1
|
Deis T, Goetze JP, Kistorp C, Gustafsson F. Gut Hormones in Heart Failure. Circ Heart Fail 2024; 17:e011813. [PMID: 39498569 DOI: 10.1161/circheartfailure.124.011813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/07/2024] [Indexed: 11/21/2024]
Abstract
Heart failure (HF) is a syndrome affecting all organ systems. While some organ interactions have been studied intensively in HF (such as the cardiorenal interaction), the endocrine gut has to some degree been overlooked. However, there is growing evidence of direct cardiac effects of several hormones secreted from the gastrointestinal tract. For instance, GLP-1 (glucagon-like peptide-1), an incretin hormone secreted from the distal intestine following food intake, has notable effects on the heart, impacting heart rate and contractility. GLP-1 may even possess cardioprotective abilities, such as inhibition of myocardial ischemia and cardiac remodeling. While other gut hormones have been less studied, there is evidence suggesting cardiostimulatory properties of several hormones. Moreover, it has been reported that patients with HF have altered bioavailability of numerous gastrointestinal hormones, which may have prognostic implications. This might indicate an important role of gut hormones in cardiac physiology and pathology, which may be of particular importance in the failing heart. We present an overview of the current knowledge on gut hormones in HF, focusing on HF with reduced ejection fraction, and discuss how these hormones may be regulators of cardiac function and central hemodynamics. Potential therapeutic perspectives are discussed, and knowledge gaps are highlighted herein.
Collapse
Affiliation(s)
- Tania Deis
- Department of Cardiology (T.D., F.G.), Rigshospitalet, Copenhagen, Denmark
| | - Jens P Goetze
- Department of Clinical Biochemistry (J.P.G.), Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences (J.P.G.), University of Copenhagen, Denmark
| | - Caroline Kistorp
- Department of Endocrinology (C.K.), Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine (C.K., F.G.), University of Copenhagen, Denmark
| | - Finn Gustafsson
- Department of Cardiology (T.D., F.G.), Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine (C.K., F.G.), University of Copenhagen, Denmark
| |
Collapse
|
2
|
Breier NC, Paranjape SY, Scudder S, Mehr SE, Diedrich A, Flynn CR, Okamoto LE, Hartmann B, Gasbjerg LS, Shibao CA. Worsening Postural Tachycardia Syndrome Is Associated With Increased Glucose-Dependent Insulinotropic Polypeptide Secretion. Hypertension 2022; 79:e89-e99. [PMID: 35232225 PMCID: PMC9010371 DOI: 10.1161/hypertensionaha.121.17852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/16/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Postural tachycardia syndrome (POTS) is characterized by excessive upright tachycardia and disabling presyncopal symptoms, which are exacerbated after consuming a high-carbohydrate meal; it is unknown, however, what is the precise underlying mechanism. We seek to investigate the effect of glucose intake on orthostatic hemodynamic changes and gastrointestinal hormone secretion in POTS. METHODS Prospective, case-control study, 12 women with POTS who reported a postprandial worsening of their POTS symptoms and 13 age-matched female controls received 75-g oral glucose and 20 mg/kg acetaminophen to assess nutrient absorption. Hemodynamic, gastrointestinal hormone and acetaminophen levels were measured for up to 120 minutes postingestion while supine and standing. RESULTS Patients with POTS had significant orthostatic tachycardia, 48.7±11.2 versus 23.3±8.1 bpm, P=0.012 and elevated upright norepinephrine levels, 835.2±368.4 versus 356.9±156.7 pg/mL, P=0.004. After oral glucose, upright heart rate significantly increased in POTS, 21.2±11.9% versus 6.0±19.9%, P=0.033 with a concomitant decline in upright stroke volume, -10.3±11.90% versus 3.3±13.7%, P=0.027; total peripheral resistance, blood pressure and cardiac output remained unaltered. Acetaminophen rate of appearance was similar between groups (P=0.707), indicating comparable nutrient absorption rates. POTS had increased plasma levels of C-peptide (P=0.001), GIP (glucose-dependent insulinotropic polypeptide; P=0.001), peptide YY (P=0.016), and pancreatic polypeptide (P=0.04) following glucose consumption, but only GIP had a time-dependent association with the worsening upright tachycardia and stroke volume fall. CONCLUSIONS The glucose-induced worsening orthostatic tachycardia in POTS was associated with a decline in SV; these changes occurred while GIP, a splanchnic vasodilator, was maximally elevated.
