Republic of Korea
| | - Dong Kee Jeong
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea.,Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
24
|
Torres E, Fombuena V, Vallés-Lluch A, Ellingham T. Improvement of mechanical and biological properties of Polycaprolactone loaded with Hydroxyapatite and Halloysite nanotubes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:418-424. [DOI: 10.1016/j.msec.2017.02.087] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/10/2017] [Accepted: 02/16/2017] [Indexed: 10/20/2022]
|
25
|
Wu Y, Wang X. Binding, stability, and antioxidant activity of curcumin with self-assembled casein–dextran conjugate micelles. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1286505] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yue Wu
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaoyong Wang
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
26
|
Pouliquen DL, Nawrocki-Raby B, Nader J, Blandin S, Robard M, Birembaut P, Grégoire M. Evaluation of intracavitary administration of curcumin for the treatment of sarcomatoid mesothelioma. Oncotarget 2017; 8:57552-57573. [PMID: 28915695 PMCID: PMC5593667 DOI: 10.18632/oncotarget.15744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 02/06/2017] [Indexed: 12/15/2022] Open
Abstract
A rat model of sarcomatoid mesothelioma, mimicking some of the worst clinical conditions encountered, was established to evaluate the therapeutic potential of intracavitary curcumin administration. The M5-T1 cell line, selected from a collection established from F344 rats induced with asbestos, produces tumors within three weeks, with extended metastasis in normal tissues, after intraperitoneal inoculation in syngeneic rats. The optimal concentration/time conditions for killing M5-T1 cells with curcumin were first determined in vitro. Secondly, the potential of intraperitoneal curcumin administration to kill tumor cells in vivo was evaluated in tumor-bearing rats, in comparison with a reference epigenetic drug, SAHA. Both agents administered at days 21 and 26 after tumor challenge produced necrosis within the solid tumors at day 28. However, tumor tissue necrosis induced with curcumin was much more extensive than with SAHA, and was characterized by infiltration with mononuclear phagocytic cells. In contrast, tumor tissue treated with SAHA contained foci of resistant cells and was infiltrated by many isolated CD8+ cells. The treatment of tumor-bearing rats with 1.5 mg/kg curcumin on days 7, 9, 11 and 14 after tumor challenge dramatically reduced the mean total tumor mass at day 16. Clusters of CD8+ T lymphocytes were observed at the periphery of small residual tumor masses in the peritoneal cavity, which presented a significant reduction in mitotic index, IL6 and vimentin expression compared with tumors in untreated rats. These data open up interesting new prospects for the therapy of sarcomatoid mesothelioma with curcumin and its derivatives.
Collapse
Affiliation(s)
- Daniel L Pouliquen
- INSERM, UMR 1232, Nantes, France.,Université de Nantes, Nantes, France.,CNRS ERL, Nantes, France
| | - Béatrice Nawrocki-Raby
- INSERM, UMR-S 903, Reims, France.,Université de Reims Champagne-Ardenne, Reims, France.,SFR CAP-Santé, Reims, France
| | - Joëlle Nader
- INSERM, UMR 1232, Nantes, France.,Université de Nantes, Nantes, France.,CNRS ERL, Nantes, France
| | - Stéphanie Blandin
- Université de Nantes, Nantes, France.,Plate-forme MicroPICell, SFR François Bonamy, Nantes, France
| | - Myriam Robard
- Université de Nantes, Nantes, France.,Plate-forme MicroPICell, SFR François Bonamy, Nantes, France
| | - Philippe Birembaut
- INSERM, UMR-S 903, Reims, France.,Université de Reims Champagne-Ardenne, Reims, France.,SFR CAP-Santé, Reims, France.,Laboratory of Biopathology, CHU Reims, Reims, France
| | - Marc Grégoire
- INSERM, UMR 1232, Nantes, France.,Université de Nantes, Nantes, France.,CNRS ERL, Nantes, France
| |
Collapse
|
27
|
Mirzaei H, Shakeri A, Rashidi B, Jalili A, Banikazemi Z, Sahebkar A. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomed Pharmacother 2017; 85:102-112. [PMID: 27930973 DOI: 10.1016/j.biopha.2016.11.098] [Citation(s) in RCA: 350] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/21/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022] Open
Abstract
Curcumin, a hydrophobic polyphenol, is the principal constituent extracted from dried rhizomes of Curcuma longa L. (turmeric). Curcumin is known as a strong anti-oxidant and anti-inflammatory agent that has different pharmacological effects. In addition, several studies have demonstrated that curcumin is safe even at dosages as high as 8g per day; however, instability at physiological pH, low solubility in water and rapid metabolism results in a low oral bioavailability of curcumin. The phytosomal formulation of curcumin (a complex of curcumin with phosphatidylcholine) has been shown to improve curcumin bioavailability. Existence of phospholipids in phytosomes leads to specific physicochemical properties such as amphiphilic nature that allows dispersion in both hydrophilic and lipophilic media. The efficacy and safety of curcumin phytosomes have been shown against several human diseases including cancer, osteoarthritis, diabetic microangiopathy and retinopathy, and inflammatory diseases. This review focuses on the pharmacokinetics as well as pharmacological and clinical effects of phytosomal curcumin.
