1
|
Wang M, Zhang B, Chen C, Gao Q, Zhou P, Zhao G. Impact of Electroporation-Delivered Intracellular Trehalose on the Characteristics of Intracellular Ice in Oocytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:12264-12275. [PMID: 40343445 DOI: 10.1021/acs.langmuir.5c01070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Intracellular ice formation (IIF) is the primary cause of cell death during cryopreservation. IIF prevention strategies typically optimize the cooling and warming rates using cryoprotectants. The introduction of trehalose into cells has been shown to significantly enhance cryosurvival rates; however, how intracellular trehalose influences the dynamics of ice formation remains unclear. To address this knowledge gap, this study used an innovative electroporation-based method to efficiently deliver trehalose directly into oocytes and systematically explored its intracellular effect on ice formation in oocytes. Although the trehalose solution exhibited a strong ice-regulating capacity, its efficacy in controlling the intracellular ice dynamics was significantly limited in the extracellular environment. However, intracellular delivery of trehalose significantly inhibited intracellular ice nucleation and growth. Specifically, oocytes treated with 0.15-0.3 M intracellular trehalose exhibited a delayed initial IIF temperature (-55.9 °C) and reduced cumulative probability of cells with IIF (0.52) during cooling to -120 °C. After thawing, the proportion of oocytes with no significant volume change increased to 33.3%, and the extent of cellular damage was significantly alleviated. Collectively, our findings provide theoretical support for the application of intracellular trehalose for cryopreservation and highlight its efficiency in enhancing oocyte cryopreservation, thereby extending its practical applications to reproductive medicine, biobanking, and other fields relying on high-quality cryopreservation.
Collapse
Affiliation(s)
- Menghan Wang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| | - Bing Zhang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| | - Chen Chen
- Department of Oncology Surgery, Anhui Provincial Children's Hospital (Children's Hospital of Fudan University Anhui Hospital, Children's Medical Center of Anhui Medical University), Hefei 230000, China
| | - Qun Gao
- Department of Oncology Surgery, Anhui Provincial Children's Hospital (Children's Hospital of Fudan University Anhui Hospital, Children's Medical Center of Anhui Medical University), Hefei 230000, China
| | - Ping Zhou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Gang Zhao
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
2
|
Samsonchi Z, Amirian R, Tayebi L, Derakhshankhah H, Izadi Z, Hajizadeh-Saffar E. Reviving hope: unlocking pancreatic islet immortality by optimizing a trehalose-based cryopreservation media and cell-penetrating peptide. Stem Cell Res Ther 2025; 16:136. [PMID: 40083015 PMCID: PMC11908028 DOI: 10.1186/s13287-025-04168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/23/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Diabetes mellitus remains a pervasive global health concern, urging a deeper exploration of islet transplantation as a potential enduring solution. The efficacy of this therapeutic approach pivots on the precision of cryopreservation techniques, ensuring both the viability and accessibility of pancreatic islets. This study delves into the merits of cryopreserving these islets using the disaccharide trehalose, accompanied by an inventive strategy involving poly L proline (PLP) as a cell-penetrating peptide to overcome the cryoprotectant limitations inherent to trehalose. METHODS In our experiments with rat islets, we conducted meticulous viability assessments for fresh and frozen samples. We employed a spectrum of methods, including live/dead staining, insulin/glucagon staining, and measurement of reactive oxygen species (ROS) levels. To gauge functional integrity, we executed glucose-stimulated insulin secretion tests. Subsequently, we transplanted thawed islets into diabetic mice to scrutinize their performance in clinically relevant conditions. RESULTS Our study yielded compelling results, affirming the successful cryopreservation of pancreatic islets using trehalose and PLP. Viability, as corroborated through live/dead and insulin/glucagon staining, underscored the sustained preservation of frozen islets. Moreover, these preserved islets exhibited functional integrity by releasing insulin responsively to glucose stimulation. Significantly, upon transplantation into diabetic mice, the thawed islets proficiently restored euglycemia, evidenced by a substantial reduction in fasting blood glucose and an enhanced glucose tolerance. CONCLUSION Our findings accentuate the potential of trehalose and PLP as sophisticated cryoprotectants for preserving pancreatic islets. Beyond highlighting viability and functionality, the preserved islets demonstrated a remarkable capacity to restore euglycemia post-transplantation. This research holds promise in addressing the inherent limitations of islet transplantation, particularly in the realm of Type 1 diabetes treatment.
Collapse
Affiliation(s)
- Zakieh Samsonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, ACECR, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, ACECR, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Roshanak Amirian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Hossein Derakhshankhah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhila Izadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ensiyeh Hajizadeh-Saffar
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, ACECR, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran.
- Department of Regenerative Medicine, Cell Science Research Center, ACECR, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran.
| |
Collapse
|
3
|
Bizarro-Silva C, Bergamo LZ, Costa CB, González SM, Yokomizo DN, Rossaneis AC, Verri Junior WA, Sudano MJ, Andrade ER, Alfieri AA, Seneda MM. Evaluation of Cryopreservation of Bovine Ovarian Tissue by Analysis of Reactive Species of Oxygen, Toxicity, Morphometry, and Morphology. Vet Sci 2024; 11:579. [PMID: 39591353 PMCID: PMC11598973 DOI: 10.3390/vetsci11110579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Ovarian tissue cryopreservation has been widely investigated for preserving female fertility. In the present study, we aimed to compare the effects of three concentrations (1, 1.5, and 3 M) of dimethylsulfoxide (DMSO) on the vitrification of ovarian tissue. The ovarian cortex was divided into control and vitrified groups: (i) 1 M-DMSO, (ii) 1.5 M-DMSO, and (iii) 3 M-DMSO. Follicles from all fragments were analyzed for DMSO-induced deleterious effects, morphological and morphometric aspects, and concentration of reactive oxygen species. Additionally, the fragments were cultured to assess the integrity and return of follicular development post-vitrification. All DMSO concentrations resulted in a higher percentage of degenerated preantral follicles than before the cryopreservation process. After vitrification, the cryopreserved ovarian fragments showed similar percentages of intact follicles; however, the 3 M DMSO concentration differed from the control. Analyzing free radical production, we found that the 3 M DMSO concentration had higher levels of oxidative stress than the lower DMSO. After in vitro cultivation of the vitrified/warmed fragments, the 1 M DMSO concentration exhibited higher percentages of morphologically intact follicles than the other concentrations. Therefore, we suggest that bovine preantral follicles can be cryopreserved in situ with greater efficiency in 1 M DMSO.
Collapse
Affiliation(s)
- Camila Bizarro-Silva
- Laboratory of Animal Reproduction, University of Londrina (UEL), Londrina 86057-970, Brazil; (C.B.-S.); (L.Z.B.); (C.B.C.); (S.M.G.); (D.N.Y.)
| | - Larissa Zamparone Bergamo
- Laboratory of Animal Reproduction, University of Londrina (UEL), Londrina 86057-970, Brazil; (C.B.-S.); (L.Z.B.); (C.B.C.); (S.M.G.); (D.N.Y.)
| | - Camila Bortoliero Costa
- Laboratory of Animal Reproduction, University of Londrina (UEL), Londrina 86057-970, Brazil; (C.B.-S.); (L.Z.B.); (C.B.C.); (S.M.G.); (D.N.Y.)
| | - Suellen Miguez González
- Laboratory of Animal Reproduction, University of Londrina (UEL), Londrina 86057-970, Brazil; (C.B.-S.); (L.Z.B.); (C.B.C.); (S.M.G.); (D.N.Y.)
| | - Deborah Nakayama Yokomizo
- Laboratory of Animal Reproduction, University of Londrina (UEL), Londrina 86057-970, Brazil; (C.B.-S.); (L.Z.B.); (C.B.C.); (S.M.G.); (D.N.Y.)
| | - Ana Carolina Rossaneis
- Department of Pathological Sciences, University of Londrina (UEL), Londrina 86057-970, Brazil; (A.C.R.); (W.A.V.J.)
| | | | - Mateus José Sudano
- Department of Genetics and Evolution, Federal University of São Carlos, UFSCar, São Carlos 13565-905, Brazil;
| | - Evelyn Rabelo Andrade
- Department of Veterinary Medicine, Federal University of Rondônia, UNIR, Rolim de Moura 76940-000, Brazil;
| | - Amauri Alcindo Alfieri
- Laboratory of Animal Virology, University of Londrina (UEL), Londrina 86057-970, Brazil;
| | - Marcelo Marcondes Seneda
- Laboratory of Animal Reproduction, University of Londrina (UEL), Londrina 86057-970, Brazil; (C.B.-S.); (L.Z.B.); (C.B.C.); (S.M.G.); (D.N.Y.)
| |
Collapse
|
4
|
Wang Z, Gao D, Shu Z. Mechanisms, Applications, and Challenges of Utilizing Nanomaterials in Cryopreservation. ADVANCED ENGINEERING MATERIALS 2024; 26. [DOI: 10.1002/adem.202400800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Indexed: 01/05/2025]
Abstract
Cryopreservation of biological samples, including cells, tissues, and organs, has become an essential component in various biomedical research and applications, such as cellular therapy, tissue engineering, organ transplantation, and conservation of endangered species. However, it faces critical challenges throughout the cryopreservation process, such as loading/unloading of cryoprotective agent (CPA), ice inhibition during cooling, and ultrafast and uniform heating during rewarming. Applying nanomaterials in cryopreservation has emerged as a promising solution to address these challenges in each step due to their unique properties. For instance, in order to deliver nonpermeating CPA into cells, some nanomaterials, such as polymeric nanocapsule, can carry nonpermeating CPA to penetrate into the cells, regulating the intracellular ice crystal. During cooling, some nanomaterials, such as graphene oxide, can bind to basal or prism planes of ice crystals, suppressing the ice growth. During rewarming, some nanomaterials, such as magnetic nanoparticles, can improve the heating performance, preventing devitrification and recrystallization during rewarming. However, challenges in nanomaterials‐assisted cryopreservation remain, including the need for comprehensive studies on nanomaterials toxicity and the development of scalable manufacturing processes for industrial applications. This review examines the role of nanomaterials in cryopreservation, focusing on their mechanisms, applications, and associated challenges.
