1
|
Castillo-Sanchez R, Cortes-Reynosa P, Lopez-Perez M, Garcia-Hernandez A, Salazar EP. Caveolae Microdomains Mediate STAT5 Signaling Induced by Insulin in MCF-7 Breast Cancer Cells. J Membr Biol 2023; 256:79-90. [PMID: 35751654 DOI: 10.1007/s00232-022-00253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023]
Abstract
Caveolae are small plasma membrane invaginations constituted for membrane proteins namely caveolins and cytosolic proteins termed cavins, which can occupy up to 50% of the surface of mammalian cells. The caveolae have been involved with a variety of cellular processes including regulation of cellular signaling. Insulin is a hormone that mediates a variety of physiological processes through activation of insulin receptor (IR), which is a tyrosine kinase receptor expressed in all mammalian tissues. Insulin induces activation of signal transducers and activators of transcription (STAT) family members including STAT5. In this study, we demonstrate, for the first time, that insulin induces phosphorylation of STAT5 at tyrosine-694 (STAT5-Tyr(P)694), STAT5 nuclear accumulation and an increase in STAT5-DNA complex formation in MCF-7 breast cancer cells. Insulin also induces nuclear accumulation of STAT5-Tyr(P)694, caveolin-1, and IR in MCF-7 cells. STAT5 nuclear accumulation and the increase of STAT5-DNA complex formation require the integrity of caveolae and microtubule network. Moreover, insulin induces an increase and nuclear accumulation of STAT5-Tyr(P)694 in MDA-MB-231 breast cancer cells. In conclusion, results demonstrate that caveolae and microtubule network play an important role in STAT5-Tyr(P)694, STAT5 nuclear accumulation and STAT5-DNA complex formation induced by insulin in breast cancer cells.
Collapse
Affiliation(s)
- Rocio Castillo-Sanchez
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Mario Lopez-Perez
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | | | - Eduardo Perez Salazar
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico.
| |
Collapse
|
2
|
de Melo Campos P, Machado-Neto JA, Eide CA, Savage SL, Scopim-Ribeiro R, da Silva Souza Duarte A, Favaro P, Lorand-Metze I, Costa FF, Tognon CE, Druker BJ, Olalla Saad ST, Traina F. IRS2 silencing increases apoptosis and potentiates the effects of ruxolitinib in JAK2V617F-positive myeloproliferative neoplasms. Oncotarget 2016; 7:6948-59. [PMID: 26755644 PMCID: PMC4872760 DOI: 10.18632/oncotarget.6851] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/01/2016] [Indexed: 01/07/2023] Open
Abstract
The recurrent V617F mutation in JAK2 (JAK2V617F) has emerged as the primary contributor to the pathogenesis of myeloproliferative neoplasms (MPN). However, the lack of complete response in most patients treated with the JAK1/2 inhibitor, ruxolitinib, indicates the need for identifying pathways that cooperate with JAK2. Activated JAK2 was found to be associated with the insulin receptor substrate 2 (IRS2) in non-hematological cells. We identified JAK2/IRS2 binding in JAK2V617F HEL cells, but not in the JAK2WT U937 cell line. In HEL cells, IRS2 silencing decreased STAT5 phosphorylation, reduced cell viability and increased apoptosis; these effects were enhanced when IRS2 silencing was combined with ruxolitinib. In U937 cells, IRS2 silencing neither reduced cell viability nor induced apoptosis. IRS1/2 pharmacological inhibition in primary MPN samples reduced cell viability in JAK2V617F-positive but not JAK2WT specimens; combination with ruxolitinib had additive effects. IRS2 expression was significantly higher in CD34+ cells from essential thrombocythemia patients compared to healthy donors, and in JAK2V617F MPN patients when compared to JAK2WT. Our data indicate that IRS2 is a binding partner of JAK2V617F in MPN. IRS2 contributes to increased cell viability and reduced apoptosis in JAK2-mutated cells. Combined pharmacological inhibition of IRS2 and JAK2 may have a potential clinical application in MPN.
Collapse
Affiliation(s)
- Paula de Melo Campos
- Hematology and Hemotherapy Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - João A Machado-Neto
- Hematology and Hemotherapy Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Christopher A Eide
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA.,Howard Hughes Medical Institute, Portland, Oregon, USA
| | - Samantha L Savage
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Renata Scopim-Ribeiro
- Hematology and Hemotherapy Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil.,Current address: Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Adriana da Silva Souza Duarte
- Hematology and Hemotherapy Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Patricia Favaro
- Hematology and Hemotherapy Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil.,Current address: Department of Biological Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Irene Lorand-Metze
- Hematology and Hemotherapy Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Fernando F Costa
- Hematology and Hemotherapy Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA.,Howard Hughes Medical Institute, Portland, Oregon, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA.,Howard Hughes Medical Institute, Portland, Oregon, USA
| | - Sara T Olalla Saad
- Hematology and Hemotherapy Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Fabiola Traina
- Hematology and Hemotherapy Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil.,Current address: Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
3
|
Abstract
The insulin receptor (IR) is an important hub in insulin signaling and its activation is tightly regulated. Upon insulin stimulation, IR is activated through autophosphorylation, and consequently phosphorylates several insulin receptor substrate (IRS) proteins, including IRS1-6, Shc and Gab1. Certain adipokines have also been found to activate IR. On the contrary, PTP, Grb and SOCS proteins, which are responsible for the negative regulation of IR, are characterized as IR inhibitors. Additionally, many other proteins have been identified as IR substrates and participate in the insulin signaling pathway. To provide a more comprehensive understanding of the signals mediated through IR, we reviewed the upstream and downstream signal molecules of IR, summarized the positive and negative modulators of IR, and discussed the IR substrates and interacting adaptor proteins. We propose that the molecular events associated with IR should be integrated to obtain a better understanding of the insulin signaling pathway and diabetes.
Collapse
Affiliation(s)
- Yipeng Du
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | |
Collapse
|
4
|
Stankiewicz TR, Loucks FA, Schroeder EK, Nevalainen MT, Tyler KL, Aktories K, Bouchard RJ, Linseman DA. Signal transducer and activator of transcription-5 mediates neuronal apoptosis induced by inhibition of Rac GTPase activity. J Biol Chem 2012; 287:16835-48. [PMID: 22378792 DOI: 10.1074/jbc.m111.302166] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In several neuronal cell types, the small GTPase Rac is essential for survival. We have shown previously that the Rho family GTPase inhibitor Clostridium difficile toxin B (ToxB) induces apoptosis in primary rat cerebellar granule neurons (CGNs) principally via inhibition of Rac GTPase function. In the present study, incubation with ToxB activated a proapoptotic Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, and a pan-JAK inhibitor protected CGNs from Rac inhibition. STAT1 expression was induced by ToxB; however, CGNs from STAT1 knock-out mice succumbed to ToxB-induced apoptosis as readily as wild-type CGNs. STAT3 displayed enhanced tyrosine phosphorylation following treatment with ToxB, and a reputed inhibitor of STAT3, cucurbitacin (JSI-124), reduced CGN apoptosis. Unexpectedly, JSI-124 failed to block STAT3 phosphorylation, and CGNs were not protected from ToxB by other known STAT3 inhibitors. In contrast, STAT5A tyrosine phosphorylation induced by ToxB was suppressed by JSI-124. In addition, roscovitine similarly inhibited STAT5A phosphorylation and protected CGNs from ToxB-induced apoptosis. Consistent with these results, adenoviral infection with a dominant negative STAT5 mutant, but not wild-type STAT5, significantly decreased ToxB-induced apoptosis of CGNs. Finally, chromatin immunoprecipitation with a STAT5 antibody revealed increased STAT5 binding to the promoter region of prosurvival Bcl-xL. STAT5 was recruited to the Bcl-xL promoter region in a ToxB-dependent manner, and this DNA binding preceded Bcl-xL down-regulation, suggesting transcriptional repression. These data indicate that a novel JAK/STAT5 proapoptotic pathway significantly contributes to neuronal apoptosis induced by the inhibition of Rac GTPase.
