1
|
Nielipińska D, Rubiak D, Pietrzyk-Brzezińska AJ, Małolepsza J, Błażewska KM, Gendaszewska-Darmach E. Stapled peptides as potential therapeutics for diabetes and other metabolic diseases. Biomed Pharmacother 2024; 180:117496. [PMID: 39362065 DOI: 10.1016/j.biopha.2024.117496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
The field of peptide drug research has experienced notable progress, with stapled peptides featuring stabilized α-helical conformation, emerging as a promising field. These peptides offer enhanced stability, cellular permeability, and binding affinity and exhibit potential in the treatment of diabetes and metabolic disorders. Stapled peptides, through the disruption of protein-protein interactions, present varied functionalities encompassing agonism, antagonism, and dual-agonism. This comprehensive review offers insight into the technology of peptide stapling and targeting of crucial molecular pathways associated with glucose metabolism, insulin secretion, and food intake. Additionally, we address the challenges in developing stapled peptides, including concerns pertaining to structural stability, peptide helicity, isomer mixture, and potential side effects.
Collapse
Affiliation(s)
- Dominika Nielipińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| | - Dominika Rubiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Agnieszka J Pietrzyk-Brzezińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland
| | - Joanna Małolepsza
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland.
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| |
Collapse
|
2
|
Singh K, Nawabjan SA, Zhang L, El-Nezami H, Annapureddy RR, Chow BKC. Discovery of small-molecule modulators of the secretin receptor: Purmorphamine as novel anti-hypertensive agent. Eur J Med Chem 2022; 242:114642. [DOI: 10.1016/j.ejmech.2022.114642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/17/2022] [Accepted: 07/27/2022] [Indexed: 11/04/2022]
|
3
|
Berg P, Svendsen SL, Sorensen MV, Larsen CK, Andersen JF, Jensen-Fangel S, Jeppesen M, Schreiber R, Cabrita I, Kunzelmann K, Leipziger J. Impaired Renal HCO 3 - Excretion in Cystic Fibrosis. J Am Soc Nephrol 2020; 31:1711-1727. [PMID: 32703846 DOI: 10.1681/asn.2020010053] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/13/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Patients with cystic fibrosis (CF) do not respond with increased urinary HCO3 - excretion after stimulation with secretin and often present with metabolic alkalosis. METHODS By combining RT-PCR, immunohistochemistry, isolated tubule perfusion, in vitro cell studies, and in vivo studies in different mouse models, we elucidated the mechanism of secretin-induced urinary HCO3 - excretion. For CF patients and CF mice, we developed a HCO3 - drinking test to assess the role of the cystic fibrosis transmembrane conductance regulator (CFTR) in urinary HCO3 -excretion and applied it in the patients before and after treatment with the novel CFTR modulator drug, lumacaftor-ivacaftor. RESULTS β-Intercalated cells express basolateral secretin receptors and apical CFTR and pendrin. In vivo application of secretin induced a marked urinary alkalization, an effect absent in mice lacking pendrin or CFTR. In perfused cortical collecting ducts, secretin stimulated pendrin-dependent Cl-/HCO3 - exchange. In collecting ducts in CFTR knockout mice, baseline pendrin activity was significantly lower and not responsive to secretin. Notably, patients with CF (F508del/F508del) and CF mice showed a greatly attenuated or absent urinary HCO3 --excreting ability. In patients, treatment with the CFTR modulator drug lumacaftor-ivacaftor increased the renal ability to excrete HCO3 -. CONCLUSIONS These results define the mechanism of secretin-induced urinary HCO3 - excretion, explain metabolic alkalosis in patients with CF, and suggest feasibility of an in vivo human CF urine test to validate drug efficacy.
Collapse
Affiliation(s)
- Peder Berg
- Department of Biomedicine, Physiology and Biophysics, Aarhus University, Aarhus, Denmark
| | - Samuel L Svendsen
- Department of Biomedicine, Physiology and Biophysics, Aarhus University, Aarhus, Denmark
| | - Mads V Sorensen
- Department of Biomedicine, Physiology and Biophysics, Aarhus University, Aarhus, Denmark
| | - Casper K Larsen
- Department of Biomedicine, Physiology and Biophysics, Aarhus University, Aarhus, Denmark
| | - Jesper Frank Andersen
- Department of Biomedicine, Physiology and Biophysics, Aarhus University, Aarhus, Denmark
| | - Søren Jensen-Fangel
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Majbritt Jeppesen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Rainer Schreiber
- Department of Physiology, University of Regensburg, Regensburg, Germany
| | - Ines Cabrita
- Department of Physiology, University of Regensburg, Regensburg, Germany
| | - Karl Kunzelmann
- Department of Physiology, University of Regensburg, Regensburg, Germany
| | - Jens Leipziger
- Department of Biomedicine, Physiology and Biophysics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Chakraborty C, Sharma AR, Sharma G, Bhattacharya M, Lee SS. Insight into Evolution and Conservation Patterns of B1-Subfamily Members of GPCR. Int J Pept Res Ther 2020; 26:2505-2517. [PMID: 32421105 PMCID: PMC7223794 DOI: 10.1007/s10989-020-10043-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2020] [Indexed: 11/25/2022]
Abstract
The diverse, evolutionary architectures of proteins can be regarded as molecular fossils, tracing a historical path that marks important milestones across life. The B1-subfamily of GPCRs (G-protein-coupled receptors) are medically significant proteins that comprise 15 transmembrane receptor proteins in Homo sapiens. These proteins control the intracellular concentration of cyclic AMP as well as various vital processes in the body. However, little is known about the evolutionary correlation and conservational blueprint of this GPCR subfamily. We performed a comprehensive analysis to understand the evolutionary architecture among 13 members of the B1-subfamily. Multiple sequence alignment analysis exhibited six multiple sequence aligned blocks and five highly aligned blocks. Molecular phylogenetics indicated that CRHR1 and CRHR2 share a typical ancestral relationship and are siblings in 100% bootstrap replications with a total of 24 nodes observed in the cladogram. CRHR2 has the maximum number of extremely conserved amino acids followed by ADCYAP1R1. The longest continuous number sequence logos (74) were found between sequence location 349 and 423, and consequently, the maximum and minimum logo height recorded was 3.6 bits and 0.18 bits, respectively. Finally, to understand the model and pattern of evolutionary relatedness, the conservation blueprint, and the diversification among the members of a protein family, GPCR distribution from several species throughout the animal kingdom was analysed. Together, the study provides an evolutionary insight and offers a rapid method to explore the potential of depicting the evolutionary relationship, conservation blueprint, and diversification among the B1-subfamily of GPCRs using bioinformatics, algorithm analysis, and mathematical models.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Adamas University, North, 24 Parganas, Kolkata, 700126 West Bengal India
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 24252 Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 24252 Republic of Korea
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 24252 Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 24252 Republic of Korea
| |
Collapse
|
5
|
Csillag V, Vastagh C, Liposits Z, Farkas I. Secretin Regulates Excitatory GABAergic Neurotransmission to GnRH Neurons via Retrograde NO Signaling Pathway in Mice. Front Cell Neurosci 2019; 13:371. [PMID: 31507377 PMCID: PMC6716020 DOI: 10.3389/fncel.2019.00371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/30/2019] [Indexed: 01/28/2023] Open
Abstract
In mammals, reproduction is regulated by a wide range of metabolic hormones that maintain the proper energy balance. In addition to regulating feeding and energy expenditure, these metabolic messengers also modulate the functional performance of the hypothalamic-pituitary-gonadal (HPG) axis. Secretin, a member of the secretin-glucagon-vasoactive intestinal peptide hormone family, has been shown to alter reproduction centrally, although the underlying mechanisms have not been explored yet. In order to elucidate its central action in the neuroendocrine regulation of reproduction, in vitro electrophysiological slice experiments were carried out on GnRH-GFP neurons in male mice. Bath application of secretin (100 nM) significantly increased the frequency of the spontaneous postsynaptic currents (sPSCs) to 118.0 ± 2.64% compared to the control, and that of the GABAergic miniature postsynaptic currents (mPSCs) to 147.6 ± 19.19%. Resting membrane potential became depolarized by 12.74 ± 4.539 mV after secretin treatment. Frequency of evoked action potentials (APs) also increased to 144.3 ± 10.8%. The secretin-triggered elevation of the frequency of mPSCs was prevented by using either a secretin receptor antagonist (3 μM) or intracellularly applied G-protein-coupled receptor blocker (GDP-β-S; 2 mM) supporting the involvement of secretin receptor in the process. Regarding the actions downstream to secretin receptor, intracellular blockade of protein kinase A (PKA) with KT-5720 (2 μM) or intracellular inhibition of the neuronal nitric oxide synthase (nNOS) by NPLA (1 μM) abolished the stimulatory effect of secretin on mPSCs. These data suggest that secretin acts on GnRH neurons via secretin receptors whose activation triggers the cAMP/PKA/nNOS signaling pathway resulting in nitric oxide release and in the presynaptic terminals this retrograde NO machinery regulates the GABAergic input to GnRH neurons.