Collapse
Affiliation(s)
- Hamed Mirzaei
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amin Jalili
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
28
|
Deka SJ, Mamdi N, Manna D, Trivedi V. Alkyl Cinnamates Induce Protein Kinase C Translocation and Anticancer Activity against Breast Cancer Cells through Induction of the Mitochondrial Pathway of Apoptosis. J Breast Cancer 2016; 19:358-371. [PMID: 28053624 PMCID: PMC5204042 DOI: 10.4048/jbc.2016.19.4.358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/12/2016] [Indexed: 01/06/2023] Open
Abstract
Purpose The protein kinase C (PKC) family of serine-threonine kinases plays an important role in cancer cell progression. Thus, molecules that target PKC have potential as anticancer agents. The current study aims to understand the treatment of breast cancer cells with alkyl cinnamates. We have also explored the mechanistic details of their anticancer action and the underlying molecular signaling. Methods 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to measure the viability of MDAMB-231 breast cancer cells to assess the anticancer activity of these compounds. In addition, flow cytometry was performed to study the effect of alkyl cinnamates on the cell cycle and apoptosis. Immunoblotting and immunofluorescence techniques were performed to study PKC translocation, cytochrome c release, and modulation of the mitochondrial membrane potential in breast cancer cells targeted with alkyl cinnamates. Results The PKC agonist DM-2-8 translocated 16.6%±1.7% PKCα from cytosol to the plasma membrane and showed excellent anticancer activity with an half maximal inhibitory concentration (IC50) of 4.13±0.27 µg/mL against cancer cells. The treated cells had an abnormal morphology and exhibited cell cycle defects with G2/M arrest and reduced S phase. Cancer cells treated with DM-2-3, DM-2-4, or DM-2-8 underwent apoptosis as the major pathway of cell death, further confirmed by genomic DNA fragmentation. Furthermore, the mitochondrial membrane potential was perturbed, indicating involvement of the mitochondrial pathway of apoptosis. Immunolocalization studies revealed cytochrome c release from mitochondria to cytosol. Cancer cells treated with DM-2-8 and curcumin showed activation of caspase-9 and caspase-3 as downstream molecular components of the apoptotic pathway. Alkyl cinnamates also caused oxidative stress, which regulates the apoptotic machinery (DNA fragmentation), cell death, and morphological abnormalities in cancer cells. Conclusion Alkyl cinnamates specifically target cancer cells through induction of PKC translocation and the mitochondrial pathway of apoptosis, and could be promising anticancer drugs.
