1
|
Humenick A, Chen BN, Johnson ME, Yew WP, Wattchow DA, Sia TC, Defontgalland D, Spencer NJ, Dinning PG, Costa M, Brookes SJH. Extrinsic Innervation of Myenteric Plexus of Human Large Intestine Via Colonic Nerves. Cell Mol Gastroenterol Hepatol 2025; 19:101479. [PMID: 39978461 PMCID: PMC12009095 DOI: 10.1016/j.jcmgh.2025.101479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Affiliation(s)
- Adam Humenick
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Bao Nan Chen
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Michaela E Johnson
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Wai Ping Yew
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - David A Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Tiong Cheng Sia
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | | | - Nick J Spencer
- Flinders Health & Medical Research Institute, Bedford Park, SA, Australia
| | - Phil G Dinning
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Marcello Costa
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Simon J H Brookes
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
2
|
Wolfson RL. Spinal sensory innervation of the intestine. Curr Opin Neurobiol 2025; 90:102973. [PMID: 39892315 PMCID: PMC11951475 DOI: 10.1016/j.conb.2025.102973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 02/03/2025]
Abstract
Sensing our internal environment, or interoception, is essential under physiologic circumstances, such as controlling food intake, and under pathophysiologic circumstances, often triggering abdominal pain. The sensory neurons that innervate the gastrointestinal (GI) tract to mediate interoception originate in two separate parts of the peripheral nervous system: the spinal sensory neurons, whose cell bodies reside in the dorsal root ganglia (DRG), and the vagal sensory neurons, whose cell bodies reside in the nodose ganglia. While the vagal sensory neurons have been extensively studied for their roles in interoception, the roles of the DRG sensory neurons in internal gut sensing are only beginning to be uncovered. Here, we review the recent advances in understanding the diverse properties and functions of gut-innervating DRG sensory neurons and highlight the many unknowns with regards to this understudied population in regulating interoception.
Collapse
Affiliation(s)
- Rachel L Wolfson
- Department of Cell Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA; Division of Gastroenterology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
3
|
Wolfson RL, Abdelaziz A, Rankin G, Kushner S, Qi L, Mazor O, Choi S, Sharma N, Ginty DD. DRG afferents that mediate physiologic and pathologic mechanosensation from the distal colon. Cell 2023; 186:3368-3385.e18. [PMID: 37541195 PMCID: PMC10440726 DOI: 10.1016/j.cell.2023.07.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/23/2023] [Accepted: 07/06/2023] [Indexed: 08/06/2023]
Abstract
The properties of dorsal root ganglia (DRG) neurons that innervate the distal colon are poorly defined, hindering our understanding of their roles in normal physiology and gastrointestinal (GI) disease. Here, we report genetically defined subsets of colon-innervating DRG neurons with diverse morphologic and physiologic properties. Four colon-innervating DRG neuron populations are mechanosensitive and exhibit distinct force thresholds to colon distension. The highest threshold population, selectively labeled using Bmpr1b genetic tools, is necessary and sufficient for behavioral responses to high colon distension, which is partly mediated by the mechanosensory ion channel Piezo2. This Aδ-HTMR population mediates behavioral over-reactivity to colon distension caused by inflammation in a model of inflammatory bowel disease. Thus, like cutaneous DRG mechanoreceptor populations, colon-innervating mechanoreceptors exhibit distinct anatomical and physiological properties and tile force threshold space, and genetically defined colon-innervating HTMRs mediate pathophysiological responses to colon distension, revealing a target population for therapeutic intervention.
Collapse
Affiliation(s)
- Rachel L Wolfson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Division of Gastroenterology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Amira Abdelaziz
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Genelle Rankin
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Sarah Kushner
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Lijun Qi
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Ofer Mazor
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Seungwon Choi
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Nikhil Sharma
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Department of Systems Biology, Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY 10032, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Zhang T, Perkins MH, Chang H, Han W, de Araujo IE. An inter-organ neural circuit for appetite suppression. Cell 2022; 185:2478-2494.e28. [PMID: 35662413 PMCID: PMC9433108 DOI: 10.1016/j.cell.2022.05.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 02/03/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is a signal peptide released from enteroendocrine cells of the lower intestine. GLP-1 exerts anorectic and antimotility actions that protect the body against nutrient malabsorption. However, little is known about how intestinal GLP-1 affects distant organs despite rapid enzymatic inactivation. We show that intestinal GLP-1 inhibits gastric emptying and eating via intestinofugal neurons, a subclass of myenteric neurons that project to abdominal sympathetic ganglia. Remarkably, cell-specific ablation of intestinofugal neurons eliminated intestinal GLP-1 effects, and their chemical activation functioned as a GLP-1 mimetic. GLP-1 sensing by intestinofugal neurons then engaged a sympatho-gastro-spinal-reticular-hypothalamic pathway that links abnormal stomach distension to craniofacial programs for food rejection. Within this pathway, cell-specific activation of discrete neuronal populations caused systemic GLP-1-like effects. These molecularly identified, delimited enteric circuits may be targeted to ameliorate the abdominal bloating and loss of appetite typical of gastric motility disorders.
Collapse
Affiliation(s)
- Tong Zhang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA,Department of Colorectal Surgery, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China,Jinan University, Guangzhou, Guangdong 510632, China
| | - Matthew H. Perkins
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Hao Chang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Wenfei Han
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA,Correspondence: (W.H.), (I.E.d.A.)
| | - Ivan E. de Araujo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA,Artificial Intelligence and Emerging Technologies in Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA,Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA,Lead contact,Correspondence: (W.H.), (I.E.d.A.)
| |
Collapse
|
5
|
Xiao Y, Xu F, Lin L, Chen JD. Transcutaneous Electrical Acustimulation Improves Constipation by Enhancing Rectal Sensation in Patients With Functional Constipation and Lack of Rectal Sensation. Clin Transl Gastroenterol 2022; 13:e00485. [PMID: 35347091 PMCID: PMC9132522 DOI: 10.14309/ctg.0000000000000485] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Reduced rectal sensation is involved in the pathophysiology of constipation. The aim of this study was to investigate the effects of transcutaneous electrical acustimulation (TEA) at acupuncture point ST36 on constipation and rectal sensation as well as autonomic functions in patients with constipation and reduced rectal sensation. METHODS In an acute study, anorectal motility and sensation tests were performed in constipation patients (N = 53) who were treated with TEA at ST36 or sham points. In a chronic study, patients (N = 18) underwent 2 weeks of TEA or sham-TEA in a crossover design. RESULTS Chronic TEA increased spontaneous bowel movements (3.72 vs 2.00 per week with sham-TEA, P < 0.0001) and significantly reduced constipation symptoms and increased quality of life in comparison with sham-TEA (P < 0.05). Acute TEA reduced the sensation threshold in response to rectal distention for the urge of defecation and maximum tolerable volume (P < 0.05, vs baseline); chronic TEA reduced the sensation thresholds for first sensation and desire of defecation, and decreased the threshold volume to an elicit rectal anal inhibitory reflex (P < 0.05). Both acute and chronic TEA increased parasympathetic activity (P < 0.05). DISCUSSION TEA at ST36 improves chronic constipation by enhancing rectal sensation possibly mediated by the reinforcement of parasympathetic activity in patients with functional constipation and reported lack/absence of rectal sensation.
Collapse
Affiliation(s)
- Ye Xiao
- Division of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Division of Gastroenterology, Xuzhou Medical University, Xuzhou, China
| | - Feng Xu
- Division of Gastroenterology, Yinzhou Hospital Affiliated to Medical School of Ningbo, University, Ningbo, China
| | - Lin Lin
- Division of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiande D.Z. Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Neural signalling of gut mechanosensation in ingestive and digestive processes. Nat Rev Neurosci 2022; 23:135-156. [PMID: 34983992 DOI: 10.1038/s41583-021-00544-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/29/2022]
Abstract
Eating and drinking generate sequential mechanosensory signals along the digestive tract. These signals are communicated to the brain for the timely initiation and regulation of diverse ingestive and digestive processes - ranging from appetite control and tactile perception to gut motility, digestive fluid secretion and defecation - that are vital for the proper intake, breakdown and absorption of nutrients and water. Gut mechanosensation has been investigated for over a century as a common pillar of energy, fluid and gastrointestinal homeostasis, and recent discoveries of specific mechanoreceptors, contributing ion channels and the well-defined circuits underlying gut mechanosensation signalling and function have further expanded our understanding of ingestive and digestive processes at the molecular and cellular levels. In this Review, we discuss our current understanding of the generation of mechanosensory signals from the digestive periphery, the neural afferent pathways that relay these signals to the brain and the neural circuit mechanisms that control ingestive and digestive processes, focusing on the four major digestive tract parts: the oral and pharyngeal cavities, oesophagus, stomach and intestines. We also discuss the clinical implications of gut mechanosensation in ingestive and digestive disorders.
Collapse
|
7
|
Gershon MD, Margolis KG. The gut, its microbiome, and the brain: connections and communications. J Clin Invest 2021; 131:143768. [PMID: 34523615 PMCID: PMC8439601 DOI: 10.1172/jci143768] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Modern research on gastrointestinal behavior has revealed it to be a highly complex bidirectional process in which the gut sends signals to the brain, via spinal and vagal visceral afferent pathways, and receives sympathetic and parasympathetic inputs. Concomitantly, the enteric nervous system within the bowel, which contains intrinsic primary afferent neurons, interneurons, and motor neurons, also senses the enteric environment and controls the detailed patterns of intestinal motility and secretion. The vast microbiome that is resident within the enteric lumen is yet another contributor, not only to gut behavior, but to the bidirectional signaling process, so that the existence of a microbiota-gut-brain "connectome" has become apparent. The interaction between the microbiota, the bowel, and the brain now appears to be neither a top-down nor a bottom-up process. Instead, it is an ongoing, tripartite conversation, the outline of which is beginning to emerge and is the subject of this Review. We emphasize aspects of the exponentially increasing knowledge of the microbiota-gut-brain "connectome" and focus attention on the roles that serotonin, Toll-like receptors, and macrophages play in signaling as exemplars of potentially generalizable mechanisms.
Collapse
Affiliation(s)
| | - Kara Gross Margolis
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
8
|
Spencer NJ, Hu H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol 2020; 17:338-351. [PMID: 32152479 PMCID: PMC7474470 DOI: 10.1038/s41575-020-0271-2] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
The gastrointestinal tract is the only internal organ to have evolved with its own independent nervous system, known as the enteric nervous system (ENS). This Review provides an update on advances that have been made in our understanding of how neurons within the ENS coordinate sensory and motor functions. Understanding this function is critical for determining how deficits in neurogenic motor patterns arise. Knowledge of how distension or chemical stimulation of the bowel evokes sensory responses in the ENS and central nervous system have progressed, including critical elements that underlie the mechanotransduction of distension-evoked colonic peristalsis. Contrary to original thought, evidence suggests that mucosal serotonin is not required for peristalsis or colonic migrating motor complexes, although it can modulate their characteristics. Chemosensory stimuli applied to the lumen can release substances from enteroendocrine cells, which could subsequently modulate ENS activity. Advances have been made in optogenetic technologies, such that specific neurochemical classes of enteric neurons can be stimulated. A major focus of this Review will be the latest advances in our understanding of how intrinsic sensory neurons in the ENS detect and respond to sensory stimuli and how these mechanisms differ from extrinsic sensory nerve endings in the gut that underlie the gut-brain axis.