Collapse
Affiliation(s)
- Ziyuan Wang
- Department of Mechanical Engineering University of Washington Seattle WA 98195 USA
| | - Dayong Gao
- Department of Mechanical Engineering University of Washington Seattle WA 98195 USA
| | - Zhiquan Shu
- Department of Mechanical Engineering University of Washington Seattle WA 98195 USA
- School of Engineering and Technology University of Washington Tacoma Tacoma WA 98402 USA
| |
Collapse
|
5
|
Murray A, Kilbride P, Gibson MI. Trehalose in cryopreservation. Applications, mechanisms and intracellular delivery opportunities. RSC Med Chem 2024; 15:2980-2995. [PMID: 39309363 PMCID: PMC11411628 DOI: 10.1039/d4md00174e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/08/2024] [Indexed: 09/25/2024] Open
Abstract
Cryopreservation is crucial to fields including immune and stem cell therapies, reproductive technology, blood banking, regenerative medicine and across all biotechnology. During cryopreservation, cryoprotectants are essential to protect cells from the damage caused by exposure to freezing temperatures. The most common penetrating cryoprotectants, such as DMSO and glycerol do not give full recovery and have a cytotoxicity limit on the concentration which can be applied. The non-reducing disaccharide trehalose has been widely explored and used to supplement these, inspired by its use in nature to aid survival at extreme temperatures and/or desiccation. However, trehalose has challenges to its use, particular its low membrane permeability, and how its protective role compares to other sugars. Here we review the application of trehalose and its reported benefit and seek to show where chemical tools can improve its function. In particular, we highlight emerging chemical methods to deliver (as cargo, or via selective permeation) into the intracellular space. This includes encapsulation, cell penetrating peptides or (selective) modification of hydroxyls on trehalose.
Collapse
Affiliation(s)
- Alex Murray
- Department of Chemistry, University of Warwick CV4 7AL UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick CV4 7AL UK
| | | | - Matthew I Gibson
- Department of Chemistry, University of Warwick CV4 7AL UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick CV4 7AL UK
- Asymptote, Cytiva Chivers Way Cambridge CB24 9BZ USA
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
- Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
6
|
Fuenteslópez CV, Gray M, Bahcevanci S, Martin A, Smith CAB, Coussios C, Cui Z, Ye H, Patrulea V. Mesenchymal stem cell cryopreservation with cavitation-mediated trehalose treatment. COMMUNICATIONS ENGINEERING 2024; 3:129. [PMID: 39251849 PMCID: PMC11385975 DOI: 10.1038/s44172-024-00265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024]
Abstract
Dimethylsulfoxide (DMSO) has conventionally been used for cell cryopreservation both in research and in clinical applications, but has long-term cytotoxic effects. Trehalose, a natural disaccharide, has been proposed as a non-toxic cryoprotectant. However, the lack of specific cell membrane transporter receptors inhibits transmembrane transport and severely limits its cryoprotective capability. This research presents a method to successfully deliver trehalose into mesenchymal stem cells (MSCs) using ultrasound in the presence of microbubbles. The optimised trehalose concentration was shown to be able to not only preserve membrane integrity and cell viability but also the multipotency of MSCs, which are essential for stem cell therapy. Confocal imaging revealed that rhodamine-labelled trehalose was transported into cells rather than simply attached to the membrane. Additionally, the membranes were successfully preserved in lyophilised cells. This study demonstrates that ultrasonication with microbubbles facilitated trehalose delivery, offering promising cryoprotective capability without the cytotoxicity associated with DMSO-based methods.
Collapse
Affiliation(s)
- Carla V Fuenteslópez
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Michael Gray
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Simge Bahcevanci
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Alexander Martin
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Cameron A B Smith
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Constantin Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.
| | - Viorica Patrulea
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
7
|
Bedard S, Roxborough E, O'Neill E, Mangal V. The biomolecules of Euglena gracilis: Harnessing biology for natural solutions to future problems. Protist 2024; 175:126044. [PMID: 38823247 DOI: 10.1016/j.protis.2024.126044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/05/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
Over the past decade, the autotrophic and heterotrophic protist Euglena gracilis (E. gracilis) has gained popularity across the studies of environmental science, biosynthesis experiments, and nutritional substitutes. The unique physiology and versatile metabolism of E. gracilis have been a recent topic of interest to many researchers who continue to understand the complexity and possibilities of using E. gracilis biomolecule production. In this review, we present a comprehensive representation of recent literature outlining the various uses of biomolecules derived from E. gracilis across the fields of natural product biosynthesis, as a nutritional substitute, and as bioremediation tools. In addition, we highlight effective strategies for altering metabolite production using abiotic stressors and growth conditions. To better understand metabolite biosynthesis and its role in E. gracilis, integrated studies involving genomics, metabolomics, and proteomics should be considered. Together, we show how the ongoing advancements in E. gracilis related research continue to broaden applications in the biosynthetic sector and highlight future works that would strengthen our understanding of overall Euglena metabolism.
Collapse
Affiliation(s)
- S Bedard
- Department of Chemistry, Brock University. 1812 Sir Isaac Brock Way, St. Catherines, Ontario L2S 3A1, Canada
| | - E Roxborough
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - E O'Neill
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - V Mangal
- Department of Chemistry, Brock University. 1812 Sir Isaac Brock Way, St. Catherines, Ontario L2S 3A1, Canada.
| |
Collapse
|
8
|
Hu Y, Liu X, Zhang W, Chen J, Chen X, Tan S. Inulin Can Improve Red Blood Cell Cryopreservation by Promoting Vitrification, Stabilizing Cell Membranes, and Inhibiting Ice Recrystallization. ACS Biomater Sci Eng 2024; 10:851-862. [PMID: 38176101 DOI: 10.1021/acsbiomaterials.3c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In transfusion medicine, the cryopreservation of red blood cells (RBCs) is of major importance. The organic solvent glycerol (Gly) is considered the current gold-standard cryoprotectant (CPA) for RBC cryopreservation, but the deglycerolization procedure is complex and time-consuming, resulting in severe hemolysis. Therefore, it remains a research hotspot to find biocompatible and effective novel CPAs. Herein, the natural and biocompatible inulin, a polysaccharide, was first employed as a CPA for RBC cryopreservation. The presence of inulin could improve the thawed RBC recovery from 11.83 ± 1.40 to 81.86 ± 0.37%. It was found that inulin could promote vitrification because of its relatively high viscosity and glass transition temperature (Tg'), thus reducing the damage during cryopreservation. Inulin possessed membrane stability, which also had beneficial effects on RBC recovery. Moreover, inulin could inhibit the mechanical damage induced by ice recrystallization during thawing. After cryopreservation, the RBC properties were maintained normally. Mathematical modeling analysis was adopted to compare the performance of inulin, Gly, and hydroxyethyl starch (HES) in cryopreservation, and inulin presented the best efficiency. This work provides a promising CPA for RBC cryopreservation and may be beneficial for transfusion therapy in the clinic.
Collapse
Affiliation(s)
- Yuying Hu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiangjian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wenqian Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Jiangming Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiaoxiao Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
9
|
Ivanova A, Simonenko E, Yakovenko S, Spiridonov V. Problems of human spermatozoa cryopreservation: research methods, solutions. Biophys Rev 2023; 15:1223-1232. [PMID: 37975014 PMCID: PMC10643638 DOI: 10.1007/s12551-023-01133-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/30/2023] [Indexed: 11/19/2023] Open
Abstract
Cryopreservation of male gametes is one of the most important methods of assisted reproductive technologies, which allows preserving gametes for research or further use. However, the fertilizing ability of spermatozoa after cryopreservation decreases by 30-70%, which makes it urgent to search for new substances with cryoprotective properties. The review considers the main causes of cell damage during cryopreservation. The relevance of methods for assessing the formation of crystals and the physicochemical properties of cryoprotective media depending on various compositions is discussed. The problem of stabilization of the spermatozoa membrane during cryopreservation is considered. A possible solution to the problem of membrane integrity may consist in modification of the basic cryoprotective media with yolk emulsion or development of methods for saturation of the membrane phospholipid layer with cholesterol.
Collapse
Affiliation(s)
- Anna Ivanova
- Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991 Russia
| | - Ekaterina Simonenko
- Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991 Russia
| | - Sergey Yakovenko
- Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991 Russia
| | - Vasiliy Spiridonov
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, 119991 Russia
| |
Collapse
|
10
|
Hu Y, Liu X, Liu F, Xie J, Zhu Q, Tan S. Trehalose in Biomedical Cryopreservation-Properties, Mechanisms, Delivery Methods, Applications, Benefits, and Problems. ACS Biomater Sci Eng 2023; 9:1190-1204. [PMID: 36779397 DOI: 10.1021/acsbiomaterials.2c01225] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Cells and tissues are the foundation of translational medicine. At present, one of the main technological obstacles is their preservation for long-term usage while maintaining adequate viability and function. Optimized storage techniques must be developed to make them safer to use in the clinic. Cryopreservation is the most common long-term preservation method to maintain the vitality and function of cells and tissues. But, the formation of ice crystals in cells and tissues is considered to be the main mechanism that could harm cells and tissues during freezing and thawing. To reduce the formation of ice crystals, cryoprotective agents (CPAs) must be added to the cells and tissues to achieve the cryoprotective effect. However, conventional cryopreservation of cells and tissues often needs to use toxic organic solvents as CPAs. As a result, cryopreserved cells and tissues may need to go through a time-consuming washing process to remove CPAs for further applications in translational medicine, and multiple valuable cells are potentially lost or killed. Currently, trehalose has been researched as a nontoxic CPA due to its cryoprotective ability and stability during cryopreservation. Nevertheless, trehalose is a nonpermeable CPA, and the lack of an effective intracellular trehalose delivery method has become the main obstacle to its use in cryopreservation. This article illustrated the properties, mechanisms, delivery methods, and applications of trehalose, summarized the benefits and limits of trehalose, and summed up the findings and research direction of trehalose in biomedical cryopreservation.
Collapse
Affiliation(s)
- Yuying Hu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiangjian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Fenglin Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Jingxian Xie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
11
|
Elsebay MT, Eissa NG, Balata GF, Kamal MA, Elnahas HM. Nanosuspension: A Formulation Technology for Tackling the Poor Aqueous Solubility and Bioavailability of Poorly Soluble Drugs. Curr Pharm Des 2023; 29:2297-2312. [PMID: 37694786 DOI: 10.2174/1381612829666230911105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 09/12/2023]
Abstract
The poor water solubility of numerous novel drug candidates presents significant challenges, particularly in terms of oral administration. This limitation can result in various undesirable clinical implications, such as inter-patient variability, poor bioavailability, difficulties in achieving a safe therapeutic index, increased costs, and potential risks of toxicity or inefficacy. Biopharmaceutics Classification System (BCS) class II drugs face particular hurdles due to their limited solubility in the aqueous media of the gastrointestinal tract. In such cases, parenteral administration is often employed as an alternative strategy. To address these challenges, nanosuspension techniques offer a promising solution for enhancing drug solubility and overcoming oral delivery obstacles. This technique has the potential to bridge the gap between drug discovery and preclinical use by resolving problematic solubility. This literature review has delved into contemporary nanosuspension preparation technologies and the incorporation of stabilizing ingredients within the formulation. Furthermore, the manuscript explores nanosuspension strategies for both oral and parenteral/other delivery routes, and separate discussions have been presented to establish a suitable flow that addresses the challenges and strategies relevant to each administration method.