Collapse
Affiliation(s)
- Trisha R Stankiewicz
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado 80208, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Mueller KM, Kornfeld JW, Friedbichler K, Blaas L, Egger G, Esterbauer H, Hasselblatt P, Schlederer M, Haindl S, Wagner KU, Engblom D, Haemmerle G, Kratky D, Sexl V, Kenner L, Kozlov AV, Terracciano L, Zechner R, Schuetz G, Casanova E, Pospisilik JA, Heim MH, Moriggl R. Impairment of hepatic growth hormone and glucocorticoid receptor signaling causes steatosis and hepatocellular carcinoma in mice. Hepatology 2011; 54:1398-409. [PMID: 21725989 PMCID: PMC3232450 DOI: 10.1002/hep.24509] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED Growth hormone (GH)-activated signal transducer and activator of transcription 5 (STAT5) and the glucocorticoid (GC)-responsive glucocorticoid receptor (GR) are important signal integrators in the liver during metabolic and physiologic stress. Their deregulation has been implicated in the development of metabolic liver diseases, such as steatosis and progression to fibrosis. Using liver-specific STAT5 and GR knockout mice, we addressed their role in metabolism and liver cancer onset. STAT5 single and STAT5/GR double mutants developed steatosis, but only double-mutant mice progressed to liver cancer. Mechanistically, STAT5 deficiency led to the up-regulation of prolipogenic sterol regulatory element binding protein 1 (SREBP-1) and peroxisome proliferator activated receptor gamma (PPAR-γ) signaling. Combined loss of STAT5/GR resulted in GH resistance and hypercortisolism. The combination of both induced expression of adipose tissue lipases, adipose tissue lipid mobilization, and lipid flux to the liver, thereby aggravating STAT5-dependent steatosis. The metabolic dysfunctions in STAT5/GR compound knockout animals led to the development of hepatic dysplasia at 9 months of age. At 12 months, 35% of STAT5/GR-deficient livers harbored dysplastic nodules and ∼ 60% hepatocellular carcinomas (HCCs). HCC development was associated with GH and insulin resistance, enhanced tumor necrosis factor alpha (TNF-α) expression, high reactive oxygen species levels, and augmented liver and DNA damage parameters. Moreover, activation of the c-Jun N-terminal kinase 1 (JNK1) and STAT3 was prominent. CONCLUSION Hepatic STAT5/GR signaling is crucial for the maintenance of systemic lipid homeostasis. Impairment of both signaling cascades causes severe metabolic liver disease and promotes spontaneous hepatic tumorigenesis.
Collapse
Affiliation(s)
- Kristina M Mueller
- Ludwig-Boltzmann-Institute for Cancer ResearchVienna, Austria,These authors contributed equally to this work
| | - Jan-Wilhelm Kornfeld
- Institute for Genetics, Department of Mouse Genetics and Metabolism, University of CologneCologne, Germany,These authors contributed equally to this work
| | | | - Leander Blaas
- Ludwig-Boltzmann-Institute for Cancer ResearchVienna, Austria
| | - Gerda Egger
- Clinical Institute of Pathology, Medical University of ViennaVienna, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University ViennaVienna, Austria
| | - Peter Hasselblatt
- Department of Medicine II, Freiburg University HospitalFreiburg, Germany
| | | | - Susanne Haindl
- Ludwig-Boltzmann-Institute for Experimental and Clinical TraumatologyVienna, Austria
| | - Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases and the Department of Pathology and Microbiology, University of Nebraska Medical CenterOmaha, NE, USA
| | - David Engblom
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoeping UniversityLinkoeping, Sweden
| | | | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of GrazGraz, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, Veterinary University of ViennaVienna, Austria
| | - Lukas Kenner
- Ludwig-Boltzmann-Institute for Cancer ResearchVienna, Austria,Clinical Institute of Pathology, Medical University of ViennaVienna, Austria
| | - Andrey V Kozlov
- Ludwig-Boltzmann-Institute for Experimental and Clinical TraumatologyVienna, Austria
| | | | | | | | - Emilio Casanova
- Ludwig-Boltzmann-Institute for Cancer ResearchVienna, Austria
| | | | - Markus H Heim
- Department of Biomedicine, Division of Gastroenterology and Hepatology, University Hospital BaselBasel, Switzerland
| | - Richard Moriggl
- Ludwig-Boltzmann-Institute for Cancer ResearchVienna, Austria
| |
Collapse
|
6
|
Martins AS, Olmos D, Missiaglia E, Shipley J. Targeting the insulin-like growth factor pathway in rhabdomyosarcomas: rationale and future perspectives. Sarcoma 2011; 2011:209736. [PMID: 21437217 PMCID: PMC3061277 DOI: 10.1155/2011/209736] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/07/2011] [Indexed: 12/20/2022] Open
Abstract
Rhabdomyosarcomas (RMS) are a heterogeneous group of tumors that share features of skeletal myogenesis and represent the most common pediatric soft tissue sarcoma. Even though significant advances have been achieved in RMS treatment, prognosis remains very poor for many patients. Several elements of the Insulin-like Growth Factor (IGF) pathway are involved in sarcomas, including RMS. The IGF2 ligand is highly expressed in most, if not all, RMS, and frequent overexpression of the receptor IGF1R is also found. This is confirmed here through mining expression profiling data of a large series of RMS samples. IGF signaling is implicated in the genesis, growth, proliferation, and metastasis of RMS. Blockade of this pathway is therefore a potential therapeutic strategy for the treatment of RMS. In this paper we examine the biological rationale for targeting the IGF pathway in RMS as well as the current associated preclinical and clinical experience.