Collapse
Affiliation(s)
- Nick J Spencer
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, Australia.
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
9
|
Bao L, Zhao J, Liao D, Wang G, Gregersen H. Pressure overload changes mesenteric afferent nerve responses in a stress-dependent way in a fasting rat model. Biomech Model Mechanobiol 2020; 19:1741-1753. [PMID: 32072371 DOI: 10.1007/s10237-020-01305-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/06/2020] [Indexed: 12/28/2022]
Abstract
It is well known that overload changes the mechanical properties of biological tissues and fasting changes the responsiveness of intestinal afferents. This study aimed to characterize the effect of overload on mechanosensitivity in mesenteric afferent nerves in normal and fasted Sprague-Dawley rats. Food was restricted for 7 days in the Fasting group. Jejunal whole afferent nerve firing was recorded during three distensions, i.e., ramp distension to 80 cmH2O luminal pressure (D1), sustained distension to 120 cmH2O for 2 min (D2), and again to 80 cmH2O (D3). Multiunit afferent recordings were separated into low-threshold (LT) and wide-dynamic-range (WDR) single-unit activity for D1 and D3. Intestinal deformation (strain), distension load (stress), and firing frequency of mesenteric afferent nerve bundles [spike rate increase ratio (SRIR)] were compared at 20 cmH2O and 40 cmH2O and maximum pressure levels among distensions and groups. SRIR and stress changes showed the same pattern in all distensions. The SRIR and stress were larger in the Fasting group compared to the Control group (P < 0.01). SRIR was lower in D3 compared to D1 in controls (P < 0.05) and fasting rats (P < 0.01). Total single units and LT were significantly lower in Fasting group than in Controls at D3. LT was significantly higher in D3 than in D1 in Controls. Furthermore, correlation was found between SRIR with stress (R = 0.653, P < 0.001). In conclusion, overload decreased afferent mechanosensitivity in a stress-dependent way and was most pronounced in fasting rats. Fasting shifts LT to WDR and high pressure shifts WDR to LT in response to mechanical stimulation.
Collapse
Affiliation(s)
- Lingxia Bao
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400044, China.,Department of Clinical Medicine, Giome Academia, Aarhus University, 8200, Aarhus N, Denmark
| | - Jingbo Zhao
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400044, China.,Department of Clinical Medicine, Giome Academia, Aarhus University, 8200, Aarhus N, Denmark
| | - Donghua Liao
- Department of Clinical Medicine, Giome Academia, Aarhus University, 8200, Aarhus N, Denmark.,Department of Gastroenterology and Hepatology, Mech-Sense, Aalborg University Hospital and Clinical Institute, Faculty of Health Sciences, Aalborg University, Aalborg, Denmark
| | - Guixue Wang
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Hans Gregersen
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400044, China. .,Department of Surgery, GIOME, the Chinese University of Hong Kong, Pok Fu Lam, Hong Kong, SAR. .,Department of Surgery, Clinical Science Building, GIOME, Prince of Wales Hospital, Ngan Street, Shatin, Hong Kong.
| |
Collapse
|
10
|
Spencer NJ, Kyloh MA, Travis L, Dodds KN. Identification of spinal afferent nerve endings in the colonic mucosa and submucosa that communicate directly with the spinal cord: The gut–brain axis. J Comp Neurol 2020; 528:1742-1753. [DOI: 10.1002/cne.24854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Nick J. Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience Flinders University Bedford Park South Australia Australia
| | - Melinda A. Kyloh
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience Flinders University Bedford Park South Australia Australia
| | - Lee Travis
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience Flinders University Bedford Park South Australia Australia
| | - Kelsi N. Dodds
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience Flinders University Bedford Park South Australia Australia
| |
Collapse
|
11
|
Characterisation of One Class of Group III Sensory Neurons Innervating Abdominal Muscles of the Mouse. Neuroscience 2019; 421:162-175. [PMID: 31682818 DOI: 10.1016/j.neuroscience.2019.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 11/24/2022]
Abstract
Group III/IV striated muscle afferents are small diameter sensory neurons that play important roles in reflexes and sensation. To date, the morphological features of physiologically characterised group III/IV muscular afferents have not been identified. Here, the electrophysiological and morphological characteristics of sensory neurons innervating striated muscles of the mouse abdominal wall were investigated, ex vivo. Extracellular recordings were made from subcostal nerve trunks innervating the muscles. A distinctive class of mechanosensitive afferents was identified by a combination of physiological features including sensitivity to local compression, saturating response to graded stretch and, in most cases, absence of spontaneous firing. Studies were restricted to these distinctive units. These units had conduction velocities averaging 14 ± 4 m/s (range: 8-20 m/s, n = 7); within the range of group III fibres in mice. Von Frey hairs were used to map receptive fields, which covered an area of 0.36 ± 0.18 mm2 (n = 7). In 7 preparations, biotinamide filling of recorded nerve trunks revealed a single axon in the marked receptive field, with distinctive axonal branching and terminations meandering through the connective tissue sandwiched between two closely associated muscle layers. These axons were not immunoreactive for CGRP (n = 7) and were not activated by application of capsaicin (1 µM, n = 14). All of these afferents were strongly activated by a "metabolite mix" containing lactate, adenosine triphosphate and reduced pH. Responses to mechanical stimuli and to metabolites were additive. We have characterised a distinctive class of mechano- and chemo-sensitive group III afferent endings associated with connective tissue close to muscle fibres.
Collapse
|
12
|
Siri S, Maier F, Santos S, Pierce DM, Feng B. Load-bearing function of the colorectal submucosa and its relevance to visceral nociception elicited by mechanical stretch. Am J Physiol Gastrointest Liver Physiol 2019; 317:G349-G358. [PMID: 31268771 PMCID: PMC6774086 DOI: 10.1152/ajpgi.00127.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mechanical distension beyond a particular threshold evokes visceral pain from distal colon and rectum (colorectum), and thus biomechanics plays a central role in visceral nociception. In this study we focused on the layered structure of the colorectum through the wall thickness and determined the biomechanical properties of layer-separated colorectal tissue. We harvested the distal 30 mm of mouse colorectum and dissected this tissue into inner and outer composite layers. The inner composite consists of the mucosa and submucosa, whereas the outer composite includes the muscular layers and serosa. We divided each composite axially into three 10-mm-long segments and conducted biaxial mechanical extension tests and opening-angle measurements for each tissue segment. In addition, we quantified the thickness of the rich collagen network in the submucosa by nonlinear imaging via second-harmonic generation (SHG). Our results reveal that the inner composite is slightly stiffer in the axial direction, whereas the outer composite is stiffer circumferentially. The stiffness of the inner composite in the axial direction is about twice that in the circumferential direction, consistent with the orientations of collagen fibers in the submucosa approximately ±30° to the axial direction. Submucosal thickness measured by SHG showed no difference from proximal to distal colorectum under the load-free condition, which likely contributes to the comparable tension stiffness of the inner composite along the colorectum. This, in turn, strongly indicates the submucosa as the load-bearing structure of the colorectum. This further implies nociceptive roles for the colorectal afferent endings in the submucosa, which likely encode tissue-injurious mechanical distension.NEW & NOTEWORTHY Visceral pain from distal colon and rectum (colorectum) is usually elicited from mechanical distension/stretch, rather than from heating, cutting, or pinching, which usually evoke pain from the skin. We conducted layer-separated biomechanical tests on mouse colorectum and identified an unexpected role of submucosa as the load-bearing structure of the colorectum. Outcomes of this study will focus attention on sensory nerve endings in the submucosa that likely encode tissue-injurious distension/stretch to cause visceral pain.
Collapse
Affiliation(s)
- Saeed Siri
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Franz Maier
- 2Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut
| | - Stephany Santos
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - David M. Pierce
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut,2Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut
| | - Bin Feng
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
13
|
Brierley SM, Hibberd TJ, Spencer NJ. Spinal Afferent Innervation of the Colon and Rectum. Front Cell Neurosci 2018; 12:467. [PMID: 30564102 PMCID: PMC6288476 DOI: 10.3389/fncel.2018.00467] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Despite their seemingly elementary roles, the colon and rectum undertake a variety of key processes to ensure our overall wellbeing. Such processes are coordinated by the transmission of sensory signals from the periphery to the central nervous system, allowing communication from the gut to the brain via the "gut-brain axis". These signals are transmitted from the peripheral terminals of extrinsic sensory nerve fibers, located within the wall of the colon or rectum, and via their axons within the spinal splanchnic and pelvic nerves to the spinal cord. Recent studies utilizing electrophysiological, anatomical and gene expression techniques indicate a surprisingly diverse set of distinct afferent subclasses, which innervate all layers of the colon and rectum. Combined these afferent sub-types allow the detection of luminal contents, low- and high-intensity stretch or contraction, in addition to the detection of inflammatory, immune, and microbial mediators. To add further complexity, the proportions of these afferents vary within splanchnic and pelvic pathways, whilst the density of the splanchnic and pelvic innervation also varies along the colon and rectum. In this review we traverse this complicated landscape to elucidate afferent function, structure, and nomenclature to provide insights into how the extrinsic sensory afferent innervation of the colon and rectum gives rise to physiological defecatory reflexes and sensations of discomfort, bloating, urgency, and pain.
Collapse
Affiliation(s)
- Stuart M Brierley
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
| | - Timothy J Hibberd
- Visceral Neurophysiology Laboratory, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Nick J Spencer
- Visceral Neurophysiology Laboratory, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
14
|
Abstract
This review addresses three main questions: (1) Why is anorectal sensory function important in humans? (2) What is the evidence for anorectal sensory dysfunction in disease? (3) Can anorectal sensory function be modified for therapeutic benefit?
Collapse
Affiliation(s)
- Charles H Knowles
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
15
|
Peiris M, Hockley JR, Reed DE, Smith ESJ, Bulmer DC, Blackshaw LA. Peripheral K V7 channels regulate visceral sensory function in mouse and human colon. Mol Pain 2018; 13:1744806917709371. [PMID: 28566000 PMCID: PMC5456027 DOI: 10.1177/1744806917709371] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Chronic visceral pain is a defining symptom of many gastrointestinal disorders. The KV7 family (KV7.1–KV7.5) of voltage-gated potassium channels mediates the M current that regulates excitability in peripheral sensory nociceptors and central pain pathways. Here, we use a combination of immunohistochemistry, gut-nerve electrophysiological recordings in both mouse and human tissues, and single-cell qualitative real-time polymerase chain reaction of gut-projecting sensory neurons, to investigate the contribution of peripheral KV7 channels to visceral nociception. Results Immunohistochemical staining of mouse colon revealed labelling of KV7 subtypes (KV7.3 and KV7.5) with CGRP around intrinsic enteric neurons of the myenteric plexuses and within extrinsic sensory fibres along mesenteric blood vessels. Treatment with the KV7 opener retigabine almost completely abolished visceral afferent firing evoked by the algogen bradykinin, in agreement with significant co-expression of mRNA transcripts by single-cell qualitative real-time polymerase chain reaction for KCNQ subtypes and the B2 bradykinin receptor in retrogradely labelled extrinsic sensory neurons from the colon. Retigabine also attenuated responses to mechanical stimulation of the bowel following noxious distension (0–80 mmHg) in a concentration-dependent manner, whereas the KV7 blocker XE991 potentiated such responses. In human bowel tissues, KV7.3 and KV7.5 were expressed in neuronal varicosities co-labelled with synaptophysin and CGRP, and retigabine inhibited bradykinin-induced afferent activation in afferent recordings from human colon. Conclusions We show that KV7 channels contribute to the sensitivity of visceral sensory neurons to noxious chemical and mechanical stimuli in both mouse and human gut tissues. As such, peripherally restricted KV7 openers may represent a viable therapeutic modality for the treatment of gastrointestinal pathologies.