Collapse
Affiliation(s)
- Mohamed T Elsebay
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Noura G Eissa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- School of Biotechnology and Science Academy, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Gehan F Balata
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Hanan M Elnahas
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
12
|
Freitas-Ribeiro S, Reis RL, Pirraco RP. Long-term and short-term preservation strategies for tissue engineering and regenerative medicine products: state of the art and emerging trends. PNAS NEXUS 2022; 1:pgac212. [PMID: 36714838 PMCID: PMC9802477 DOI: 10.1093/pnasnexus/pgac212] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 02/01/2023]
Abstract
There is an ever-growing need of human tissues and organs for transplantation. However, the availability of such tissues and organs is insufficient by a large margin, which is a huge medical and societal problem. Tissue engineering and regenerative medicine (TERM) represent potential solutions to this issue and have therefore been attracting increased interest from researchers and clinicians alike. But the successful large-scale clinical deployment of TERM products critically depends on the development of efficient preservation methodologies. The existing preservation approaches such as slow freezing, vitrification, dry state preservation, and hypothermic and normothermic storage all have issues that somehow limit the biomedical applications of TERM products. In this review, the principles and application of these approaches will be summarized, highlighting their advantages and limitations in the context of TERM products preservation.
Collapse
Affiliation(s)
- Sara Freitas-Ribeiro
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal,ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Barco GMR, Portugal
| | - Rui L Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal,ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Barco GMR, Portugal
| | | |
Collapse
|
13
|
Heydarzadeh S, Kia SK, Boroomand S, Hedayati M. Recent Developments in Cell Shipping Methods. Biotechnol Bioeng 2022; 119:2985-3006. [PMID: 35898166 DOI: 10.1002/bit.28197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/09/2022] [Accepted: 07/17/2022] [Indexed: 11/11/2022]
Abstract
As opposed to remarkable advances in the cell therapy industry, researches reveal inexplicable difficulties associated with preserving and post-thawing cell death. Post cryopreservation apoptosis is a common occurrence that has attracted the attention of scientists to use apoptosis inhibitors. Transporting cells without compromising their survival and function is crucial for any experimental cell-based therapy. Preservation of cells allows the safe transportation of cells between distances and improves quality control testing in clinical and research applications. The vitality of transported cells is used to evaluate the efficacy of transportation strategies. For many decades, the conventional global methods of cell transfer were not only expensive but also challenging and had adverse effects. The first determination of some projects is optimizing cell survival after cryopreservation. The new generation of cryopreservation science wishes to find appropriate and alternative methods for cell transportation to ship viable cells at an ambient temperature without dry ice or in media-filled flasks. The diversity of cell therapies demands new cell shipping methodologies and cryoprotectants. In this review, we tried to summarize novel improved cryopreservation methods and alternatives to cryopreservation with safe and viable cell shipping at ambient temperature, including dry preservation, hypothermic preservation, gel-based methods, encapsulation methods, fibrin microbeads, and osmolyte solution compositions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shabnam Heydarzadeh
- Department of Biochemistry, School of Biological Sciences, Falavarjan Branch Islamic Azad University, Isfahan, Iran.,Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Kheradmand Kia
- Laboratory for Red Blood Cell Diagnostics, Sanquin, Amsterdam, The Netherlands
| | - Seti Boroomand
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mehdi Hedayati
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Abstract
Cryopreservation of cells and biologics underpins all biomedical research from routine sample storage to emerging cell-based therapies, as well as ensuring cell banks provide authenticated, stable and consistent cell products. This field began with the discovery and wide adoption of glycerol and dimethyl sulfoxide as cryoprotectants over 60 years ago, but these tools do not work for all cells and are not ideal for all workflows. In this Review, we highlight and critically review the approaches to discover, and apply, new chemical tools for cryopreservation. We summarize the key (and complex) damage pathways during cellular cryopreservation and how each can be addressed. Bio-inspired approaches, such as those based on extremophiles, are also discussed. We describe both small-molecule-based and macromolecular-based strategies, including ice binders, ice nucleators, ice nucleation inhibitors and emerging materials whose exact mechanism has yet to be understood. Finally, looking towards the future of the field, the application of bottom-up molecular modelling, library-based discovery approaches and materials science tools, which are set to transform cryopreservation strategies, are also included.
Collapse
Affiliation(s)
| | - Matthew I. Gibson
- Department of Chemistry, University of Warwick, Coventry, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
15
|
Yao J, Shen L, Chen Z, Zhang B, Zhao G. Hydrogel Microencapsulation Enhances Cryopreservation of Red Blood Cells with Trehalose. ACS Biomater Sci Eng 2022; 8:2066-2075. [PMID: 35394755 DOI: 10.1021/acsbiomaterials.2c00051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cryopreservation of red blood cells (RBCs) plays a vital role in preserving rare blood and serologic testing, which is essential for clinical transfusion medicine. The main difficulties of the current cryopreservation technique are the high glycerol concentration and the tedious deglycerolization procedure after thawing. In this study, we explored a microencapsulation method for cryopreservation. RBC-hydrogel microcapsules with a diameter of approximately 2.184 ± 0.061 mm were generated by an electrostatic spraying device. Then, 0.7 M trehalose was used as a cryoprotective agent (CPA), and microcapsules were adhered to a stainless steel grid for liquid nitrogen freezing. The results show that compared with the RBCs frozen by cryovials, the recovery of RBCs after microencapsulation is significantly improved, up to a maximum of more than 85%. Additionally, the washing process can be completed using only 0.9% NaCl. After washing, the RBCs maintained their morphology and adenosine 5'-triphosphate (ATP) levels and met clinical transfusion standards. The microencapsulation method provides a promising, referenceable, and more practical strategy for future clinical transfusion medicine.
Collapse
Affiliation(s)
- Jianbo Yao
- School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Lingxiao Shen
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| | - Zhongrong Chen
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, China
| | - Bing Zhang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| | - Gang Zhao
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China.,School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
16
|
Piao Z, Patel M, Park JK, Jeong B. Poly(l-alanine- co-l-lysine)- g-Trehalose as a Biomimetic Cryoprotectant for Stem Cells. Biomacromolecules 2022; 23:1995-2006. [PMID: 35412815 DOI: 10.1021/acs.biomac.1c01701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Poly(l-alanine-co-l-lysine)-graft-trehalose (PAKT) was synthesized as a natural antifreezing glycopolypeptide (AFGP)-mimicking cryoprotectant for cryopreservation of mesenchymal stem cells (MSCs). FTIR and circular dichroism spectra indicated that the content of the α-helical structure of PAK decreased after conjugation with trehalose. Two protocols were investigated in cryopreservation of MSCs to prove the significance of the intracellularly delivered PAKT. In protocol I, MSCs were cryopreserved at -196 °C for 7 days by a slow-cooling procedure in the presence of both PAKT and free trehalose. In protocol II, MSCs were preincubated at 37 °C in a PAKT solution, followed by cryopreservation at -196 °C in the presence of free trehalose for 7 days by the slow-cooling procedure. Polymer and trehalose concentrations were varied by 0.0-1.0 and 0.0-15.0 wt %, respectively. Cell recovery was significantly improved by protocol II with preincubation of the cells in the PAKT solution. The recovered cells from protocol II exhibited excellent proliferation and maintained multilineage potentials into osteogenic, chondrogenic, and adipogenic differentiation, similar to MSCs recovered from cryopreservation in the traditional 10% dimethyl sulfoxide system. Ice recrystallization inhibition (IRI) activity of the polymers/trehalose contributed to cell recovery; however, intracellularly delivered PEG-PAKT was the major contributor to the enhanced cell recovery in protocol II. Inhibitor studies suggested that macropinocytosis and caveolin-dependent endocytosis are the main mechanisms for the intracellular delivery of PEG-PAKT. 1H NMR and FTIR spectra suggested that the intracellular PEG-PAKTs interact with water and stabilize the cells during cryopreservation.
Collapse
Affiliation(s)
- Zhengyu Piao
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Jin Kyung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
17
|
Elgamal S, Cocucci E, Sass EJ, Mo XM, Blissett AR, Calomeni EP, Rogers KA, Woyach JA, Bhat SA, Muthusamy N, Johnson AJ, Larkin KT, Byrd JC. Optimizing extracellular vesicles' isolation from chronic lymphocytic leukemia patient plasma and cell line supernatant. JCI Insight 2021; 6:e137937. [PMID: 34369387 PMCID: PMC8410027 DOI: 10.1172/jci.insight.137937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In chronic lymphocytic leukemia (CLL) and very likely all cancer types, extracellular vesicles (EVs) are a common mechanism by which intercellular messages are communicated between normal, diseased, and transformed cells. Studies of EVs in CLL and other cancers have great variability and often lack reproducibility. For CLL patient plasma and cell lines, we sought to characterize current approaches used in isolating EV products and understand whether cell culture-conditioned media or complex biological fluids confound results. Utilizing nanoparticle tracking analysis, protein quantification, and electron microscopy, we show that ultracentrifugation with an OptiPrep cushion can effectively minimize contaminants from starting materials including plasma and conditioned media of CLL cell lines grown in EV-depleted complete RPMI media but not grown in the serum-free media AIM V commonly used in CLL experimental work. Moreover, we confirm the benefit of including 25 mM trehalose in PBS during EV isolation steps to reduce EV aggregation, to preserve function for downstream applications and characterization. Furthermore, we report the highest particles/μg EVs were obtained from our CLL cell lines utilizing the CELLine bioreactor flask. Finally, we optimized a proliferation assay that offers a functional evaluation of our EVs with minimal sample requirements.