Collapse
Affiliation(s)
- Ana Sofia Martins
- Molecular Cytogenetics, The Institute of Cancer Research, 15 Cotswold Road Sutton, Surrey SM2 5NG, UK
| | - David Olmos
- Molecular Cytogenetics, The Institute of Cancer Research, 15 Cotswold Road Sutton, Surrey SM2 5NG, UK
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Edoardo Missiaglia
- Molecular Cytogenetics, The Institute of Cancer Research, 15 Cotswold Road Sutton, Surrey SM2 5NG, UK
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, 1015 Laussane, Switzerland
| | - Janet Shipley
- Molecular Cytogenetics, The Institute of Cancer Research, 15 Cotswold Road Sutton, Surrey SM2 5NG, UK
| |
Collapse
|
7
|
Chaix A, Lopez S, Voisset E, Gros L, Dubreuil P, De Sepulveda P. Mechanisms of STAT protein activation by oncogenic KIT mutants in neoplastic mast cells. J Biol Chem 2010; 286:5956-66. [PMID: 21135090 DOI: 10.1074/jbc.m110.182642] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the c-kit gene occur in the vast majority of mastocytosis. In adult patients as well as in the cell line derived from mast cell neoplasms, the mutations occur almost exclusively at amino acid 816 within the kinase domain of KIT. Among the downstream effectors of KIT signaling, STAT3 and STAT5 have been shown to be critical for cell proliferation elicited by the KIT-Asp(816) mutant protein. However, little is known about the mechanisms of activation of STAT proteins. In this study, we identify and clarify the contribution of various STAT kinases in two widely used neoplastic mast cell lines, P815 and HMC-1. We show that STAT1, -3, and -5 proteins are activated downstream of the KIT-Asp(816) mutant. All three STAT proteins are located in the nucleus and are phosphorylated on serine residues. KIT-Asp(816) mutant can directly phosphorylate STATs on the activation-specific tyrosine residues in vitro. However, within cells, SRC family kinases and JAKs diversely contribute to tyrosine phosphorylation of STAT proteins downstream of the KIT mutant. Using a panel of inhibitors, we provide evidence for the implication or exclusion of serine/threonine kinases as responsible for serine phosphorylation of STAT1, -3, and -5 in the two cell lines. Finally, we show that only STAT5 is transcriptionally active in these cells. This suggests that the contribution of STAT1 and STAT3 downstream of KIT mutant is independent of their transcription factor function.
Collapse
Affiliation(s)
- Amandine Chaix
- INSERM, U891, Centre de Recherche en Cancérologie de Marseille, France
| | | | | | | | | | | |
Collapse
|
8
|
Transcriptional regulation of glucose sensors in pancreatic β-cells and liver: an update. SENSORS 2010; 10:5031-53. [PMID: 22399922 PMCID: PMC3292162 DOI: 10.3390/s100505031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/07/2010] [Accepted: 05/13/2010] [Indexed: 01/17/2023]
Abstract
Pancreatic β-cells and the liver play a key role in glucose homeostasis. After a meal or in a state of hyperglycemia, glucose is transported into the β-cells or hepatocytes where it is metabolized. In the β-cells, glucose is metabolized to increase the ATP:ADP ratio, resulting in the secretion of insulin stored in the vesicle. In the hepatocytes, glucose is metabolized to CO(2), fatty acids or stored as glycogen. In these cells, solute carrier family 2 (SLC2A2) and glucokinase play a key role in sensing and uptaking glucose. Dysfunction of these proteins results in the hyperglycemia which is one of the characteristics of type 2 diabetes mellitus (T2DM). Thus, studies on the molecular mechanisms of their transcriptional regulations are important in understanding pathogenesis and combating T2DM. In this paper, we will review a recent update on the progress of gene regulation of glucose sensors in the liver and β-cells.
Collapse
|
9
|
Kondyli M, Gatzounis G, Kyritsis A, Varakis J, Assimakopoulou M. Immunohistochemical detection of phosphorylated JAK-2 and STAT-5 proteins and correlation with erythropoietin receptor (EpoR) expression status in human brain tumors. J Neurooncol 2010; 100:157-64. [PMID: 20336349 DOI: 10.1007/s11060-010-0156-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 03/08/2010] [Indexed: 12/18/2022]
Abstract
Phosphorylated (activated) forms of Janus Kinase 2 (pJAK-2) and STAT-5 transcription factor (pSTAT-5), which are preferentially expressed after binding of erythropoietin (Epo) to its receptor EpoR, are known to be implicated in the molecular mechanisms controlling brain development. The purpose of this study was to investigate the expression of these proteins (pJAK-2, pSTAT-5, and EpoR) in human brain tumors compared with normal brain. Using specific antibodies and immunohistochemistry on formalin-fixed, paraffin-embedded semi-serial tissue sections a total of 87 human brain tumors and samples from normal brain tissue were studied. pJAK-2/pSTAT-5 nuclear co-expression was detected in 39% of astrocytomas, 43% of oligodendrogliomas, 50% of ependymomas, and in all (100%) of the medulloblastomas examined. In contrast, most of the meningiomas showed weak or no immunoreactivity for pJAK-2/pSTAT-5 proteins. A significant percentage of tumors exhibited pSTAT-5 immunoreactivity, being pJAK-2 immunonegative. EpoR/pJAK-2/pSTAT-5 co-expression was detected in a small percentage of astrocytomas (18%) and ependymomas (33%). Oligodendrogliomas and medulloblastomas were EpoR immunonegative. Tumor vessels exhibited EpoR, pJAK-2, and pSTAT-5 immunoreactivity. In normal brain tissue, EpoR immunoreactivity was detected in neurons and vessels whereas pSTAT-5 and pJAK-2 immunoreactivity was limited to some neurons and a few glial cells, respectively. These results indicate the existence of ligand (other than Epo)-dependent or independent JAK-2 activation that leads to constitutive activation of STAT-5 in most human brain tumors. Given the oncogenic potential of the JAK/STAT pathway, detection of different pJAK-2 and pSTAT-5 expression profiles between groups of tumors may reflect differences in the biological behavior of the various human brain tumors.