Collapse
Affiliation(s)
- Madusha Peiris
- 1 Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - James Rf Hockley
- 2 Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - David E Reed
- 3 GI Diseases Research Unit, Queen's University, Kingston, ON, Canada
| | | | - David C Bulmer
- 1 Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - L Ashley Blackshaw
- 1 Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
16
|
Alamri AS, Wood RJ, Ivanusic JJ, Brock JA. The neurochemistry and morphology of functionally identified corneal polymodal nociceptors and cold thermoreceptors. PLoS One 2018; 13:e0195108. [PMID: 29590195 PMCID: PMC5874071 DOI: 10.1371/journal.pone.0195108] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/17/2018] [Indexed: 11/19/2022] Open
Abstract
It is generally believed that the unencapsulated sensory nerve terminals of modality specific C- and Aδ-neurons lack structural specialization. Here we determined the morphology of functionally defined polymodal receptors and cold thermoreceptors in the guinea pig corneal epithelium. Polymodal receptors and cold thermoreceptors were identified by extracellular recording at the surface of the corneal epithelium. After marking the recording sites, corneas were processed to reveal immunoreactivity for the transient receptor potential channels TRPV1 (transient receptor potential cation channel, subfamily V, member 1) or TPRM8 (transient receptor potential cation channel subfamily M member 8). Polymodal receptor nerve terminals (n = 6) were TRPV1-immunoreactive and derived from an axon that ascended from the sub-basal plexus to the squamous cell layer where it branched into fibers that ran parallel to the corneal surface and terminated with small bulbar endings (ramifying endings). Cold thermoreceptor nerve terminals were TRPM8-immunoreactive (n = 6) and originated from an axon that branched as it ascended through the wing cell and squamous cell layers and terminated with large bulbar endings (complex endings). These findings indicate that modality specific corneal sensory neurons with unencapsulated nerve endings have distinct nerve terminal morphologies that are likely to relate to their function.
Collapse
Affiliation(s)
- Abdulhakeem S. Alamri
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rhiannon J. Wood
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jason J. Ivanusic
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - James A. Brock
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
17
|
Kugler EM, Michel K, Kirchenbüchler D, Dreissen G, Csiszár A, Merkel R, Schemann M, Mazzuoli-Weber G. Sensitivity to Strain and Shear Stress of Isolated Mechanosensitive Enteric Neurons. Neuroscience 2018; 372:213-224. [PMID: 29317262 DOI: 10.1016/j.neuroscience.2017.12.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/20/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
Within the enteric nervous system, the neurons in charge to control motility of the gastrointestinal tract reside in a particular location nestled between two perpendicular muscle layers which contract and relax. We used primary cultured myenteric neurons of male guinea pigs to study mechanosensitivity of enteric neurons in isolation. Ultrafast Neuroimaging with a voltage-sensitive dye technique was used to record neuronal activity in response to shear stress and strain. Strain was induced by locally deforming the elastic cell culture substrate next to a neuron. Measurements showed that substrate strain was mostly elongating cells. Shear stress was exerted by hydrodynamic forces in a microchannel. Both stimuli induced excitatory responses. Strain activated 14% of the stimulated myenteric neurons that responded with a spike frequency of 1.9 (0.7/3.2) Hz, whereas shear stress excited only a few neurons (5.6%) with a very low spike frequency of 0 (0/0.6) Hz. Thus, shear stress does not seem to be an adequate stimulus for mechanosensitive enteric neurons (MEN) while strain activates enteric neurons in a relevant manner. Analyzing the adaptation behavior of MEN showed that shear stress activated rapidly/slowly/ultraslowly adapting MEN (2/62/36%) whereas strain only slowly (46%) and ultraslowly (54%) MEN. Paired experiments with strain and normal stress revealed three mechanosensitive enteric neuronal populations: one strain-sensitive (37%), one normal stress-sensitive (17%) and one strain- and stress-sensitive (46%). These results indicate that shear stress does not play a role in the neuronal control of motility but normal stress and strain.
Collapse
Affiliation(s)
- Eva Maria Kugler
- Human Biology, Technische Universität München, Freising-Weihenstephan, 85354, Germany.
| | - Klaus Michel
- Human Biology, Technische Universität München, Freising-Weihenstephan, 85354, Germany.
| | - David Kirchenbüchler
- Institute of Complex Systems - Biomechanics, Research Center Jülich, 52425 Jülich, Germany.
| | - Georg Dreissen
- Institute of Complex Systems - Biomechanics, Research Center Jülich, 52425 Jülich, Germany.
| | - Agnes Csiszár
- Institute of Complex Systems - Biomechanics, Research Center Jülich, 52425 Jülich, Germany.
| | - Rudolf Merkel
- Institute of Complex Systems - Biomechanics, Research Center Jülich, 52425 Jülich, Germany.
| | - Michael Schemann
- Human Biology, Technische Universität München, Freising-Weihenstephan, 85354, Germany.
| | - Gemma Mazzuoli-Weber
- Human Biology, Technische Universität München, Freising-Weihenstephan, 85354, Germany.
| |
Collapse
|
18
|
Abstract
The lining of the gastrointestinal tract needs to be easily accessible to nutrients and, at the same time, defend against pathogens and chemical challenges. This lining is the largest and most vulnerable surface that faces the outside world. To manage the dual problems of effective nutrient conversion and defence, the gut lining has a sophisticated system for detection of individual chemical entities, pathogenic organisms and their products, and physico-chemical properties of its contents. Detection is through specific receptors that signal to the gut endocrine system, the nervous system, the immune system and local tissue defence systems. These effectors, in turn, modify digestive functions and contribute to tissue defence. Receptors for nutrients include taste receptors for sweet, bitter and savoury, free fatty acid receptors, peptide and phytochemical receptors, that are primarily located on enteroendocrine cells. Hormones released by enteroendocrine cells act locally, through the circulation and via the nervous system, to optimise digestion and mucosal health. Pathogen detection is both through antigen presentation to T-cells and through pattern-recognition receptors (PRRs). Activation of PRRs triggers local tissue defence, for example, by causing release of antimicrobials from Paneth cells. Toxic chemicals, including plant toxins, are sensed and then avoided, expelled or metabolised. It continues to be a major challenge to develop a comprehensive understanding of the integrated responses of the gastrointestinal tract to its luminal contents.
Collapse
|
19
|
Spencer NJ, Zagorodnyuk V, Brookes SJ, Hibberd T. Spinal afferent nerve endings in visceral organs: recent advances. Am J Physiol Gastrointest Liver Physiol 2016; 311:G1056-G1063. [PMID: 27856418 DOI: 10.1152/ajpgi.00319.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/02/2016] [Indexed: 01/31/2023]
Abstract
Spinal afferent neurons play a major role in detection and transduction of painful stimuli from internal (visceral) organs. Recent technical advances have made it possible to visualize the endings of spinal afferent axons in visceral organs. Although it is well known that the sensory nerve cell bodies of spinal afferents reside within dorsal root ganglia (DRG), identifying their endings in internal organs has been especially challenging because of a lack of techniques to distinguish them from endings of other extrinsic and intrinsic neurons (sympathetic, parasympathetic, and enteric). We recently developed a surgical approach in live mice that allows selective labeling of spinal afferent axons and their endings, revealing a diverse array of different types of varicose and nonvaricose terminals in visceral organs, particularly the large intestine. In total, 13 different morphological types of endings were distinguished in the mouse distal large intestine, originating from lumbosacral DRG. Interestingly, the stomach, esophagus, bladder, and uterus had less diversity in their types of spinal afferent endings. Taken together, spinal afferent endings (at least in the large intestine) appear to display greater morphological diversity than vagal afferent endings that have previously been extensively studied. We discuss some of the new insights that these findings provide.
Collapse
Affiliation(s)
- Nick J Spencer
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
| | - Vladimir Zagorodnyuk
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
| | - Simon J Brookes
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
| | - Tim Hibberd
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
20
|
Ng KS, Brookes SJ, Montes-Adrian NA, Mahns DA, Gladman MA. Electrophysiological characterization of human rectal afferents. Am J Physiol Gastrointest Liver Physiol 2016; 311:G1047-G1055. [PMID: 27789454 PMCID: PMC5298880 DOI: 10.1152/ajpgi.00153.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 10/17/2016] [Indexed: 01/31/2023]
Abstract
It is presumed that extrinsic afferent nerves link the rectum to the central nervous system. However, the anatomical/functional existence of such nerves has never previously been demonstrated in humans. Therefore, we aimed to identify and make electrophysiological recordings in vitro from extrinsic afferents, comparing human rectum to colon. Sections of normal rectum and colon were procured from anterior resection and right hemicolectomy specimens, respectively. Sections were pinned and extrinsic nerves dissected. Extracellular visceral afferent nerve activity was recorded. Neuronal responses to chemical [capsaicin and "inflammatory soup" (IS)] and mechanical (Von Frey probing) stimuli were recorded and quantified as peak firing rate (range) in 1-s intervals. Twenty-eight separate nerve trunks from eight rectums were studied. Of these, spontaneous multiunit afferent activity was recorded in 24 nerves. Peak firing rates increased significantly following capsaicin [median 6 (range 3-25) spikes/s vs. 2 (1-4), P < 0.001] and IS [median 5 (range 2-18) spikes/s vs. 2 (1-4), P < 0.001]. Mechanosensitive "hot spots" were identified in 16 nerves [median threshold 2.0 g (range 1.4-6.0 g)]. In eight of these, the threshold decreased after IS [1.0 g (0.4-1.4 g)]. By comparison, spontaneous activity was recorded in only 3/30 nerves studied from 10 colons, and only one hot spot (threshold 60 g) was identified. This study confirms the anatomical/functional existence of extrinsic rectal afferent nerves and characterizes their chemo- and mechanosensitivity for the first time in humans. They have different electrophysiological properties to colonic afferents and warrant further investigation in disease states.