Collapse
Affiliation(s)
- Veronika Csillag
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Imre Farkas
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
6
|
Oliveira MC, Correia JDG. Biomedical applications of radioiodinated peptides. Eur J Med Chem 2019; 179:56-77. [PMID: 31238251 DOI: 10.1016/j.ejmech.2019.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/08/2023]
Abstract
The overexpression of peptide receptors in certain tumors as compared to endogeneous expression levels represents the molecular basis for the design of peptide-based tools for targeted nuclear imaging and therapy. Receptor targeting with radiolabelled peptides became a very important imaging and/or therapeutic approach in nuclear medicine and oncology. A great variety of peptides has been radiolabelled with clinical relevant radionuclides, such as radiometals and radiohalogens. However, to the best of our knowledge concise and updated reviews providing information about the biomedical application of radioiodinated peptides are still missing. This review outlines the synthetic efforts in the preparation of radioiodinated peptides highlighting the importance of radioiodine in nuclear medicine, giving an overview of the most relevant radioiodination strategies that have been employed and describes relevant examples of their use in the biomedical field.
Collapse
Affiliation(s)
- Maria Cristina Oliveira
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal.
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal.
| |
Collapse
|
7
|
Sundaresan S, Meininger CA, Kang AJ, Photenhauer AL, Hayes MM, Sahoo N, Grembecka J, Cierpicki T, Ding L, Giordano TJ, Else T, Madrigal DJ, Low MJ, Campbell F, Baker AM, Xu H, Wright NA, Merchant JL. Gastrin Induces Nuclear Export and Proteasome Degradation of Menin in Enteric Glial Cells. Gastroenterology 2017; 153:1555-1567.e15. [PMID: 28859856 PMCID: PMC5705278 DOI: 10.1053/j.gastro.2017.08.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/31/2017] [Accepted: 08/13/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS The multiple endocrine neoplasia, type 1 (MEN1) locus encodes the nuclear protein and tumor suppressor menin. MEN1 mutations frequently cause neuroendocrine tumors such as gastrinomas, characterized by their predominant duodenal location and local metastasis at time of diagnosis. Diffuse gastrin cell hyperplasia precedes the appearance of MEN1 gastrinomas, which develop within submucosal Brunner's glands. We investigated how menin regulates expression of the gastrin gene and induces generation of submucosal gastrin-expressing cell hyperplasia. METHODS Primary enteric glial cultures were generated from the VillinCre:Men1FL/FL:Sst-/- mice or C57BL/6 mice (controls), with or without inhibition of gastric acid by omeprazole. Primary enteric glial cells from C57BL/6 mice were incubated with gastrin and separated into nuclear and cytoplasmic fractions. Cells were incubated with forskolin and H89 to activate or inhibit protein kinase A (a family of enzymes whose activity depends on cellular levels of cyclic AMP). Gastrin was measured in blood, tissue, and cell cultures using an ELISA. Immunoprecipitation with menin or ubiquitin was used to demonstrate post-translational modification of menin. Primary glial cells were incubated with leptomycin b and MG132 to block nuclear export and proteasome activity, respectively. We obtained human duodenal, lymph node, and pancreatic gastrinoma samples, collected from patients who underwent surgery from 1996 through 2007 in the United States or the United Kingdom. RESULTS Enteric glial cells that stained positive for glial fibrillary acidic protein (GFAP+) expressed gastrin de novo through a mechanism that required PKA. Gastrin-induced nuclear export of menin via cholecystokinin B receptor (CCKBR)-mediated activation of PKA. Once exported from the nucleus, menin was ubiquitinated and degraded by the proteasome. GFAP and other markers of enteric glial cells (eg, p75 and S100B), colocalized with gastrin in human duodenal gastrinomas. CONCLUSIONS MEN1-associated gastrinomas, which develop in the submucosa, might arise from enteric glial cells through hormone-dependent PKA signaling. This pathway disrupts nuclear menin function, leading to hypergastrinemia and associated sequelae.
Collapse
Affiliation(s)
- Sinju Sundaresan
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Cameron A Meininger
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Anthony J Kang
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Amanda L Photenhauer
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Michael M Hayes
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Nirakar Sahoo
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Lin Ding
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Thomas J Giordano
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Tobias Else
- Division of Metabolism Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - David J Madrigal
- Endocrine Oncology Program, University of Michigan, Ann Arbor, Michigan
| | - Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Fiona Campbell
- Department of Pathology, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Ann-Marie Baker
- Center for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Nicholas A Wright
- Center for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Juanita L Merchant
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
8
|
Dong M, Lam PCH, Orry A, Sexton PM, Christopoulos A, Abagyan R, Miller LJ. Use of Cysteine Trapping to Map Spatial Approximations between Residues Contributing to the Helix N-capping Motif of Secretin and Distinct Residues within Each of the Extracellular Loops of Its Receptor. J Biol Chem 2016; 291:5172-84. [PMID: 26740626 DOI: 10.1074/jbc.m115.706010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Indexed: 12/31/2022] Open
Abstract
Amino-terminal regions of secretin-family peptides contain key determinants for biological activity and binding specificity, although the nature of interactions with receptors is unclear. A helix N-capping motif within this region has been postulated to directly contribute to agonist activity while also stabilizing formation of a helix extending toward the peptide carboxyl terminus and docking within the receptor amino terminus. We used cysteine trapping to systematically explore spatial approximations between cysteines replacing each residue in this motif of secretin (sec), Phe(6), Thr(7), and Leu(10), and cysteines incorporated into the extracellular face of the receptor. Each peptide was a full agonist for cAMP, but had a lower binding affinity than natural hormone. These bound to COS cells expressing 61 receptor constructs incorporating cysteines in every position along each extracellular loop (ECL) and adjacent parts of transmembrane (TM) segments. Patterns of covalent labeling were distinct for each probe, with Cys(6)-sec labeling multiple residues in the carboxyl-terminal half of ECL2 and throughout ECL3, Cys(7)-sec predominantly labeling only single residues in the carboxyl-terminal end of ECL2 and the amino-terminal end of ECL3, and Cys(10)-sec not efficiently labeling any of these residues. These spatial constraints were used to refine our model of secretin bound to its receptor, now bringing ECL3 above the amino terminus of the ligand and revealing possible charge-charge interactions between this part of secretin and receptor residues in TM5, TM6, ECL2, and ECL3, which can orient and stabilize the peptide-receptor complex. This was validated by testing predicted approximations by mutagenesis and residue-residue complementation studies.
Collapse
Affiliation(s)
- Maoqing Dong
- From the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259
| | | | | | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Australia, and
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Australia, and
| | - Ruben Abagyan
- Molsoft LLC, La Jolla, California 92037, the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92037
| | - Laurence J Miller
- From the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259,
| |
Collapse
|
9
|
Kimura T, Nishizawa K, Oguma A, Nishimura Y, Sakasegawa Y, Teruya K, Nishijima I, Doh-ura K. Secretin receptor involvement in prion-infected cells and animals. FEBS Lett 2015; 589:2011-8. [PMID: 26037144 DOI: 10.1016/j.febslet.2015.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/08/2015] [Accepted: 05/19/2015] [Indexed: 12/15/2022]
Abstract
The cellular mechanisms behind prion biosynthesis and metabolism remain unclear. Here we show that secretin signaling via the secretin receptor regulates abnormal prion protein formation in prion-infected cells. Animal studies demonstrate that secretin receptor deficiency slightly, but significantly, prolongs incubation time in female but not male mice. This gender-specificity is consistent with our finding that prion-infected cells are derived from females. Therefore, our results provide initial insights into the reasons why age of disease onset in certain prion diseases is reported to occur slightly earlier in females than males.
Collapse
Affiliation(s)
- Tomohiro Kimura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiko Nishizawa
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ayumi Oguma
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuki Nishimura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuji Sakasegawa
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenta Teruya
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ichiko Nishijima
- Department of Biobank Lifescience, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Katsumi Doh-ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
10
|
Wei F, Wei MX, Murakami M. Mechanism involved in Danshen-induced fluid secretion in salivary glands. World J Gastroenterol 2015; 21:1444-1456. [PMID: 25663764 PMCID: PMC4316087 DOI: 10.3748/wjg.v21.i5.1444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: Danshen’s capability to induce salivary fluid secretion and its mechanisms were studied to determine if it could improve xerostomia.
METHODS: Submandibular glands were isolated from male Wistar rats under systemic anesthesia with pentobarbital sodium. The artery was cannulated and vascularly perfused at a constant rate. The excretory duct was also cannulated and the secreted saliva was weighed in a cup on an electronic balance. The weight of the accumulated saliva was measured every 3 s and the salivary flow rate was calculated. In addition, the arterio-venous difference in the partial oxygen pressure was measured as an indicator of oxygen consumption. In order to assess the mechanism involved in Danshen-induced fluid secretion, either ouabain (an inhibitor of Na+/K+ ATPase) or bumetanide (an inhibitor of NKCC1) was additionally applied during the Danshen stimulation. In order to examine the involvement of the main membrane receptors, atropine was added to block the M3 muscarinic receptors, or phentolamine was added to block the α1 adrenergic receptors. In order to examine the requirement for extracellular Ca2+, Danshen was applied during the perfusion with nominal Ca2+ free solution.