Collapse
Affiliation(s)
- M Kondyli
- Department of Anatomy, School of Medicine, University of Patras, Patras, Greece
| | | | | | | | | |
Collapse
|
10
|
Funakoshi-Tago M, Tago K, Abe M, Sonoda Y, Kasahara T. STAT5 activation is critical for the transformation mediated by myeloproliferative disorder-associated JAK2 V617F mutant. J Biol Chem 2009; 285:5296-307. [PMID: 20028972 DOI: 10.1074/jbc.m109.040733] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
It has been well established that disruption of JAK2 signaling regulation is involved in various hematopoietic disorders; however, the detailed mechanism by which abnormal activation of JAK2 exhibits transforming activity remains to be elucidated. Here, to clarify the functional role of the erythropoietin receptor (EpoR) and its downstream transcription factor STAT5 in the abnormal activation of JAK2-induced hematopoietic diseases, we generated a stable transfectant of Ba/F3 cells expressing EpoR and analyzed the molecular mechanism of how JAK2 mutation induces cell growth disorder. JAK2 V617F mutant exhibited transforming activity when EpoR was coexpressed. According to a study utilizing several truncated mutants of EpoR, the ability of EpoR to facilitate the transforming activity of JAK2 V617F mutant required the intracellular domain to interact with STAT5. Strikingly, once the truncated EpoR (EpoR-H) was mutated on Tyr-343, the phosphorylation of which is known to be important for interaction with STAT5, JAK2 V617F mutant failed to exhibit transforming activity, suggesting that STAT5 is critical for JAK2 mutant-induced hematopoietic disorder. Furthermore, the expression of the constitutively active STAT5 mutant exhibited transforming activity in Ba/F3 cells, and short hairpin RNA-mediated knockdown of STAT5 significantly inhibited the transforming activity of JAK2 V617F mutant. Taking these observations together, STAT5 plays an essential role in EpoR-JAK2 V617F mutant-induced hematopoietic disorder. Although it remains unclear why the presence of EpoR is required to activate oncogenic signaling via the JAK2 mutant and STAT5, its interacting ability is a target for the treatment of these hematopoietic diseases.
Collapse
Affiliation(s)
- Megumi Funakoshi-Tago
- Department of Biochemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, USA.
| | | | | | | | | |
Collapse
|
11
|
Huang F, Greer A, Hurlburt W, Han X, Hafezi R, Wittenberg GM, Reeves K, Chen J, Robinson D, Li A, Lee FY, Gottardis MM, Clark E, Helman L, Attar RM, Dongre A, Carboni JM. The mechanisms of differential sensitivity to an insulin-like growth factor-1 receptor inhibitor (BMS-536924) and rationale for combining with EGFR/HER2 inhibitors. Cancer Res 2009; 69:161-70. [PMID: 19117999 PMCID: PMC7255694 DOI: 10.1158/0008-5472.can-08-0835] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Overexpression and enhanced activity of insulin-like growth factor-I receptor (IGF-IR) in diverse tumor types make it an attractive target for cancer therapy. BMS-536924 is a potent small molecule inhibitor of IGF-IR, which shows antitumor activity in multiple tumor models, including sarcoma. To facilitate the development of IGF-IR inhibitors as cancer therapy, identification of biomarkers for selecting patients most likely to derive clinical benefit is needed. To do so, 28 sarcoma and neuroblastoma cell lines were screened for in vitro response to BMS-536924 to identify sensitive and resistant cell lines. Notably, Ewing's sarcoma, rhabdomyosarcoma, and neuroblastoma are more responsive to BMS-536924, suggesting these specific subtypes may represent potential targeted patient subpopulations for the IGF-IR inhibitor. Gene expression and protein profiling were performed on these cell lines, and candidate biomarkers correlating with intrinsic and/or acquired resistance to BMS-536924 were identified. IGF-I, IGF-II, and IGF-IR were highly expressed in sensitive cell lines, whereas IGFBP-3 and IGFBP-6 were highly expressed in resistant lines. Overexpression of epidermal growth factor receptor (EGFR) and its ligands in resistant cell lines may represent one possible resistance mechanism by the adaptation of IGF-IR-independent growth using alternative signaling pathways. Based on cross-talk between IGF-IR and EGFR pathways, combination studies to target both pathways were performed, and enhanced inhibitory activities were observed. These results provide a strategy for testing combinations of IGF-IR inhibitors with other targeted therapies in clinical studies to achieve improved patient outcomes. Further exploration of mechanisms for intrinsic and acquired drug resistance by these preclinical studies may lead to more rationally designed drugs that target multiple pathways for enhanced antitumor efficacy.
Collapse
Affiliation(s)
- Fei Huang
- Bristol-Myers Squibb Company, Princeton, NJ 08543, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Basham B, Sathe M, Grein J, McClanahan T, D'Andrea A, Lees E, Rascle A. In vivo identification of novel STAT5 target genes. Nucleic Acids Res 2008; 36:3802-18. [PMID: 18492722 PMCID: PMC2441806 DOI: 10.1093/nar/gkn271] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
STAT5A and STAT5B proteins belong to the family of signal transducers and activators of transcription. They are encoded by two separate genes with 91% identity in their amino acid sequences. Despite their high degree of conservation, STAT5A and STAT5B exert non-redundant functions, resulting at least in part from differences in target gene activation. To better characterize the differential contribution of STAT5A and STAT5B in gene regulation, we performed single or double knockdown of STAT5A and STAT5B using small interfering RNA. Subsequent gene expression profiling and RT-qPCR analyses of IL-3-stimulated Ba/F3-β cells led to the identification of putative novel STAT5 target genes. Chromatin immunoprecipitation assays analyzing the corresponding gene loci identified unusual STAT5 binding sites compared to conventional STAT5 responsive elements. Some of the STAT5 targets identified are upregulated in several human cancers, suggesting that they might represent potential oncogenes in STAT5-associated malignancies.
Collapse
Affiliation(s)
- Beth Basham
- Schering-Plough Biopharma, 901 California Avenue, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Choi KH, Kim JS, Kim YS, Yoo MA, Chon TS. Pattern detection of movement behaviors in genotype variation of Drosophila melanogaster by using self-organizing map. ECOL INFORM 2006. [DOI: 10.1016/j.ecoinf.2005.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Nakasato M, Shirakura Y, Ooga M, Iwatsuki M, Ito M, Kageyama SI, Sakai S, Nagata M, Aoki F. Involvement of the STAT5 signaling pathway in the regulation of mouse preimplantation development. Biol Reprod 2006; 75:508-17. [PMID: 16775227 DOI: 10.1095/biolreprod.105.047860] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The signal transducer and activator of transcription 5 (STAT5) is an essential factor in the signal transduction pathways for a number of cytokines that regulate the growth and differentiation of mammalian cells. In this study, we investigated the STAT5 signaling pathway in mouse embryos, to elucidate the mechanism of cytokine signal transduction that regulates preimplantation development. The results of the RT-PCR analysis showed that both STAT5A and B were expressed throughout preimplantation development. Immunocytochemistry revealed that the STAT5A/B proteins were located in the nucleus from the early 1-cell stage to the blastocyst stage. STAT5 activation appeared to be regulated by Janus kinases (JAKs) and SRC family kinases (SFKs), since inhibitors of these kinases inhibited the localization of STAT5 proteins to the nucleus. The JAK inhibitor Ag490 reduced both the developmental rate of the embryos and the expression levels of the downstream genes of the JAK-STAT5 signaling pathway. These findings suggest that STAT5 proteins function in preimplantation development by mediating the signals from cytokines.