Collapse
Affiliation(s)
- Kheng-Seong Ng
- 1Academic Colorectal Unit, Sydney Medical School, Concord, University of Sydney, Sydney, Australia; ,2Enteric Neuroscience and Gastrointestinal Research Group, ANZAC Research Institute, University of Sydney, Sydney, Australia;
| | - Simon J. Brookes
- 3Discipline of Human Physiology, FMST, School of Medicine, Flinders University, Adelaide, Australia; and
| | - Noemi A. Montes-Adrian
- 2Enteric Neuroscience and Gastrointestinal Research Group, ANZAC Research Institute, University of Sydney, Sydney, Australia;
| | - David A. Mahns
- 4Department of Integrative Physiology, School of Medicine, Western Sydney University, Sydney, Australia
| | - Marc A. Gladman
- 1Academic Colorectal Unit, Sydney Medical School, Concord, University of Sydney, Sydney, Australia; ,2Enteric Neuroscience and Gastrointestinal Research Group, ANZAC Research Institute, University of Sydney, Sydney, Australia;
| |
Collapse
|
21
|
Palmer G, Hibberd TJ, Roose T, Brookes SJH, Taylor M. Measurement of strains experienced by viscerofugal nerve cell bodies during mechanosensitive firing using digital image correlation. Am J Physiol Gastrointest Liver Physiol 2016; 311:G869-G879. [PMID: 27514482 DOI: 10.1152/ajpgi.00397.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 08/02/2016] [Indexed: 01/31/2023]
Abstract
Mechanosensory neurons detect physical events in the local environments of the tissues that they innervate. Studies of mechanosensitivity of neurons or nerve endings in the gut have related their firing to strain, wall tension, or pressure. Digital image correlation (DIC) is a technique from materials engineering that can be adapted to measure the local physical environments of afferent neurons at high resolution. Flat-sheet preparations of guinea pig distal colon were set up with arrays of tissue markers in vitro. Firing of single viscerofugal neurons was identified in extracellular colonic nerve recordings. The locations of viscerofugal nerve cell bodies were inferred by mapping firing responses to focal application of the nicotinic receptor agonist 1,1-dimethyl-4-phenylpiperazinium iodide. Mechanosensory firing was recorded during load-evoked uniaxial or biaxial distensions. Distension caused movement of surface markers which was captured by video imaging. DIC tracked the markers, interpolating the mechanical state of the gut at the location of the viscerofugal nerve cell body. This technique revealed heterogeneous load-evoked strain within preparations. Local strains at viscerofugal nerve cell bodies were usually smaller than global strain measurements and correlated more closely with mechanosensitive firing. Both circumferential and longitudinal strain activated viscerofugal neurons. Simultaneous loading in circumferential and longitudinal axes caused the highest levels of viscerofugal neuron firing. Multiaxial strains, reflecting tissue shearing and changing area, linearly correlated with mechanosensory firing of viscerofugal neurons. Viscerofugal neurons were mechanically sensitive to both local circumferential and local longitudinal gut strain, and appear to lack directionality in their stretch sensitivity.
Collapse
Affiliation(s)
- Gwen Palmer
- Bioengineering Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom
| | - Timothy J Hibberd
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia; and
| | - Tiina Roose
- Bioengineering Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom
| | - Simon J H Brookes
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia; and
| | - Mark Taylor
- School of Computer Science, Engineering and Mathematics, Flinders University, Adelaide, Australia
| |
Collapse
|
22
|
Chen BN, Olsson C, Sharrad DF, Brookes SJH. Sensory innervation of the guinea pig colon and rectum compared using retrograde tracing and immunohistochemistry. Neurogastroenterol Motil 2016; 28:1306-16. [PMID: 27038370 DOI: 10.1111/nmo.12825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/01/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Neurons in lumbar and sacral dorsal root ganglia (DRG) comprise extrinsic sensory pathways to the distal colon and rectum, but their relative contributions are unclear. In this study, sensory innervation of the rectum and distal colon in the guinea pig was directly compared using retrograde labeling combined with immunohistochemistry. METHODS The lipophilic tracer, DiI, was injected in either the rectum or distal colon of anesthetized guinea pigs, then DRG (T6 to S5) and nodose ganglia were harvested and labeled using antisera for calcitonin gene-related peptide (CGRP) and transient receptor potential vanilloid 1(TRPV1). KEY RESULTS More primary afferent cell bodies were labeled from the rectum than from the distal colon. Vagal sensory neurons, with cell bodies in the nodose ganglia comprised fewer than 0.5% of labeled sensory neurons. Spinal afferents to the distal colon were nearly all located in thoracolumbar DRG, in a skewed unimodal distribution (peak at L2); fewer than 1% were located in sacral ganglia. In contrast, spinal afferents retrogradely labeled from the rectum had a bimodal distribution, with one peak at L3 and another at S2. Fewer than half of all retrogradely labeled spinal afferent neurons were immunoreactive for CGRP or TRPV1 and these included the larger traced neurons, especially in thoracolumbar ganglia. CONCLUSIONS & INFERENCES In the guinea pig, both the distal colon and the rectum receive a sensory innervation from thoracolumbar ganglia. Sacral afferents innervate the rectum but not the distal colon. Calcitonin gene-related peptide immunoreactivity was detectable in fewer than half of afferent neurons in both pathways.
Collapse
Affiliation(s)
- B N Chen
- Discipline of Human Physiology, FMST, School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - C Olsson
- Department of Biological & Environmental Sciences, University of Göteborg, Göteborg, Sweden
| | - D F Sharrad
- Discipline of Human Physiology, FMST, School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - S J H Brookes
- Discipline of Human Physiology, FMST, School of Medicine, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
23
|
Hibberd TJ, Kestell GR, Kyloh MA, Brookes SJH, Wattchow DA, Spencer NJ. Identification of different functional types of spinal afferent neurons innervating the mouse large intestine using a novel CGRPα transgenic reporter mouse. Am J Physiol Gastrointest Liver Physiol 2016; 310:G561-73. [PMID: 26822917 DOI: 10.1152/ajpgi.00462.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/27/2016] [Indexed: 01/31/2023]
Abstract
Spinal afferent neurons detect noxious and physiological stimuli in visceral organs. Five functional classes of afferent terminals have been extensively characterized in the colorectum, primarily from axonal recordings. Little is known about the corresponding somata of these classes of afferents, including their morphology, neurochemistry, and electrophysiology. To address this, we made intracellular recordings from somata in L6/S1 dorsal root ganglia and applied intraluminal colonic distensions. A transgenic calcitonin gene-related peptide-α (CGRPα)-mCherry reporter mouse, which enabled rapid identification of soma neurochemistry and morphology following electrophysiological recordings, was developed. Three distinct classes of low-threshold distension-sensitive colorectal afferent neurons were characterized; an additional group was distension-insensitive. Two of three low-threshold classes expressed CGRPα. One class expressing CGRPα discharged phasically, with inflections on the rising phase of their action potentials, at low frequencies, to both physiological (<30 mmHg) and noxious (>30 mmHg) distensions. The second class expressed CGRPα and discharged tonically, with smooth, briefer action potentials and significantly greater distension sensitivity than phasically firing neurons. A third class that lacked CGRPα generated the highest-frequency firing to distension and had smaller somata. Thus, CGRPα expression in colorectal afferents was associated with lower distension sensitivity and firing rates and larger somata, while colorectal afferents that generated the highest firing frequencies to distension had the smallest somata and lacked CGRPα. These data fill significant gaps in our understanding of the different classes of colorectal afferent somata that give rise to distinct functional classes of colorectal afferents. In healthy mice, the majority of sensory neurons that respond to colorectal distension are low-threshold, wide-dynamic-range afferents, encoding both physiological and noxious ranges.
Collapse
Affiliation(s)
- Timothy J Hibberd
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia; and
| | - Garreth R Kestell
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia; and
| | - Melinda A Kyloh
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia; and
| | - Simon J H Brookes
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia; and
| | - David A Wattchow
- Discipline of Surgery and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Nick J Spencer
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia; and
| |
Collapse
|
24
|
Spencer NJ, Kyloh M, Beckett EA, Brookes S, Hibberd T. Different types of spinal afferent nerve endings in stomach and esophagus identified by anterograde tracing from dorsal root ganglia. J Comp Neurol 2016; 524:3064-83. [DOI: 10.1002/cne.24006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Nick J. Spencer
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University; Adelaide 5001 South Australia Australia
| | - Melinda Kyloh
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University; Adelaide 5001 South Australia Australia
| | - Elizabeth A Beckett
- Discipline of Physiology, School of Medicine, University of Adelaide; Adelaide 5000 South Australia Australia
| | - Simon Brookes
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University; Adelaide 5001 South Australia Australia
| | - Tim Hibberd
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University; Adelaide 5001 South Australia Australia
| |
Collapse
|
25
|
Extrinsic Sensory Innervation of the Gut: Structure and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 891:63-9. [DOI: 10.1007/978-3-319-27592-5_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Mazzuoli-Weber G, Schemann M. Mechanosensitive enteric neurons in the guinea pig gastric corpus. Front Cell Neurosci 2015; 9:430. [PMID: 26578888 PMCID: PMC4630284 DOI: 10.3389/fncel.2015.00430] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/13/2015] [Indexed: 01/27/2023] Open
Abstract
For long it was believed that a particular population of enteric neurons, referred to as intrinsic primary afferent neuron (IPAN)s, encodes mechanical stimulation. We recently proposed a new concept suggesting that there are in addition mechanosensitive enteric neurons (MEN) that are multifunctional. Based on firing pattern MEN behaved as rapidly, slowly, or ultra-slowly adapting RAMEN, SAMEN, or USAMEN, respectively. We aimed to validate this concept in the myenteric plexus of the gastric corpus, a region where IPANs were not identified and existence of enteric sensory neurons was even questioned. The gastric corpus is characterized by a particularly dense extrinsic sensory innervation. Neuronal activity was recorded with voltage sensitive dye imaging after deformation of ganglia by compression (intraganglionic volume injection or von Fry hair) or tension (ganglionic stretch). We demonstrated that 27% of the gastric neurons were MEN and responded to intraganglionic volume injection. Of these 73% were RAMEN, 25% SAMEN, and 2% USAMEN with a firing frequency of 1.7 (1.1/2.2), 5.1 (2.2/7.7), and of 5.4 (5.0/15.5) Hz, respectively. The responses were reproducible and stronger with increased stimulus strength. Even after adaptation another deformation evoked spike discharge again suggesting a resetting mode of the mechanoreceptors. All MEN received fast synaptic input. Fifty five percent of all MEN were cholinergic and 45% nitrergic. Responses in some MEN significantly decreased after perfusion of TTX, low Ca(++)/high Mg(++) Krebs solution, capsaicin induced nerve defunctionalization and capsazepine indicating the involvement of TRPV1 expressing extrinsic mechanosensitive nerves. Half of gastric MEN responded to intraganglionic volume injection as well as to ganglionic stretch and 23% responded to stretch only. Tension-sensitive MEN were to a large proportion USAMEN (44%). In summary, we demonstrated for the first time compression and tension-sensitive MEN in the stomach; many of them responded to one stimulus modality only. Their proportions and the basic properties were similar to MEN previously identified by us in other intestinal region and species. Unlike in the intestine, the responsiveness of some gastric MEN is enhanced by extrinsic TRPV1 expressing visceral afferents.