Collapse
Affiliation(s)
- Nicholas C Breier
- Department of Medicine, Division of Clinical Pharmacology (N.C.B., S.Y.P., S.S., S.E.M., A.D., L.E.O., C.A.S.), Vanderbilt University Medical Center, Nashville, TN
| | - Sachin Y Paranjape
- Department of Medicine, Division of Clinical Pharmacology (N.C.B., S.Y.P., S.S., S.E.M., A.D., L.E.O., C.A.S.), Vanderbilt University Medical Center, Nashville, TN
| | - Shea Scudder
- Department of Medicine, Division of Clinical Pharmacology (N.C.B., S.Y.P., S.S., S.E.M., A.D., L.E.O., C.A.S.), Vanderbilt University Medical Center, Nashville, TN
| | - Shahram E Mehr
- Department of Medicine, Division of Clinical Pharmacology (N.C.B., S.Y.P., S.S., S.E.M., A.D., L.E.O., C.A.S.), Vanderbilt University Medical Center, Nashville, TN
| | - Andre' Diedrich
- Department of Medicine, Division of Clinical Pharmacology (N.C.B., S.Y.P., S.S., S.E.M., A.D., L.E.O., C.A.S.), Vanderbilt University Medical Center, Nashville, TN
| | - Charles R Flynn
- Department of Surgery (C.R.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Luis E Okamoto
- Department of Medicine, Division of Clinical Pharmacology (N.C.B., S.Y.P., S.S., S.E.M., A.D., L.E.O., C.A.S.), Vanderbilt University Medical Center, Nashville, TN
| | - Bolette Hartmann
- Novo Nordisk Foundation Center for Basic Metabolic Research (B.H.), University of Copenhagen, Denmark
| | - Lærke Smidt Gasbjerg
- Department of Biomedical Science (B.H., L.S.G.), University of Copenhagen, Denmark
| | - Cyndya A Shibao
- Department of Medicine, Division of Clinical Pharmacology (N.C.B., S.Y.P., S.S., S.E.M., A.D., L.E.O., C.A.S.), Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
3
|
Borg MJ, Xie C, Rayner CK, Horowitz M, Jones KL, Wu T. Potential for Gut Peptide-Based Therapy in Postprandial Hypotension. Nutrients 2021; 13:2826. [PMID: 34444986 PMCID: PMC8399874 DOI: 10.3390/nu13082826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/06/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023] Open
Abstract
Postprandial hypotension (PPH) is an important and under-recognised disorder resulting from inadequate compensatory cardiovascular responses to meal-induced splanchnic blood pooling. Current approaches to management are suboptimal. Recent studies have established that the cardiovascular response to a meal is modulated profoundly by gastrointestinal factors, including the type and caloric content of ingested meals, rate of gastric emptying, and small intestinal transit and absorption of nutrients. The small intestine represents the major site of nutrient-gut interactions and associated neurohormonal responses, including secretion of glucagon-like peptide-1, glucose-dependent insulinotropic peptide and somatostatin, which exert pleotropic actions relevant to the postprandial haemodynamic profile. This review summarises knowledge relating to the role of these gut peptides in the cardiovascular response to a meal and their potential application to the management of PPH.
Collapse
Affiliation(s)
- Malcolm J. Borg
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.X.); (C.K.R.); (M.H.); (K.L.J.)
| | - Cong Xie
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.X.); (C.K.R.); (M.H.); (K.L.J.)
| | - Christopher K. Rayner
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.X.); (C.K.R.); (M.H.); (K.L.J.)
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.X.); (C.K.R.); (M.H.); (K.L.J.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Karen L. Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.X.); (C.K.R.); (M.H.); (K.L.J.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.X.); (C.K.R.); (M.H.); (K.L.J.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| |
Collapse
|
4
|
Elevated levels of fasting serum GIP may be protective factors for diabetic retinopathy in type 2 diabetes mellitus. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-021-00940-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
5
|
Zhang X, Jones KL, Horowitz M, Rayner CK, Wu T. Effects of Proximal and Distal Enteral Glucose Infusion on Cardiovascular Response in Health and Type 2 Diabetes. J Clin Endocrinol Metab 2020; 105:dgaa341. [PMID: 32497217 DOI: 10.1210/clinem/dgaa341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/02/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
CONTEXT Exposure of the small intestine to nutrients frequently leads to marked reductions in blood pressure (BP) in type 2 diabetes (T2DM). It remains unclear whether the region of the gut exposed to nutrients influences postprandial cardiovascular responses. OBJECTIVE To evaluate the cardiovascular responses to proximal and distal small intestinal glucose infusion in health and T2DM. DESIGN Double-blind, randomized, crossover design. SETTING Single center in Australia. PATIENTS 10 healthy subjects and 10 T2DM patients. INTERVENTIONS Volunteers were studied on 2 occasions, when a transnasal catheter was positioned with infusion ports opening 13 cm and 190 cm beyond the pylorus. A 30-g bolus of glucose was infused into either site and 0.9% saline into the alternate site over 60 minutes. MAIN OUTCOME MEASURES BP, heart rate (HR), and superior mesenteric artery (SMA) blood flow were measured over 180 minutes. RESULTS Systolic BP was unchanged in response to both infusions in health, but decreased in T2DM, with a greater reduction after proximal versus distal infusion (all P ≤ .01). The increment in HR did not differ between treatments in health, but was greater after distal versus proximal infusion in T2DM (P = .02). The increases in SMA blood flow were initially greater, but less sustained, with proximal versus distal infusion in health (P < .001), a pattern less evident in T2DM. CONCLUSIONS In T2DM, postprandial hypotension may be mitigated by diversion of nutrients from the proximal to the distal small intestine.
Collapse
Affiliation(s)
- Xiang Zhang
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Christopher K Rayner
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
- Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
6
|
Honka H, Koffert J, Kauhanen S, Kudomi N, Hurme S, Mari A, Lindqvist A, Wierup N, Parkkola R, Groop L, Nuutila P. Liver blood dynamics after bariatric surgery: the effects of mixed-meal test and incretin infusions. Endocr Connect 2018; 7:888-896. [PMID: 29941634 PMCID: PMC6063878 DOI: 10.1530/ec-18-0234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 01/18/2023]
Abstract
AIMS/HYPOTHESIS The mechanisms for improved glycemic control after bariatric surgery in subjects with type 2 diabetes (T2D) are not fully known. We hypothesized that dynamic hepatic blood responses to a mixed-meal are changed after bariatric surgery in parallel with an improvement in glucose tolerance. METHODS A total of ten morbidly obese subjects with T2D were recruited to receive a mixed-meal and a glucose-dependent insulinotropic polypeptide (GIP) infusion before and early after (within a median of less than three months) bariatric surgery, and hepatic blood flow and volume (HBV) were measured repeatedly with combined positron emission tomography/MRI. Ten lean non-diabetic individuals served as controls. RESULTS Bariatric surgery leads to a significant decrease in weight, accompanied with an improved β-cell function and glucagon-like peptide 1 (GLP-1) secretion, and a reduction in liver volume. Blood flow in portal vein (PV) was increased by 1.65-fold (P = 0.026) in response to a mixed-meal in subjects after surgery, while HBV decreased in all groups (P < 0.001). When the effect of GIP infusion was tested separately, no change in hepatic arterial and PV flow was observed, but HBV decreased as seen during the mixed-meal test. CONCLUSIONS/INTERPRETATION Early after bariatric surgery, PV flow response to a mixed-meal is augmented, improving digestion and nutrient absorption. GIP influences the post-prandial reduction in HBV thereby diverting blood to the extrahepatic sites.