Collapse
Affiliation(s)
- Makoto Nakasato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhang W, Zong CS, Hermanto U, Lopez-Bergami P, Ronai Z, Wang LH. RACK1 recruits STAT3 specifically to insulin and insulin-like growth factor 1 receptors for activation, which is important for regulating anchorage-independent growth. Mol Cell Biol 2006; 26:413-24. [PMID: 16382134 PMCID: PMC1346890 DOI: 10.1128/mcb.26.2.413-424.2006] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 06/03/2005] [Accepted: 10/20/2005] [Indexed: 01/30/2023] Open
Abstract
Current understanding of the activation of STATs is through binding between the SH2 domain of STATs and phosphotyrosine of tyrosine kinases. Here we demonstrate a novel role of RACK1 as an adaptor for insulin and insulin-like growth factor 1 receptor (IGF-1R)-mediated STAT3 activation specifically. Intracellular association of RACK1 via its N-terminal WD domains 1 to 4 (WD1-4) with insulin receptor (IR)/IGF-1R is augmented upon respective ligand stimulation, whereas association with STAT3 is constitutive. Purified RACK1 or RACK1 WD1-4 associates directly with purified IR, IGF-1R, and STAT3 in vitro. Insulin induces multiprotein complex formation of RACK1, IR, and STAT3. Overexpression or downregulation of RACK1 greatly enhances or decreases, respectively, IR/IGF-1R-mediated activation of STAT3 and its target gene expression. Site-specific mutants of IR and IGF-1R impaired in RACK1 binding are ineffective in mediating recruitment and activation of STAT3 as well as in insulin- or IGF-1-induced protection of cells from anoikis. RACK1-mediated STAT3 activation is important for insulin and IGF-1-induced anchorage-independent growth in certain ovarian cancer cells. We conclude that RACK1 mediates recruitment of STAT3 to IR and IGF-1R specifically for activation, suggesting a general paradigm for the need of an adaptor in mediating activation of STATs by receptor protein tyrosine kinases.
Collapse
Affiliation(s)
- Weizhou Zhang
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | | | | | | | | | |
Collapse
|
16
|
Xu J, Keeton AB, Franklin JL, Li X, Venable DY, Frank SJ, Messina JL. Insulin enhances growth hormone induction of the MEK/ERK signaling pathway. J Biol Chem 2005; 281:982-92. [PMID: 16272159 DOI: 10.1074/jbc.m505484200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth hormone (GH) plays an important role in growth and metabolism by signaling via at least three major pathways, including STATs, ERK1/2, and phosphatidylinositol 3-kinase/Akt. Physiological concentrations of insulin promote growth probably by modulating liver GH receptor (GHR) levels in vivo, but the possible effects of insulin on GH-induced post-GHR signaling have yet to be studied. We hypothesized that short-term insulin, similar to the fluctuations that occur following feeding, affects GH-induced post-GHR signaling. Our present studies suggest that, in rat H4IIE hepatoma cells, insulin (4 h or less) selectively enhanced GH-induced phosphorylation of MEK1/2 and ERK1/2, but not GH-induced activation of STAT5 and Akt. Although insulin pretreatment altered GH-induced formation of Shc.Grb2.SOS complex, it did not significantly affect GH-induced activation of other signaling intermediates upstream of MEK/ERK, including JAK2, Ras, and Raf-1. Immunofluorescent staining indicated that insulin pretreatment facilitated GH-induced cell membrane translocation of MEK1/2. Insulin pretreatment also increased the amount of MEK association with its scaffolding protein, KSR. In summary, short-term insulin treatment of cultured, liver-derived cells selectively sensitized GH-induced MEK/ERK phosphorylation independent of JAK2, Ras, and Raf-1, but likely resulted from increased cell membrane translocation of MEK1/2. These findings suggest that insulin may be necessary for sensitization of cells to GH-induced ERK1/2 activation and provides a potential cellular mechanism by which insulin promotes growth.
Collapse
Affiliation(s)
- Jie Xu
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Davoodi-Semiromi A, Laloraya M, Kumar GP, Purohit S, Jha RK, She JX. A mutant Stat5b with weaker DNA binding affinity defines a key defective pathway in nonobese diabetic mice. J Biol Chem 2003; 279:11553-61. [PMID: 14701862 DOI: 10.1074/jbc.m312110200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A number of cytokines that finely regulate immune response have been implicated in the pathogenesis or protection of type 1 diabetes and other autoimmune diseases. It is, therefore, of pivotal importance to examine a family of proteins that serve as signal transducers and activators of transcription (STATs), which regulate the transcription of a variety of cytokines. We report here a defective gene (Stat5b) located on chromosome 11 within a previously mapped T1D susceptibility interval (Idd4) in the nonobese diabetic (NOD) mice. Our sequencing analysis revealed a unique mutation C1462A that results in a leucine to methionine (L327M) in Stat5b of NOD mice. Leu(327), the first residue in the DNA binding domain of STAT proteins, is conserved in all identified mammalian STAT proteins. Homology modeling predicted that the mutant Stat5b has a weaker DNA binding, which was confirmed by DNA-protein binding assays. The inapt transcriptional regulation ability of the mutated Stat5b is proved by decreased levels of RNA of Stat5b-regulated genes (IL-2Rbeta and Pim1). Consequently, IL-2Rbeta and Pim1 proteins were shown by Western blotting to have lower levels in NOD compared with normal B6 mice. These proteins have been implicated in immune regulation, apoptosis, activation-induced cell death, and control of autoimmunity. Therefore, the Stat5b pathway is a key molecular defect in NOD mice.
Collapse
Affiliation(s)
- Abdoreza Davoodi-Semiromi
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
18
|
Zvonic S, Story DJ, Stephens JM, Mynatt RL. Growth hormone, but not insulin, activates STAT5 proteins in adipocytes in vitro and in vivo. Biochem Biophys Res Commun 2003; 302:359-62. [PMID: 12604355 DOI: 10.1016/s0006-291x(03)00179-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
STAT 5 proteins are latent transcription factors which have been shown to be activated by growth hormone (GH) in many cell types. However, some recent studies also suggest that STAT 5B is a physiological substrate of the insulin receptor. In our studies, we have shown that physiological levels of insulin do not induce STAT 5 tyrosine phosphorylation or affect the nuclear distribution of STATs 5A or 5B in 3T3-L1 adipocytes. Moreover, we did not observe the activation of STAT 5 in the adipose tissue or skeletal muscle of mice following an acute intraperitoneal injection of insulin. However, acute GH administration, both in vitro and in vivo, resulted in the activation of STAT 5 proteins. In summary, our results indicate that STAT 5 proteins are not activated by physiological levels of insulin in adipose tissue.