Collapse
Affiliation(s)
| | - Michael Schemann
- Human Biology, Technische Universitaet Muenchen Freising, Germany
| |
Collapse
|
27
|
Mazzuoli-Weber G, Schemann M. Mechanosensitivity in the enteric nervous system. Front Cell Neurosci 2015; 9:408. [PMID: 26528136 PMCID: PMC4602087 DOI: 10.3389/fncel.2015.00408] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/25/2015] [Indexed: 01/20/2023] Open
Abstract
The enteric nervous system (ENS) autonomously controls gut muscle activity. Mechanosensitive enteric neurons (MEN) initiate reflex activity by responding to mechanical deformation of the gastrointestinal wall. MEN throughout the gut primarily respond to compression or stretch rather than to shear force. Some MEN are multimodal as they respond to compression and stretch. Depending on the region up to 60% of the entire ENS population responds to mechanical stress. MEN fire action potentials after mechanical stimulation of processes or soma although they are more sensitive to process deformation. There are at least two populations of MEN based on their sensitivity to different modalities of mechanical stress and on their firing pattern. (1) Rapidly, slowly and ultra-slowly adapting neurons which encode compressive forces. (2) Ultra-slowly adapting stretch-sensitive neurons encoding tensile forces. Rapid adaptation of firing is typically observed after compressive force while slow adaptation or ongoing spike discharge occurs often during tensile stress (stretch). All MEN have some common properties: they receive synaptic input, are low fidelity mechanoreceptors and are multifunctional in that some serve interneuronal others even motor functions. Consequently, MEN possess processes with mechanosensitive as well as efferent functions. This raises the intriguing hypothesis that MEN sense and control muscle activity at the same time as servo-feedback loop. The mechanosensitive channel(s) or receptor(s) expressed by the different MEN populations are unknown. Future concepts have to incorporate compressive and tensile-sensitive MEN into neural circuits that controls muscle activity. They may interact to control various forms of a particular motor pattern or regulate different motor patterns independently from each other.
Collapse
Affiliation(s)
| | - Michael Schemann
- Human Biology, Technische Universitaet Muenchen Freising, Germany
| |
Collapse
|
28
|
Kugler EM, Michel K, Zeller F, Demir IE, Ceyhan GO, Schemann M, Mazzuoli-Weber G. Mechanical stress activates neurites and somata of myenteric neurons. Front Cell Neurosci 2015; 9:342. [PMID: 26441520 PMCID: PMC4569744 DOI: 10.3389/fncel.2015.00342] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/18/2015] [Indexed: 12/24/2022] Open
Abstract
The particular location of myenteric neurons, sandwiched between the 2 muscle layers of the gut, implies that their somata and neurites undergo mechanical stress during gastrointestinal motility. Existence of mechanosensitive enteric neurons (MEN) is undoubted but many of their basic features remain to be studied. In this study, we used ultra-fast neuroimaging to record activity of primary cultured myenteric neurons of guinea pig and human intestine after von Frey hair evoked deformation of neurites and somata. Independent component analysis was applied to reconstruct neuronal morphology and follow neuronal signals. Of the cultured neurons 45% (114 out of 256, 30 guinea pigs) responded to neurite probing with a burst spike frequency of 13.4 Hz. Action potentials generated at the stimulation site invaded the soma and other neurites. Mechanosensitive sites were expressed across large areas of neurites. Many mechanosensitive neurites appeared to have afferent and efferent functions as those that responded to deformation also conducted spikes coming from the soma. Mechanosensitive neurites were also activated by nicotine application. This supported the concept of multifunctional MEN. 14% of the neurons (13 out of 96, 18 guinea pigs) responded to soma deformation with burst spike discharge of 17.9 Hz. Firing of MEN adapted rapidly (RAMEN), slowly (SAMEN), or ultra-slowly (USAMEN). The majority of MEN showed SAMEN behavior although significantly more RAMEN occurred after neurite probing. Cultured myenteric neurons from human intestine had similar properties. Compared to MEN, dorsal root ganglion neurons were activated by neurite but not by soma deformation with slow adaptation of firing. We demonstrated that MEN exhibit specific features very likely reflecting adaptation to their specialized functions in the gut.
Collapse
Affiliation(s)
- Eva M Kugler
- Human Biology, Technische Universitaet Muenchen Freising, Germany
| | - Klaus Michel
- Human Biology, Technische Universitaet Muenchen Freising, Germany
| | - Florian Zeller
- Department of Surgery, Klinikum Freising Freising, Germany
| | - Ihsan E Demir
- Department of Surgery, Klinikum Rechts der Isar, Technische Universitaet Muenchen Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum Rechts der Isar, Technische Universitaet Muenchen Munich, Germany
| | - Michael Schemann
- Human Biology, Technische Universitaet Muenchen Freising, Germany
| | | |
Collapse
|
29
|
Humenick A, Chen BN, Wiklendt L, Spencer NJ, Zagorodnyuk VP, Dinning PG, Costa M, Brookes SJH. Activation of intestinal spinal afferent endings by changes in intra-mesenteric arterial pressure. J Physiol 2015; 593:3693-709. [PMID: 26010893 DOI: 10.1113/jp270378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/18/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS A major class of mechano-nociceptors to the intestine have mechanotransduction sites on extramural and intramural arteries and arterioles ('vascular afferents'). These sensory neurons can be activated by compression or axial stretch of vessels. Using isolated preparations we showed that increasing intra-arterial pressure, within the physiological range, activated mechano-nociceptors on vessels in intact mesenteric arcades, but not in isolated arteries. This suggests that distortion of the branching vascular tree is the mechanical adequate stimulus for these sensory neurons, rather than simple distension. The same rises in pressure also activated intestinal peristalsis in a partially capsaicin-sensitive manner indicating that pressure-sensitive vascular afferents influence enteric circuits. The results identify the mechanical adequate stimulus for a major class of mechano-nociceptors with endings on blood vessels supplying the gut wall; these afferents have similar endings to ones supplying other viscera, striated muscle and dural vessels. ABSTRACT Spinal sensory neurons innervate many large blood vessels throughout the body. Their activation causes the hallmarks of neurogenic inflammation: vasodilatation through the release of the neuropeptide calcitonin gene-related peptide and plasma extravasation via tachykinins. The same vasodilator afferent neurons show mechanical sensitivity, responding to crushing, compression or axial stretch of blood vessels - responses which activate pain pathways and which can be modified by cell damage and inflammation. In the present study, we tested whether spinal afferent axons ending on branching mesenteric arteries ('vascular afferents') are sensitive to increased intravascular pressure. From a holding pressure of 5 mmHg, distension to 20, 40, 60 or 80 mmHg caused graded, slowly adapting increases in firing of vascular afferents. Many of the same afferent units showed responses to axial stretch, which summed with responses evoked by raised pressure. Many vascular afferents were also sensitive to raised temperature, capsaicin and/or local compression with von Frey hairs. However, responses to raised pressure in single, isolated vessels were negligible, suggesting that the adequate stimulus is distortion of the arterial arcade rather than distension per se. Increasing arterial pressure often triggered peristaltic contractions in the neighbouring segment of intestine, an effect that was mimicked by acute exposure to capsaicin (1 μm) and which was reduced after desensitisation to capsaicin. These results indicate that sensory fibres with perivascular endings are sensitive to pressure-induced distortion of branched arteries, in addition to compression and axial stretch, and that they contribute functional inputs to enteric motor circuits.
Collapse
Affiliation(s)
- A Humenick
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, South Australia
| | - B N Chen
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, South Australia
| | - L Wiklendt
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, South Australia
| | - N J Spencer
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, South Australia
| | - V P Zagorodnyuk
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, South Australia
| | - P G Dinning
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, South Australia
| | - M Costa
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, South Australia
| | - S J H Brookes
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, South Australia
| |
Collapse
|
30
|
Chen BN, Sharrad DF, Hibberd TJ, Zagorodnyuk VP, Costa M, Brookes SJ. Neurochemical characterization of extrinsic nerves in myenteric ganglia of the guinea pig distal colon. J Comp Neurol 2014; 523:742-56. [DOI: 10.1002/cne.23704] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Bao Nan Chen
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Dale F. Sharrad
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Timothy J. Hibberd
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Vladimir P. Zagorodnyuk
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Marcello Costa
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Simon J.H. Brookes
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| |
Collapse
|
31
|
Spencer NJ, Kyloh M, Duffield M. Identification of different types of spinal afferent nerve endings that encode noxious and innocuous stimuli in the large intestine using a novel anterograde tracing technique. PLoS One 2014; 9:e112466. [PMID: 25383884 PMCID: PMC4226564 DOI: 10.1371/journal.pone.0112466] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/10/2014] [Indexed: 11/18/2022] Open
Abstract
In mammals, sensory stimuli in visceral organs, including those that underlie pain perception, are detected by spinal afferent neurons, whose cell bodies lie in dorsal root ganglia (DRG). One of the major challenges in visceral organs has been how to identify the different types of nerve endings of spinal afferents that transduce sensory stimuli into action potentials. The reason why spinal afferent nerve endings have been so challenging to identify is because no techniques have been available, until now, that can selectively label only spinal afferents, in high resolution. We have utilized an anterograde tracing technique, recently developed in our laboratory, which facilitates selective labeling of only spinal afferent axons and their nerve endings in visceral organs. Mice were anesthetized, lumbosacral DRGs surgically exposed, then injected with dextran-amine. Seven days post-surgery, the large intestine was removed. The characteristics of thirteen types of spinal afferent nerve endings were identified in detail. The greatest proportion of nerve endings was in submucosa (32%), circular muscle (25%) and myenteric ganglia (22%). Two morphologically distinct classes innervated myenteric ganglia. These were most commonly a novel class of intraganglionic varicose endings (IGVEs) and occasionally rectal intraganglionic laminar endings (rIGLEs). Three distinct classes of varicose nerve endings were found to innervate the submucosa and circular muscle, while one class innervated internodal strands, blood vessels, crypts of lieberkuhn, the mucosa and the longitudinal muscle. Distinct populations of sensory endings were CGRP-positive. We present the first complete characterization of the different types of spinal afferent nerve endings in a mammalian visceral organ. The findings reveal an unexpectedly complex array of different types of primary afferent endings that innervate specific layers of the large intestine. Some of the novel classes of nerve endings identified must underlie the transduction of noxious and/or innocuous stimuli from the large intestine.