Collapse
Affiliation(s)
- Sara Elgamal
- Division of Hematology, Department of Internal Medicine, College of Medicine.,Comprehensive Cancer Center
| | - Emanuele Cocucci
- Comprehensive Cancer Center.,Division of Pharmaceutics, College of Pharmacy
| | - Ellen J Sass
- Division of Hematology, Department of Internal Medicine, College of Medicine.,Comprehensive Cancer Center
| | - Xiaokui M Mo
- Comprehensive Cancer Center.,Department of Biomedical Informatics, College of Medicine
| | | | | | - Kerry A Rogers
- Division of Hematology, Department of Internal Medicine, College of Medicine.,Comprehensive Cancer Center
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, College of Medicine.,Comprehensive Cancer Center
| | - Seema A Bhat
- Division of Hematology, Department of Internal Medicine, College of Medicine.,Comprehensive Cancer Center
| | - Natarajan Muthusamy
- Division of Hematology, Department of Internal Medicine, College of Medicine.,Comprehensive Cancer Center.,College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Amy J Johnson
- Division of Hematology, Department of Internal Medicine, College of Medicine.,Comprehensive Cancer Center.,Division of Pharmaceutics, College of Pharmacy
| | - Karilyn T Larkin
- Division of Hematology, Department of Internal Medicine, College of Medicine.,Comprehensive Cancer Center
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, College of Medicine.,Comprehensive Cancer Center.,Division of Pharmaceutics, College of Pharmacy.,College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
18
|
Huang J, Guo J, Zhou L, Zheng G, Cao J, Li Z, Zhou Z, Lei Q, Brinker CJ, Zhu W. Advanced Nanomaterials-Assisted Cell Cryopreservation: A Mini Review. ACS APPLIED BIO MATERIALS 2021; 4:2996-3014. [PMID: 35014388 DOI: 10.1021/acsabm.1c00105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell cryopreservation is of vital significance both for transporting and storing cells before experimental/clinical use. Cryoprotectants (CPAs) are necessary additives in the preserving medium in cryopreservation, preventing cells from freeze-thaw injuries. Traditional organic solvents have been widely used in cell cryopreservation for decades. Given the obvious damage to cells due to their undesirable cytotoxicity and the burdensome post-thaw washing cycles before use, traditional CPAs are more and more likely to be replaced by modern ones with lower toxicity, less processing, and higher efficiency. As materials science thrives, nanomaterials are emerging to serve as potent vehicles for delivering nontoxic CPAs or inherent CPAs comparable to or even superior to conventional ones. This review will introduce some advanced nanomaterials (e.g., organic/inorganic nanoCPAs, nanodelivery systems) utilized for cell cryopreservation, providing broader insights into this developing field.
Collapse
Affiliation(s)
- Junda Huang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jimin Guo
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States.,Department of Internal Medicine, Molecular Medicine, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Liang Zhou
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Guansheng Zheng
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jiangfan Cao
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Zeyu Li
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Zhuang Zhou
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Qi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - C Jeffrey Brinker
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
19
|
Wang S, Trammell S, Elliott GD. Microwave- and Laser-Assisted Drying for the Anhydrous Preservation of Biologics. Methods Mol Biol 2021; 2180:203-220. [PMID: 32797413 DOI: 10.1007/978-1-0716-0783-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Dry preservation has become an attractive approach for the long-term storage of biologics. By removing water from the matrix to solidify the sample, refrigeration needs are reduced, and thus storage costs are minimized and shipping logistics greatly simplified. This chapter describes two energy deposition technologies, namely, microwave and laser systems, that have recently been used to enhance the rate and nature of solution densification for the purpose of anhydrous preservation of feline oocytes, sperm, and egg white lysozyme in trehalose glass. Several physical screening methodologies used to determine the suitability of an amorphous matrix for biopreservation are also introduced in this chapter.
Collapse
Affiliation(s)
- Shangping Wang
- Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Susan Trammell
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Gloria D Elliott
- Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
20
|
Almiñana C, Rudolf Vegas A, Tekin M, Hassan M, Uzbekov R, Fröhlich T, Bollwein H, Bauersachs S. Isolation and Characterization of Equine Uterine Extracellular Vesicles: A Comparative Methodological Study. Int J Mol Sci 2021; 22:ijms22020979. [PMID: 33478136 PMCID: PMC7835857 DOI: 10.3390/ijms22020979] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) have been identified in the uterine fluid in different species and have been pointed as key players in the embryo-maternal dialogue, maternal recognition of pregnancy and establishment of pregnancy. However, little is known about the uterine EVs in the mare. Therefore, the present study aimed at characterizing EVs from uterine lavage of cyclic mares by comparing five EVs isolation methods and the combination of them: (1) ultracentrifugation (UC); (2) concentration of lavage volume by Centricon ultrafiltration (CE); (3) the use of CE with different washing steps (phosphate-buffered saline with or without trehalose); (4) size-exclusion chromatography with iZON-qEV columns, and (5) a combination of the methods with best results based on EVs yield, purity, and protein cargo profiles. Transmission electron microscopy and Western blotting confirmed the isolation of EVs by all methods but with quantitative and qualitative differences. Mass spectrometry provided differences in protein profiles between methods, number of identified proteins, and protein classes. Our results indicate that the combination of CE/trehalose/iZON/UC is an optimal method to isolate equine uterine EVs with good yield and purity that can be applied in future studies to determine the role of equine uterine EVs in embryo-maternal interactions.
Collapse
Affiliation(s)
- Carmen Almiñana
- Functional Genomics Group, Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, 8315 Lindau, Switzerland; (A.R.V.); (S.B.)
- UMR85 PRC, INRAE, CNRS 7247, Université de Tours, IFCE, 37380 Nouzilly, France
- Correspondence:
| | - Alba Rudolf Vegas
- Functional Genomics Group, Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, 8315 Lindau, Switzerland; (A.R.V.); (S.B.)
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse-Faculty, University of Zurich, 8057 Zurich, Switzerland; (M.T.); (M.H.); (H.B.)
| | - Muhittin Tekin
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse-Faculty, University of Zurich, 8057 Zurich, Switzerland; (M.T.); (M.H.); (H.B.)
| | - Mubbashar Hassan
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse-Faculty, University of Zurich, 8057 Zurich, Switzerland; (M.T.); (M.H.); (H.B.)
| | - Rustem Uzbekov
- Laboratoire Biologie Cellulaire et Microscopie Electronique, Faculté de Médecine, Université de Tours, 37032 Tours, France;
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992 Moscow, Russia
| | - Thomas Fröhlich
- Gene Center, Laboratory for Functional Genome Analysis, LMU Munich, 81377 Munich, Germany;
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse-Faculty, University of Zurich, 8057 Zurich, Switzerland; (M.T.); (M.H.); (H.B.)
| | - Stefan Bauersachs
- Functional Genomics Group, Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, 8315 Lindau, Switzerland; (A.R.V.); (S.B.)
| |
Collapse
|
21
|
De Coster T, Velez DA, Van Soom A, Woelders H, Smits K. Cryopreservation of equine oocytes: looking into the crystal ball. Reprod Fertil Dev 2021; 32:453-467. [PMID: 32172776 DOI: 10.1071/rd19229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022] Open
Abstract
Invitro embryo production has evolved rapidly in the horse over the past decade, but blastocyst rates from vitrified equine oocytes remain quite poor and further research is needed to warrant application. Oocyte vitrification is affected by several technical and biological factors. In the horse, short exposure of immature oocytes to the combination of permeating and non-permeating cryoprotective agents has been associated with the best results so far. High cooling and warming rates are also crucial and can be obtained by using minimal volumes and open cryodevices. Vitrification of invivo-matured oocytes has yielded better results, but is less practical. The presence of the corona radiata seems to partially protect those factors that are necessary for the construction of the normal spindle and for chromosome alignment, but multiple layers of cumulus cells may impair permeation of cryoprotective agents. In addition to the spindle, the oolemma and mitochondria are also particularly sensitive to vitrification damage, which should be minimised in future vitrification procedures. This review presents promising protocols and novel strategies in equine oocyte vitrification, with a focus on blastocyst development and foal production as most reliable outcome parameters.
Collapse
Affiliation(s)
- Tine De Coster
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; and Corresponding authors. ;
| | - Daniel Angel Velez
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; and Corresponding authors. ;
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Henri Woelders
- Wageningen Livestock Research, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Katrien Smits
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
22
|
Chen S, Wu L, Ren J, Bemmer V, Zajicek R, Chen R. Comb-like Pseudopeptides Enable Very Rapid and Efficient Intracellular Trehalose Delivery for Enhanced Cryopreservation of Erythrocytes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28941-28951. [PMID: 32496048 DOI: 10.1021/acsami.0c03260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell cryopreservation plays a key role in the development of reproducible and cost-effective cell-based therapies. Trehalose accumulated in freezing- and desiccation-tolerant organisms in nature has been sought as an attractive nontoxic cryoprotectant. Herein, we report a coincubation method for very rapid and efficient delivery of membrane-impermeable trehalose into ovine erythrocytes through reversible membrane permeabilization using pH-responsive, comb-like pseudopeptides. The pseudopeptidic polymers containing relatively long alkyl side chains were synthesized to mimic membrane-anchoring fusogenic proteins. The intracellular trehalose delivery efficiency was optimized by manipulating the side chain length, degree of substitution, and concentration of the pseudopeptides with different hydrophobic alkyl side chains, the pH, temperature, and time of incubation, as well as the polymer-to-cell ratio and the concentration of extracellular trehalose. Treatment of erythrocytes with the comb-like pseudopeptides for only 15 min yielded an intracellular trehalose concentration of 177.9 ± 8.6 mM, which resulted in 90.3 ± 0.7% survival after freeze-thaw. The very rapid and efficient delivery was found to be attributed to the reversible, pronounced membrane curvature change as a result of strong membrane insertion of the comb-like pseudopeptides. The pseudopeptides can enable efficient intracellular delivery of not only trehalose for improved cell cryopreservation but also other membrane-impermeable cargos.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Liwei Wu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Jie Ren
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Victoria Bemmer
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Richard Zajicek
- Cell & Gene Therapy Platform CMC, Platform Technology & Sciences, GlaxoSmithKline plc R&D, Gunnels Wood, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| |
Collapse
|
23
|
Diaz-Dussan D, Peng YY, Sengupta J, Zabludowski R, Adam MK, Acker JP, Ben RN, Kumar P, Narain R. Trehalose-Based Polyethers for Cryopreservation and Three-Dimensional Cell Scaffolds. Biomacromolecules 2020; 21:1264-1273. [PMID: 31913606 DOI: 10.1021/acs.biomac.0c00018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The capability to slow ice growth and recrystallization is compulsory in the cryopreservation of cells and tissues to avoid injuries associated with the physical and chemical responses of freezing and thawing. Cryoprotective agents (CPAs) have been used to restrain cryoinjury and improve cell survival, but some of these compounds pose greater risks for the clinical application of cryopreserved cells due to their inherent toxicity. Trehalose is known for its unique physicochemical properties and its interaction with the phospholipids of the plasma membrane, which can reduce cell osmotic stress and stabilized the cryopreserved cells. Nonetheless, there has been a shortage of relevant studies on the synthesis of trehalose-based CPAs. We hereby report the synthesis and evaluation of a trehalose-based polymer and hydrogel and its use as a cryoprotectant and three-dimensional (3D) cell scaffold for cell encapsulation and organoid production. In vitro cytotoxicity studies with the trehalose-based polymers (poly(Tre-ECH)) demonstrated biocompatibility up to 100 mg/mL. High post-thaw cell membrane integrity and post-thaw cell plating efficiencies were achieved after 24 h of incubation with skin fibroblast, HeLa (cervical), and PC3 (prostate) cancer cell lines under both controlled-rate and ultrarapid freezing protocols. Differential scanning calorimetry and a splat cooling assay for the determination of ice recrystallization inhibition activity corroborated the unique properties of these trehalose-based polyethers as cryoprotectants. Furthermore, the ability to form hydrogels as 3D cell scaffolds encourages the use of these novel polymers in the development of cell organoids and cryopreservation platforms.