Collapse
Affiliation(s)
- Sanjin Zvonic
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
19
|
Le MN, Kohanski RA, Wang LH, Sadowski HB. Dual mechanism of signal transducer and activator of transcription 5 activation by the insulin receptor. Mol Endocrinol 2002; 16:2764-79. [PMID: 12456798 DOI: 10.1210/me.2002-0017] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Insulin stimulates signal transducer and activator of transcription 5 (Stat5) activation in insulin receptor (IR)-overexpressing cell lines and in insulin target tissues of mice. Stat5b and insulin receptor substrate 1 (IRS-1) interact with the same autophosphorylation site in the IR [phosphotyrosine (pY) 972] in yeast two-hybrid assays, and the IR phosphorylates Stat5b in vitro. These data suggest that Stat5 proteins might be recruited to, and phosphorylated by, the activated IR in vivo. Nevertheless, insulin activates Janus kinases (JAKs) in IR-overexpressing cell lines and in insulin target tissues. To determine whether Stat5 proteins must be recruited to the pY972LSA motif in the IR for insulin-stimulated activation in mammalian cells, we generated and tested a series of IR mutants. The L973R/A975D mutation abolishes the ability of the IR to induce Stat5 activation, whereas IRS-1 phosphorylation is unaffected. In contrast, the N969A/P970A mutation in the IR has no effect on Stat5 activation but significantly reduces IRS-1 phosphorylation. In coimmunoprecipitation assays, insulin-stimulated Stat5 activation correlates with Stat5 recruitment to the IR. We also find that insulin stimulates tyrosine phosphorylation of JAKs that are constitutively associated with the IR. Expression of dominant-negative (DN) JAKs, the JAK inhibitor suppressor of cytokine signaling 1, or pretreatment with the JAK inhibitor, AG490, reduces, but does not eliminate, insulin-induced Stat5 activation. Expression of the appropriate pair of DN JAKs in each of the singly JAK-deficient cell lines further establishes a component of insulin-stimulated Stat5 activation that is JAK independent. This likely represents phosphorylation of Stat5 proteins by the IR, as we find that IR kinase domain phosphorylates Stat5b in vitro on Y699 as efficiently as JAK2. Increasing the concentration of Stat5 proteins in cells favors the direct phosphorylation of Stat5 by the IR kinase where the DN-JAK inhibition of insulin-stimulated Stat5 activation becomes insignificant. At physiological levels of Stat5 however, we propose that JAKs and the IR both contribute to the insulin-induced phosphorylation of Stat5.
Collapse
Affiliation(s)
- Maithao N Le
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
20
|
Espanel X, Huguenin-Reggiani M, Hooft van Huijsduijnen R. The SPOT technique as a tool for studying protein tyrosine phosphatase substrate specificities. Protein Sci 2002; 11:2326-34. [PMID: 12237455 PMCID: PMC2373693 DOI: 10.1110/ps.0213402] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The activity of protein tyrosine phosphatases (PTPs) is restricted by their substrate specificities. The analysis of PTP specificity was greatly helped by the discovery that "substrate-trapping" PTP mutants, such as PTP-1B D181A, stably and specifically bind their substrates. We have set up a PTP substrate specificity assay based on the SPOT technique, which involves the microsynthesis of (phospho)peptides on membranes. To validate this approach, substrate trapping PTP-1B was tested on its cognate ligand, the autophosphorylated insulin receptor (IR). On SPOT membranes, IR peptides with phosphotyrosine 1163 were efficiently bound by PTP1B D181A, and dephosphorylated by PTP-1B. Phosphotyrosine 1163 was preferred over the neighboring 1158 and 1162 phosphotyrosines. PTP-1B also recognized IR-like motifs in Trk autophosphorylation domains, and STAT 5 phosphopeptides. Using a gridded 20-by-20 SPOT library, we show that peptides with the YZM motif (Z: phosphotyrosine) are the strongest ligands for PTP-1B D181A, but not the optimal substrates for dephosphorylation by wild-type PTP1B. In addition we show that PTP-1B and PTP-beta dephosphorylation efficiency is strongly modulated by the introduction of phospho-serine or phospho-threonine in their cognate phospho-tyrosine substrates. Altogether our data illustrate that the SPOT technique is a highly efficient tool for the study of PTP substrate specificity.
Collapse
Affiliation(s)
- Xavier Espanel
- Serono Pharmaceutical Research Institute, 14, chemin des Aulx, 1228 Plan-Les-Ouates, Geneva, Switzerland
| | | | | |
Collapse
|
21
|
Sutherland CL, Chalupny NJ, Schooley K, VandenBos T, Kubin M, Cosman D. UL16-binding proteins, novel MHC class I-related proteins, bind to NKG2D and activate multiple signaling pathways in primary NK cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:671-9. [PMID: 11777960 DOI: 10.4049/jimmunol.168.2.671] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The UL16-binding proteins (ULBPs) are a novel family of MHC class I-related molecules that were identified as targets of the human CMV glycoprotein, UL16. We have previously shown that ULBP expression renders a relatively resistant target cell sensitive to NK cytotoxicity, presumably by engaging NKG2D, an activating receptor expressed by NK and other immune effector cells. In this study we show that NKG2D is the ULBP counterstructure on primary NK cells and that its expression is up-regulated by IL-15 stimulation. Soluble forms of ULBPs induce marked protein tyrosine phosphorylation, and activation of the Janus kinase 2, STAT5, extracellular signal-regulated kinase, mitogen-activated protein kinase, and phosphatidylinositol 3-kinase (PI 3-kinase)/Akt signal transduction pathways. ULBP-induced activation of Akt and extracellular signal-regulated kinase and ULBP-induced IFN-gamma production are blocked by inhibitors of PI 3-kinase, consistent with the known binding of PI 3-kinase to DAP10, the membrane-bound signal-transducing subunit of the NKG2D receptor. While all three ULBPs activate the same signaling pathways, ULBP3 was found to bind weakly and to induce the weakest signal. In summary, we have shown that NKG2D is the ULBP counterstructure on primary NK cells and for the first time have identified signaling pathways that are activated by NKG2D ligands. These results increase our understanding of the mechanisms by which NKG2D activates immune effector cells and may have implications for immune surveillance against pathogens and tumors.
Collapse
|
22
|
Horikawa K, Kaku H, Nakajima H, Davey HW, Hennighausen L, Iwamoto I, Yasue T, Kariyone A, Takatsu K. Essential role of Stat5 for IL-5-dependent IgH switch recombination in mouse B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5018-26. [PMID: 11673510 DOI: 10.4049/jimmunol.167.9.5018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-5 stimulation of CD38-activated murine splenic B cells induces mu-gamma1 CSR at the DNA level leading to a high level of IgG1 production. Further addition of IL-4 in the system enhances IL-5-dependent mu-gamma1 CSR. Although some of the postreceptor signaling events initiated by IL-5 in activated B cells have been characterized, the involvement of Stat in IL-5 signaling has not been thoroughly evaluated. In this study, we examined the activation of Stat5 and activation-induced cytidine deaminase (AID) in CD38-activated murine splenic B cells by IL-5. The role of Stat5a and Stat5b in IL-5-induced mu-gamma1 CSR and also IgG1 and IgM production was documented, as IL-5 does not act on CD38-stimulated splenic B cells from Stat5a(-/-) and Stat5b(-/-) mice. Expression levels of CD38-induced germline gamma1 transcripts and AID in Stat5a(-/-) and Stat5b(-/-) B cells upon IL-5 stimulation were comparable to those of wild-type B cells. The impaired mu-gamma1 CSR by Stat5b(-/-) B cells, but not by Stat5a(-/-) B cells, was rescued in part by IL-4, as the addition of IL-4 to the culture of CD38- and IL-5-stimulated B cells induced mu-gamma1 CSR leading to IgG1 production. Analysis of cell division cycle number of wild-type B cells revealed that mu-gamma1 CSR was observed after five or six cell divisions. Stat5a(-/-) and Stat5b(-/-) B cells showed similar cell division cycles, but they did not undergo mu-gamma1 CSR. Our data support the notion that both Stat5a and Stat5b are essential for IL-5-dependent mu;-gamma1 CSR and Ig secretion; however, their major target may not be AID. Stat5a and Stat5b are not redundant, but rather are at least partially distinctive in their function.