Collapse
Affiliation(s)
- Suman Jyoti Deka
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Narsimha Mamdi
- Laboratory of Biological Chemistry, Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Debasis Manna
- Laboratory of Biological Chemistry, Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
29
|
Wang X, Wang Z, Zhao X, Zhang L, Fan J. Rheological properties of lyotropic liquid crystals encapsulating curcumin. J DISPER SCI TECHNOL 2016. [DOI: 10.1080/01932691.2016.1146615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, P. R. China
| | - Zhongni Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, P. R. China
| | - Xin Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, P. R. China
| | - Li Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, P. R. China
| | - Jun Fan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, P. R. China
| |
Collapse
|
30
|
Essential oil of Curcuma aromatica induces apoptosis in human non-small-cell lung carcinoma cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
31
|
Jin HH, Lu Q, Jiang JG. Curcumin liposomes prepared with milk fat globule membrane phospholipids and soybean lecithin. J Dairy Sci 2016; 99:1780-1790. [PMID: 26774724 DOI: 10.3168/jds.2015-10391] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/03/2015] [Indexed: 12/16/2022]
Abstract
Using thin film ultrasonic dispersion method, the curcumin liposomes were prepared with milk fat globule membrane (MFGM) phospholipids and soybean lecithins, respectively, to compare the characteristics and stability of the 2 curcumin liposomes. The processing parameters of curcumin liposomes were investigated to evaluate their effects on the encapsulation efficiency. Curcumin liposomes were characterized in terms of size distribution, ζ-potential, and in vitro release behavior, and then their storage stability under various conditions was evaluated. The curcumin liposomes prepared with MFGM phospholipids had an encapsulation efficiency of about 74%, an average particle size of 212.3 nm, and a ζ-potential of -48.60 mV. The MFGM liposomes showed higher encapsulation efficiency, smaller particle size, higher absolute value of ζ-potential, and slower in vitro release than soybean liposomes. The retention rate of liposomal curcumin was significantly higher than that of free curcumin. The stability of the 2 liposomes under different pH was almost the same, but MFGM liposomes displayed a slightly higher stability than soybean liposomes under the conditions of Fe(3+), light, temperature, oxygen, and relative humidity. In conclusion, MFGM phospholipids have potential advantages in the manufacture of curcumin liposomes used in food systems.
Collapse
Affiliation(s)
- Hong-Hao Jin
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China
| | - Qun Lu
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 470070, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
32
|
Yakub G, Toncheva A, Manolova N, Rashkov I, Danchev D, Kussovski V. Electrospun polylactide-based materials for curcumin release: Photostability, antimicrobial activity, and anticoagulant effect. J Appl Polym Sci 2015. [DOI: 10.1002/app.42940] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gyuldzhan Yakub
- Laboratory of Bioactive Polymers; Institute of Polymers, Bulgarian Academy of Sciences; Sofia Bulgaria
| | - Antoniya Toncheva
- Laboratory of Bioactive Polymers; Institute of Polymers, Bulgarian Academy of Sciences; Sofia Bulgaria
| | - Nevena Manolova
- Laboratory of Bioactive Polymers; Institute of Polymers, Bulgarian Academy of Sciences; Sofia Bulgaria
| | - Iliya Rashkov
- Laboratory of Bioactive Polymers; Institute of Polymers, Bulgarian Academy of Sciences; Sofia Bulgaria
| | | | - Veselin Kussovski
- Institute of Microbiology, Bulgarian Academy of Sciences; Sofia Bulgaria
| |
Collapse
|
33
|
Bhullar KS, Jha A, Rupasinghe HPV. Novel carbocyclic curcumin analog CUR3d modulates genes involved in multiple apoptosis pathways in human hepatocellular carcinoma cells. Chem Biol Interact 2015; 242:107-22. [PMID: 26409325 DOI: 10.1016/j.cbi.2015.09.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 09/13/2015] [Accepted: 09/22/2015] [Indexed: 01/16/2023]
Abstract
Anticancer activity of a novel curcumin analog (E)-2-(4-hydroxy-3-methoxybenzylidene)-5-((E)-3-(4-hydroxy-3-methoxyphenyl)acryloyl)cyclopentanone (CUR3d) was studied using a human hepatocellular carcinoma cell line (HepG2). The results showed that CUR3d completely inhibits the tumor cell proliferation in a dose- and time-dependent manner. CUR3d at 100 μmol/L activated the pro-apoptotic caspase-3 along with downregulation of anti-apoptotic BIRC5 and Bcl2. CUR3d treatment controlled the cancer cell growth by downregulating the expression of PI3K/Akt (Akt1, Akt2) pathway along with NF-κB. CUR3d down-regulated the members of epidermal growth receptor family (EGFR, ERBB3, ERBB2) and insulin like growth receptors (IGF1, IGF-1R, IGF2). This correlated with the downregulation of G-protein (RHOA, RHOB) and RAS (ATF2, HRAS, KRAS, NRAS) pathway signaling. CUR3d also arrested cell cycle via inhibition of CDK2, CDK4, CDK5, CDK9, MDM2, MDM4 and TERT genes. Cell cycle essential aurora kinases (AURKα, AURKβ) and polo-like kinases (PLK1, PLK2, PLK3) were also modulated by CUR3d. Topoisomerases (TOP2α, TOP2β), important factors in cancer cell immortality, as well as HIF-1α were downregulated following CUR3d treatment. The expression of protein kinase-C family (PRKC-A, PRKC-D, PRKC-E) was also attenuated by CUR3d. The downregulation of histone deacetylases (Class I, II, IV) and PARP I further strengthened the anticancer efficacy of CUR3d. Downregulation of carcinogenic cathepsins (CTSB, CTSD) and heat shock proteins exhibited CUR3d's potency as a potential immunological adjuvant. Finally, the non-toxic manifestation of CUR3d in healthy liver and lung cells along with downregulation of drug resistant gene ABCC1 further warrant need for advance investigations.