Collapse
Affiliation(s)
- Henri Honka
- Turku PET CentreUniversity of Turku, Turku, Finland
| | - Jukka Koffert
- Turku PET CentreUniversity of Turku, Turku, Finland
- Department of GastroenterologyTurku University Hospital, Turku, Finland
| | - Saila Kauhanen
- Division of Digestive Surgery and UrologyTurku University Hospital, Turku, Finland
| | | | - Saija Hurme
- Department of BiostatisticsUniversity of Turku, Turku, Finland
| | - Andrea Mari
- Institute of NeuroscienceNational Research Council, Padua, Italy
| | - Andreas Lindqvist
- Department of Clinical SciencesLund University Diabetes Centre, Malmö, Sweden
| | - Nils Wierup
- Department of Clinical SciencesLund University Diabetes Centre, Malmö, Sweden
| | - Riitta Parkkola
- Department of RadiologyUniversity of Turku and Turku University Hospital, Turku, Finland
| | - Leif Groop
- Department of Clinical SciencesLund University Diabetes Centre, Malmö, Sweden
| | - Pirjo Nuutila
- Turku PET CentreUniversity of Turku, Turku, Finland
- Department of EndocrinologyTurku University Hospital, Turku, Finland
| |
Collapse
|
7
|
Asmar A, Asmar M, Simonsen L, Madsbad S, Holst JJ, Hartmann B, Sorensen CM, Bülow J. Glucagon-like peptide-1 elicits vasodilation in adipose tissue and skeletal muscle in healthy men. Physiol Rep 2018; 5:5/3/e13073. [PMID: 28174344 PMCID: PMC5309569 DOI: 10.14814/phy2.13073] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/03/2016] [Accepted: 11/13/2016] [Indexed: 12/24/2022] Open
Abstract
In healthy subjects, we recently demonstrated that during acute administration of GLP-1, cardiac output increased significantly, whereas renal blood flow remained constant. We therefore hypothesize that GLP-1 induces vasodilation in other organs, for example, adipose tissue, skeletal muscle, and/or splanchnic tissues. Nine healthy men were examined twice in random order during a 2-hour infusion of either GLP-1 (1.5 pmol kg-1 min-1) or saline. Cardiac output was continuously estimated noninvasively concomitantly with measurement of intra-arterial blood pressure. Subcutaneous, abdominal adipose tissue blood flow (ATBF) was measured by the 133Xenon clearance technique. Leg and splanchnic blood flow were measured by Fick's Principle, using indocyanine green as indicator. In the GLP-1 study, cardiac output increased significantly together with a significant increase in arterial pulse pressure and heart rate compared with the saline study. Subcutaneous, abdominal ATBF and leg blood flow increased significantly during the GLP-1 infusion compared with saline, whereas splanchnic blood flow response did not differ between the studies. We conclude that in healthy subjects, GLP-1 increases cardiac output acutely due to a GLP-1-induced vasodilation in adipose tissue and skeletal muscle together with an increase in cardiac work.
Collapse
Affiliation(s)
- Ali Asmar
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Meena Asmar
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Lene Simonsen
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre University Hospital, Copenhagen, Denmark
| | - Jens J Holst
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Sorensen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bülow
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg University Hospital, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Pfeiffer AFH, Keyhani-Nejad F. High Glycemic Index Metabolic Damage - a Pivotal Role of GIP and GLP-1. Trends Endocrinol Metab 2018; 29:289-299. [PMID: 29602522 DOI: 10.1016/j.tem.2018.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 01/16/2023]
Abstract
When glucose-fructose dimers are supplied as the slowly digestible, completely absorbable, low glycemic index (GI) sugar isomaltulose, the detrimental effects of high GI sucrose are avoided. This difference requires the presence of intact glucose-induced insulinotropic peptide receptor (GIPR) and is mediated by the rapid uptake of glucose and the stimulation of GIP release from K cells in the upper small intestine. GIP promotes lipogenesis, fatty liver, insulin resistance, and postprandial inflammation, and reduces fat oxidation in skeletal muscle, partly by hypothalamic interference with energy partitioning and epigenetic programming. GIP is similarly required for the detrimental metabolic effects of other high GI carbohydrates. We therefore propose that the release of GIP in the upper small intestine is an important determinant of the metabolic quality of carbohydrates.
Collapse
Affiliation(s)
- Andreas F H Pfeiffer
- Department of Clinical Nutrition, German Institute of Human Nutrition, Nuthetal, Germany; Department for Endocrinology, Diabetes and Nutrition, Charité - University of Medicine, Berlin, Germany; German Center for Diabetes Research, Partner Potsdam and Berlin.