Collapse
Affiliation(s)
- Diana Diaz-Dussan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T5B 4E4 Alberta, Canada
| | - Yi-Yang Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T5B 4E4 Alberta, Canada
| | - Jayeeta Sengupta
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T5B 4E4 Alberta, Canada
| | - Rebecca Zabludowski
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T5B 4E4 Alberta, Canada
| | - Madeleine K Adam
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5 Ontario, Canada
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T5B 4E4 Alberta, Canada.,Centre for Innovation, Canadian Blood Services, Edmonton, T6G 2R8 Alberta, Canada
| | - Robert N Ben
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5 Ontario, Canada
| | - Piyush Kumar
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, T6G 1Z2 Alberta, Canada
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T5B 4E4 Alberta, Canada
| |
Collapse
|
24
|
Zhang Y, Wang H, Stewart S, Jiang B, Ou W, Zhao G, He X. Cold-Responsive Nanoparticle Enables Intracellular Delivery and Rapid Release of Trehalose for Organic-Solvent-Free Cryopreservation. NANO LETTERS 2019; 19:9051-9061. [PMID: 31680526 DOI: 10.1021/acs.nanolett.9b04109] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Conventional cryopreservation of mammalian cells requires the use of toxic organic solvents (e.g., dimethyl sulfoxide) as cryoprotectants. Consequently, the cryopreserved cells must undergo a tedious washing procedure to remove the organic solvents for their further applications in cell-based medicine, and many of the precious cells may be lost or killed during the procedure. Trehalose has been explored as a nontoxic alternative to traditional cryoprotectants. However, mammalian cells do not synthesize trehalose or express trehalose transporters in their membranes, and the lack of an approach for the efficient intracellular delivery of trehalose has been a major hurdle for its use in cell cryopreservation. In this study, a cold-responsive polymer (poly(N-isopropylacrylamide-co-butyl acrylate)) is utilized to synthesize nanoparticles for the encapsulation and intracellular delivery of trehalose. The trehalose-laden nanoparticles can be efficiently taken up by mammalian cells. The nanoparticles quickly and irreversibly disassemble upon cold treatment, enabling the controlled and rapid release of trehalose from the nanoparticles inside cells. The latter is confirmed by an evident increase in cell volume upon cold treatment. This rapid cold-triggered intracellular release of trehalose is crucial to developing a fast protocol to cryopreserve cells using trehalose. Cells with intracellular trehalose delivered using the nanoparticles show comparable postcryopreservation viability compared to that of cells treated with DMSO, eliminating the need for the tedious and cell-damaging washing procedure required for using the DMSO-cryopreserved cells in vivo. This cold-responsive nanoparticle may greatly facilitate the use of trehalose as a nontoxic cryoprotectant for banking cells and tissues to meet their high demand by modern cell-based medicine.
Collapse
Affiliation(s)
- Yuntian Zhang
- Department of Electronic Science and Technology , University of Science and Technology of China , Hefei , Anhui 230027 , China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | | | | | | | - Gang Zhao
- Department of Electronic Science and Technology , University of Science and Technology of China , Hefei , Anhui 230027 , China
| | - Xiaoming He
- Marlene and Stewart Greenebaum Comprehensive Cancer Center , University of Maryland , Baltimore , Maryland 21201 , United States
| |
Collapse
|
25
|
Uchida T, Furukawa M, Kikawada T, Yamazaki K, Gohara K. Trehalose uptake and dehydration effects on the cryoprotection of CHO–K1 cells expressing TRET1. Cryobiology 2019; 90:30-40. [DOI: 10.1016/j.cryobiol.2019.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
|
26
|
Stewart S, He X. Intracellular Delivery of Trehalose for Cell Banking. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7414-7422. [PMID: 30078320 PMCID: PMC6382607 DOI: 10.1021/acs.langmuir.8b02015] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Advances in stem cell technology and regenerative medicine have underscored the need for effective banking of living cells. Cryopreservation, using very low temperatures to achieve suspended animation, is widely used to store or bank cells for later use. This process requires the use of cryoprotective agents (CPAs) to protect cells against damage caused by the cooling and warming process. However, current popular CPAs like DMSO can be toxic to cells and must be thoroughly removed from cells before they can be used for research or clinical applications. Trehalose, a nontoxic sugar found in organisms capable of withstanding extreme cold or desiccation, has been explored as an alternative CPA. The disaccharide must be present on both sides of the cellular membrane to provide cryo-protection. However, trehalose is not synthesized by mammalian cells nor has the capability to diffuse through their plasma membranes. Therefore, it is crucial to achieve intracellular delivery of trehalose for utilizing the full potential of the sugar for cell banking. In this review, various methods that have been explored to deliver trehalose into mammalian cells for their banking at both cryogenic and ambient temperatures are surveyed. Among them, the nanoparticle-mediated approach is particularly exciting. Collectively, studies in the literature demonstrate the great potential of using trehalose as the sole CPA for cell banking, to facilitate the widespread use of living cells in modern medicine.
Collapse
Affiliation(s)
| | - Xiaoming He
- Correspondence should be addressed to: Xiaoming He, Ph.D., Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States.,
| |
Collapse
|
27
|
Banliat C, Dubuisson F, Corbin E, Beurois J, Tomas D, Le Bourhis D, Salvetti P, Labas V, Mermillod P, Saint-Dizier M. Intraoviductal concentrations of steroid hormones during in vitro culture changed phospholipid profiles and cryotolerance of bovine embryos. Mol Reprod Dev 2019; 86:661-672. [PMID: 30950150 DOI: 10.1002/mrd.23144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 12/27/2022]
Abstract
The objective of this study was to evaluate the effect of progesterone (P4), estradiol (E2), and cortisol (CO) at intraoviductal concentrations on bovine embryo development and quality in vitro. After fertilization of in vitro matured oocytes, zygotes were cultured for 8 days in synthetic oviductal fluid, supplemented with 55 ng/ml P4, 120 pg/ml E2, 40 ng/ml CO, or their combination (ALL). Control embryos were cultured with vehicle (0.1% ethanol). Exposure to steroids did not affect the embryo developmental rate nor the mean number of cells per blastocyst. However, at 24 hr after vitrification-warming, exposure to P4 improved the proportion of embryos that re-expanded and were viable while exposure to CO decreased the proportion of viable embryos. By intact cell MALDI-TOF mass spectrometry, a total of 242 phospholipid masses of 400-1000 m/z were detected from individual fresh blastocysts. Exposure to ALL induced the highest and most specific changes in embryo phospholipids, followed by P4, E2, and CO. In particular, the m/z 546.3 and 546.4 attributed to lysophosphatidylcholines were found less abundant after exposure to P4. In conclusion, exposure of bovine embryos to intraoviductal concentrations of steroid hormones did not affect in vitro development but changed blastocyst quality in terms of cryotolerance and phospholipid profiles.
Collapse
Affiliation(s)
- Charles Banliat
- Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), INRA, CHRU de Tours, Université de Tours, Nouzilly, France.,UMR PRC, INRA 85, CNRS 7247, University of Tours, IFCE, Nouzilly, France
| | - Florine Dubuisson
- UMR PRC, INRA 85, CNRS 7247, University of Tours, IFCE, Nouzilly, France
| | - Emilie Corbin
- UMR PRC, INRA 85, CNRS 7247, University of Tours, IFCE, Nouzilly, France
| | - Julie Beurois
- UMR PRC, INRA 85, CNRS 7247, University of Tours, IFCE, Nouzilly, France
| | - Daniel Tomas
- Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), INRA, CHRU de Tours, Université de Tours, Nouzilly, France
| | | | | | - Valérie Labas
- Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), INRA, CHRU de Tours, Université de Tours, Nouzilly, France.,UMR PRC, INRA 85, CNRS 7247, University of Tours, IFCE, Nouzilly, France
| | - Pascal Mermillod
- UMR PRC, INRA 85, CNRS 7247, University of Tours, IFCE, Nouzilly, France
| | - Marie Saint-Dizier
- UMR PRC, INRA 85, CNRS 7247, University of Tours, IFCE, Nouzilly, France.,University of Tours, Faculty of Sciences and Techniques, Tours, France
| |
Collapse
|
28
|
Wang B, Liu G, Balamurugan V, Sui Y, Wang G, Song Y, Chang Q. Apatite nanoparticles mediate intracellular delivery of trehalose and increase survival of cryopreserved cells. Cryobiology 2019; 86:103-110. [DOI: 10.1016/j.cryobiol.2018.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/18/2022]
|
29
|
Kusuma GD, Barabadi M, Tan JL, Morton DAV, Frith JE, Lim R. To Protect and to Preserve: Novel Preservation Strategies for Extracellular Vesicles. Front Pharmacol 2018; 9:1199. [PMID: 30420804 PMCID: PMC6215815 DOI: 10.3389/fphar.2018.01199] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/28/2018] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs)-based therapeutics are based on the premise that EVs shed by stem cells exert similar therapeutic effects and these have been proposed as an alternative to cell therapies. EV-mediated delivery is an effective and efficient system of cell-to-cell communication which can confer therapeutic benefits to their target cells. EVs have been shown to promote tissue repair and regeneration in various animal models such as, wound healing, cardiac ischemia, diabetes, lung fibrosis, kidney injury, and many others. Given the unique attributes of EVs, considerable thought must be given to the preservation, formulation and cold chain strategies in order to effectively translate exciting preclinical observations to clinical and commercial success. This review summarizes current understanding around EV preservation, challenges in maintaining EV quality, and also bioengineering advances aimed at enhancing the long-term stability of EVs.
Collapse
Affiliation(s)
- Gina D. Kusuma
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Mehri Barabadi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Jean L. Tan
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | | | - Jessica E. Frith
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
30
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
31
|
Ntai A, La Spada A, De Blasio P, Biunno I. Trehalose to cryopreserve human pluripotent stem cells. Stem Cell Res 2018; 31:102-112. [PMID: 30071393 DOI: 10.1016/j.scr.2018.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/22/2018] [Accepted: 07/23/2018] [Indexed: 02/08/2023] Open
Abstract
The successful exploitation of human pluripotent stem cells (hPSCs) for research, translational or commercial reasons requires the implementation of a simple and efficient cryopreservation method. Cryopreservation is usually performed with dimethylsulphoxide (DMSO), in addition to animal proteins. However, even at sub-toxic levels, DMSO diminishes the pluripotency capacity of hPSCs and affects their epigenetic system by acting on the three DNA methyltransferases (Dnmts) and histone modification enzymes. Our study aimed to test trehalose-based cryosolutions containing ethylene glycol (EG) or glycerol (GLY) on hESCs RC17, hiPSCs CTR2#6 and long-term neuroepithelial-like stem cells (lt-NES) AF22. Here, we demostrate the effectiveness of these cryosolutions in hPSCs by showing an acceptable rate of cell viability and high stability compared to standard 10% DMSO freezing medium (CS10). All cell lines retained their morphology, self renewal potential and pluripotency, and none of the cryosolutions affected their differentiation potential. Genotoxicity varied among different stem cells types, while trehalose-based cryopreservation did not sensibly alter the homeostasis of endoplasmic reticulum (ER). This study provides evidence that pluripotent and neural stem cells stored in trehalose alone or with other cryoprotectants (CPAs) maintain their functional properties, indicating their potential use in cell therapies if produced in good manufacturing practice (GMP) facility.