Collapse
Affiliation(s)
- Nick J. Spencer
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
- * E-mail:
| | - Melinda Kyloh
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
| | - Michael Duffield
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
32
|
Wang GD, Wang XY, Liu S, Qu M, Xia Y, Needleman BJ, Mikami DJ, Wood JD. Innervation of enteric mast cells by primary spinal afferents in guinea pig and human small intestine. Am J Physiol Gastrointest Liver Physiol 2014; 307:G719-31. [PMID: 25147231 PMCID: PMC4187066 DOI: 10.1152/ajpgi.00125.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells express the substance P (SP) neurokinin 1 receptor and the calcitonin gene-related peptide (CGRP) receptor in guinea pig and human small intestine. Enzyme-linked immunoassay showed that activation of intramural afferents by antidromic electrical stimulation or by capsaicin released SP and CGRP from human and guinea pig intestinal segments. Electrical stimulation of the afferents evoked slow excitatory postsynaptic potentials (EPSPs) in the enteric nervous system. The slow EPSPs were mediated by tachykinin neurokinin 1 and CGRP receptors. Capsaicin evoked slow EPSP-like responses that were suppressed by antagonists for protease-activated receptor 2. Afferent stimulation evoked slow EPSP-like excitation that was suppressed by mast cell-stabilizing drugs. Histamine and mast cell protease II were released by 1) exposure to SP or CGRP, 2) capsaicin, 3) compound 48/80, 4) elevation of mast cell Ca²⁺ by ionophore A23187, and 5) antidromic electrical stimulation of afferents. The mast cell stabilizers cromolyn and doxantrazole suppressed release of protease II and histamine when evoked by SP, CGRP, capsaicin, A23187, electrical stimulation of afferents, or compound 48/80. Neural blockade by tetrodotoxin prevented mast cell protease II release in response to antidromic electrical stimulation of mesenteric afferents. The results support a hypothesis that afferent innervation of enteric mast cells releases histamine and mast cell protease II, both of which are known to act in a diffuse paracrine manner to influence the behavior of enteric nervous system neurons and to elevate the sensitivity of spinal afferent terminals.
Collapse
Affiliation(s)
- Guo-Du Wang
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Xi-Yu Wang
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Sumei Liu
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Meihua Qu
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Yun Xia
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio; ,2Department of Anesthesiology, College of Medicine, The Ohio State University, Columbus, Ohio; and
| | - Bradley J. Needleman
- 3Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Dean J. Mikami
- 3Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jackie D. Wood
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| |
Collapse
|
33
|
Brumovsky PR, La JH, Gebhart GF. Distribution across tissue layers of extrinsic nerves innervating the mouse colorectum - an in vitro anterograde tracing study. Neurogastroenterol Motil 2014; 26:1494-507. [PMID: 25185752 PMCID: PMC4200533 DOI: 10.1111/nmo.12419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/27/2014] [Indexed: 01/16/2023]
Abstract
BACKGROUND Anterograde in vitro tracing of the pelvic nerve (PN) and visualization in the horizontal plane in whole mount preparations has been fundamental in the analysis of distribution of peripheral nerves innervating the colorectum. Here, we performed a similar analysis, but in cryostat sections of the mouse colorectum, allowing for a more direct visualization of nerve distribution in all tissue layers. METHODS Colorectum with attached PNs was dissected from adult male BalbC mice. Presence of active afferents was certified by single fiber recording of fine PN fibers. This was followed by 'bulk' (all fibers) anterograde tracing using biotinamide (BTA). Histo- and immunohistochemical techniques were used for visualization of BTA-positive nerves, and evaluation of co-localization with calcitonin gene-related peptide (CGRP), respectively. Tissue was analyzed using confocal microscopy on transverse or longitudinal colorectum sections. KEY RESULTS Abundant BTA-positive nerves spanning all layers of the mouse colorectum and contacting myenteric plexus neurons, distributing within the muscle layer, penetrating deeper into the organ and contacting blood vessels, submucosal plexus neurons or even penetrating the mucosa, were regularly detected. Several traced axons co-localized CGRP, supporting their afferent nature. Finally, anterograde tracing of the PN also exposed abundant BTA-positive nerves in the major pelvic ganglion. CONCLUSIONS & INFERENCES We present the patterns of innervation of extrinsic axons across layers in the mouse colorectum, including the labile mucosal layer. The proposed approach could also be useful in the analysis of associations between morphology and physiology of peripheral nerves targeting the different layers of the colorectum.
Collapse
Affiliation(s)
- Pablo R. Brumovsky
- School of Biomedical Sciences, Austral University, Pilar 1629, Buenos Aires, Argentina,CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina,Pittsburgh Center for Pain Research, Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jun-Ho La
- Pittsburgh Center for Pain Research, Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15213
| | - G. F. Gebhart
- Pittsburgh Center for Pain Research, Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
34
|
Rau KK, Petruska JC, Cooper BY, Johnson RD. Distinct subclassification of DRG neurons innervating the distal colon and glans penis/distal urethra based on the electrophysiological current signature. J Neurophysiol 2014; 112:1392-408. [PMID: 24872531 DOI: 10.1152/jn.00560.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spinal sensory neurons innervating visceral and mucocutaneous tissues have unique microanatomic distribution, peripheral modality, and physiological, pharmacological, and biophysical characteristics compared with those neurons that innervate muscle and cutaneous tissues. In previous patch-clamp electrophysiological studies, we have demonstrated that small- and medium-diameter dorsal root ganglion (DRG) neurons can be subclassified on the basis of their patterns of voltage-activated currents (VAC). These VAC-based subclasses were highly consistent in their action potential characteristics, responses to algesic compounds, immunocytochemical expression patterns, and responses to thermal stimuli. For this study, we examined the VAC of neurons retrogradely traced from the distal colon and the glans penis/distal urethra in the adult male rat. The afferent population from the distal colon contained at least two previously characterized cell types observed in somatic tissues (types 5 and 8), as well as four novel cell types (types 15, 16, 17, and 18). In the glans penis/distal urethra, two previously described cell types (types 6 and 8) and three novel cell types (types 7, 14, and 15) were identified. Other characteristics, including action potential profiles, responses to algesic compounds (acetylcholine, capsaicin, ATP, and pH 5.0 solution), and neurochemistry (expression of substance P, CGRP, neurofilament, TRPV1, TRPV2, and isolectin B4 binding) were consistent for each VAC-defined subgroup. With identification of distinct DRG cell types that innervate the distal colon and glans penis/distal urethra, future in vitro studies related to the gastrointestinal and urogenital sensory function in normal as well as abnormal/pathological conditions may be benefitted.
Collapse
Affiliation(s)
- Kristofer K Rau
- Department of Anesthesiology, Department of Anatomical Sciences and Neurobiology, and Kentucky Spinal Cord Injury Research Center, University of Louisville College of Medicine, Louisville, Kentucky; Department of Physiological Sciences, University of Florida College of Veterinary Medicine and McKnight Brain Institute, Gainesville, Florida
| | - Jeffrey C Petruska
- Department of Anatomical Sciences and Neurobiology, Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville College of Medicine, Louisville, Kentucky
| | - Brian Y Cooper
- Department of Oral and Maxillofacial Surgery, Division of Neuroscience, J. Hillis Miller Health Center, University of Florida College of Dentistry and McKnight Brain Institute, Gainesville, Florida; and
| | - Richard D Johnson
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine and McKnight Brain Institute, Gainesville, Florida
| |
Collapse
|
35
|
de Fontgalland D, Brookes SJ, Gibbins I, Sia TC, Wattchow DA. The neurochemical changes in the innervation of human colonic mesenteric and submucosal blood vessels in ulcerative colitis and Crohn's disease. Neurogastroenterol Motil 2014; 26:731-44. [PMID: 24597665 DOI: 10.1111/nmo.12327] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 02/07/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND Neurogenic inflammation involves vasodilation, oedema and sensory nerve hypersensitivity. Extrinsic sensory nerves to the intestinal wall mediate these effects and functional subsets of these extrinsic nerves can be characterized by immunohistochemical profiles. In this study such profiles were examined in samples from patients with inflammatory bowel disease (IBD), in particular ulcerative colitis (UC) and Crohn's disease (CD). METHODS Healthy margins from cancer patients were compared to specimens from IBD patients. All nerve fibres were labelled by PGP 9.5. Double and triple labelling with TH, NPY, SP, SOM, NOS, VIP, VAChT, CGRP, TRPv1 were performed. Perivascular nerve fibres in the mesentery, and submucosa, were examined. The percentage of all labelled nerve fibres was calculated with a transect method. KEY RESULTS Total number of varicosities on mesenteric vessels increased in IBD but decreased around submucosal vessels. The percentage of nerve fibres around submucosal arteries labelled by SP increased from 11% in controls to 20% (UC) and 24% (CD) and mesenteric artery nerve fibres were unchanged. Nerve fibres labelled by SOM were markedly reduced surrounding submucosal arteries, from 22% to 1% (UC) and 2% (CD), but not perivascular mesenteric nerve fibres. 87 to 93% of SP immunoreactive nerve fibres were also reactive for TRvP1. TRPv1 labelling without SP was 12%in controls and increased to 40% in CD submucosal specimens. CONCLUSIONS & INFERENCES There is an increase in SP and TRPv1, and a reduction in SOM immunoreactive nerve fibres in IBD. Changes in the perivascular functional nerve subclasses may underlie the hyperaemia, and ulceration, characteristic of IBD. Furthermore, pain may relate to underlying neural changes.
Collapse
Affiliation(s)
- D de Fontgalland
- Department of Surgery/Department of Human Physiology, Flinders Medical Centre/Flinders University of South Australia, Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|
36
|
Abstract
The gastrointestinal tract presents the largest and most vulnerable surface to the outside world. Simultaneously, it must be accessible and permeable to nutrients and must defend against pathogens and potentially injurious chemicals. Integrated responses to these challenges require the gut to sense its environment, which it does through a range of detection systems for specific chemical entities, pathogenic organisms and their products (including toxins), as well as physicochemical properties of its contents. Sensory information is then communicated to four major effector systems: the enteroendocrine hormonal signalling system; the innervation of the gut, both intrinsic and extrinsic; the gut immune system; and the local tissue defence system. Extensive endocrine-neuro-immune-organ-defence interactions are demonstrable, but under-investigated. A major challenge is to develop a comprehensive understanding of the integrated responses of the gut to the sensory information it receives. A major therapeutic opportunity exists to develop agents that target the receptors facing the gut lumen.
Collapse
Affiliation(s)
- John B Furness
- Department of Anatomy & Neuroscience, University of Melbourne, Grattan Street, Parkville, Vic 3010, Australia
| | | | | | | | | |
Collapse
|
37
|
Kiyatkin ME, Feng B, Schwartz ES, Gebhart GF. Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization. Am J Physiol Gastrointest Liver Physiol 2013; 305:G638-48. [PMID: 23989007 PMCID: PMC3840237 DOI: 10.1152/ajpgi.00180.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined channel contributions to behavioral responses to colorectal distension (CRD) and afferent fiber responses to colorectal stretch. Baseline responses to CRD were unexpectedly greater in TPDKO compared with control mice, but zymosan-produced CRD hypersensitivity was absent in TPDKO mice. Relative to control mice, proportions of mechanosensitive and -insensitive pelvic nerve afferent classes were not different in TPDKO mice. Responses of mucosal and serosal class afferents to mechanical probing were unaffected, whereas responses of muscular (but not muscular/mucosal) afferents to stretch were significantly attenuated in TPDKO mice; sensitization of both muscular and muscular/mucosal afferents by inflammatory soup was also significantly attenuated. In pharmacological studies, the TRPV1 antagonist A889425 and P2X3 antagonist TNP-ATP, alone and in combination, applied onto stretch-sensitive afferent endings attenuated responses to stretch; combined antagonism produced greater attenuation. In the aggregate, these observations suggest that 1) genetic manipulation of TRPV1 and P2X3 leads to reduction in colorectal mechanosensation peripherally and compensatory changes and/or disinhibition of other channels centrally, 2) combined pharmacological antagonism produces more robust attenuation of mechanosensation peripherally than does antagonism of either channel alone, and 3) the relative importance of these channels appears to be enhanced in colorectal hypersensitivity.