| | | |
Collapse
|
9
|
Gao X, Lindqvist A, Sandberg M, Groop L, Wierup N, Jansson L. Effects of GIP on regional blood flow during normoglycemia and hyperglycemia in anesthetized rats. Physiol Rep 2018; 6:e13685. [PMID: 29673130 PMCID: PMC5907939 DOI: 10.14814/phy2.13685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/22/2022] Open
Abstract
The incretin hormone glucose-dependent insulinotropic polypeptide (GIP) potentiates glucose-stimulated insulin secretion, and affects β-cell turnover. This study aimed at evaluating if some of the beneficial effects of GIP on glucose homeostasis can be explained by modulation of islet blood flow. Anesthetized Sprague-Dawley rats were infused intravenously with different doses of GIP (10, 20, or 60 ng/kg*min) for 30 min. Subsequent organ blood flow measurements were performed with microspheres. In separate animals, islets were perfused ex vivo with GIP (10-6 -10-12 mol/L) during normo- and hyperglycemia and arteriolar responsiveness was recorded. The highest dose of GIP potentiated insulin secretion during hyperglycemia, but had no effect in normoglycemic rats. The highest GIP concentration decreased blood perfusion of whole pancreas, pancreatic islets, duodenum, colon, liver and kidneys. The decrease in blood flow was unaffected by ganglion blockade or adenosine receptor inhibition. In contrast to this, in single perfused islets GIP induced a dose-dependent arteriolar dilation. Thus, high doses of GIP exert a direct dilatory effect on islet arterioles in isolated islets, but induce a generalized vasoconstriction in splanchnic organs, including the whole pancreas and islets, in vivo. The latter effect is unlikely to be mediated by adenosine, the autonomic nervous system, or endothelial mediators.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Andreas Lindqvist
- Department of Clinical SciencesLund University Diabetes CentreLund UniversityMalmöSweden
| | - Monica Sandberg
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Leif Groop
- Department of Clinical SciencesLund University Diabetes CentreLund UniversityMalmöSweden
| | - Nils Wierup
- Department of Clinical SciencesLund University Diabetes CentreLund UniversityMalmöSweden
| | - Leif Jansson
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| |
Collapse
|
10
|
Honka H, Koffert J, Kauhanen S, Teuho J, Hurme S, Mari A, Lindqvist A, Wierup N, Groop L, Nuutila P. Bariatric Surgery Enhances Splanchnic Vascular Responses in Patients With Type 2 Diabetes. Diabetes 2017; 66:880-885. [PMID: 28096259 DOI: 10.2337/db16-0762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 01/11/2017] [Indexed: 11/13/2022]
Abstract
Bariatric surgery results in notable weight loss and alleviates hyperglycemia in patients with type 2 diabetes (T2D). We aimed to characterize the vascular effects of a mixed meal and infusion of exogenous glucose-dependent insulinotropic polypeptide (GIP) in the splanchnic region in 10 obese patients with T2D before and after bariatric surgery and in 10 lean control subjects. The experiments were carried out on two separate days. Pancreatic and intestinal blood flow (BF) were measured at baseline, 20 min, and 50 min with 15O-water by using positron emission tomography and MRI. Before surgery, pancreatic and intestinal BF responses to a mixed meal did not differ between obese and lean control subjects. Compared with presurgery, the mixed meal induced a greater increase in plasma glucose, insulin, and GIP concentrations after surgery, which was accompanied by a marked augmentation of pancreatic and intestinal BF responses. GIP infusion decreased pancreatic but increased small intestinal BF similarly in all groups both before and after surgery. Taken together, these results demonstrate that bariatric surgery leads to enhanced splanchnic vascular responses as a likely consequence of rapid glucose appearance and GIP hypersecretion.
Collapse
Affiliation(s)
- Henri Honka
- Turku PET Centre, University of Turku, Turku, Finland
| | - Jukka Koffert
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Gastroenterology, Turunmaa Hospital, Turku, Finland
| | - Saila Kauhanen
- Division of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland
| | - Jarmo Teuho
- Turku PET Centre, University of Turku, Turku, Finland
| | - Saija Hurme
- Department of Biostatistics, University of Turku, Turku, Finland
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Andreas Lindqvist
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Nils Wierup
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Leif Groop
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| |
Collapse
|
11
|
Koffert J, Honka H, Teuho J, Kauhanen S, Hurme S, Parkkola R, Oikonen V, Mari A, Lindqvist A, Wierup N, Groop L, Nuutila P. Effects of meal and incretins in the regulation of splanchnic blood flow. Endocr Connect 2017; 6:179-187. [PMID: 28258126 PMCID: PMC5428912 DOI: 10.1530/ec-17-0015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/03/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Meal ingestion is followed by a redistribution of blood flow (BF) within the splanchnic region contributing to nutrient absorption, insulin secretion and glucose disposal, but factors regulating this phenomenon in humans are poorly known. The aim of the present study was to evaluate the organ-specific changes in BF during a mixed-meal and incretin infusions. DESIGN A non-randomized intervention study of 10 healthy adults to study splanchnic BF regulation was performed. METHODS Effects of glucose-dependent insulinotrophic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) infusions and mixed-meal were tested in 10 healthy, glucose tolerant subjects using PET-MRI multimodal imaging technology. Intestinal and pancreatic BF and blood volume (BV) were measured with 15O-water and 15O-carbon monoxide, respectively. RESULTS Ingestion of a mixed-meal led to an increase in pancreatic and jejunal BF, whereas duodenal BF was unchanged. Infusion of GIP and GLP-1 reduced BF in the pancreas. However, GIP infusion doubled blood flow in the jejunum with no effect of GLP-1. CONCLUSION Together, our data suggest that meal ingestion leads to increases in pancreatic BF accompanied by a GIP-mediated increase in jejunal but not duodenal blood flow.