Collapse
Affiliation(s)
- K Horikawa
- Department of Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Frasor J, Barkai U, Zhong L, Fazleabas AT, Gibori G. PRL-induced ERalpha gene expression is mediated by Janus kinase 2 (Jak2) while signal transducer and activator of transcription 5b (Stat5b) phosphorylation involves Jak2 and a second tyrosine kinase. Mol Endocrinol 2001; 15:1941-52. [PMID: 11682625 DOI: 10.1210/mend.15.11.0722] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the rat corpus luteum of pregnancy, PRL stimulation of ER expression is a prerequisite for E2 to have any luteotropic effect. Previous work from our laboratory has established that PRL stimulates ERalpha expression at the level of transcription and that the transcription factor Stat5 (signal transducer and activator of transcription 5) mediates this stimulation. Since it is well established that PRL activates Stat5 through the tyrosine kinase, Janus kinase 2 (Jak2), the role of Jak2 in PRL regulation of ERalpha expression was investigated. In primary luteinized granulosa cells, the general tyrosine kinase inhibitors, genistein and AG18, and the Jak2 inhibitor, AG490, prevented PRL stimulation of ERalpha mRNA levels, suggesting that PRL signaling to the ERalpha gene requires Jak2 activity. However, using an antibody that recognizes the tyrosine-phosphorylated forms of both Stat5a and Stat5b (Y694/Y699), it was found that AG490 could inhibit PRL-induced Stat5a phosphorylation only and had little or no effect on Stat5b phosphorylation. These effects of AG490 were confirmed in COS cells overexpressing Stat5b. Also in COS cells, a kinase-negative Jak2 prevented PRL stimulation of ERalpha promoter activity and Stat5b phosphorylation while a constitutively active Jak2 could stimulate both in the absence of PRL. Furthermore, kinase-negative-Jak2, but not AG490, could inhibit Stat5b nuclear translocation and DNA binding. Therefore, it seems that in the presence of AG490, Stat5b remains phosphorylated, is located in the nucleus and capable of binding DNA, but is apparently transcriptionally inactive. These findings suggest that PRL may activate a second tyrosine kinase, other than Jak2, that is capable of phosphorylating Stat5b without inducing transcriptional activity. To investigate whether another signaling pathway is involved, the src kinase inhibitor PP2 and the phosphoinositol-3 kinase inhibitor (PI3K), LY294002, were used. Neither inhibitor alone had any major effect on PRL regulation of ERalpha promoter activity or on PRL-induced Stat5b phosphorylation. However, the combination of AG490 and LY294002 largely prevented PRL-induced Stat5b phosphorylation. These findings indicate that PRL stimulation of ERalpha expression requires Jak2 and also that PRL can induce Stat5b phosphorylation through two tyrosine kinases, Jak2 and one downstream of PI3K. Furthermore, these results suggest that the role of Jak2 in activating Stat5b may be through a mechanism other than simply inducing Stat5b phosphorylation.
Collapse
Affiliation(s)
- J Frasor
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
24
|
Sadowski CL, Choi TS, Le M, Wheeler TT, Wang LH, Sadowski HB. Insulin Induction of SOCS-2 and SOCS-3 mRNA expression in C2C12 Skeletal Muscle Cells Is Mediated by Stat5*. J Biol Chem 2001; 276:20703-10. [PMID: 11279166 DOI: 10.1074/jbc.m101014200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previously, by a yeast 2-hybrid screen, we identified signal transducer and activator of transcription 5b (Stat5b) as a substrate of the insulin receptor (IR). We demonstrated that refeeding of fasted mice leads to rapid activation of Stat5 proteins in liver, skeletal muscle, and fat, suggesting that Stat5b is a physiological target of insulin. Here, we show that injection of glucose or insulin into fasted mice leads to robust activation of both Stat5a and Stat5b in skeletal muscle. In C2C12 myotubes, we find that insulin stimulates tyrosine phosphorylation of Stat5a and Stat5b by 3-5-fold. This degree of Stat5 activation in vitro is significantly lower than what we observe in vivo and inversely correlates with IRS-1/2 levels. We can recapitulate robust insulin activation of Stat5 in C2C12 cells by stable overexpression of the human IR (hIR). To identify insulin-activated genes that are Stat5 targets, we also overexpressed an IR mutant (LA-hIR) that signals normally for mitogen-activated protein kinase- and phosphatidylinositol 3-kinase-dependent pathways but is deficient in Stat5 signaling in response to insulin. We demonstrate that insulin induces the expression of SOCS-2 mRNA in the wild type hIR but not in the LA-hIR-overexpressing cells. The induction of SOCS-3 by insulin is reduced but not lost in the LA-hIR cells. Therefore, our results suggest that insulin induction of SOCS-2, and in part SOCS-3 mRNA expression, is mediated by Stat5 and can be independent of mitogen-activated protein kinase and phosphatidylinositol 3-kinase-signaling pathways.
Collapse
Affiliation(s)
- C L Sadowski
- Departments of Microbiology, Mount Sinai School of Medicine, New York, New York, 10029, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Cieslik K, Abrams CS, Wu KK. Up-regulation of endothelial nitric-oxide synthase promoter by the phosphatidylinositol 3-kinase gamma /Janus kinase 2/MEK-1-dependent pathway. J Biol Chem 2001; 276:1211-9. [PMID: 11042169 DOI: 10.1074/jbc.m005305200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our recent study indicates that lysophosphatidylcholine (LPC) enhances Sp1 binding and Sp1-dependent endothelial nitric oxide synthase (eNOS) promoter activity via the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1 (MEK-1) signaling pathway (Cieslik, K., Lee, C.-M., Tang, J.-L., and Wu, K. K. (1999) J. Biol. Chem. 274, 34669-34675). To identify upstream signaling molecules, we transfected human endothelial cells with dominant negative and active mutants of Ras and evaluated their effects on eNOS promoter activity. Neither mutant altered the basal or LPC-induced eNOS promoter function. By contrast, a dominant negative mutant of phosphatidylinositol 3-kinase gamma (PI-3Kgamma) blocked the promoter activity induced by LPC. Wortmannin and LY 294002 had a similar effect. AG-490, a selective inhibitor of Janus kinase 2 (Jak2), also reduced the LPC-induced Sp1 binding and eNOS promoter activity to the basal level. LPC induced Jak2 phosphorylation, which was abolished by LY 294002 and the dominant negative mutant of PI-3Kgamma. LY 294002 and AG-490 abrogated MEK-1 phosphorylation induced by LPC but had no effect on Raf-1. These results indicate that PI-3Kgamma and Jak2 are essential for LPC-induced eNOS promoter activity. This signaling pathway was sensitive to pertussis toxin, suggesting the involvement of a G(i) protein in PI-3Kgamma activation. These results indicate that LPC enhances Sp1-dependent eNOS promoter activity by a pertussis toxin-sensitive, Ras-independent novel pathway, PI-3Kgamma/Jak2/MEK-1/ERK1/2.