Collapse
Affiliation(s)
- Michael E. Kiyatkin
- Center for Pain Research, Department of Anesthesiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bin Feng
- Center for Pain Research, Department of Anesthesiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Erica S. Schwartz
- Center for Pain Research, Department of Anesthesiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - G. F. Gebhart
- Center for Pain Research, Department of Anesthesiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
38
|
Bajwa A, Thiruppathy K, Emmanuel A. The utility of conditioning sequences in barostat protocols for the measurement of rectal compliance. Colorectal Dis 2013; 15:715-8. [PMID: 23320603 DOI: 10.1111/codi.12109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 10/04/2012] [Indexed: 12/24/2022]
Abstract
AIM A barostat can be used to measure rectal sensitivity, compliance and elastance all of which are potentially important physiological parameters in the pathophysiology of faecal incontinence. Current practice recommends a conditioning distension sequence be performed prior to index distensions. We questioned the validity of this by comparing values for rectal compliance during sequential conditioning (CD) and index (ID) distensions in physiologically normal subjects. METHOD Ten subjects (five men, mean age 55.2 years) with normal anal canal manometry, anorectal sensitivity and balloon distension thresholds were studied. After determining the minimum distension pressure, subjects underwent sequential isobaric distensions: CD 4 mmHg distensions every 45 s and ID 4 mmHg every 2 min, both to a maximum of 24 mmHg or patient tolerance. Compliance values from both sequences were calculated by measuring the maximum slope of pressure-volume curves. A paired t-test was performed to compare any differences between sequences. RESULTS Mean rectal compliance were 11.4 ml/mmHg (SD 5.8 ml/mmHg) and 10.9 ml/mmHg (SD 5.7 ml/mmHg) in the CD and ID, respectively, with no statistical difference noted between distensions (P = 0.78). CONCLUSION Rectal compliance can be measured with a single distension protocol without the need for an initial conditioning distension. Conditioning the rectum adds additional complexity to barostat protocols and is not necessary.
Collapse
Affiliation(s)
- A Bajwa
- Department of Gastroenterology and Nutrition, University College Hospital, London, UK.
| | | | | |
Collapse
|
39
|
Abstract
Visceral sensory neurons activate reflex pathways that control gut function and also give rise to important sensations, such as fullness, bloating, nausea, discomfort, urgency and pain. Sensory neurons are organised into three distinct anatomical pathways to the central nervous system (vagal, thoracolumbar and lumbosacral). Although remarkable progress has been made in characterizing the roles of many ion channels, receptors and second messengers in visceral sensory neurons, the basic aim of understanding how many classes there are, and how they differ, has proven difficult to achieve. We suggest that just five structurally distinct types of sensory endings are present in the gut wall that account for essentially all of the primary afferent neurons in the three pathways. Each of these five major structural types of endings seems to show distinctive combinations of physiological responses. These types are: 'intraganglionic laminar' endings in myenteric ganglia; 'mucosal' endings located in the subepithelial layer; 'muscular-mucosal' afferents, with mechanosensitive endings close to the muscularis mucosae; 'intramuscular' endings, with endings within the smooth muscle layers; and 'vascular' afferents, with sensitive endings primarily on blood vessels. 'Silent' afferents might be a subset of inexcitable 'vascular' afferents, which can be switched on by inflammatory mediators. Extrinsic sensory neurons comprise an attractive focus for targeted therapeutic intervention in a range of gastrointestinal disorders.
Collapse
|
40
|
Schuster DJ, Dykstra JA, Riedl MS, Kitto KF, Honda CN, McIvor RS, Fairbanks CA, Vulchanova L. Visualization of spinal afferent innervation in the mouse colon by AAV8-mediated GFP expression. Neurogastroenterol Motil 2013; 25:e89-100. [PMID: 23252426 PMCID: PMC3552078 DOI: 10.1111/nmo.12057] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
BACKGROUND Primary afferent neurons whose cell bodies reside in thoracolumbar and lumbosacral dorsal root ganglia (DRG) innervate colon and transmit sensory signals from colon to spinal cord under normal conditions and conditions of visceral hypersensitivity. Histologically, these extrinsic afferents cannot be differentiated from intrinsic fibers of enteric neurons because all known markers label neurons of both populations. Adeno-associated virus (AAV) vectors are capable of transducing DRG neurons after intrathecal administration. We hypothesized that AAV-driven overexpression of green fluorescent protein (GFP) in DRG would enable visualization of extrinsic spinal afferents in colon separately from enteric neurons. METHODS Recombinant AAV serotype 8 (rAAV8) vector carrying the GFP gene was delivered via direct lumbar puncture. Green fluorescent protein labeling in DRG and colon was examined using immunohistochemistry. KEY RESULTS Analysis of colon from rAAV8-GFP-treated mice demonstrated GFP-immunoreactivity (GFP-ir) within mesenteric nerves, smooth muscle layers, myenteric plexus, submucosa, and mucosa, but not in cell bodies of enteric neurons. Notably, GFP-ir colocalized with CGRP and TRPV1 in mucosa, myenteric plexus, and globular-like clusters surrounding nuclei within myenteric ganglia. In addition, GFP-positive fibers were observed in close association with blood vessels of mucosa and submucosa. Analysis of GFP-ir in thoracolumbar and lumbosacral DRG revealed that levels of expression in colon and L6 DRG appeared to be related. CONCLUSIONS & INFERENCES These results demonstrate the feasibility of gene transfer to mouse colonic spinal sensory neurons using intrathecal delivery of AAV vectors and the utility of this approach for histological analysis of spinal afferent nerve fibers within colon.
Collapse
Affiliation(s)
- Daniel J. Schuster
- Department of Neuroscience University of Minnesota, Minneapolis, MN 55455
| | - Jaclyn A. Dykstra
- Comparative and Molecular Biosciences Graduate Program, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108
| | - Maureen S. Riedl
- Department of Neuroscience University of Minnesota, Minneapolis, MN 55455
| | - Kelley F. Kitto
- Department of Neuroscience University of Minnesota, Minneapolis, MN 55455,Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455,Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | | | - R. Scott McIvor
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Carolyn A. Fairbanks
- Department of Neuroscience University of Minnesota, Minneapolis, MN 55455,Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455,Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Lucy Vulchanova
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN55108
| |
Collapse
|
41
|
Hibberd TJ, Zagorodnyuk VP, Spencer NJ, Brookes SJH. Viscerofugal neurons recorded from guinea-pig colonic nerves after organ culture. Neurogastroenterol Motil 2012; 24:1041-e548. [PMID: 22809172 DOI: 10.1111/j.1365-2982.2012.01979.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Enteric viscerofugal neurons provide cholinergic synaptic inputs to prevertebral sympathetic neurons, forming reflex circuits that control motility and secretion. Extracellular recordings of identified viscerofugal neurons have not been reported. METHODS Preparations of guinea pig distal colon were maintained in organotypic culture for 4-6 days (n = 12), before biotinamide tracing, immunohistochemistry, or extracellular electrophysiological recordings from colonic nerves. KEY RESULTS After 4-6 days in organ culture, calcitonin gene-related peptide and tyrosine hydroxylase immunoreactivity in enteric ganglia was depleted, and capsaicin-induced firing (0.4 μmol L(-1) ) was not detected, indicating that extrinsic sympathetic and sensory axons degenerate in organ culture. Neuroanatomical tracing of colonic nerves revealed that viscerofugal neurons persist and increase as a proportion of surviving axons. Extracellular recordings of colonic nerves revealed ongoing action potentials. Interestingly, synchronous bursts of action potentials were seen in 10 of 12 preparations; bursts were abolished by hexamethonium, which also reduced firing rate (400 μmol L(-1) , P < 0.01, n = 7). DMPP (1,1-dimethyl-4-phenylpiperazinium; 10(-4) mol L(-1) ) evoked prolonged action potential discharge. Increased firing preceded both spontaneous and stretch-evoked contractions (χ(2) = 11.8, df = 1, P < 0.001). Firing was also modestly increased during distensions that did not evoke reflex contractions. All single units (11/11) responded to von Frey hairs (100-300 mg) in hexamethonium or Ca(2+) -free solution. CONCLUSIONS & INFERENCES Action potentials recorded from colonic nerves in organ cultured preparations originated from viscerofugal neurons. They receive nicotinic input, which coordinates ongoing burst firing. Large bursts preceded spontaneous and reflex-evoked contractions, suggesting their synaptic inputs may arise from enteric circuitry that also drives motility. Viscerofugal neurons were directly mechanosensitive to focal compression by von Frey hairs.
Collapse
Affiliation(s)
- T J Hibberd
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | | | | | | |
Collapse
|
42
|
Identification and mechanosensitivity of viscerofugal neurons. Neuroscience 2012; 225:118-29. [PMID: 22935724 DOI: 10.1016/j.neuroscience.2012.08.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/31/2012] [Accepted: 08/16/2012] [Indexed: 11/22/2022]
Abstract
Enteric viscerofugal neurons are interneurons with cell bodies in the gut wall; they project to prevertebral ganglia where they provide excitatory synaptic drive to sympathetic neurons which control intestinal motility and secretion. Here, we studied the mechanosensitivity and firing of single, identified viscerofugal neurons in guinea-pig distal colon. Flat sheet preparations of gut were set up in vitro and conventional extracellular recordings made from colonic nerve trunks. The nicotinic agonist, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) (1mM), was locally pressure ejected onto individual myenteric ganglia. In a few ganglia, DMPP promptly evoked firing in colonic nerves. Biotinamide filling of colonic nerves revealed that DMPP-responsive sites corresponded to viscerofugal nerve cell bodies. This provides a robust means to positively identify viscerofugal neuron firing. Of 15 single units identified in this way, none responded to locally-applied capsaicin (1 μM). Probing with von Frey hairs at DMPP-responsive sites reliably evoked firing in all identified viscerofugal neurons (18/18 units tested; 0.8-5 mN). Circumferential stretch of the preparation increased firing in all 14/14 units (1-5 g, p<0.05). Both stretch and von Frey hair responses persisted in Ca(2+)-free solution (6 mM Mg(2+), 1mM EDTA), indicating that viscerofugal neurons are directly mechanosensitive. To investigate their adequate stimulus, circular muscle tension and length were independently modulated (BAY K8644, 1 μM and 10 μM, respectively). Increases in intramural tension without changes in length did not affect firing. However, contraction-evoked shortening, under constant load, significantly decreased firing (p<0.001). In conclusion, viscerofugal neuron action potentials contribute to recordings from colonic nerve trunks, in vitro. They provide a significant primary afferent output from the colon, encoding circumferential length, largely independent of muscle tension. All viscerofugal neurons are directly mechanosensitive, although they have been reported to receive synaptic inputs. In short, viscerofugal neurons combine interneuronal function with length-sensitive mechanosensitivity.