RESULTS: Although Danshen induced salivary fluid secretion, 88.7 ± 12.8 μL/g-min, n = 9, (the highest value around 20 min from start of DS perfusion was significantly high vs 32.5 ± 5.3 μL/g-min by carbamylcholine, P = 0.00093 by t-test) in the submandibular glands, the time course of that secretion differed from that induced by carbamylcholine. There was a latency associated with the fluid secretion induced by Danshen, followed by a gradual increase in the secretion to its highest value, which was in turn followed by a slow decline to a near zero level. The application of either ouabain or bumetanide inhibited the fluid secretion by 85% or 93%, and suppressed the oxygen consumption by 49% or 66%, respectively. These results indicated that Danshen activates Na+/K+ ATPase and NKCC1 to maintain Cl- release and K+ release for fluid secretion. Neither atropine or phentolamine inhibited the fluid secretion induced by Danshen (263% ± 63% vs 309% ± 45%, 227% ± 63% vs 309% ± 45%, P = 0.899, 0.626 > 0.05 respectively, by ANOVA). Accordingly, Danshen does not bind with M3 or α1 receptors. These characteristics suggested that the mechanism involved in DS-induced salivary fluid secretion could be different from that induced by carbamylcholine. Carbamylcholine activates the M3 receptor to release inositol trisphosphate (IP3) and quickly releases Ca2+ from the calcium stores. The elevation of [Ca2+]i induces chloride release and quick osmosis, resulting in an onset of fluid secretion. An increase in [Ca2+]i is essential for the activation of the luminal Cl- and basolateral K+ channels. The nominal removal of extracellular Ca2+ totally abolished the fluid secretion induced by Danshen (1.8 ± 0.8 μL/g-min vs 101.9 ± 17.2 μL/g-min, P = 0.00023 < 0.01, by t-test), suggesting the involvement of Ca2+ in the activation of these channels. Therefore, IP3-store Ca2+ release signalling may not be involved in the secretion induced by Danshen, but rather, there may be a distinct signalling process.
CONCLUSION: The present findings suggest that Danshen can be used in the treatment of xerostomia, to avoid the systemic side effects associated with muscarinic drugs.
Collapse
|
11
|
Toh JWT, Henderson C, Yabe TE, Ong E, Chapuis P, Bokey L. Management of sub-5 mm rectal carcinoids with lymph node metastases. Gastroenterol Rep (Oxf) 2014; 3:350-4. [PMID: 25342710 PMCID: PMC4650972 DOI: 10.1093/gastro/gou073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/16/2014] [Indexed: 02/07/2023] Open
Abstract
Minute (<5 mm) and small (5–10 mm) rectal carcinoids discovered during colonoscopy are generally considered to be non-aggressive, and the management and surveillance of patients with this entity are usually limited. We present the case of a 61-year-old Chinese female with multiple sub-5 mm carcinoid tumours in the rectum without any computed tomography (CT) evidence of lymph node or distant metastases. She underwent an ultra-low anterior resection for a sessile rectal polyp with the histological appearance of a moderately differentiated adenocarcinoma. Seven foci of minute carcinoids in the rectum and perirectal lymph node metastastic spread from the carcinoid tumours were also discovered on histopathology. There were no lymph node metastases originating from adenocarcinoma. This case report and review of the literature suggests that minute rectal carcinoids are at risk of metastasizing and that these patients should be investigated for lymph node and distant metastatic spread with CT and somatostatin receptor scintigraphy or its equivalent, as this would influence prognosis and surgical management of these patients. Findings relating to lymphovascular invasion, perineural invasion, high Ki-67, mitotic rate, depth of tumour invasion, central ulceration, multifocal tumours and size are useful in predicting metastases and may be used in scoring tools. Size alone is not a good predictor of metastastic spread.
Collapse
Affiliation(s)
- James Wei Tatt Toh
- Department of General Surgery, Liverpool Hospital, Liverpool, New South Wales (NSW), Australia,
| | | | - Takako Eva Yabe
- Department of General Surgery, Liverpool Hospital, Liverpool, New South Wales (NSW), Australia
| | - Evonne Ong
- South West Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Pierre Chapuis
- Department of Colorectal Surgery, Concord Hospital, Sydney, NSW, Australia and
| | - Les Bokey
- Department of Colorectal Surgery, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
12
|
Al-Suqri B. 111 In-pentetreotide SPECT CT Value in Follow-up of Patients with Neuro-Endocrine Tumors. Oman Med J 2014; 29:362-4. [PMID: 25337314 DOI: 10.5001/omj.2014.95] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/15/2014] [Indexed: 11/03/2022] Open
Abstract
Carcinoid tumors are relatively rare and can occur in the thorax, abdomen, or pelvis. Functional imaging in the form of Indium-111 pentetreotide scanning is widely used for identification of these tumors and it exploits the fact that the vast majority of these tumors express somatostatin receptors on their cell membrane. In this report, we present a case of a 76-year-old man who was diagnosed with peritoneal carcinomatosis. The findings of the initial imaging made by planar and single photon emission computed tomography were misleading and the actual diagnosis was only made by single photon emission computed tomography/computed tomography.
Collapse
Affiliation(s)
- Badriya Al-Suqri
- Nuclear Medicine Specialist, Nuclear Medicine Department, Royal Hospital, Muscat, Sultanate of Oman
| |
Collapse
|
13
|
Yang K, Boswell M, Walter DJ, Downs KP, Gaston-Pravia K, Garcia T, Shen Y, Mitchell DL, Walter RB. UVB-induced gene expression in the skin of Xiphophorus maculatus Jp 163 B. Comp Biochem Physiol C Toxicol Pharmacol 2014; 163:86-94. [PMID: 24556253 PMCID: PMC4067948 DOI: 10.1016/j.cbpc.2014.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/15/2014] [Accepted: 01/29/2014] [Indexed: 01/04/2023]
Abstract
Xiphophorus fish and interspecies hybrids represent long-standing models to study the genetics underlying spontaneous and induced tumorigenesis. The recent release of the Xiphophorus maculatus genome sequence will allow global genetic regulation studies of genes involved in the inherited susceptibility to UVB-induced melanoma within select backcross hybrids. As a first step toward this goal, we report results of an RNA-Seq approach to identify genes and pathways showing modulated transcription within the skin of X. maculatus Jp 163 B upon UVB exposure. X. maculatus Jp 163 B were exposed to various doses of UVB followed by RNA-Seq analysis at each dose to investigate overall gene expression in each sample. A total of 357 genes with a minimum expression change of 4-fold (p-adj<0.05) were identified as responsive to UVB. The molecular genetic response of Xiphophorus skin to UVB exposure permitted assessment of; (1) the basal expression level of each transcript for each skin sample, (2) the changes in expression levels for each gene in the transcriptome upon exposure to increasing doses of UVB, and (3) clusters of genes that exhibit similar patterns of change in expression upon UVB exposure. These data provide a foundation for understanding the molecular genetic response of fish skin to UVB exposure.
Collapse
Affiliation(s)
- Kuan Yang
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, United States.
| | - Mikki Boswell
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, United States.
| | - Dylan J Walter
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, United States.
| | - Kevin P Downs
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, United States.
| | - Kimberly Gaston-Pravia
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, United States.
| | - Tzintzuni Garcia
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, United States.
| | - Yingjia Shen
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, United States.
| | - David L Mitchell
- Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX, United States.
| | - Ronald B Walter
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, United States.
| |
Collapse
|
14
|
He X, Meng F, Wang Y, Li J. Molecular cloning and characterization of two pig vasoactive intestinal polypeptide receptors (VPAC1-R and VPAC2-R). DNA Cell Biol 2014; 33:259-70. [PMID: 24520933 DOI: 10.1089/dna.2013.2235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We here report the cloning, tissue expression, and functional analyses of the two pig vasoactive intestinal polypeptide (VIP) receptors (pVPAC1-R and pVPAC2-R). The cloned full-length pVPAC1-R and pVPAC2-R share high structural similarity with their mammalian counterparts. Functional assay revealed that the full-length pVPAC1-R and pVPAC2-R-expressed Chinese hamster ovary (CHO) cells could be activated by pVIP and pPACAP38 potently, indicating that pVPAC1-R and pVPAC2-R are capable of binding VIP and pituitary adenylate cyclase-activating polypeptide (PACAP). In addition to the identification of the transcripts encoding the two full-length receptors, multiple splice transcript variants were isolated. Comparison with the pig genome database revealed that pVPAC1-R and pVPAC2-R share a unique gene structure with 14 exons different from other vertebrates. Reverse transcription and polymerase chain reaction (RT-PCR) assays further showed that the transcript encoding the full-length pVPAC2-R is widely expressed in all adult tissues whereas the splice variants of pVPAC1-R are predominantly expressed in all tissues instead of the transcript encoding the full-length receptor, hinting that pVPAC2-R may play more important roles than pVPAC1-R in mediating VIP and PACAP actions. Our present findings help to elucidate the important role of VIP and PACAP and promote to rethink of their species-specific physiological roles including their actions in regulation of phenotypic traits in pigs.
Collapse
Affiliation(s)
- Xiaping He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University , Chengdu, People's Republic of China
| | | | | | | |
Collapse
|
15
|
The orthosteric agonist-binding pocket in the prototypic class B G-protein-coupled secretin receptor. Biochem Soc Trans 2013; 41:154-8. [PMID: 23356276 DOI: 10.1042/bst20120204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Class B GPCRs (G-protein-coupled receptors) share heptahelical topology and G-protein binding with other superfamily members, yet have unique structures and modes of activation. Natural ligands for these receptors are moderate-length peptides with C-terminal α-helices. NMR and crystal structures of the peptide-bound disulfide-bonded receptor N-terminal domains demonstrate that these helices occupy a conserved groove; however, the details of this interaction vary from one receptor to another. In this review, we focus on the prototypic secretin receptor and use extensive intrinsic photoaffinity labelling, structure-activity series, alanine-replacement mutagenesis and fluorescence analysis to define the molecular basis for this interaction. Additionally, experimental validation of predictions coming from in silico molecular modelling has provided a basis for enhancement of binding affinity. Such insights will be useful in the rational development of drugs acting at this important group of targets.