Collapse
Affiliation(s)
- K Cieslik
- Vascular Biology Research Center and Division of Hematology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
26
|
Storz P, Döppler H, Horn-Müller J, Müller G, Pfizenmaier K. TNF down-regulation of receptor tyrosine kinase-dependent mitogenic signal pathways as an important step in cytostasis induction and commitment to apoptosis of Kym-1 rhabdomyosarcoma cells. Cell Death Differ 2000; 7:955-65. [PMID: 11279542 DOI: 10.1038/sj.cdd.4400732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Growth of Kym-1 rhabdomyosarcoma cells depends on endogenous receptor tyrosine kinase signals activated by insulin and insulin-like growth factors (IGF), as revealed from enhancement of proliferation by insulin and IGF-1 and cytostatic action of inhibitors of IR/IGFR kinases. Depending on the presence or absence of the caspase inhibitor z-VAD-fmk, TNF induced full growth arrest or apoptosis, respectively, indicating dominance of TNF over mitogenic signal pathways in Kym-1 cells. In accordance with a caspase-independent cytostatic action, TNF downregulated IR kinase activity and caused a profound inhibition of downstream mitogenic signals including the MAPK cascade and STAT5, key pathways of proliferation and cell survival. Removal of z-VAD-fmk after 24 h induced rapid cell death in the absence of TNF. The inhibition of survival signals concomitant with persisting proapoptotic signals may tip the balance towards an irreversible commitment of the cell to apoptosis that becomes apparent upon relief of suppression of effector caspases.
Collapse
Affiliation(s)
- P Storz
- Institute of Cell Biology and Immunology, University of Stuttgart, Germany
| | | | | | | | | |
Collapse
|
27
|
Zhang S, Fukuda S, Lee Y, Hangoc G, Cooper S, Spolski R, Leonard WJ, Broxmeyer HE. Essential role of signal transducer and activator of transcription (Stat)5a but not Stat5b for Flt3-dependent signaling. J Exp Med 2000; 192:719-28. [PMID: 10974037 PMCID: PMC2193267 DOI: 10.1084/jem.192.5.719] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2000] [Accepted: 07/17/2000] [Indexed: 11/17/2022] Open
Abstract
The receptor tyrosine kinase Flt3 plays an important role in proliferation and survival of hematopoietic stem and progenitor cells. Although some post-receptor signaling events of Flt3 have been characterized, the involvement of the Janus kinase/signal transducer and activator of transcription (Jak/Stat) pathway in Flt3 signaling has not been thoroughly evaluated. To this aim, we examined whether Flt3 activates the Jak/Stat pathway in Baf3/Flt3 cells, a line stably expressing human Flt3 receptor. Stat5a, but not Stats 1-4, 5b, or 6, was potently activated by Flt3 ligand (FL) stimulation. Interestingly, FL did not activate any Jaks. Activation of Stat5a required the kinase activity of Flt3. A selective role for Stat5a in the proliferative response of primary hematopoietic progenitor cells to FL was documented, as FL did not act on progenitors from marrows of Stat5a(-/-) mice, but did stimulate/costimulate proliferation of these cells from Stat5a(+/+), Stat5b(-/-), and Stat5b(+/+) mice. Thus, Stat5a is essential for at least certain effects of FL. Moreover, our data confirm that Stat5a and Stat5b are not redundant, but rather are at least partially distinctive in their function.
Collapse
Affiliation(s)
- Shuli Zhang
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Walther Oncology Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Walther Cancer Institute, Indianapolis, Indiana 46206
| | - Seiji Fukuda
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Walther Oncology Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Walther Cancer Institute, Indianapolis, Indiana 46206
| | - Younghee Lee
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Walther Oncology Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Walther Cancer Institute, Indianapolis, Indiana 46206
| | - Giao Hangoc
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Walther Oncology Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Walther Cancer Institute, Indianapolis, Indiana 46206
| | - Scott Cooper
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Walther Oncology Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Walther Cancer Institute, Indianapolis, Indiana 46206
| | - Rosanne Spolski
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892
| | - Warren J. Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892
| | - Hal E. Broxmeyer
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Walther Oncology Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Walther Cancer Institute, Indianapolis, Indiana 46206
| |
Collapse
|
28
|
Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D, Van Obberghen E. SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 2000; 275:15985-91. [PMID: 10821852 DOI: 10.1074/jbc.275.21.15985] [Citation(s) in RCA: 367] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The SOCS proteins are induced by several cytokines and are involved in negative feedback loops. Here we demonstrate that in 3T3-L1 adipocytes, insulin, a hormone whose receptor does not belong to the cytokine receptor family, induces SOCS-3 expression but not CIS or SOCS-2. Using transfection of COS-7 cells, we show that insulin induction of SOCS-3 is enhanced upon Stat5B expression. Moreover, Stat5B from insulin-stimulated cells binds directly to a Stat element present in the SOCS-3 promoter. Once induced, SOCS-3 inhibits insulin activation of Stat5B without modifying the insulin receptor tyrosine kinase activity. Two pieces of evidence suggest that this negative regulation likely results from competition between SOCS-3 and Stat5B binding to the same insulin receptor motif. First, using a yeast two-hybrid system, we show that SOCS-3 binds to the insulin receptor at phosphotyrosine 960, which is precisely where Stat5B binds. Second, using confocal microscopy, we show that insulin induces translocation of SOCS-3 from an intracellular compartment to the cell membrane, leading to colocalization of SOCS-3 with the insulin receptor. This colocalization is dependent upon phosphorylation of insulin receptor tyrosine 960. Indeed, in cells expressing an insulin receptor mutant in which tyrosine 960 has been mutated to phenylalanine, insulin does not modify the cellular localization of SOCS-3. We have thus revealed an insulin target gene of which the expression is potentiated upon Stat5B activation. By inhibiting insulin-stimulated Stat5B, SOCS-3 appears to function as a negative regulator of insulin signaling.
Collapse
Affiliation(s)
- B Emanuelli
- INSERM U145, IFR-50, Faculté de Médecine, 06107 Nice Cédex 2, France
| | | | | | | | | | | |
Collapse
|