Collapse
Affiliation(s)
- Khushwant S Bhullar
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3, Canada; Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Amitabh Jha
- Department of Chemistry, Acadia University, Wolfville, Nova Scotia, B4P 2R6, Canada
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3, Canada; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
34
|
Zhou M, Fan C, Tian N. Effects of curcumin on the gene expression profile of L-02 cells. Biomed Rep 2015; 3:519-526. [PMID: 26171159 DOI: 10.3892/br.2015.460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/03/2015] [Indexed: 12/30/2022] Open
Abstract
Curcumin has been utilized in the treatment and prevention of disease, including cancer and cardiovascular disease, but the molecular mechanism behind such numerous effects remains unclear. To explore the molecular mechanism and action sites of curcumin at the cellular level, human hepatic L-02 cells were used to assess these effects. Microarray technology was employed to detect the gene expression of L-02 cells treated with curcumin. According to the microarray results and the data from the National Center for Biotechnology Information, the present study classified and concluded that these curcumin-sensitive genes were associated with diseases and their signaling pathway. The study supports the evidence for treating cancer and cardiovascular disease, and found certain potential marker genes for conducting systematic research into the effects of curcumin. A total of 80 genes were identified as significantly differentially expressed between samples treated with and without curcumin. Curcumin is capable of developing physiological reactions and functions by regulating the gene expression and affecting its signal transduction pathway. Tumor protein p63, MYC-associated factor X and certain other genes associated with tumors act on a potential therapeutic target, while apolipoprotein B receptor and oxysterol-binding protein-like 7, and their signaling pathways may be involved in the cardioprotective effects of curcumin.
Collapse
Affiliation(s)
- Mingjie Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Chunlei Fan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Nan Tian
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
35
|
Xia G, Zhou L, Ma J, Wang Y, Ding L, Zhao F, Chen L, Qiu F. Sesquiterpenes from the essential oil of Curcuma wenyujin and their inhibitory effects on nitric oxide production. Fitoterapia 2015; 103:143-8. [PMID: 25819782 DOI: 10.1016/j.fitote.2015.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 11/25/2022]
Abstract
Three new sesquiterpenes including a new elemane-type sesquiterpene, 5βH-elem-1,3,7,8-tetraen-8,12-olide (1), and two new carabrane-type sesquiterpenes, 7α,11-epoxy-6α-methoxy-carabrane-4,8-dione (2) and 8,11-epidioxy-8-hydroxy-4-oxo-6-carabren (3), together with eight known sesquiterpenes (4-11) were isolated from Curcuma wenyujin Y. H. Chen et C. Ling. Their structures were elucidated based on extensive spectroscopic analyses. A possible biogenetic scheme for the related compounds was postulated. All of the isolated compounds were tested for inhibitory activity against LPS-induced nitric oxide production in RAW 264.7 macrophages. Meanwhile, preliminary structure-activity relationships for these compounds are discussed.
Collapse
Affiliation(s)
- Guiyang Xia
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Li Zhou
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jianghao Ma
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ying Wang
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Liqin Ding
- School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, People's Republic of China
| | - Feng Zhao
- School of Pharmacy, Yantai University, No. 32 Road QingQuan, Laishan District, Yantai 264005, People's Republic of China
| | - Lixia Chen
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Feng Qiu
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, People's Republic of China.