Collapse
Affiliation(s)
- Aikaterini Ntai
- Integrated Systems Engineering S.r.l. (ISENET), Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Alberto La Spada
- Institute of Genetic and Biomedical Research, National Research Council (IRGB-CNR), Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Pasquale De Blasio
- Integrated Systems Engineering S.r.l. (ISENET), Via G. Fantoli 16/15, 20138 Milan, Italy.
| | - Ida Biunno
- Institute of Genetic and Biomedical Research, National Research Council (IRGB-CNR), Via G. Fantoli 16/15, 20138 Milan, Italy; IRCCS Multimedica, via G. Fantoli 16/15, 20138 Milan, Italy.
| |
Collapse
|
32
|
Sanaei B, Movaghar B, Rezazadeh Valojerdi M, Ebrahimi B, Bazrgar M, Hajian M, Nasr-Esfahani MH. Developmental competence of in vitro matured ovine oocytes vitrified in solutions with different concentrations of trehalose. Reprod Domest Anim 2018; 53:1159-1167. [PMID: 29938846 DOI: 10.1111/rda.13221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 01/30/2023]
Abstract
This study aimed to determine the optimum concentration of trehalose in solutions used for vitrification of in vitro matured (IVM) ovine oocytes. IVM oocytes were randomly divided into four experimental (vitrified) and one control (fresh) groups. Experimental groups were treated with different concentrations (0.0, 0.25, 0.5 and 1.0 M) of trehalose. After warming, some viable oocytes were exposed to 0.25% pronase to test zona pellucida hardening, whereas the others were fertilized and cultured in vitro for 8 days to evaluate their developmental competence. Blastocysts quality was assessed by differential staining and TUNEL test. Survival and developmental rates of oocytes vitrified in the presence of 0.5 M trehalose were significantly higher than those of the other vitrified groups. Furthermore, there was a significant difference between fresh and vitrified groups in total blastocyst rate. Analysis of blastocysts quality also revealed a significant difference between the group treated with 0.5 M trehalose and other groups in terms of apoptotic index. Furthermore,zona pellucida digestion time period was longer in trehalose-free (0.0 M) group compared to other groups. In conclusion, we found that IVM ovine oocytes vitrified in solutions containing 0.5 M trehalose are fertilization-competent and are able to produce good-quality blastocysts with an apoptotic index comparable to that of the fresh oocytes. Therefore, 0.5 M may be considered the optimum concentration of trehalose to be used in solutions prepared for vitrification of oocytes.
Collapse
Affiliation(s)
- Batool Sanaei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Bahar Movaghar
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Bita Ebrahimi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Masood Bazrgar
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mehdi Hajian
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Tehran, Iran
| | - Mohammad H Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Tehran, Iran
| |
Collapse
|
33
|
Liu H, Yang S, Liu Q, Wang R, Wang T. A process for production of trehalose by recombinant trehalose synthase and its purification. Enzyme Microb Technol 2018; 113:83-90. [DOI: 10.1016/j.enzmictec.2017.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/19/2017] [Accepted: 11/24/2017] [Indexed: 10/18/2022]
|
34
|
Lestari SW, Ilato KF, Pratama MIA, Fitriyah NN, Pangestu M, Pratama G, Margiana R. Sucrose ‘Versus’ Trehalose Cryoprotectant Modification in Oocyte Vitrification : A Study of Embryo Development. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/bpj/1351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Numerous studies reported that vitrification, an ultra-rapid cooling technique, seems to be highly effective and could increase oocyte survival rate rather than slow freezing. The successful of oocyte vitrification depends on the proper combination of type and concentration of cryoprotectant. This study was addressed to determine the effects of the combination of type and concentration of cryoprotectants of vitrification media, notably in the embryo development. This experimental research was conducted by using oocyte obtained from thirty-two adult female Deutschland, Denken and Yoken (DDY) mice (7-8 weeks old). The MII mice oocytes were vitrified within 24 h after retrieval using the Cryotop method with cryoprotectants as follow : sucrose (16.5% EG, 16.5% DMSO, 0.5 mol/l sucrose), trehalose (16.5% EG, 16.5% DMSO, 0.5 mol/l trehalose) and Kitazato. The embryo development and morphological grading was observed at 2-cell and 8-cells under reverse phase light microscope and inverted microscope. This study demonstrated a good embryo development and morphological grading in sucrose and trehalose vitrification media. In embryo development, trehalose medium seems more superior compared to sucrose medium, even though Kitazato was the most superior compared to both. In the morphological grading, in 2-cells embryo, there were no significant differences between the three cryoprotectants, While, in 8-cells embryo, trehalose medium appeared to be superior compared to sucrose medium, even though seemed more inferior compared to Kitazato. The appropriate type and concentration of sugar as extracellular cryoprotectant was trehalose in oocyte vitrification based on embryo development, compared to sucrose.
Collapse
Affiliation(s)
- Silvia W. Lestari
- Department of Medical Biology, Faculty of Medicine Universitas Indonesia
| | - Khairunnisa F. Ilato
- Bachelor Program for Medical Sciences, Faculty of Medicine Universitas Indonesia
| | - M. Iqbal A. Pratama
- Bachelor Program for Medical Sciences, Faculty of Medicine Universitas Indonesia
| | - Nurin N. Fitriyah
- Master Program for Biomedical Sciences, Faculty of Medicine Universitas Indonesia
| | - Mulyoto Pangestu
- Department of Obstetric and Gynecology, Monash Clinical School, Monash University
| | - Gita Pratama
- Department of Obstetric and Gynecology, Faculty of Medicine Universitas Indonesia
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine Universitas Indonesia
| |
Collapse
|
35
|
Effect of water content on the glass transition temperature of mixtures of sugars, polymers, and penetrating cryoprotectants in physiological buffer. PLoS One 2018; 13:e0190713. [PMID: 29304068 PMCID: PMC5755887 DOI: 10.1371/journal.pone.0190713] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/19/2017] [Indexed: 11/27/2022] Open
Abstract
Long-term storage of viable mammalian cells is important for applications ranging from in vitro fertilization to cell therapy. Cryopreservation is currently the most common approach, but storage in liquid nitrogen is relatively costly and the requirement for low temperatures during shipping is inconvenient. Desiccation is an alternative strategy with the potential to enable viable cell preservation at more convenient storage temperatures without the need for liquid nitrogen. To achieve stability during storage in the dried state it is necessary to remove enough water that the remaining matrix forms a non-crystalline glassy solid. Thus, the glass transition temperature is a key parameter for design of cell desiccation procedures. In this study, we have investigated the effects of moisture content on the glass transition temperature (Tg) of mixtures of sugars (trehalose or raffinose), polymers (polyvinylpyrrolidone or Ficoll), penetrating cryoprotectants (ethylene glycol, propylene glycol, or dimethyl sulfoxide), and phosphate buffered saline (PBS) solutes. Aqueous solutions were dried to different moisture contents by equilibration with saturated salt solutions, or by baking at 95°C. The glass transition temperatures of the dehydrated samples were then measured by differential scanning calorimetry. As expected, Tg increased with decreasing moisture content. For example, in a desiccation medium containing 0.1 M trehalose in PBS, Tg ranged from about 360 K for a completely dry sample to about 220 K at a water mass fraction of 0.4. Addition of polymers to the solutions increased Tg, while addition of penetrating cryoprotectants decreased Tg. Our results provide insight into the relationship between relative humidity, moisture content and glass transition temperature for cell desiccation solutions containing sugars, polymers and penetrating cryoprotectants.
Collapse
|
36
|
Yang J, Pan C, Zhang J, Sui X, Zhu Y, Wen C, Zhang L. Exploring the Potential of Biocompatible Osmoprotectants as Highly Efficient Cryoprotectants. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42516-42524. [PMID: 29161015 DOI: 10.1021/acsami.7b12189] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cryoprotectants (CPAs) are critical to successful cryopreservation because they can protect cells from cryoinjuries. Because of the limitations of current CPAs, especially the toxicity, the search for new effective CPAs is attracting increasing attention. In this work, we reported that natural biocompatible osmoprotectants, which could protect cells from osmotic injury in various biological systems, might also be ideal candidates for CPAs. Three representative biocompatible osmoprotectants (proline, glycine, and taurine) were tested and compared. It was found that, aside from presenting a different ability to prevent osmotic injury, these biocompatible osmoprotectants also possessed a different ability to inhibit ice formation and thus mitigate intra-/extracellular ice injury. Because of the strongest ability to prevent the two types of injuries, we found that proline performed the best in cryopreserving five different types of cells. Moreover, the natural osmoprotectants are intrinsically biocompatible with the cells, superior to the current state-of-the-art CPA, dimethyl sulfoxide (DMSO), which is a toxic organic solvent. This work opens a new window of opportunity for DMSO-free cryopreservation, and sheds light on the applications of osmoprotectants in cryoprotection, which may revolutionize the current cryopreservation technologies.
Collapse
Affiliation(s)
- Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, P. R. China
| | - Chao Pan
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, P. R. China
| | - Jiamin Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, P. R. China
| | - Xiaojie Sui
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, P. R. China
| | - Yingnan Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, P. R. China
| | - Chiyu Wen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, P. R. China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, P. R. China
| |
Collapse
|
37
|
Quan G, Wu G, Hong Q. Oocyte Cryopreservation Based in Sheep: The Current Status and Future Perspective. Biopreserv Biobank 2017; 15:535-547. [DOI: 10.1089/bio.2017.0074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Guobo Quan
- Department of Herbivore Science, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Guoquan Wu
- Department of Herbivore Science, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Qionghua Hong
- Department of Herbivore Science, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| |
Collapse
|
38
|
Hayner G, Khetan S, Paulick MG. Quantification of the Disaccharide Trehalose from Biological Samples: A Comparison of Analytical Methods. ACS OMEGA 2017; 2:5813-5823. [PMID: 30023753 PMCID: PMC6044988 DOI: 10.1021/acsomega.7b01158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/01/2017] [Indexed: 05/14/2023]
Abstract
Trehalose is a disaccharide that is biosynthesized by many different organisms subjected to extreme conditions, such as dehydration, heat, oxidative stress, and freezing. This disaccharide allows organisms to better survive these environmental stresses; however, the mechanisms by which trehalose exerts its protective effects are not well understood. Methods to accurately measure trehalose from different organisms will help us gain better understanding of these protective mechanisms. In this study, three experimental approaches for the quantification of trehalose from biological samples were compared: an enzymatic trehalose assay (Trehalose Assay Kit; Megazyme International), a high-performance liquid chromatography coupled with refractive index detection-based assay, and a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based assay. Limits of detection and quantification for each assay were compared, as were the dynamic ranges for all three assays. The percent recoveries for known amounts of trehalose spiked into bacterial and mammalian cellular lysates were also determined for each of the assays. Finally, endogenous trehalose produced by Escherichia coli cells was detected and quantified using these assays. Results from this study indicate that an LC-MS/MS-based assay is the most direct and sensitive method for the quantification of low concentrations of trehalose from biological samples; however, the enzymatic assay is suitable for the rapid quantification of higher concentrations of trehalose when an LC-MS/MS is unavailable.