Collapse
|
16
|
Grossini E, Molinari C, Morsanuto V, Mary DASG, Vacca G. Intracoronary secretin increases cardiac perfusion and function in anaesthetized pigs through pathways involving β-adrenoceptors and nitric oxide. Exp Physiol 2013; 98:973-87. [DOI: 10.1113/expphysiol.2012.070607] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Miller LJ, Dong M, Harikumar KG. Ligand binding and activation of the secretin receptor, a prototypic family B G protein-coupled receptor. Br J Pharmacol 2012; 166:18-26. [PMID: 21542831 DOI: 10.1111/j.1476-5381.2011.01463.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The secretin receptor is a prototypic member of family B G protein-coupled receptors that binds and responds to a linear 27-residue peptide natural ligand. The carboxyl-terminal region of this peptide assumes a helical conformation that occupies the peptide-binding cleft within the structurally complex disulphide-bonded amino-terminal domain of this receptor. The amino terminus of secretin is directed toward the core helical bundle domain of this receptor that seems to be structurally distinct from the analogous region of family A G protein-coupled receptors. This amino-terminal region of secretin is critical for its biological activity, to stimulate Gs coupling and the agonist-induced cAMP response. While the natural peptide ligand is known to span the two key receptor domains, with multiple residue-residue approximation constraints well established, the orientation of the receptor amino terminus relative to the receptor core helical bundle domain is still unclear. Fluorescence studies have established that the mid-region and carboxyl-terminal end of secretin are protected by the receptor peptide-binding cleft and the amino terminus of secretin is most exposed to the aqueous milieu as it is directed toward the receptor core, with the mid-region of the peptide becoming more exposed upon receptor activation. Like other family B peptide hormone receptors, the secretin receptor is constitutively present in a structurally specific homo-dimeric complex built around the lipid-exposed face of transmembrane segment four. This complex is important for facilitating G protein association and achieving the high affinity state of this receptor.
Collapse
Affiliation(s)
- Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA.
| | | | | |
Collapse
|
18
|
Lee M, Waser B, Reubi JC, Pellegata NS. Secretin receptor promotes the proliferation of endocrine tumor cells via the PI3K/AKT pathway. Mol Endocrinol 2012; 26:1394-405. [PMID: 22692904 DOI: 10.1210/me.2012-1055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The secretin receptor (SR), a G protein-coupled receptor, mediates the effects of the gastrointestinal hormone secretin on digestion and water homeostasis. Recently, high SR expression has been observed in pancreatic ductal adenocarcinomas, cholangiocellular carcinomas, gastrinomas, and bronchopulmonary carcinoid tumors. Receptor overexpression associates with enhanced secretin-mediated signaling, but whether this molecule plays an independent role in tumorigenesis is currently unknown. We recently discovered that pheochromocytomas developing in rats affected by the MENX (multiple endocrine neoplasia-like) syndrome express at very high-level Sctr, encoding SR. We here report that SR are also highly abundant on the membranes of rat adrenal and extraadrenal pheochromocytoma, starting from early stages of tumor development, and are functional. PC12 cells, the best characterized in vitro pheochromocytoma model, also express Sctr at high level. Thus, we used them as model to study the role of SR in neoplastic transformation. Small interfering RNA-mediated knockdown of Sctr decreases PC12 cells proliferation and increases p27 levels. The proproliferative effect of SR in PC12 cells is mediated, in part, by the phosphatidylinositol 3 kinase (PI3K)/serine-threonine protein kinase (AKT) pathway. Transfection of Sctr in Y1 adrenocortical carcinoma cells, expressing low endogenous levels of Sctr, stimulates cell proliferation also, in part, via the PI3K/AKT signaling cascade. Because of the link between SR and PI3K/AKT signaling, tumor cells expressing high levels of the receptor (MENX-associated primary pheochromocytoma and NCI-H727 human bronchopulmonary carcinoid cells) respond well and in a SR-dependent manner to PI3K inhibitors, such as NVP-BEZ235. The association between SR levels and response to PI3K inhibition might open new avenues for the treatment of tumors overexpressing this receptor.
Collapse
Affiliation(s)
- Misu Lee
- Institute of Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | | | | |
Collapse
|
19
|
Abstract
OBJECTIVE Several gastrointestinal peptides are now recognized to have target functions beyond the intestinal wall, including effects on adipocytes. Secretin (SEC), one of the first identified, has not been evaluated in this context. METHODS Using cultured 3T3-L1 preadipocytes, adipocytes and primary rat adipocytes we evaluated the effect of SEC on cell proliferation, mitochondrial activity, differentiation, triglyceride (TG) synthesis, lipolysis as well expression of the SEC receptor (SCTR) in rodent and human adipose tissues. RESULTS In preadipocytes, SEC significantly increased mitochondrial activity (115%; P<0.01), thymidine incorporation (149.7%; P<0.05) and C/EBPβ expression (123.4%; P<0.05). During standard differentiation, SCTR mRNA increased up to a maximum of ninefold (P<0.001). In human adipose tissue, SCTR correlated with body mass index and plasma insulin, and SCTR mRNA expression was also detected in rat adipose tissues. SEC supplementation during differentiation enhanced TG accumulation (+138%; P<0.01). In mature adipocytes, SEC increased fatty acid (FA) uptake (186%; P<0.01), adiponectin and monocyte chemotactic protein-1 secretion (+142% and +149%, respectively; P<0.05) and mRNA expression of PPARγ (+206%; P<0.01), FABP4 (+164%; P<0.001), DGAT-1 (+144%; P<0.01), adiponectin (+138%; P<0.001) and CD36 (+149%; P<0.05). In primary rat adipocytes, SEC also increased FA uptake (137%; P<0.05). Pretreatment with a SEC antagonist impaired SEC-induced FA uptake and cAMP accumulation. SEC treatment simultaneously stimulated lipolysis measured as glycerol release in 3T3-L1 adipocytes and rat adipose tissue. CONCLUSION The present results suggest that SEC is a potent modulator of adipocyte functions, demonstrating overall a role in enhanced substrate cycling.
Collapse
|
20
|
Lee MG, Ohana E, Park HW, Yang D, Muallem S. Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion. Physiol Rev 2012; 92:39-74. [PMID: 22298651 DOI: 10.1152/physrev.00011.2011] [Citation(s) in RCA: 283] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fluid and HCO(3)(-) secretion is a vital function of all epithelia and is required for the survival of the tissue. Aberrant fluid and HCO(3)(-) secretion is associated with many epithelial diseases, such as cystic fibrosis, pancreatitis, Sjögren's syndrome, and other epithelial inflammatory and autoimmune diseases. Significant progress has been made over the last 20 years in our understanding of epithelial fluid and HCO(3)(-) secretion, in particular by secretory glands. Fluid and HCO(3)(-) secretion by secretory glands is a two-step process. Acinar cells secrete isotonic fluid in which the major salt is NaCl. Subsequently, the duct modifies the volume and electrolyte composition of the fluid to absorb the Cl(-) and secrete HCO(3)(-). The relative volume secreted by acinar and duct cells and modification of electrolyte composition of the secreted fluids varies among secretory glands to meet their physiological functions. In the pancreas, acinar cells secrete a small amount of NaCl-rich fluid, while the duct absorbs the Cl(-) and secretes HCO(3)(-) and the bulk of the fluid in the pancreatic juice. Fluid secretion appears to be driven by active HCO(3)(-) secretion. In the salivary glands, acinar cells secrete the bulk of the fluid in the saliva that is driven by active Cl(-) secretion and contains high concentrations of Na(+) and Cl(-). The salivary glands duct absorbs both the Na(+) and Cl(-) and secretes K(+) and HCO(3)(-). In this review, we focus on the molecular mechanism of fluid and HCO(3)(-) secretion by the pancreas and salivary glands, to highlight the similarities of the fundamental mechanisms of acinar and duct cell functions, and to point out the differences to meet gland-specific secretions.
Collapse
Affiliation(s)
- Min Goo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
21
|
Roed SN, Orgaard A, Jorgensen R, De Meyts P. Receptor oligomerization in family B1 of G-protein-coupled receptors: focus on BRET investigations and the link between GPCR oligomerization and binding cooperativity. Front Endocrinol (Lausanne) 2012; 3:62. [PMID: 22649424 PMCID: PMC3355942 DOI: 10.3389/fendo.2012.00062] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/20/2012] [Indexed: 11/13/2022] Open
Abstract
The superfamily of the seven transmembrane G-protein-coupled receptors (7TM/GPCRs) is the largest family of membrane-associated receptors. GPCRs are involved in the pathophysiology of numerous human diseases, and they constitute an estimated 30-40% of all drug targets. During the last two decades, GPCR oligomerization has been extensively studied using methods like bioluminescence resonance energy transfer (BRET) and today, receptor-receptor interactions within the GPCR superfamily is a well-established phenomenon. Evidence of the impact of GPCR oligomerization on, e.g., ligand binding, receptor expression, and signal transduction indicates the physiological and pharmacological importance of these receptor interactions. In contrast to the larger and more thoroughly studied GPCR subfamilies A and C, the B1 subfamily is small and comprises only 15 members, including, e.g., the secretin receptor, the glucagon receptor, and the receptors for parathyroid hormone (PTHR1 and PTHR2). The dysregulation of several family B1 receptors is involved in diseases, such as diabetes, chronic inflammation, and osteoporosis which underlines the pathophysiological importance of this GPCR subfamily. In spite of this, investigation of family B1 receptor oligomerization and especially its pharmacological importance is still at an early stage. Even though GPCR oligomerization is a well-established phenomenon, there is a need for more investigations providing a direct link between these interactions and receptor functionality in family B1 GPCRs. One example of the functional effects of GPCR oligomerization is the facilitation of allosterism including cooperativity in ligand binding to GPCRs. Here, we review the currently available data on family B1 GPCR homo- and heteromerization, mainly based on BRET investigations. Furthermore, we cover the functional influence of oligomerization on ligand binding as well as the link between oligomerization and binding cooperativity.