Collapse
Affiliation(s)
- Jukka Koffert
- Department of GastroenterologyTurunmaa Hospital, Turku, Finland
- Turku PET CentreUniversity of Turku, Turku, Finland
| | - Henri Honka
- Turku PET CentreUniversity of Turku, Turku, Finland
| | - Jarmo Teuho
- Department of GastroenterologyTurunmaa Hospital, Turku, Finland
| | - Saila Kauhanen
- Division of Digestive Surgery and UrologyTurku University Hospital, Turku, Finland
| | - Saija Hurme
- Institute of BiostatisticsUniversity of Turku, Turku, Finland
| | - Riitta Parkkola
- Turku PET CentreUniversity of Turku, Turku, Finland
- Department of RadiologyUniversity of Turku and Turku University Hospital, Turku, Finland
| | - Vesa Oikonen
- Turku PET CentreUniversity of Turku, Turku, Finland
| | - Andrea Mari
- Institute of NeuroscienceNational Research Council, Padua, Italy
| | - Andreas Lindqvist
- Department of Clinical SciencesLund University Diabetes Centre, Malmö, Sweden
| | - Nils Wierup
- Department of Clinical SciencesLund University Diabetes Centre, Malmö, Sweden
| | - Leif Groop
- Department of Clinical SciencesLund University Diabetes Centre, Malmö, Sweden
| | - Pirjo Nuutila
- Turku PET CentreUniversity of Turku, Turku, Finland
- Department of EndocrinologyTurku University Hospital, Turku, Finland
| |
Collapse
|
12
|
Pujadas G, Drucker DJ. Vascular Biology of Glucagon Receptor Superfamily Peptides: Mechanistic and Clinical Relevance. Endocr Rev 2016; 37:554-583. [PMID: 27732058 DOI: 10.1210/er.2016-1078] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Regulatory peptides produced in islet and gut endocrine cells, including glucagon, glucagon-like peptide-1 (GLP-1), GLP-2, and glucose-dependent insulinotropic polypeptide, exert actions with considerable metabolic importance and translational relevance. Although the clinical development of GLP-1 receptor agonists and dipeptidyl peptidase-4 inhibitors has fostered research into how these hormones act on the normal and diseased heart, less is known about the actions of these peptides on blood vessels. Here we review the effects of these peptide hormones on normal blood vessels and highlight their vascular actions in the setting of experimental and clinical vascular injury. The cellular localization and signal transduction properties of the receptors for glucagon, GLP-1, GLP-2, and glucose-dependent insulinotropic polypeptide are discussed, with emphasis on endothelial cells and vascular smooth muscle cells. The actions of these peptides on the control of blood flow, blood pressure, angiogenesis, atherosclerosis, and vascular inflammation are reviewed with a focus on elucidating direct and indirect mechanisms of action. How these peptides traverse the blood-brain barrier is highlighted, with relevance to the use of GLP-1 receptor agonists to treat obesity and neurodegenerative disorders. Wherever possible, we compare actions identified in cell lines and primary cell culture with data from preclinical studies and, when available, results of human investigation, including studies in subjects with diabetes, obesity, and cardiovascular disease. Throughout the review, we discuss pitfalls, limitations, and challenges of the existing literature and highlight areas of controversy and uncertainty. The increasing use of peptide-based therapies for the treatment of diabetes and obesity underscores the importance of understanding the vascular biology of peptide hormone action.
Collapse
Affiliation(s)
- Gemma Pujadas
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| |
Collapse
|
13
|
Privatananupunt J, Watari I, Podyma-Inoue KA, Kubono M, Ono T. Expression of glucose-dependent insulinotropic polypeptide and its receptor in the rat major salivary glands. Acta Histochem 2014; 116:545-50. [PMID: 24360021 DOI: 10.1016/j.acthis.2013.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 12/25/2022]
Abstract
Glucose-dependent insulinotropic polypeptide receptors (GIPR) are expressed throughout the body. The expression of its ligand, glucose-dependent insulinotropic polypeptide (GIP) however, has only been reported in a limited numbers of organs. Although the rat submandibular salivary gland (SMG) has been found to express GIP, its biological role is still not understood. Moreover, nothing is known about the expression of GIP in other types of salivary glands, i.e. the parotid (PG) and sublingual (SLG) glands. We detected the expression of GIP mRNA in the rat PG, SMG and SLG. Immunohistochemical analyses revealed that GIP and GIPR were expressed only in the ductal area of all types of major salivary glands, and no immunostaining was found in the acini area. We also found GIP expression in the rat SMG to be age dependent, with 8-week-old rats showing 2-3-fold higher than those of 9- and 11-week-old rats, respectively. This is the first study to indicate both GIP and GIPR expression in the rat major salivary glands, as well as its variation in the rat SMG during the growth period. These findings are crucial for a better understanding of the physiological function of GIP in rat major salivary gland.
Collapse
Affiliation(s)
- Jutiporn Privatananupunt
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| | - Ippei Watari
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Katarzyna Anna Podyma-Inoue
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Mariko Kubono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
14
|
McIntosh CHS, Widenmaier S, Kim SJ. Pleiotropic actions of the incretin hormones. VITAMINS AND HORMONES 2010; 84:21-79. [PMID: 21094896 DOI: 10.1016/b978-0-12-381517-0.00002-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The insulin secretory response to a meal results largely from glucose stimulation of the pancreatic islets and both direct and indirect (autonomic) glucose-dependent stimulation by incretin hormones released from the gastrointestinal tract. Two incretins, Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), have so far been identified. Localization of the cognate G protein-coupled receptors for GIP and GLP-1 revealed that they are present in numerous tissues in addition to the endocrine pancreas, including the gastrointestinal, cardiovascular, central nervous and autonomic nervous systems (ANSs), adipose tissue, and bone. At these sites, the incretin hormones exert a range of pleiotropic effects, many of which contribute to the integration of processes involved in the regulation of food intake, and nutrient and mineral processing and storage. From detailed studies at the cellular and molecular level, it is also evident that both incretin hormones act via multiple signal transduction pathways that regulate both acute and long-term cell function. Here, we provide an overview of current knowledge relating to the physiological roles of GIP and GLP-1, with specific emphasis on their modes of action on islet hormone secretion, β-cell proliferation and survival, central and autonomic neuronal function, gastrointestinal motility, and glucose and lipid metabolism. However, it is emphasized that despite intensive research on the various body systems, in many cases there is uncertainty as to the pathways by which the incretins mediate their pleiotropic effects and only a rudimentary understanding of the underlying cellular mechanisms involved, and these are challenges for the future.