Collapse
|
43
|
Gregersen H, Jiang W, Liao D, Grundy D. Evidence for stress-dependent mechanoreceptors linking intestinal biomechanics and sensory signal transduction. Exp Physiol 2012; 98:123-33. [PMID: 22798401 DOI: 10.1113/expphysiol.2012.066019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sensory nerve endings are widely distributed throughout the body. Neither the nature of the mechanosensitive channels nor the principal mechanical stimulus for these receptors is known. Afferents supplying the gastrointestinal tract responding to distension and contraction are responsible for co-ordinated reflex control, feeding behaviour and sensations, including pain. Different populations of intestinal afferent fibres follow different pathways to the CNS, have different terminal fields and possess different thresholds for activation that may reflect the extent to which mechanical forces are distributed and dissipated by non-neural structures in the bowel wall. In this study, we have characterized the stimulus-response function of afferent fibres innervating the rat jejunum, correlating luminal distensions in the bowel wall with the firing frequency of mesenteric afferent nerve bundles. Combining video imaging with intraluminal pressure recordings and utilizing a strain softening protocol, we have determined whether mechanoreceptors respond primarily to stress or strain. Multiunit afferent recordings were separated using spike discrimination software into low-threshold (LT) and high-threshold (HT) single units. For multifibre afferent recordings and both LT and HT single units, we observed a linear relationship between circumferential stress and mesenteric afferent discharge that was independent of distension-induced tissue softening, with correlation coefficients >0.9. A fivefold change in the rate of applied distension did not significantly alter the magnitude of the afferent response and the linearity of the stress-dependent mechanotransduction in both multifibre preparations and the LT and HT afferent fibres (P > 0.2). Thus, the firing characteristics of intestinal mechanoreceptors are linearly associated with the input in terms of mechanical stress.
Collapse
Affiliation(s)
- Hans Gregersen
- Sino-Danish Centre for Education and Research, Aarhus Hospital, Aarhus, Denmark
| | | | | | | |
Collapse
|
44
|
Abstract
Human defecation involves integrated and coordinated sensorimotor functions, orchestrated by central, spinal, peripheral (somatic and visceral), and enteric neural activities, acting on a morphologically intact gastrointestinal tract (including the final common path, the pelvic floor, and anal sphincters). The multiple factors that ultimately result in defecation are best appreciated by describing four temporally and physiologically fairly distinct phases. This article details our current understanding of normal defecation, including recent advances, but importantly identifies those areas where knowledge or consensus is still lacking. Appreciation of normal physiology is central to directed treatment of constipation and also of fecal incontinence, which are prevalent in the general population and cause significant morbidity.
Collapse
Affiliation(s)
- Somnath Palit
- Academic Surgical Unit (GI Physiology Unit), Barts and the London School of Medicine and Dentistry, Blizard Institute, Queen Mary University, London, UK.
| | | | | |
Collapse
|
45
|
Abstract
BACKGROUND Sensory nerves to the external anal sphincter (EAS) contribute to mechanisms promoting continence and defecation, yet we know little about their function. We investigated the function of pudendal mechanoreceptors to the guinea pig EAS. METHODS Extracellular recordings from pudendal nerve branches to 14 EAS preparations, in vitro, were used to characterize extrinsic primary afferent nerve endings activated by circumferential distension. KEY RESULTS All 42 pudendal nerve afferents were silent under non-distended conditions. Thirty-three of 42 afferents had slowly adapting, low-threshold responses to circumferential stretch that correlated with stretch length (R(2) = 0.40, P<0.001). Twenty of 20 slowly adapting afferents reduced firing when stretch was maintained for 60 s (P<0.0001). They had low thresholds to von Frey hairs (0.1-0.5mN). Firing frequency correlated with degree of compression (R(2) =0.40, P<0.0001). Nine of 42 afferents had rapidly adapting responses at the onset/offset of isometric stretch. During ramp stretch, small vibrations from the stepper motor evoked rapid bursts of firing at frequencies up to 200Hz. Instantaneous frequency was unrelated to either the rate or degree of stretch. Rapidly adapting units had low thresholds (0.1-0.2mN) to von Frey hairs and small punctate mechanotransduction sites. Responses to von Frey hair compression were also rapidly adapting, and instantaneous frequency was unrelated to the degree of compression. CONCLUSIONS & INFERENCES The EAS has two functional classes of mechanoreceptors: slowly adapting low-threshold and rapidly adapting low-threshold mechanoreceptors. These two classes of afferents are likely to be involved in the maintenance of continence, and the process of defecation.
Collapse
Affiliation(s)
- P A Lynn
- Department of Human Physiology, Flinders University, Bedford Park, SA, Australia.
| | | |
Collapse
|
46
|
|
47
|
Lynn PA, Brookes SJH. Function and morphology correlates of rectal nerve mechanoreceptors innervating the guinea pig internal anal sphincter. Neurogastroenterol Motil 2011; 23:88-95, e9. [PMID: 20796213 DOI: 10.1111/j.1365-2982.2010.01593.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mechanoreceptors to the internal anal sphincter (IAS) contribute to continence and normal defecation, yet relatively little is known about their function or morphology. We investigated the function and structure of mechanoreceptors to the guinea pig IAS. METHODS Extracellular recordings from rectal nerve branches to the IAS in vitro, combined with anterograde labeling of recorded nerve trunks, were used to characterize extrinsic afferent nerve endings activated by circumferential distension. KEY RESULTS Slowly adapting, stretch-sensitive afferents were recorded in rectal nerves to the IAS. Ten of 11 were silent under basal conditions and responded to circumferential stretch in a saturating linear manner. Rectal nerve afferents responded to compression with von Frey hairs with low thresholds (0.3-0.5 mN) and 3.4 ± 0.5 discrete, elongated mechanosensitive fields of innervation aligned parallel to circular muscle bundles (length = 62 ± 16 mm, n = 10). Anterogradely labeled rectal nerve axons typically passed through sparse irregular myenteric ganglia adjacent to the IAS, before ending in extensive varicose arrays within the circular muscle and, to a lesser extent, the longitudinal muscle overlying the IAS. Few (8%) IAS myenteric ganglia contained intraganglionic laminar endings. In eight preparations, mechanotransduction sites were mapped in combination with successful anterograde fills. Mechanotransduction sites were strongly associated with extensive fine varicose arrays within the circular muscle (P < 0.05), and not with any other neural structures. CONCLUSIONS & INFERENCES Mechanotransduction sites for low-threshold, slowly adapting mechanoreceptors innervating the IAS are likely to correspond to extensive fine varicose arrays within the circular muscle.
Collapse
Affiliation(s)
- P A Lynn
- Department of Human Physiology, School of Nursing and Midwifery, Flinders University, Bedford Park, SA, Australia.
| | | |
Collapse
|
48
|
Identifying the Ion Channels Responsible for Signaling Gastro-Intestinal Based Pain. Pharmaceuticals (Basel) 2010; 3:2768-2798. [PMID: 27713376 PMCID: PMC4034097 DOI: 10.3390/ph3092768] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/05/2010] [Accepted: 08/20/2010] [Indexed: 12/20/2022] Open
Abstract
We are normally unaware of the complex signalling events which continuously occur within our internal organs. Most of us only become cognisant when sensations of hunger, fullness, urgency or gas arise. However, for patients with organic and functional bowel disorders pain is an unpleasant and often debilitating reminder. Furthermore, chronic pain still represents a large unmet need for clinical treatment. Consequently, chronic pain has a considerable economic impact on health care systems and the afflicted individuals. In order to address this need we must understand how symptoms are generated within the gut, the molecular pathways responsible for generating these signals and how this process changes in disease states.
Collapse
|
49
|
Remes-Troche JM, De-Ocampo S, Paulson J, Rao SS. Rectoanal reflexes and sensorimotor response in rectal hyposensitivity. Dis Colon Rectum 2010; 53:1047-54. [PMID: 20551758 PMCID: PMC3929945 DOI: 10.1007/dcr.0b013e3181dcb2d6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Rectal hyposensitivity commonly causes anorectal disorders, but its underlying mechanism is unknown. We hypothesized that subjects with rectal hyposensitivity have altered rectoanal reflexes and/or sensorimotor response. METHODS We performed stepwise graded balloon distensions of the rectum in 30 subjects with constipation and rectal hyposensitivity and in 23 healthy controls. Thresholds for first sensation, desire, and urgency to defecate were assessed. The lowest balloon volume that evoked rectoanal inhibitory reflex, rectoanal contractile reflex, and sensorimotor response and manometric characteristics and rectal compliance were examined. RESULTS Reflex responses were present in all subjects. The balloon volumes were higher in subjects with rectal hyposensitivity for inducing rectoanal inhibitory reflex (P = .008) and contractile reflex (P = .001) compared with controls. All controls showed a sensorimotor response, but in 13 hyposensitive subjects (43%) the onset of sensorimotor response was associated with absent sensation and in 17 (57%), with a transient rectal sensation. Thresholds for eliciting sensorimotor response were similar between patients and controls, but the amplitude, duration, and magnitude of response were higher (P < .05) in patients. Rectal compliance was similar between controls and hyposensitive subjects with transient sensation but higher (P = .001) in subjects with absent sensation. CONCLUSIONS Constipated subjects with rectal hyposensitivity demonstrate higher thresholds for inducing rectoanal reflexes and abnormal characteristics of sensorimotor response. These findings suggest either disruption of afferent gut-brain pathways or rectal wall dysfunction. These altered features may play a role in the pathogenesis of bowel dysfunction in rectal hyposensitivity.
Collapse
|
50
|
Chen JH, Sallam HS, Lin L, Chen JDZ. Colorectal and rectocolonic reflexes in canines: involvement of tone, compliance, and anal sphincter relaxation. Am J Physiol Regul Integr Comp Physiol 2010; 299:R953-9. [PMID: 20554930 DOI: 10.1152/ajpregu.00439.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Distention of the proximal colon may have inhibitory or excitatory effects on the rectum and vice versa. The reflexes between the proximal colon and the rectum have not been well studied due to difficulties in accessing the proximal colon. The aim of this study was to investigate the reflex responses and their mechanisms between the proximal colon and the rectum in consideration of distention-related changes in tone and compliance of these regions as well as anal sphincter relaxation in a canine model. Proximal colon/rectal tone, compliance, and anal sphincter relaxation were investigated in six dogs chronically implanted with a proximal colon cannula while in the fasting state and during proximal colon distention or rectal distention. It was found that: 1) both rectal distention and proximal colon distention significantly and substantially decreased the compliance of the opposite regions, and guanethidine abolished proximal colon distention-induced changes in rectal compliance; 2) rectal/proximal colon distension decreased proximal colonic/rectal tone, and guanethidine abolished both of these inhibitory effects; 3) the anal sphincter was more sensitive to rectal distention than proximal colon distention; and 4) the minimal distention pressure required to induce anal inhibitory reflex was lower for rectal distention than proximal colon distention. It was concluded that distention-related changes in tone and compliance suggest the long inhibitory reflexes between the proximal colon and the rectum with the sympathetic involvement in rectal responses. The anal sphincter is more sensitive to the distention of the rectum than that of the proximal colon.
Collapse
Affiliation(s)
- Ji-Hong Chen
- Division of Gastroenterology, University of Texas Medical Branch, Galveston, TX 77555-0655, USA
| | | | | | | |
Collapse
|