Collapse
|
22
|
Ng SYL, Lee LTO, Chow BKC. Receptor oligomerization: from early evidence to current understanding in class B GPCRs. Front Endocrinol (Lausanne) 2012; 3:175. [PMID: 23316183 PMCID: PMC3539651 DOI: 10.3389/fendo.2012.00175] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/11/2012] [Indexed: 01/06/2023] Open
Abstract
Dimerization or oligomerization of G protein-coupled receptors (GPCRs) are known to modulate receptor functions in terms of ontogeny, ligand-oriented regulation, pharmacological diversity, signal transduction, and internalization. Class B GPCRs are receptors to a family of hormones including secretin, growth hormone-releasing hormone, vasoactive intestinal polypeptide and parathyroid hormone, among others. The functional implications of receptor dimerization have extensively been studied in class A GPCRs, while less is known regarding its function in class B GPCRs. This article reviews receptor oligomerization in terms of the early evidence and current understanding particularly of class B GPCRs.
Collapse
Affiliation(s)
| | | | - Billy K. C. Chow
- *Correspondence: Billy K. C. Chow, Endocrinology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China. e-mail:
| |
Collapse
|
23
|
|
24
|
Mahata M, Zhang K, Gayen JR, Nandi S, Brar BK, Ghosh S, Mahapatra NR, Taupenot L, O'Connor DT, Mahata SK. Catecholamine biosynthesis and secretion: physiological and pharmacological effects of secretin. Cell Tissue Res 2011; 345:87-102. [PMID: 21597914 PMCID: PMC10843894 DOI: 10.1007/s00441-011-1177-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 04/15/2011] [Indexed: 11/25/2022]
Abstract
Pituitary adenylyl cyclase activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) augment the biosynthesis of tyrosine hydroxylase (TH). We tested whether secretin belonging to the glucagon/PACAP/VIP superfamily would increase transcription of the tyrosine hydroxylase (Th) gene and modulate catecholamine secretion. Secretin activated transcription of the endogenous Th gene and its transfected promoter (EC(50) ∼4.6 nM) in pheochromocytoma (PC12) cells. This was abolished by pre-treatment with a secretin receptor (SCTR) antagonist and by inhibition of protein kinase A (PKA), mitogen-activated protein kinase, or CREB (cAMP response element-binding protein). In agreement, secretin increased PKA activity and induced phosphorylation of CREB and binding to Th CRE, suggesting secretin signaling to transcription via a PKA-CREB pathway. Secretin stimulated catecholamine secretion (EC(50) ∼3.5 μM) from PC12 cells, but this was inhibited by pre-treatment with VIP-preferring receptor (VPAC1)/PACAP-preferring receptor (PAC1) antagonists. Secretin-evoked secretion occurred without extracellular Ca(2+) and was abolished by intracellular Ca(2+) chelation. Secretin augmented phospholipase C (PLC) activity and increased inositol-1,4,5-triphosphate (IP(3)) levels in PC12 cells; PLC-β inhibition blocked secretin-induced catecholamine secretion, indicating the participation of intracellular Ca(2+) from a phospholipase pathway in secretion. Like PACAP, secretin evoked long-lasting catecholamine secretion, even after only a transient exposure. Thus, transcription is triggered by nanomolar concentrations of the peptide through SCTR, with signaling along the cAMP-PKA and extracellular-signal-regulated kinase 1/2 pathways and through CREB. By contrast, secretion is triggered only by micromolar concentrations of peptide through PAC1/VPAC receptors and by utilizing a PLC/intracellular Ca(2+) pathway.
Collapse
Affiliation(s)
- Manjula Mahata
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0838, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Branch DR. Role of G protein-coupled vasoactive intestinal peptide receptors in HIV integration. Future Virol 2011. [DOI: 10.2217/fvl.11.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pathogenesis of HIV infection is closely linked to the replication of the virus in vivo. Even though the progress in anti-HIV-1 chemotherapy in the past several years has been dramatic, the efficient protection against HIV-1 infection still remains one of the most important global challenges. The complete blockage of AIDS progression appears to be difficult with current treatment due to the rapid occurrence of viral drug-resistance, increasing cost and the likelihood of adverse side effects. Furthermore, although originally regarded with high hope, development of a suitable vaccine appears to be years away. The purpose of this article is to describe previous findings regarding a potentially important role of the vasoactive intestinal peptide/pituitary adenylate cyclase-activating polypeptide (VPAC) family of G protein-coupled receptors in HIV-1 infection, to provide evidence for the involvement of these receptors in providing signals that can control the integration of the virus into the host DNA and to report new findings that support a role for VPAC receptors in the facilitation of HIV integration.
Collapse
Affiliation(s)
- Donald R Branch
- Research & Development, Canadian Blood Services, Immunology Hub, Toronto Centre, Toronto, Ontario M5G 2M1, Canada
| |
Collapse
|
26
|
Dong M, Lam PCH, Pinon DI, Hosohata K, Orry A, Sexton PM, Abagyan R, Miller LJ. Molecular basis of secretin docking to its intact receptor using multiple photolabile probes distributed throughout the pharmacophore. J Biol Chem 2011; 286:23888-99. [PMID: 21566140 DOI: 10.1074/jbc.m111.245969] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular basis of ligand binding and activation of family B G protein-coupled receptors is not yet clear due to the lack of insight into the structure of intact receptors. Although NMR and crystal structures of amino-terminal domains of several family members support consistency in general structural motifs that include a peptide-binding cleft, there are variations in the details of docking of the carboxyl terminus of peptide ligands within this cleft, and there is no information about siting of the amino terminus of these peptides. There are also no empirical data to orient the receptor amino terminus relative to the core helical bundle domain. Here, we prepared a series of five new probes, incorporating photolabile moieties into positions 2, 15, 20, 24, and 25 of full agonist secretin analogues. Each bound specifically to the receptor and covalently labeled single distinct receptor residues. Peptide mapping of labeled wild-type and mutant receptors identified that the position 15, 20, and 25 probes labeled residues within the distal amino terminus of the receptor, whereas the position 24 probe labeled the amino terminus adjacent to TM1. Of note, the position 2 probe labeled a residue within the first extracellular loop of the receptor, a region not previously labeled, providing an important new constraint for docking the amino-terminal region of secretin to its receptor core. These additional experimentally derived constraints help to refine our understanding of the structure of the secretin-intact receptor complex and provide new insights into understanding the molecular mechanism for activation of family B G protein-coupled receptors.
Collapse
Affiliation(s)
- Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Tam JKV, Lau KW, Lee LTO, Chu JYS, Ng KM, Fournier A, Vaudry H, Chow BKC. Origin of secretin receptor precedes the advent of tetrapoda: evidence on the separated origins of secretin and orexin. PLoS One 2011; 6:e19384. [PMID: 21559418 PMCID: PMC3084839 DOI: 10.1371/journal.pone.0019384] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 03/28/2011] [Indexed: 11/19/2022] Open
Abstract
At present, secretin and its receptor have only been identified in mammals, and the origin of this ligand-receptor pair in early vertebrates is unclear. In addition, the elusive similarities of secretin and orexin in terms of both structures and functions suggest a common ancestral origin early in the vertebrate lineage. In this article, with the cloning and functional characterization of secretin receptors from lungfish and X. laevis as well as frog (X. laevis and Rana rugulosa) secretins, we provide evidence that the secretin ligand-receptor pair has already diverged and become highly specific by the emergence of tetrapods. The secretin receptor-like sequence cloned from lungfish indicates that the secretin receptor was descended from a VPAC-like receptor prior the advent of sarcopterygians. To clarify the controversial relationship of secretin and orexin, orexin type-2 receptor was cloned from X. laevis. We demonstrated that, in frog, secretin and orexin could activate their mutual receptors, indicating their coordinated complementary role in mediating physiological processes in non-mammalian vertebrates. However, among the peptides in the secretin/glucagon superfamily, secretin was found to be the only peptide that could activate the orexin receptor. We therefore hypothesize that secretin and orexin are of different ancestral origins early in the vertebrate lineage.