Collapse
Affiliation(s)
- Gregory
A. Hayner
- Department
of Chemistry and Bioengineering Program, Union College, 807 Union
Street, Schenectady, New
York 12308, United
States
| | - Sudhir Khetan
- Department
of Chemistry and Bioengineering Program, Union College, 807 Union
Street, Schenectady, New
York 12308, United
States
| | - Margot G. Paulick
- Department
of Chemistry and Bioengineering Program, Union College, 807 Union
Street, Schenectady, New
York 12308, United
States
- E-mail:
| |
Collapse
|
39
|
Khosla K, Wang Y, Hagedorn M, Qin Z, Bischof J. Gold Nanorod Induced Warming of Embryos from the Cryogenic State Enhances Viability. ACS NANO 2017; 11:7869-7878. [PMID: 28702993 DOI: 10.1021/acsnano.7b02216] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Zebrafish embryos can attain a stable cryogenic state by microinjection of cryoprotectants followed by rapid cooling, but the massive size of the embryo has consistently led to failure during the convective warming process. Here we address this zebrafish cryopreservation problem by using gold nanorods (GNRs) to assist in the warming process. Specifically, we microinjected the cryoprotectant propylene glycol into zebrafish embryos along with GNRs, and the samples were cooled at a rate of 90 000 °C/min in liquid nitrogen. We demonstrated the ability to unfreeze the zebrafish rapidly (1.4 × 107 °C/min) by irradiating the sample with a 1064 nm laser pulse for 1 ms due to the excitation of GNRs. This rapid warming process led to the outrunning of ice formation, which can damage the embryos. The results from 14 trials (n = 223) demonstrated viable embryos with consistent structure at 1 h (31%) and continuing development at 3 h (17%) and movement at 24 h (10%) postwarming. This compares starkly with 0% viability, structure, or movement at all time points in convectively warmed controls (n = 50, p < 0.001, ANOVA). Our nanoparticle-based warming process could be applied to the storage of fish, and with proper modification, can potentially be used for other vertebrate embryos.
Collapse
Affiliation(s)
- Kanav Khosla
- Department of Mechanical Engineering, University of Minnesota at Twin Cities , 111 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Yiru Wang
- Department of Mechanical Engineering, University of Minnesota at Twin Cities , 111 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Mary Hagedorn
- Smithsonian Conservation Biology Institute, Smithsonian National Zoological Park , 3001 Connecticut Avenue NW, Washington, D.C. 20008, United States
- Hawaii Institute of Marine Biology, University of Hawaii , 46-007 Lilipuna Road, Kaneohe, Hawaii 96744, United States
| | - Zhenpeng Qin
- Department of Mechanical Engineering, University of Minnesota at Twin Cities , 111 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - John Bischof
- Department of Mechanical Engineering, University of Minnesota at Twin Cities , 111 Church Street SE, Minneapolis, Minnesota 55455, United States
- Department of Biomedical Engineering, University of Minnesota at Twin Cities , 312 Church Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
40
|
Bragg JT, D'Ambrosio HK, Smith TJ, Gorka CA, Khan FA, Rose JT, Rouff AJ, Fu TS, Bisnett BJ, Boyce M, Khetan S, Paulick MG. Esterified Trehalose Analogues Protect Mammalian Cells from Heat Shock. Chembiochem 2017; 18:1863-1870. [DOI: 10.1002/cbic.201700302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Jack T. Bragg
- Department of Chemistry Union College 807 Union Street Schenectady NY 12308 USA
| | | | - Timothy J. Smith
- Department of Biochemistry Duke University Medical School 307 Research Drive Durham NC 27710 USA
| | - Caroline A. Gorka
- Department of Chemistry Union College 807 Union Street Schenectady NY 12308 USA
| | - Faraz A. Khan
- Department of Chemistry Union College 807 Union Street Schenectady NY 12308 USA
| | - Joshua T. Rose
- Department of Chemistry Union College 807 Union Street Schenectady NY 12308 USA
| | - Andrew J. Rouff
- Department of Chemistry Union College 807 Union Street Schenectady NY 12308 USA
| | - Terence S. Fu
- Department of Biological Sciences Union College 807 Union Street Schenectady NY 12308 USA
| | - Brittany J. Bisnett
- Department of Biochemistry Duke University Medical School 307 Research Drive Durham NC 27710 USA
| | - Michael Boyce
- Department of Biochemistry Duke University Medical School 307 Research Drive Durham NC 27710 USA
| | - Sudhir Khetan
- Bioengineering Program Union College 807 Union Street Schenectady NY 12308 USA
| | - Margot G. Paulick
- Department of Chemistry Union College 807 Union Street Schenectady NY 12308 USA
| |
Collapse
|
41
|
Zhai H, Yang J, Zhang J, Pan C, Cai N, Zhu Y, Zhang L. Natural zwitterionic l-Carnitine as efficient cryoprotectant for solvent-free cell cryopreservation. Biochem Biophys Res Commun 2017; 489:76-82. [PMID: 28499875 DOI: 10.1016/j.bbrc.2017.05.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/08/2017] [Indexed: 12/19/2022]
Abstract
Organic solvents, such as dimethyl sulfoxide (DMSO) and glycerol, have been commonly used as cryoprotectants (CPAs) in cell cryopreservation. However, their cytotoxicity and need of complex freezing protocols have impeded their applications especially in clinical cell therapy and regenerative medicine. Trehalose has been explored as a natural CPA to cryopreserve cells, but its poor cell permeability frequently results in low cryopreservation efficacy. In this work, we presented that a natural zwitterionic molecule-l-carnitine-could serve as a promising CPA for solvent-free cryopreservation. We demonstrated that l-carnitine possessed strong ability to depress water freezing point, and with ultrarapid freezing protocol, we studied the post-thaw survival efficiency of four cell lines (GLC-82 cells, MCF-7 cells, NIH-3T3 cells and Sheep Red Blood Cells) using l-carnitine without addition of any organic solvents. At the optimum l-carnitine concentration, all four cell lines could achieve above 80% survival efficiency, compared with the significantly lower efficiency using organic CPAs and trehalose. After cryopreservation, the recovered cell behaviors including cell attachment and proliferation were found to be similar to the normal cells, indicating that the cell functionalities were not affected. Moreover, l-carnitine showed no observable cytotoxicity, which was superior to the organic CPAs. This work offered an attractive alternative to traditional CPAs and held great promise to revolutionize current cryopreservation technologies, to benefit the patients in various cell-based clinical applications.
Collapse
Affiliation(s)
- Hongwen Zhai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Jiamin Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Chao Pan
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Nana Cai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Yingnan Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
42
|
Patrick J, Comizzoli P, Elliott G. Dry Preservation of Spermatozoa: Considerations for Different Species. Biopreserv Biobank 2017; 15:158-168. [PMID: 28398834 PMCID: PMC5397208 DOI: 10.1089/bio.2016.0087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The current gold standard for sperm preservation is storage at cryogenic temperatures. Dry preservation is an attractive alternative, eliminating the need for ultralow temperatures, reducing storage maintenance costs, and providing logistical flexibility for shipping. Many seeds and anhydrobiotic organisms are able to survive extended periods in a dry state through the accumulation of intracellular sugars and other osmolytes and are capable of returning to normal physiology postrehydration. Using techniques inspired by nature's adaptations, attempts have been made to dehydrate and dry preserve spermatozoa from a variety of species. Most of the anhydrous preservation research performed to date has focused on mouse spermatozoa, with only a small number of studies in nonrodent mammalian species. There is a significant difference between sperm function in rodent and nonrodent mammalian species with respect to centrosomal inheritance. Studies focused on reproductive technologies have demonstrated that in nonrodent species, the centrosome must be preserved to maintain sperm function as the spermatozoon centrosome contributes the dominant nucleating seed, consisting of the proximal centriole surrounded by pericentriolar components, onto which the oocyte's centrosomal material is assembled. Preservation techniques used for mouse sperm may therefore not necessarily be applicable to nonrodent spermatozoa. The range of technologies used to dehydrate sperm and the effect of processing and storage conditions on fertilization and embryogenesis using dried sperm are reviewed in the context of reproductive physiology and cellular morphology in different species.
Collapse
Affiliation(s)
- Jennifer Patrick
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia
| | - Gloria Elliott
- Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, North Carolina
| |
Collapse
|
43
|
Microfluidic Encapsulation of Ovarian Follicles for 3D Culture. Ann Biomed Eng 2017; 45:1676-1684. [PMID: 28321583 DOI: 10.1007/s10439-017-1823-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/16/2017] [Indexed: 12/23/2022]
Abstract
The ovarian follicle that contains one single oocyte is the fundamental functional tissue unit of mammalian ovary. Therefore, isolation and in vitro culture of ovarian follicles to obtain fertilizable oocytes are regarded as a promising strategy for women to combat infertility. In this communication, we performed a brief survey of studies on microfluidic encapsulation of ovarian follicles in core-shell hydrogel microcapsules for biomimetic 3D culture. These studies highlighted that recapitulation of the mechanical heterogeneity of the extracellular matrix in ovary is crucial for in vitro culture to develop early pre-antral follicles to the antral stage, and for the release of cumulus-oocyte complex (COC) from antral follicles in vitro. The hydrogel encapsulation-based biomimetic culture system and the microfluidic technology may be invaluable to facilitate follicle culture as a viable option for restoring women's fertility in the clinic.
Collapse
|
44
|
Martinetti D, Colarossi C, Buccheri S, Denti G, Memeo L, Vicari L. Effect of trehalose on cryopreservation of pure peripheral blood stem cells. Biomed Rep 2017; 6:314-318. [PMID: 28451392 DOI: 10.3892/br.2017.859] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/04/2016] [Indexed: 01/14/2023] Open
Abstract
Stem cells are an important tool for the study of hematopoiesis. Despite developments in cryopreservation, post-thaw cell death remains a considerable problem. Cryopreservation protocol should limit cell damage due to freezing and ensure the recovery of the functional cell characteristics after thawing. Thus, the use of cryoprotectants is essential. In particular, the efficacy of trehalose has been reported for clinical purposes in blood stem cells. The aim of the current study was to establish an efficient method for biological research based on the use of trehalose, to cryopreserve pure peripheral blood stem cells. The efficacy of trehalose was assessed in vitro and the cell viability was evaluated. The data indicate that trehalose improves cell survival after thawing compared with the standard freezing procedure. These findings could suggest the potential for future trehalose application for research purposes in cell cryopreservation.