Collapse
Affiliation(s)
- Christopher H S McIntosh
- Department of Cellular & Physiological Sciences and the Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
15
|
Chapter 15 Glucose‐Dependent Insulinotropic Polypeptide (Gastric Inhibitory Polypeptide; GIP). VITAMINS AND HORMONES 2009; 80:409-71. [DOI: 10.1016/s0083-6729(08)00615-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
|
17
|
Kozuch PL, Brandt LJ. Review article: diagnosis and management of mesenteric ischaemia with an emphasis on pharmacotherapy. Aliment Pharmacol Ther 2005; 21:201-15. [PMID: 15691294 DOI: 10.1111/j.1365-2036.2005.02269.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mesenteric ischaemia results from decreased blood flow to the bowel, causing cellular injury from lack of oxygen and nutrients. Acute mesenteric ischaemia (AMI) is an uncommon disorder with high morbidity and mortality, but outcomes are improved with prompt recognition and aggressive treatment. Five subgroups of AMI have been identified, with superior mesenteric artery embolism (SMAE) the most common. Older age and cardiovascular disease are common risk factors for AMI, excepting acute mesenteric venous thrombosis (AMVT), which affects younger patients with hypercoaguable states. AMI is characterized by sudden onset of abdominal pain; a benign abdominal exam may be observed prior to bowel infarction. Conventional angiography and more recently, computed tomography angiography, are the cornerstones of diagnosis. Correction of predisposing conditions, volume resuscitation and antibiotic treatment are standard treatments for AMI, and surgery is mandated in the setting of peritoneal signs. Intra-arterial vasodilators are used routinely in the treatment of non-occlusive mesenteric ischaemia (NOMI) and also are advocated in the treatment of occlusive AMI to decrease associated vasospasm. Thrombolytics have been used on a limited basis to treat occlusive AMI. A variety of agents have been studied in animal models to treat reperfusion injury, which sometimes can be more harmful than ischaemic injury. Chronic mesenteric ischaemia (CMI) usually is caused by severe obstructive atherosclerotic disease of two or more splanchnic vessels, presents with post-prandial pain and weight loss, and is treated by either surgical revascularization or percutaneous angioplasty and stenting.
Collapse
Affiliation(s)
- P L Kozuch
- Division of Gastroenterology, Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | | |
Collapse
|
18
|
Antonini SR, Fragoso MC, Lacroix A. Hiperplasia adrenal macronodular independente de ACTH (AIMAH): aspectos clínicos e moleculares. ACTA ACUST UNITED AC 2004; 48:620-36. [PMID: 15761531 DOI: 10.1590/s0004-27302004000500006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A AIMAH é caracterizada pela presença de macronódulos em ambas as adrenais, na ausência da estimulação do ACTH. Habitualmente, as manifestações clínicas aparecem somente após várias décadas de vida, provavelmente em função da baixa atividade esteroidogênica do tecido hiperplásico. Entretanto, em indivíduos assintomáticos cuja AIMAH foi descoberta acidentalmente, o eixo HHA já se encontra alterado. Estudos têm demonstrado que, na maioria dos casos de AIMAH, a secreção de cortisol é regulada de modo "aberrante" por hormônios como o GIP, AVP, catecolaminas, LH/hCG e serotonina, através de seus respectivos receptores, ectópicos ou eutópicos, porém aberrantemente acoplados à esteroidogênese. Os mecanismos moleculares responsáveis pela expressão ectópica dos receptores hormonais e/ou de seu acoplamento anormal à esteroidogênese adrenal ainda são pouco conhecidos. Embora a expressão aberrante destes receptores hormonais possa desempenhar um papel importante na iniciação da proliferação celular aumentada, bem como na esteroidogênese, é provável que eventos genéticos adicionais ocorram, envolvendo a regulação do ciclo celular, adesão e transcrição. Mutações no gene GNAS1 não associadas à síndrome de McCune-Albright podem ser encontradas em raros casos de AIMAH. Em alguns casos, a presença de receptor hormonal aberrante abre novas possibilidades de tratamento farmacológico específico do hipercortisolismo, seja isolado ou associado à adrenalectomia unilateral.
Collapse
Affiliation(s)
- Sonir R Antonini
- Departamento de Pediatria, Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, USP.
| | | | | |
Collapse
|
19
|
Antonini SR, N'Diaye N, Baldacchino V, Hamet P, Tremblay J, Lacroix A. Analysis of the putative regulatory region of the gastric inhibitory polypeptide receptor gene in food-dependent Cushing's syndrome. J Steroid Biochem Mol Biol 2004; 91:171-7. [PMID: 15276624 DOI: 10.1016/j.jsbmb.2004.03.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Accepted: 03/01/2004] [Indexed: 11/21/2022]
Abstract
Gastric inhibitory polypeptide (GIP)-dependent Cushing's syndrome (CS) results from the ectopic expression of non-mutated GIP receptor (hGIPR) in the adrenal cortex. We evaluated whether mutations or polymorphisms in the regulatory region of the GIPR gene could lead to this aberrant expression. We studied 9.0kb upstream and 1.3kb downstream of the GIPR gene putative promoter (pProm) by sequencing leukocyte DNA from controls and from adrenal tissues of GIP- and non-GIP-dependent CS patients. The putative proximal promoter region (800 bp) and the first exon and intron of the hGIPR gene were sequenced on adrenal DNA from nine GIP-dependent CS, as well as on leukocyte DNA of nine normal controls. Three variations found in this region were found in all patients and controls; at position -4/-5, an insertion of a T was seen in four out of nine patients and in five out of nine controls. Transient transfection studies conducted in rat GC and mouse Y1 cells showed that the TT allele confers loss of 40% in the promoter activity. The analysis of the 8-kb distal pProm region revealed eight distal single nucleotide polymorphisms (SNPs) without probable association with the disease, since frequencies in patients and controls were very similar. In conclusion, mutations or SNPs in the regulatory region of the GIPR gene are unlikely to underlie GIP-dependent CS.
Collapse
Affiliation(s)
- S R Antonini
- Laboratories of Endocrine Pathophysiology, Cellular Biology of Hypertension, and Molecular Medicine, Department of Medicine, Hôtel-Dieu du Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Canada H2W 1T8
| | | | | | | | | | | |
Collapse
|
20
|
Ding KH, Zhong Q, Xu J, Isales CM. Glucose-dependent insulinotropic peptide: differential effects on hepatic artery vs. portal vein endothelial cells. Am J Physiol Endocrinol Metab 2004; 286:E773-9. [PMID: 14709420 DOI: 10.1152/ajpendo.00507.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glucose-dependent insulinotropic peptide (GIP) has been reported to have opposing effects on splanchnic blood flow. GIP infusion in dogs results in an increase in portal vein circulation but a drop in hepatic artery blood flow. In an effort to evaluate whether these different responses were related to intrinsic differences in GIP effects, we isolated canine hepatic artery (HAEC) and portal vein endothelial cells (PVEC). We report that there are differences in GIP activation of the signal transduction pathways in these two cell types. GIP stimulates secretion of endothelin-1 (ET-1), a potent vasoconstrictor, from HAEC (EC50 0.28 nM) but not from PVEC. This effect could be abolished by preventing a rise in intracellular calcium, demonstrating the calcium dependence of GIP-induced ET-1 secretion from HAEC. The GIP effect was specific, as a GIP receptor antagonist blocked it. In contrast, GIP stimulated nitric oxide production from PVEC (EC50 0.09 nM) but not from HAEC. Taken together, our data demonstrate distinct differences in GIP effects on HAEC from those on PVEC. We conclude that differences in GIP stimulation of ET-1 vs. nitric oxide production in different vascular beds may account for some of the observed differences in its physiological effects.