Collapse
Affiliation(s)
- Janice K. V. Tam
- School of Biological Sciences, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kwan-Wa Lau
- School of Biological Sciences, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Leo T. O. Lee
- School of Biological Sciences, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jessica Y. S. Chu
- School of Biological Sciences, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kwong-Man Ng
- Stem Cell & Regenerative Medicine Program, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Alain Fournier
- INRS – Institut Armand-Frappier, Université du Quebec, Laval, Québec, Canada
| | - Hubert Vaudry
- INSERM U982, European Institute for Peptide Research, University of Rouen, Mont-Saint-Aignan, France
| | - Billy K. C. Chow
- School of Biological Sciences, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
28
|
Dong M, Le A, Te JA, Pinon DI, Bordner AJ, Miller LJ. Importance of each residue within secretin for receptor binding and biological activity. Biochemistry 2011; 50:2983-93. [PMID: 21388146 DOI: 10.1021/bi200133u] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Secretin is a linear 27-residue peptide hormone that stimulates pancreatic and biliary ductular bicarbonate and water secretion by acting at its family B G protein-coupled receptor. While, like other family members, the carboxyl-terminal region of secretin is most important for high affinity binding and its amino-terminal region is most important for receptor selectivity and receptor activation, determinants for these activities are distributed throughout the entire length of this peptide. In this work, we have systematically investigated changing each residue within secretin to alanine and evaluating the impact on receptor binding and biological activity. The residues most critical for receptor binding were His1, Asp3, Gly4, Phe6, Thr7, Ser8, Leu10, Asp15, Leu19, and Leu23. The residues most critical for biological activity included His1, Gly4, Thr7, Ser8, Glu9, Leu10, Leu19, Leu22, and Leu23, with Asp3, Phe6, Ser11, Leu13, Asp15, Leu26, and Val27 also contributing. While the importance of residues in positions analogous to His1, Asp3, Phe6, Thr7, and Leu23 is conserved for several closely related members of this family, Leu19 is uniquely important for secretin. We, therefore, have further studied this residue by molecular modeling and molecular dynamics simulations. Indeed, the molecular dynamics simulations showed that mutation of Leu19 to alanine was destabilizing, with this effect greater than that observed for the analogous position in the other close family members. This could reflect reduced contact with the receptor or an increase in the solvent-accessible surface area of the hydrophobic residues in the carboxyl terminus of secretin as bound to its receptor.
Collapse
Affiliation(s)
- Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, United States
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The vasoactive intestinal peptide/pituitary adenylyl cyclase-activating polypepetide (VPAC) receptors are important for many physiologic functions, including glucose homeostasis, neuroprotection, memory, gut function, modulation of the immune system and circadian function. In addition, VPAC receptors have been shown to function in vitro to modulate the infection of HIV by a signal transduction pathway that appears to regulate viral integration. In this article, the affects of VPAC stimulation on HIV infection will be reviewed and approaches for the development of HIV/AIDS therapeutics that target these receptors will be described. Novel HIV/AIDS therapeutics are urgently required to stem the continued spread of this disease, particularly in underdeveloped countries. Drug design to inhibit signaling through VPAC1 and stimulate signaling through VPAC2 could lead to alternative therapies for the treatment and/or prevention of HIV/AIDS.
Collapse
|
30
|
Igarashi H, Fujimori N, Ito T, Nakamura T, Oono T, Nakamura K, Suzuki K, Jensen RT, Takayanagi R. Vasoactive Intestinal Peptide (VIP) and VIP Receptors-Elucidation of Structure and Function for Therapeutic Applications. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/ijcm.2011.24084] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Dong M, Pinon DI, Bordner AJ, Miller LJ. Elucidation of the active conformation of the amino terminus of receptor-bound secretin using intramolecular disulfide bond constraints. Bioorg Med Chem Lett 2010; 20:6040-4. [PMID: 20813522 DOI: 10.1016/j.bmcl.2010.08.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/10/2010] [Accepted: 08/12/2010] [Indexed: 01/01/2023]
Abstract
Family B G protein-coupled receptors include several potentially important drug targets, yet our understanding of the molecular basis of ligand binding to and activation of these receptors is incomplete. While NMR and crystal structures exist for peptide ligand-associated amino-terminal domains of several family members, these only provide insights into the conformation of the carboxyl-terminal region of the peptides. The amino-terminal region of these peptides, critical for biological activity, is believed to interact with the helical bundle domain, and is, therefore, unconstrained in these structures. The aim of the current study was to provide insights into the conformation of the amino terminus of secretin as bound to its receptor. We prepared a series of conformationally constrained secretin peptides containing intramolecular disulfide bonds that were predicted by molecular modeling to approximate the conformation of the analogous region of PACAP bound to its receptor that had been determined using transfer-NOE NMR techniques. Secretin peptides with pairs of cysteine residues in positions 2-7, 3-5, 3-6, 4-7, 7-9, and 4-10 were studied as linear and disulfide-bonded forms. The analog with a disulfide bond connecting positions 7-9 had binding affinity and biological activity similar to natural secretin, supporting the relevance of this constraint to its active conformation. While this feature is shared between secretin and PACAP, absence of activity in other constrained peptides in this series also suggest that there are differences between these receptor-bound conformations. It will be critical to extend similar studies to other family members to learn what structural elements might be most conserved in this family.
Collapse
Affiliation(s)
- Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA
| | | | | | | |
Collapse
|
32
|
St Hilaire RC, Murthy SN, Kadowitz PJ, Jeter JR. Role of VPAC1 and VPAC2 in VIP mediated inhibition of rat pulmonary artery and aortic smooth muscle cell proliferation. Peptides 2010; 31:1517-22. [PMID: 20452385 DOI: 10.1016/j.peptides.2010.04.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 04/29/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
Abstract
Recent studies have suggested the potential use of vasoactive intestinal peptide (VIP) in the treatment of pulmonary arterial hypertension (PAH). An understanding of the mechanism of action of VIP is important for the development of new therapies for PAH. The biological effects of VIP are mediated by two type II guanine nucleotide binding protein (G-protein)-coupled receptors VIP/PACAP (pituitary adenylate cyclase activating peptide) receptor type1 (VPAC1) and VIP/PACAP receptor type 2 (VPAC2). In the present study, the distribution and role of these receptors were investigated and compared in cultured smooth muscle cells from rat aorta and pulmonary artery, as well as in fixed tissue sections of the aorta and pulmonary artery. Western blot analysis, RT-PCR and immunohistochemistry showed the expression of both VIP receptors in tissue sections of the aorta and pulmonary artery as well as in cultured smooth muscle cells from these vessels. The application of a specific antagonist of VPAC1 resulted in a small release from VIP induced inhibition of cell proliferation. In contrast (VIP 6-28; 300nM) which is an antagonist against both receptors resulted in a significant restoration of proliferation. The expression of cAMP was reduced in the presence of VIP 6-28 and slightly decreased by VPAC1 antagonist. These findings suggest a dual role for VPAC1 and VPAC2 receptors in mediating the antiproliferative effects of VIP with VPAC2 appearing to play a more dominant role.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Aorta/metabolism
- Blotting, Western
- Cell Proliferation/drug effects
- Cells, Cultured
- Cyclic AMP/metabolism
- Gene Expression
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/physiopathology
- Immunohistochemistry
- Male
- Myocytes, Smooth Muscle/physiology
- Peptide Fragments/pharmacology
- Pulmonary Artery/cytology
- Pulmonary Artery/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Vasoactive Intestinal Peptide, Type II/antagonists & inhibitors
- Receptors, Vasoactive Intestinal Peptide, Type II/genetics
- Receptors, Vasoactive Intestinal Peptide, Type II/physiology
- Receptors, Vasoactive Intestinal Polypeptide, Type I/antagonists & inhibitors
- Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics
- Receptors, Vasoactive Intestinal Polypeptide, Type I/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Vasoactive Intestinal Peptide/physiology
Collapse
Affiliation(s)
- Rose-Claire St Hilaire
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
33
|
Onori P, Wise C, Gaudio E, Franchitto A, Francis H, Carpino G, Lee V, Lam I, Miller T, Dostal DE, Glaser SS. Secretin inhibits cholangiocarcinoma growth via dysregulation of the cAMP-dependent signaling mechanisms of secretin receptor. Int J Cancer 2010; 127:43-54. [DOI: 10.1002/ijc.25028] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
34
|
Dong M, Narang P, Pinon DI, Bordner AJ, Miller LJ. Refinement of the pharmacophore of an agonist ligand of the secretin receptor using conformationally constrained cyclic hexapeptides. Peptides 2010; 31:1094-8. [PMID: 20214947 PMCID: PMC2872052 DOI: 10.1016/j.peptides.2010.02.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/22/2010] [Accepted: 02/25/2010] [Indexed: 11/24/2022]
Abstract
There is a compelling need for the development of small molecule agonists acting at family B G protein-coupled receptors. A possible lead for the development of such drugs was reported when it was recognized that sequences endogenous to the amino terminus of the secretin receptor and certain other receptors in this family possess weak full agonist activity (Dong et al. Mol Pharmacol 2006;70:206-213). In the current report, we extended those observations by building the active dipeptide motif found in the secretin receptor (WD) into each position around a conformationally constrained d-amino acid-containing cyclic hexapeptide, and determining the biological activity of each peptide at the secretin receptor. Indeed, only two positions for WD around this constrained ring resulted in biological activity at the receptor, providing further insights into the structural specificity of this phenomenon. Molecular modeling supported the presence of a unique WD backbone conformation shared only by these active peptides, and provided a more constrained template for future receptor-active agonist drug development.