Collapse
Affiliation(s)
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, I-95029 Catania, Italy
| | - Simona Buccheri
- Cell Biology Unit, IOM Ricerca Srl, Viagrande, I-95029 Catania, Italy.,Department of Laboratory Medicine and Advanced Biotechnologies, Fondazione Ri.MED, Regenerative Medicine and Biomedical Technologies Unit, IRCCS-ISMETT, I- 90133 Palermo, Italy
| | - Gabriella Denti
- Cell Biology Unit, IOM Ricerca Srl, Viagrande, I-95029 Catania, Italy
| | - Lorenzo Memeo
- Cell Biology Unit, IOM Ricerca Srl, Viagrande, I-95029 Catania, Italy.,Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, I-95029 Catania, Italy
| | - Luisa Vicari
- Cell Biology Unit, IOM Ricerca Srl, Viagrande, I-95029 Catania, Italy
| |
Collapse
|
45
|
Zhang Z, Wang T, Hao Y, Panhwar F, Chen Z, Zou W, Ji D, Chen B, Zhou P, Zhao G, Cao Y. Effects of trehalose vitrification and artificial oocyte activation on the development competence of human immature oocytes. Cryobiology 2016; 74:43-49. [PMID: 27956222 DOI: 10.1016/j.cryobiol.2016.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 11/27/2022]
Abstract
Sucrose and trehalose are conventional cryoprotectant additives for oocytes and embryos. Ethanol can artificially enhance activation of inseminated mature oocytes. This study aims to investigate whether artificial oocyte activation (AOA) with ethanol can promote the development competence of in vitro matured oocytes. A total of 810 human immature oocytes, obtained from 325 patients undergoing normal stimulated oocyte retrieval cycles, were in vitro maturated (IVM) either immediately after collection (Fresh group n = 291)) or after being vitrified as immature oocytes (Vitrified group n = 519). These groups were arbitrarily assigned. All fresh and vitrified oocytes which matured after a period of IVM then underwent intra-cytoplasmic sperm injection (ICSI). Half an hour following ICSI, they were either activated by 7% ethanol (AOA group) or left untreated (Non-AOA group). Fertilization, cleavage rate, blastocyst quality and aneuploidy rate were then evaluated. High-quality blastocysts were only obtained in both the fresh and vitrified groups which had undergone AOA after ICSI. Trehalose vitrification slightly, but not significantly, increased the formation rates of high-quality embryos (21.7% VS 15.4%, P > 0.05) and blastocysts (15.7% VS 7.69%, P > 0.05)) when compared with sucrose vitrification. Aneuploidy was observed in 12 of 24 (50%) of the AOA derived high quality blastocysts. High-quality blastocysts only developed from fresh or vitrified immature oocytes if the ICSI was followed by AOA. This information may be important for human immature oocytes commonly retrieved in normal stimulation cycles and may be particularly important for certain patient groups, such as cancer patients. AOA with an appropriate concentration of ethanol can enhance the developmental competence of embryos.
Collapse
Affiliation(s)
- Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Insititute of Reproduction and Genetics of Anhui Medical University, Hefei 230022, China; Biopreservation and Artifical Organs, Anhui Provincial Engineering Research Center, Hefei 230022, China
| | - Tianjuan Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yan Hao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Fazil Panhwar
- Center for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Zhongrong Chen
- Center for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Dongmei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Beili Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Gang Zhao
- Center for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
46
|
Bosch S, de Beaurepaire L, Allard M, Mosser M, Heichette C, Chrétien D, Jegou D, Bach JM. Trehalose prevents aggregation of exosomes and cryodamage. Sci Rep 2016; 6:36162. [PMID: 27824088 PMCID: PMC5099918 DOI: 10.1038/srep36162] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/07/2016] [Indexed: 12/19/2022] Open
Abstract
Exosomes are important mediators in intercellular communication. Released by many cell types, they transport proteins, lipids, and nucleic acids to distant recipient cells and contribute to important physiopathological processes. Standard current exosome isolation methods based on differential centrifugation protocols tend to induce aggregation of particles in highly concentrated suspensions and freezing of exosomes can induce damage and inconsistent biological activity. Trehalose is a natural, non-toxic sugar widely used as a protein stabilizer and cryoprotectant by the food and drug industry. Here we report that addition of 25 mM trehalose to pancreatic beta-cell exosome-like vesicle isolation and storage buffer narrows the particle size distribution and increases the number of individual particles per microgram of protein. Repeated freeze-thaw cycles induce an increase in particle concentration and in the width of the size distribution for exosome-like vesicles stored in PBS, but not in PBS 25 mM trehalose. No signs of lysis or incomplete vesicles were observed by cryo-electron tomography in PBS and trehalose samples. In macrophage immune assays, beta-cell extracellular vesicles in trehalose show consistently higher TNF-alpha cytokine secretion stimulation indexes suggesting improved preservation of biological activity. The addition of trehalose might be an attractive means to standardize experiments in the field of exosome research and downstream applications.
Collapse
Affiliation(s)
- Steffi Bosch
- IECM, EA4644 Nantes University, ONIRIS, USC1383 INRA, Nantes, France
| | | | - Marie Allard
- IECM, EA4644 Nantes University, ONIRIS, USC1383 INRA, Nantes, France
| | - Mathilde Mosser
- IECM, EA4644 Nantes University, ONIRIS, USC1383 INRA, Nantes, France
| | | | - Denis Chrétien
- IGDR, UMR6290 CNRS, University of Rennes 1, Rennes, France.,MRIC-Biosit, UMS3480 CNRS, University of Rennes 1, Rennes, France
| | - Dominique Jegou
- IECM, EA4644 Nantes University, ONIRIS, USC1383 INRA, Nantes, France
| | - Jean-Marie Bach
- IECM, EA4644 Nantes University, ONIRIS, USC1383 INRA, Nantes, France
| |
Collapse
|
47
|
Recent Advances and Future Direction in Lyophilisation and Desiccation of Mesenchymal Stem Cells. Stem Cells Int 2016; 2016:3604203. [PMID: 27597869 PMCID: PMC5002305 DOI: 10.1155/2016/3604203] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/03/2016] [Indexed: 11/18/2022] Open
Abstract
Mesenchymal Stem Cells (MSCs) are a promising mammalian cell type as they can be used for the reconstruction of human tissues and organs. MSCs are shown to form bone, cartilage, fat, and muscle-like cells under specific cultivation conditions. Current technology of MSCs cryopreservation has significant disadvantages. Alternative technologies of mammalian cells preservation through lyophilisation or desiccation (air-drying) are among the upcoming domains of investigation in the field of cryobiology. Different protectants and their combinations were studied in this context. Loading of the protectant in the live cell can be a challenging issue but recent studies have shown encouraging results. This paper deals with a review of the protectants, methods of their delivery, and physical boundary conditions adopted for the desiccation and lyophilisation of mammalian cells, including MSCs. A hybrid technique combining both methods is also proposed as a promising way of MSCs dry preservation.
Collapse
|
48
|
López M, Bollag RJ, Yu JC, Isales CM, Eroglu A. Chemically Defined and Xeno-Free Cryopreservation of Human Adipose-Derived Stem Cells. PLoS One 2016; 11:e0152161. [PMID: 27010403 PMCID: PMC4806986 DOI: 10.1371/journal.pone.0152161] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/09/2016] [Indexed: 12/18/2022] Open
Abstract
The stromal compartment of adipose tissue harbors multipotent cells known as adipose-derived stem cells (ASCs). These cells can differentiate into various lineages including osteogenic, chrondrogenic, adipogenic, and neurogenic; this cellular fraction may be easily obtained in large quantities through a clinically safe liposuction procedure. Therefore, ASCs offer exceptional opportunities for tissue engineering and regenerative medicine. However, current practices involving ASCs typically use fetal bovine serum (FBS)-based cryopreservation solutions that are associated with risks of immunological reactions and of transmitting infectious diseases and prions. To realize clinical applications of ASCs, serum- and xeno-free defined cryopreservation methods are needed. To this end, an animal product-free chemically defined cryopreservation medium was formulated by adding two antioxidants (reduced glutathione and ascorbic acid 2-phosphate), two polymers (PVA and ficoll), two permeating cryoprotectants (ethylene glycol and dimethylsulfoxide), a disaccharide (trehalose), and a calcium chelator (EGTA) to HEPES-buffered DMEM/F12. To limit the number of experimental groups, the concentration of trehalose, both polymers, and EGTA was fixed while the presence of the permeating CPAs and antioxidants was varied. ASCs suspended either in different versions of the defined medium or in the conventional undefined cryopreservation medium (10% dimethylsulfoxide+10% DMEM/F12+80% serum) were cooled to -70°C at 1°C/min before being plunged into liquid nitrogen. Samples were thawed either in air or in a water bath at 37°C. The presence of antioxidants along with 3.5% concentration of each penetrating cryoprotectant improved the freezing outcome to the level of the undefined cryopreservation medium, but the plating efficiency was still lower than that of unfrozen controls. Subsequently, increasing the concentration of both permeating cryoprotectants to 5% further improved the plating efficiency to the level of unfrozen controls. Moreover, ASCs cryopreserved in this defined medium retained their multipotency and chromosomal normality. These results are of significance for tissue engineering and clinical applications of stem cells.
Collapse
Affiliation(s)
- Melany López
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Roni J. Bollag
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Jack C. Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Carlos M. Isales
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
- Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Ali Eroglu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
49
|
Bianchi V, Zito G, Renzo EP, Valentina F, Zavos P. Modern trends: The cryopreservation of human oocytes. ACTA MEDICA INTERNATIONAL 2016. [DOI: 10.5530/ami.2016.1.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
50
|
Abstract
High levels of penetrating cryoprotectants (CPAs) can eliminate ice formation during cryopreservation of cells, tissues, and organs to cryogenic temperatures. But CPAs become increasingly toxic as concentration increases. Many strategies have been attempted to overcome the problem of eliminating ice while minimizing toxicity, such as attempting to optimize cooling and warming rates, or attempting to optimize time of adding individual CPAs during cooling. Because strategies currently used are not adequate, CPA toxicity remains the greatest obstacle to cryopreservation. CPA toxicity stands in the way of cryogenic cryopreservation of human organs, a procedure that has the potential to save many lives. This review attempts to describe what is known about CPA toxicity, theories of CPA toxicity, and strategies to reduce CPA toxicity. Critical analysis and suggestions are also included.
Collapse
|