| |
Collapse
|
36
|
Abouzied MMM, Eltahir HM, Abdel Aziz MA, Ahmed NS, Abd El-Ghany AA, Abd El-Aziz EA, Abd El-Aziz HO. Curcumin ameliorate DENA-induced HCC via modulating TGF-β, AKT, and caspase-3 expression in experimental rat model. Tumour Biol 2014; 36:1763-71. [PMID: 25519685 DOI: 10.1007/s13277-014-2778-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 10/21/2014] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. In laboratory animal models, diethylnitrosamine (DENA) is a well-known agent that has a potent hepatocarcinogenic effect that is used to induce HCC. As curcumin has a potent anti-inflammatory effect with strong therapeutic potential against a variety of cancers, our present study aims to investigate its curative effects and the possible mechanisms of action against DENA-induced HCC in male rats. Investigation of biochemical and molecular parameters of HCC animal model liver showed an overexpression of TGF-β and Akt proteins accompanied with a significant reduction of the proapoptotic marker caspase-3. DENA-induced hepatic cellular injury resulted also in a significant increase in liver function marker enzymes aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lipid peroxides in this group. Curcumin treatment partially reversed DENA-induced damage as it reduced the overexpression of the angiogenic and anti-apoptotic factors TGF-β and Akt and improved caspase-3 expression. Also, it could partially normalize the serum values of liver marker enzymes and lipid peroxidation and improve liver architecture. Curcumin shows a unique chemotherapeutic effect in reversing DENA-induced HCC in rat model. This effect is possibly mediated through its proapoptotic, antioxidant, anti-angiogenic, as well as antimitotic effects. It interferes and modulates cell signaling pathways and hence turns death signals and apoptosis on within tumor cells.
Collapse
Affiliation(s)
- Mekky M M Abouzied
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, El- Madinah El-Munawarah, P.O. Box 30001, Saudi Arabia,
| | | | | | | | | | | | | |
Collapse
|
37
|
Peng Q, Zeng C, Zhou Y, Lian S, Nie G. Rapid Determination of Turmeric Roots Quality Based on the Raman Spectrum of Curcumin. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-9874-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Banerjee C, Ghosh S, Mandal S, Kuchlyan J, Kundu N, Sarkar N. Exploring the photophysics of curcumin in zwitterionic micellar system: an approach to control ESIPT process in the presence of room temperature ionic liquids (RTILs) and anionic surfactant. J Phys Chem B 2014; 118:3669-81. [PMID: 24617495 DOI: 10.1021/jp411778q] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this manuscript, we have modulated the photophysical properties of curcumin in a zwitterionic (N-hexadecyl-N,N-dimethylammonio-1-propanesulfonate (SB-16)) micellar aggregates with addition of room temperature ionic liquids (RTILs) as well as commonly used anionic surfactant (SDS), using steady-state and time-resolved spectroscopic techniques. To modulate the photophysics, first we studied its interaction with an SB-16 micellar system, then to further exploit its photophysics, three RTILs (EmimES, EmimBS, EmimHS) with variation of alkyl chain lengths as well as SDS were used. It is observed that the rate of degradation of curcumin is drastically decreased after partitioning into the zwitterionic micellar system. It is shown that the dynamics of excited state intramolecular proton transfer (ESIPT) processes can be controlled by using those RTILs and SDS. Our study also reveals that the hindrance of nonradiative processes of curcumin, i.e., ESIPT is more pronounced in the case of RTIL containing a long alkyl chain compared to a small one. However, most interestingly the addition of long chain (dodecyl) anionic surfactant (SDS) promotes the ESIPT process of curcumin. We have also studied the effect of the addition of inorganic salt and compared the results with RTILs. The present work demonstrates an effort to decipher the photophysics of curcumin in zwitterionic micellar systems by monitoring its excited state dynamics.
Collapse
Affiliation(s)
- Chiranjib Banerjee
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, West Bengal, India
| | | | | | | | | | | |
Collapse
|
39
|
Li PM, Li YL, Liu B, Wang WJ, Wang YZ, Li Z. Curcumin Inhibits MHCC97H Liver Cancer Cells by Activating ROS/TLR-4/Caspase Signaling Pathway. Asian Pac J Cancer Prev 2014; 15:2329-34. [DOI: 10.7314/apjcp.2014.15.5.2329] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
40
|
Shift of acid–base equilibrium of curcumin in its complexes with gemini surfactant hexamethylene-1,6-bis-(dodecyldimethyl ammonium bromide). Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Hasan M, Belhaj N, Benachour H, Barberi-Heyob M, Kahn CJF, Jabbari E, Linder M, Arab-Tehrany E. Liposome encapsulation of curcumin: physico-chemical characterizations and effects on MCF7 cancer cell proliferation. Int J Pharm 2014; 461:519-28. [PMID: 24355620 DOI: 10.1016/j.ijpharm.2013.12.007] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 12/29/2022]
Abstract
The role of curcumin (diferuloylmethane), for cancer treatment has been an area of growing interest. However, due to its low absorption, the poor bioavailability of curcumin limits its clinical use. In this study, we reported an approach of encapsulation a curcumin by nanoliposome to achieve an improved bioavailability of a poorly absorbed hydrophobic compound. We demonstrated that liposomal preparations to deliver curcumin increase its bioavailability. Liposomes composed of salmon's lecithin also improved curcumin bioavailability compared to those constituted of rapeseed and soya lecithins. A real-time label-free cell analysis system based on real-time cell impedance monitoring was used to investigate the in vitro cytotoxicity of liposomal preparations.