Collapse
Affiliation(s)
| | | | | | | | - Laurence J. Miller
- Please send all correspondence and reprint requests to: Laurence J. Miller, M.D., Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ 85259, Telephone: (480) 301-6650, Fax: (480) 301-6969,
| |
Collapse
|
35
|
Kenakin T, Miller LJ. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 2010; 62:265-304. [PMID: 20392808 PMCID: PMC2879912 DOI: 10.1124/pr.108.000992] [Citation(s) in RCA: 464] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It is useful to consider seven transmembrane receptors (7TMRs) as disordered proteins able to allosterically respond to a number of binding partners. Considering 7TMRs as allosteric systems, affinity and efficacy can be thought of in terms of energy flow between a modulator, conduit (the receptor protein), and a number of guests. These guests can be other molecules, receptors, membrane-bound proteins, or signaling proteins in the cytosol. These vectorial flows of energy can yield standard canonical guest allostery (allosteric modification of drug effect), effects along the plane of the cell membrane (receptor oligomerization), or effects directed into the cytosol (differential signaling as functional selectivity). This review discusses these apparently diverse pharmacological effects in terms of molecular dynamics and protein ensemble theory, which tends to unify 7TMR behavior toward cells. Special consideration will be given to functional selectivity (biased agonism and biased antagonism) in terms of mechanism of action and potential therapeutic application. The explosion of technology that has enabled observation of diverse 7TMR behavior has also shown how drugs can have multiple (pluridimensional) efficacies and how this can cause paradoxical drug classification and nomenclatures.
Collapse
Affiliation(s)
- Terry Kenakin
- GlaxoSmithKline, 5 Moore Drive, Mailtstop V-287, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
36
|
Li Y, Tweedie D, Mattson MP, Holloway HW, Greig NH. Enhancing the GLP-1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells. J Neurochem 2010; 113:1621-31. [PMID: 20374430 DOI: 10.1111/j.1471-4159.2010.06731.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Increasing evidence suggests that glucagon-like peptide-1 (GLP-1), an incretin hormone of current interest in type 2 diabetes, is neuroprotective in both cell culture and animal models. To characterize the neuroprotective properties of GLP-1 and associated underlying mechanisms, we over-expressed the GLP-1 receptor (GLP-1R) on human neuroblastoma SH-SY5Y cells to generate a neuronal culture system featuring enhanced GLP-1R signaling. In GLP-1R over-expressing SH-SY5Y (SH-hGLP-1R#9) cells, GLP-1 and the long-acting agonist exendin-4 stimulated cell proliferation and increased cell viability by 2-fold at 24 h at physiologically relevant concentrations. This GLP-1R-dependent action was mediated via the protein kinase A and phosphoinositide 3-kinase signaling pathways, with the MAPK pathway playing a minor role. GLP-1 and exendin-4 pretreatment dose-dependently protected SH-hGLP-1R#9 cells from hydrogen peroxide (H(2)O(2))- and 6-hydroxydopamine-induced cell death. This involved amelioration of elevated caspase 3 activity, down-regulation of pro-apoptotic Bax and up-regulation of anti-apoptotic Bcl-2 protein. In the presence of 6-hydroxydopamine, GLP-1's ability to lower caspase-3 activity was abolished with the phosphoinositide 3-kinase inhibitor, LY2940002, and partly reduced with the protein kinase A inhibitor, H89. Hence, GLP-1R mediated neurotrophic and anti-apoptotic actions co-contribute to the neuroprotective property of GLP-1 in neuronal cell cultures, and reinforce the potential therapeutic value of GLP-1R agonists in neurodegenerative disorders involving oxidative stress.
Collapse
Affiliation(s)
- Yazhou Li
- Drug Design & Development Section, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA.
| | | | | | | | | |
Collapse
|
37
|
Abstract
The most widely used pharmacological therapies for obesity and weight management are based on inhibition of gastrointestinal lipases, resulting in a reduced energy yield of ingested foods by reducing dietary lipid absorption. Colipase-dependent pancreatic lipase is believed to be the major gastrointestinal enzyme involved in catalysis of lipid ester bonds. There is scant literature on the action of pancreatic lipase under the range of physiological conditions that occur within the human small intestine, and the literature that does exist is often contradictory. Due to the importance of pancreatic lipase activity to nutrition and weight management, the present review aims to assess the current body of knowledge with regards to the physiology behind the action of this unique gastrointestinal enzyme system. Existing data would suggest that pancreatic lipase activity is affected by intestinal pH, the presence of colipase and bile salts, but not by the physiological range of Ca ion concentration (as is commonly assumed). The control of secretion of pancreatic lipase and its associated factors appears to be driven by gastrointestinal luminal content, particularly the presence of acid or digested proteins and fats in the duodenal lumen. Secretion of colipase, bile acids and pancreatic lipase is driven by cholecystokinin and secretin release.
Collapse
|
38
|
Harikumar KG, Simms J, Christopoulos G, Sexton PM, Miller LJ. Molecular basis of association of receptor activity-modifying protein 3 with the family B G protein-coupled secretin receptor. Biochemistry 2010; 48:11773-85. [PMID: 19886671 DOI: 10.1021/bi901326k] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The three receptor activity-modifying proteins (RAMPs) have been recognized as being important for the trafficking and function of a subset of family B G protein-coupled receptors, although the structural basis for this has not been well established. In the current work, we use morphological fluorescence techniques, bioluminescence resonance energy transfer, and bimolecular fluorescence complementation to demonstrate that the secretin receptor associates specifically with RAMP3, but not with RAMP1 or RAMP2. We use truncation constructs, peptide competition experiments, and chimeric secretin-GLP1 receptor constructs to establish that this association is structurally specific, dependent on the intramembranous region of the RAMP and TM6 and TM7 of this receptor. There were no observed changes in secretin-stimulated cAMP, intracellular calcium, ERK1/2 phosphorylation, or receptor internalization in receptor-bearing COS or CHO-K1 cells in the presence or absence of exogenous RAMP transfection, although the secretin receptor trafficks normally to the cell surface in these cells in a RAMP-independent manner, resulting in both free and RAMP-associated receptor on the cell surface. RAMP3 association with this receptor was shown to be capable of rescuing a receptor mutant (G241C) that is normally trapped intracellularly in the biosynthetic machinery. Similarly, secretin receptor expression had functional effects on adrenomedullin activity, with increasing secretin receptor expression competing for RAMP3 association with the calcitonin receptor-like receptor to yield a functional adrenomedullin receptor. These data provide important new insights into the structural basis for RAMP3 interaction with a family B G protein-coupled receptor, potentially providing a highly selective target for drug action. This may be representative of similar interactions between other members of this receptor family and RAMP proteins.
Collapse
Affiliation(s)
- Kaleeckal G Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, USA
| | | | | | | | | |
Collapse
|
39
|
Reyes-García MG, García-Tamayo F. A neurotransmitter system that regulates macrophage pro-inflammatory functions. J Neuroimmunol 2009; 216:20-31. [PMID: 19732963 DOI: 10.1016/j.jneuroim.2009.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Revised: 05/16/2009] [Accepted: 06/29/2009] [Indexed: 02/08/2023]
Abstract
Neurotransmitters released through peripheral and autonomic nerves play an important role in the signaling from the cells of the nervous system to lymphocytes, macrophages and other cells of the immune system. Macrophages are related to numerous physiological and pathological inflammatory processes since their cytokines play an important role in the defensive responses against invasive microorganisms, atherosclerosis progress, insulin resistance, behavior deviation, hematopoiesis feedback, degenerative chronic diseases and the stimulation of the hypothalamus-hypophysis-adrenal axis. Production of pro-inflammatory cytokines by macrophages is the main target for the modulatory activity of diverse neurotransmitters. In this brief review, we show how some neurotransmitters released by the central or the autonomic nervous systems down-regulate peripheral macrophages' inflammatory functions to balance immune protective mechanisms, although they can also promote the collateral progress of diverse diseases. The possible therapeutic uses of some neurotransmitters and the agonists or antagonist of their respective receptors are included as well.
Collapse
Affiliation(s)
- María Guadalupe Reyes-García
- Laboratorio de Inmunobiología, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), México DF, Mexico.
| | | |
Collapse
|
40
|
Keitel V, Cupisti K, Ullmer C, Knoefel WT, Kubitz R, Häussinger D. The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders. Hepatology 2009; 50:861-70. [PMID: 19582812 DOI: 10.1002/hep.23032] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
UNLABELLED TGR5 (Gpbar-1) is a plasma membrane-bound, G protein-coupled receptor for bile acids. TGR5 messenger RNA (mRNA) has been detected in many tissues, including rat cholangiocytes and mouse gallbladder. A role for TGR5 in gallstone formation has been suggested, because TGR5 knockout mice did not develop gallstones when fed a lithogenic diet. In this study, expression and localization of TGR5 was studied in human gallbladders. TGR5 mRNA and protein were detected in all 19 gallbladders. Although TGR5 mRNA was significantly elevated in the presence of gallstones, no such relation was found for TGR5 protein levels. In order to study the localization of TGR5 in human gallbladders, a novel antibody was generated. The receptor was localized in the apical membrane and the rab11-positive recycling endosome of gallbladder epithelial cells. Furthermore, the TGR5 staining colocalized with the cyclic adenosine monophosphate-regulated chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) and the apical sodium-dependent bile salt uptake transporter, suggesting a functional coupling of TGR5 to bile acid uptake and chloride secretion. Stimulation with bile acids significantly increased cyclic adenosine monophosphate concentration in human gallbladder tissue. Incubation of gallbladder epithelial cells with a TGR5 agonist led to a rise of N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE)-fluorescence, suggestive of a decrease in intracellular chloride concentration. The TGR5 agonist-dependent increase in MQAE-fluorescence was absent in TGR5 knockout mice or in the presence of a CFTR inhibitor, indicating that TGR5 mediates chloride secretion via activation of CFTR. The presence of the receptor in both the plasma membrane and the recycling endosome indicate that TGR5 can be regulated by translocation. CONCLUSION The data suggest a role for TGR5 in bile acid-induced fluid secretion in biliary epithelial cells.