Collapse
Affiliation(s)
- Ke-Hong Ding
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, CB-2803, 1120 15th St., Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
21
|
Ding KH, Zhong Q, Isales CM. Glucose-dependent insulinotropic peptide stimulates thymidine incorporation in endothelial cells: role of endothelin-1. Am J Physiol Endocrinol Metab 2003; 285:E390-6. [PMID: 12721154 DOI: 10.1152/ajpendo.00509.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously characterized the receptor for glucose-dependent insulinotropic polypeptide (GIPR) in vascular endothelial cells (EC). Different EC types were found to contain distinct GIPR splice variants. To determine whether activation of the GIPR splice variants resulted in different cellular responses, we examined GIP effects on human umbilical vein endothelial cells (HUVEC), which contain two GIPR splice variants, and compared them with a spontaneously transformed human umbilical vein EC line, ECV 304, which contains four GIPR splice variants. GIP dose-dependently stimulated HUVEC and ECV 304 proliferation as measured by [3H]thymidine incorporation. GIP increased endothelin-1 (ET-1) secretion from HUVEC but not from ECV 304. Use of the endothelin B receptor blocker BQ-788 resulted in an inhibition of [3H]thymidine incorporation in HUVEC but not in ECV 304. These findings suggest that, although GIP increases [3H]thymidine incorporation in both HUVEC and ECV 304, this proliferative response is mediated by ET-1 only in HUVEC. These differences in cellular response to GIP may be related to differences in activation of GIPR splice variants.
Collapse
Affiliation(s)
- Ke-Hong Ding
- Institute of Molecular Medicine and Genetics, Dept. of Medicine, Medical College of Georgia, 120 15th St., Augusta, GA 30912, USA
| | | | | |
Collapse
|
22
|
Tabriziani H, Frishman WH, Brandt LJ. Drug therapies for mesenteric vascular disease. HEART DISEASE (HAGERSTOWN, MD.) 2002; 4:306-14. [PMID: 12350243 DOI: 10.1097/00132580-200209000-00007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mesenteric vascular disease has been increasingly diagnosed in the past 25 years. This rise in incidence has been attributed to the advanced mean age of the population and increasing number of critically ill patients, and to a greater clinical recognition of the condition. While surgical revascularization and resection has long been the standard of treatment, medical management also plays an important role. Early diagnosis before irreversible bowel damage, which may occur within 6 to 8 hours after insult, is the goal of successful medical treatment without surgical intervention. Even in the presence or irreversible bowel ischemia, perioperative medical treatment may reduce the progression of further ischemia, and bowel resection may be limited. This article outlines the appropriate medical management of ischemic disorders of the intestine, with an emphasis on the drug treatments presently used in clinical practice and those being studied in the laboratory.
Collapse
Affiliation(s)
- Hossein Tabriziani
- Department of Medicine, St. Barnabas Hospital Center, Bronx, New York, USA
| | | | | |
Collapse
|
23
|
Bollag RJ, Zhong Q, Ding KH, Phillips P, Zhong L, Qin F, Cranford J, Mulloy AL, Cameron R, Isales CM. Glucose-dependent insulinotropic peptide is an integrative hormone with osteotropic effects. Mol Cell Endocrinol 2001; 177:35-41. [PMID: 11377818 DOI: 10.1016/s0303-7207(01)00405-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Glucose-dependent insulinotropic peptide (GIP) is a gut-derived hormone known to be important in modulating glucose-induced insulin secretion. In addition, GIP receptors are widely distributed and may have effects on multiple other tissues: fat cells, adrenal glands, endothelium and brain. We have demonstrated recently that GIP also has anabolic effects on bone-derived cells. We now demonstrate that GIP administration prevents the bone loss associated with ovariectomy. We propose that GIP plays a unique role in signaling the bone about nutrient availability, indicating the importance of the gut hormones in directing absorbed nutrients to the bone, and suggesting the concept of an 'entero-osseous axis'. Thus, GIP plays an integrative role helping coordinate efficient and targeted nutrient absorption and distribution.
Collapse
Affiliation(s)
- R J Bollag
- Department of Medicine, Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhong Q, Bollag RJ, Dransfield DT, Gasalla-Herraiz J, Ding KH, Min L, Isales CM. Glucose-dependent insulinotropic peptide signaling pathways in endothelial cells. Peptides 2000; 21:1427-32. [PMID: 11072131 DOI: 10.1016/s0196-9781(00)00287-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Glucose-dependent insulinotropic peptide (GIP) potentiates glucose-induced insulin secretion. In addition, GIP has vasoconstrictive or vasodilatory properties depending on the vascular bed affected. In order to assess whether this effect could be related to differences in GIP receptor expression, several different endothelial cell types were examined for GIP receptor expression. GIP receptor splice variants were detected and varied depending on the endothelial cell type. Furthermore, stimulation of these cells with GIP led to cell type dependent differences in activation of the calcium and cAMP signaling pathways. To our knowledge this is the first physiological characterization of receptors for GIP in endothelial cells.