Collapse
Affiliation(s)
- M Hasan
- Université de Lorraine, Laboratoire d'ingénierie des Biomolecules, EA 4367, France
| | - N Belhaj
- Université de Lorraine, Laboratoire d'ingénierie des Biomolecules, EA 4367, France
| | - H Benachour
- Université de Lorraine, CRAN, UMR 7039, Campus Sciences, BP 70239, Vandœuvre-lès-Nancy Cedex 54506, France; CNRS, CRAN, UMR 7039, Vandœuvre-lès-Nancy, France
| | - M Barberi-Heyob
- Université de Lorraine, CRAN, UMR 7039, Campus Sciences, BP 70239, Vandœuvre-lès-Nancy Cedex 54506, France; CNRS, CRAN, UMR 7039, Vandœuvre-lès-Nancy, France; CNRS, GdR 3049 "Médicaments Photoactivables - Photochimiothérapie (PHOTOMED)", France; Centre Alexis Vautrin, CRLCC, Avenue de Bourgogne, Vandœuvre-lès-Nancy Cedex 54519, France
| | - C J F Kahn
- Aix-Marseille Univ, LBA, F-13916 Marseille, France; IFSTTAR, LBA, F-13916 Marseille, France
| | - E Jabbari
- Department of Chemical Engineering, SWNG Engineering Center, Rm 2C02, University of South Carolina, 301 South Main Street, Columbia, SC 29208, United States
| | - M Linder
- Université de Lorraine, Laboratoire d'ingénierie des Biomolecules, EA 4367, France
| | - E Arab-Tehrany
- Université de Lorraine, Laboratoire d'ingénierie des Biomolecules, EA 4367, France.
| |
Collapse
|
42
|
Suresh K, Mannava MKC, Nangia A. A novel curcumin–artemisinin coamorphous solid: physical properties and pharmacokinetic profile. RSC Adv 2014. [DOI: 10.1039/c4ra11935e] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Curcumin and artemisinin natural compounds of anticancer and antimalarial activity are combined as coamorphous solid with faster dissolution rate and enhanced pharmacokinetics.
Collapse
Affiliation(s)
- Kuthuru Suresh
- School of Chemistry
- University of Hyderabad
- Hyderabad 500 046, India
| | | | - Ashwini Nangia
- School of Chemistry
- University of Hyderabad
- Hyderabad 500 046, India
- Technology Business Incubator
- University of Hyderabad
| |
Collapse
|
43
|
Siva Mohan Reddy G, Jayaramudu J, Sadiku E, Sinha Ray S, Varaprasad K, Aderibigbe B. Application of cross-linked soy protein isolate with resorcinol films for release studies of naturally occurring bioactive agent with antiproliferative activity. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50012-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
Aziza SAH, Abdel-Aal S, Mady H. Chemopreventive Effect of Curcumin on Oxidative Stress, Antioxidant Status,
DNA Fragmentation and Caspase-9 Gene Expression in 1,2-dimethylhydrazine-induced
Colon Cancer in Rats. ACTA ACUST UNITED AC 2013. [DOI: 10.3923/ajbmb.2014.22.34] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Yang M, Wu Y, Li J, Zhou H, Wang X. Binding of curcumin with bovine serum albumin in the presence of ι-carrageenan and implications on the stability and antioxidant activity of curcumin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7150-5. [PMID: 23819626 DOI: 10.1021/jf401827x] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This work studied the influences of formation of BSA/ι-carrageenan complexes on the binding, stability, and antioxidant activity of curcumin. In the presence of BSA and ι-carrageenan, curcumin gives higher intensities of absorption and fluorescence than free curcumin and curcumin only combined with BSA. The added ι-carrageenan is observed to promote curcumin for quenching the instrinsic fluorescence of BSA. These results are explained in terms of the formation of BSA/ι-carrageenan complexes, which help to stabilize the folded structure of BSA for providing curcumin with a more hydrophobic microenvironment. The small difference in anisotropy values of curcumin with BSA alone and of BSA/ι-carrageenan complexes suggests that ι-carrageenan acts as outer stretch conformation in BSA/ι-carrageenan complexes but does not directly disturb the hydrophobic pockets inside BSA, where curcumin is hydrophobically located. The determined values of the binding constant are higher for curcumin with BSA/ι-carrageenan complexes than with BSA alone. Moreover, BSA/ι-carrageenan complexes are found to be superior to single BSA for enhancing the stability and DPPH radical-scavenging ability of curcumin.
Collapse
Affiliation(s)
- Mingling Yang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, China
| | | | | | | | | |
Collapse
|
46
|
Niu Y, Ke D, Yang Q, Wang X, Chen Z, An X, Shen W. Temperature-dependent stability and DPPH scavenging activity of liposomal curcumin at pH 7.0. Food Chem 2012; 135:1377-82. [DOI: 10.1016/j.foodchem.2012.06.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/08/2012] [Accepted: 06/17/2012] [Indexed: 11/27/2022]
|
47
|
Vandita K, Shashi B, Santosh KG, Pal KI. Enhanced apoptotic effect of curcumin loaded solid lipid nanoparticles. Mol Pharm 2012; 9:3411-21. [PMID: 23127155 DOI: 10.1021/mp300209k] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Curcumin is reported to show potent in vitro anticancer effects in a surfeit of human cancer cell lines and majorly in the carcinogenesis of GIT, in animals. Its poor pharmacokinetics and stability limit its vivo clinical efficacy for the other systemic cancers. We recently reported on a 32-155 times enhancement in bioavailability of curcumin when incorporated into solid lipid nanoparticles (C-SLNs). Presently we report on a 54-85% reduction in IC 50 values with developed C-SLNs in comparison to free curcumin against a panel of human cancer cell lines (HL-60, A549, and PC3). Results demonstrate mechanisms similar to those claimed for free curcumin, including induction of cellular apoptosis by activation of caspases, release of cyctochrome c, loss of membrane potential, blockade of nuclear factor kappa B (NF-κB) activation, and upregulation of TNF-R for C-SLNs. However, the extent of cell death provided by C-SLNs in all these tests was significantly higher (p < 0.001). This may be attributed to the presentation of curcumin in a dispersible/soluble form which enhanced permeability across the cell surface. The display of significantly better in vitro anticancer effect coupled with high in vivo bioavailability points toward a great potential of using C-SLNs for cancer therapeutics.
Collapse
Affiliation(s)
- Kakkar Vandita
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University , Chandigarh 160014, India
| | | | | | | |
Collapse
|
48
|
Comparative study on the interactions of cationic gemini and single-chain surfactant micelles with curcumin. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2012.08.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
49
|
Beneficial effects of curcumin on antitumor activity and adverse reactions of doxorubicin. Int J Pharm 2012; 432:42-9. [DOI: 10.1016/j.ijpharm.2012.04.062] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/16/2012] [Accepted: 04/23/2012] [Indexed: 11/20/2022]
|
50
|
Chen CC, Chan WH. Injurious effects of curcumin on maturation of mouse oocytes, fertilization and fetal development via apoptosis. Int J Mol Sci 2012; 13:4655-4672. [PMID: 22606002 PMCID: PMC3344238 DOI: 10.3390/ijms13044655] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/31/2012] [Accepted: 04/09/2012] [Indexed: 11/16/2022] Open
Abstract
Curcumin, a common dietary pigment and spice, is a hydrophobic polyphenol derived from the rhizome of the herb Curcuma longa. Previously, we reported a cytotoxic effect of curcumin on mouse embryonic stem cells and blastocysts and its association with defects in subsequent development. In the present study, we further investigated the effects of curcumin on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, curcumin induced a significant reduction in the rate of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with curcumin during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased fetal weight. Experiments with an in vivo mouse model disclosed that consumption of drinking water containing 40 μM curcumin led to decreased oocyte maturation and in vitro fertilization as well as early embryonic developmental injury. Finally, pretreatment with a caspase-3-specific inhibitor effectively prevented curcumin-triggered injury effects, suggesting that embryo impairment by curcumin occurs mainly via a caspase-dependent apoptotic process.
Collapse
Affiliation(s)
| | - Wen-Hsiung Chan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-3-2653515; Fax: +886-3-2653599
| |
Collapse
|