Collapse
Affiliation(s)
- Q Zhong
- Institute of Molecular Medicine and Genetics, Dept. of Medicine, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Fujimoto K, Hosotani R, Wada M, Lee J, Koshiba T, Miyamoto Y, Doi R, Imamura M. Ischemia-reperfusion injury on the pancreas in rats: identification of acinar cell apoptosis. J Surg Res 1997; 71:127-36. [PMID: 9299280 DOI: 10.1006/jsre.1997.5151] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An ischemia-reperfusion injury on the pancreas is involved in the pathophysiology of acute pancreatitis or tissue injuries after pancreas transplantation. On the other hand, recent studies have demonstrated that ischemia-reperfusion induces apoptosis in several organs such as kidney, heart, and brain. In the present study, we sought to characterize a pattern of injury during ischemia-reperfusion on the pancreas and determined whether ischemia-reperfusion on the pancreas causes the apoptotic process. Ischemia-reperfusion was induced by blocking the inferior splenic artery and removing the clamp in pentobarbital-anesthetized rats. Rats were sacrificed at 0-72 hr following a 60-min ischemia. Evans blue extravasation showed 3.5-fold increase at 2 hr after reperfusion, indicating a rapid increase of vascular permeability. Tissue myeloperoxidase activity, an index of neutrophil accumulation, significantly increased in a time-dependent manner until 48 hr after reperfusion. Histological analysis revealed the existences of interstitial cell infiltration and edema. DNA breaks of acinar cells were detected by gel electrophoresis and in situ nick end-labeling, and the numbers strikingly increased at 48 hr after reperfusion. Furthermore, Bax protein, an effector of apoptotic cell death, was expressed in acinar cells. The results indicate that an ischemia-reperfusion injury on the pancreas in rats resembles many features of acute pancreatitis. Apoptosis in acinar cells may be one of the specific features of the ischemia-reperfusion injury on the pancreas.
Collapse
Affiliation(s)
- K Fujimoto
- First Department of Surgery, Kyoto University, Kyoto, 606-01, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Svensson AM, Efendic S, Ostenson CG, Jansson L. Gastric inhibitory polypeptide and splanchnic blood perfusion: augmentation of the islet blood flow increase in hyperglycemic rats. Peptides 1997; 18:1055-9. [PMID: 9357066 DOI: 10.1016/s0196-9781(97)00031-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of the study was to investigate how the incretin candidate hormone gastric inhibitory polypeptide (GIP) affects splanchnic blood flow, especially pancreatic islet blood flow. For this purpose, male Sprague-Dawley rats were injected intravenously with either saline or GIP (5 or 15 micrograms/kg body weight) 10 min before blood flow measurements by a microsphere technique. Furthermore, 3 min before the blood flow measurements, 1 ml of either saline or 30% D-glucose was given intravenously. All glucose-injected animals were markedly hyperglycemic (> 20 mmol/liter) at the time of the blood flow measurements. Both doses of GIP potentiated basal and glucose-stimulated insulin release. In the normoglycemic rats, the lowest dose of GIP did not affect the blood perfusion to any of the investigated organs. The highest dose of GIP decreased whole pancreatic and duodenal blood flow, whereas islet blood flow was unaffected. As a result, fractional islet blood flow was increased. In the hyperglycemic rats, where the islet blood flow was increased compared with control animals, both doses of GIP further enhanced islet blood flow. No effect on pancreatic, fractional islet, or duodenal blood flow was seen after GIP administration to hyperglycemic animals. It is concluded that administration of GIP can further augment the glucose-induced stimulation of islet blood flow. This may contribute to facilitating release of insulin from the islets.
Collapse
Affiliation(s)
- A M Svensson
- Department of Medical Cell Biology, Uppsala University, Sweden
| | | | | | | |
Collapse
|
27
|
Kogire M, Inoue K, Sumi S, Doi R, Yun M, Kaji H, Tobe T. Effects of gastric inhibitory polypeptide and glucagon on portal venous and hepatic arterial flow in conscious dogs. Dig Dis Sci 1992; 37:1666-70. [PMID: 1425064 DOI: 10.1007/bf01299856] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gastric inhibitory polypeptide (GIP) has considerable structural homology with glucagon, which is known to increase liver blood flow. We compared the effects of GIP on portal venous and hepatic arterial flow with those of glucagon in conscious dogs. Injection of GIP significantly increased portal venous flow in a dose-related manner (by 7%, 15%, and 46% at doses of 1, 100, and 500 pmol/kg, respectively). The increase in portal venous flow induced by GIP and glucagon was comparable; however, the increase in portal venous flow after GIP injection reached its peak significantly earlier than that after glucagon injection. Hepatic arterial flow decreased after GIP injection (by 17%, 21%, and 35% at doses of 1, 100, and 500 pmol/kg, respectively), whereas it was not altered by glucagon. Thus, GIP causes significant changes in both portal venous and hepatic arterial flow in conscious dogs. Although structurally related, GIP and glucagon may influence liver blood flow through different mechanisms.
Collapse
Affiliation(s)
- M Kogire
- First Department of Surgery, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Sumi S, Inoue K, Hosotani R, Kogire M, Doi R, Yun M, Higashide S, Minote H, Takaori K, Kaji H. Effect of human epidermal growth factor (hEGF) on splanchnic circulation in dogs. Life Sci 1990; 47:1115-9. [PMID: 2233130 DOI: 10.1016/0024-3205(90)90170-v] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effect of intravenous administration of human epidermal growth factor on the splanchnic blood flows was examined in anesthetized dogs, using an ultrasonic transit-time volume flow meter. Human epidermal growth factor (0.1, 0.5 and 1 microgram/kg) significantly increased blood flows in the portal vein (36.9 +/- 7.4% at 1 microgram/kg) and the superior mesenteric artery (49.0 +/- 16.8% at 1 microgram/kg). Systemic blood pressure monitored simultaneously was significantly decreased (8.4 +/- 1.2% at 1 microgram/kg). This study is the first to demonstrate that intravenous administration of epidermal growth factor increases the portal venous blood flow.
Collapse
Affiliation(s)
- S Sumi
- First Department of Surgery, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|