Collapse
Affiliation(s)
- Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Gelling RW, Vuguin PM, Du XQ, Cui L, Rømer J, Pederson RA, Leiser M, Sørensen H, Holst JJ, Fledelius C, Johansen PB, Fleischer N, McIntosh CHS, Nishimura E, Charron MJ. Pancreatic beta-cell overexpression of the glucagon receptor gene results in enhanced beta-cell function and mass. Am J Physiol Endocrinol Metab 2009; 297:E695-707. [PMID: 19602585 PMCID: PMC2739695 DOI: 10.1152/ajpendo.00082.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In addition to its primary role in regulating glucose production from the liver, glucagon has many other actions, reflected by the wide tissue distribution of the glucagon receptor (Gcgr). To investigate the role of glucagon in the regulation of insulin secretion and whole body glucose homeostasis in vivo, we generated mice overexpressing the Gcgr specifically on pancreatic beta-cells (RIP-Gcgr). In vivo and in vitro insulin secretion in response to glucagon and glucose was increased 1.7- to 3.9-fold in RIP-Gcgr mice compared with controls. Consistent with the observed increase in insulin release in response to glucagon and glucose, the glucose excursion resulting from both a glucagon challenge and intraperitoneal glucose tolerance test (IPGTT) was significantly reduced in RIP-Gcgr mice compared with controls. However, RIP-Gcgr mice display similar glucose responses to an insulin challenge. beta-Cell mass and pancreatic insulin content were also increased (20 and 50%, respectively) in RIP-Gcgr mice compared with controls. When fed a high-fat diet (HFD), both control and RIP-Gcgr mice developed similar degrees of obesity and insulin resistance. However, the severity of both fasting hyperglycemia and impaired glucose tolerance (IGT) were reduced in RIP-Gcgr mice compared with controls. Furthermore, the insulin response of RIP-Gcgr mice to an IPGTT was twice that of controls when fed the HFD. These data indicate that increased pancreatic beta-cell expression of the Gcgr increased insulin secretion, pancreatic insulin content, beta-cell mass, and, when mice were fed a HFD, partially protected against hyperglycemia and IGT.
Collapse
Affiliation(s)
- Richard W Gelling
- Department of Biochemistry, Pediatric Endocrinology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gee HY, Kim YW, Jo MJ, Namkung W, Kim JY, Park HW, Kim KS, Kim H, Baba A, Yang J, Kim E, Kim KH, Lee MG. Synaptic scaffolding molecule binds to and regulates vasoactive intestinal polypeptide type-1 receptor in epithelial cells. Gastroenterology 2009; 137:607-17, 617.e1-4. [PMID: 19642226 DOI: 10.1053/j.gastro.2009.01.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Vasoactive intestinal polypeptide (VIP) is a principal regulator of fluid and electrolyte secretion in the gastrointestinal system. The VIP type-1 receptor (VPAC1), a class II G-protein-coupled receptor, contains a putative C-terminal PDZ-binding motif. A yeast 2-hybrid screen indicated that the C-terminus of VPAC1 bound to the PDZ domain of synaptic scaffolding molecule (S-SCAM, also known as membrane-associated guanylate kinase inverted-2 [MAGI-2]). We analyzed the association between S-SCAM and VPAC1. METHODS The biochemical properties and physiologic significance of the interaction between VPAC1 and S-SCAM were examined in heterologous expression systems, T84 colonic epithelial cells, and human pancreas and colon tissues using an integrated molecular and physiologic approach. RESULTS The physical interaction between VPAC1 and S-SCAM was confirmed by immunoprecipitation in HEK 293 mammalian cells and human pancreatic and colonic tissues. Immunocytochemical analysis indicated that S-SCAM recruited VPAC1 to the junctional area near the apical end of the lateral membrane in T84 cells. Several lines of evidence revealed that S-SCAM inhibits VPAC1 activation. Overexpression of S-SCAM inhibited VPAC1-mediated cAMP production and agonist-induced VPAC1 internalization in HEK 293 and HeLa cells. In addition, S-SCAM decreased the VPAC1-mediated current through the cystic fibrosis transmembrane conductance regulator in Xenopus oocytes, especially at low concentrations of VIP. Importantly, loss of S-SCAM increased VIP-induced short-circuit currents in T84 monolayers, which endogenously express VPAC1 and S-SCAM. CONCLUSIONS S-SCAM/MAGI-2 interacts with and regulates VPAC1 intracellular localization in epithelial cells and inhibits VPAC1 agonist-induced activation and internalization.
Collapse
Affiliation(s)
- Heon Yung Gee
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Cholangiocyte proliferation is triggered during extrahepatic bile duct obstruction induced by bile duct ligation, which is a common in vivo model used for the study of cholangiocyte proliferation and liver fibrosis. The proliferative response of cholangiocytes during cholestasis is regulated by the complex interaction of several factors, including gastrointestinal hormones, neuroendocrine hormones and autocrine or paracrine signalling mechanisms. Activation of biliary proliferation (ductular reaction) is thought to have a key role in the initiation and progression of liver fibrosis. The first part of this review provides an overview of the primary functions of cholangiocytes in terms of secretin-stimulated bicarbonate secretion--a functional index of cholangiocyte growth. In the second section, we explore the important regulators, both inhibitory and stimulatory, that regulate the cholangiocyte proliferative response during cholestasis. We discuss the role of proliferating cholangiocytes in the induction of fibrosis either directly via epithelial mesenchymal transition or indirectly via the activation of other liver cell types. The possibility of targeting cholangiocyte proliferation as potential therapy for reducing and/or preventing liver fibrosis, and future avenues for research into how cholangiocytes participate in the process of liver fibrogenesis are described.
Collapse
|
44
|
Miller LJ. Informed Development of Drugs Acting at Family B G Protein-Coupled Receptors. Ann N Y Acad Sci 2008; 1144:203-9. [DOI: 10.1196/annals.1418.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Dong M, Lam PCH, Pinon DI, Sexton PM, Abagyan R, Miller LJ. Spatial approximation between secretin residue five and the third extracellular loop of its receptor provides new insight into the molecular basis of natural agonist binding. Mol Pharmacol 2008; 74:413-22. [PMID: 18467541 PMCID: PMC3879803 DOI: 10.1124/mol.108.047209] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The amino terminus of class II G protein-coupled receptors plays an important role in ligand binding and receptor activation. Understanding of the conformation of the amino-terminal domain of these receptors has been substantially advanced with the solution of nuclear magnetic resonance and crystal structures of this region of receptors for corticotrophin-releasing factor, pituitary adenylate cyclase-activating polypeptide, and gastric inhibitory polypeptide. However, the orientation of the amino terminus relative to the receptor core and how the receptor gets activated upon ligand binding remain unclear. In this work, we have used photoaffinity labeling to identify a critical spatial approximation between residue five of secretin and a residue within the proposed third extracellular loop of the secretin receptor. This was achieved by purification, deglycosylation, cyanogen bromide cleavage, and sequencing of labeled wild-type and mutant secretin receptors. This constraint has been used to refine our evolving molecular model of secretin docked at the intact receptor, which for the first time includes refined helical bundle and loop regions and reflects a peptide-binding groove within the receptor amino terminus that directs the amino terminus of the peptide toward the receptor body. This model is fully consistent with the endogenous agonist mechanism for class II G protein-coupled receptor activation, where ligand binding promotes the interaction of a portion of the receptor amino terminus with the receptor body to activate it.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- CHO Cells
- COS Cells
- Chlorocebus aethiops
- Cricetinae
- Cricetulus
- Models, Molecular
- Molecular Sequence Data
- Photoaffinity Labels/metabolism
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Rats
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Gastrointestinal Hormone/agonists
- Receptors, Gastrointestinal Hormone/chemistry
- Receptors, Gastrointestinal Hormone/genetics
- Receptors, Gastrointestinal Hormone/metabolism
- Secretin/chemistry
- Secretin/genetics
- Secretin/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, AZ 85259, USA
| | | | | | | | | | | |
Collapse
|
46
|
Unson CG. Expression of glucagon receptors in tetracycline-inducible HEK293S GnT1- stable cell lines: an approach toward purification of receptor protein for structural studies. Biopolymers 2008; 90:287-96. [PMID: 18260137 DOI: 10.1002/bip.20951] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glucagon is a 29-amino acid polypeptide hormone secreted by pancreatic A cells. Together with insulin, it is an important regulator of glucose metabolism. Type 2 diabetes is characterized by reduced insulin secretion from pancreatic B cells and increased glucose output by the liver which has been attributed to abnormally elevated levels of glucagon. The glucagon receptor (GR) is a member of family B G protein-coupled receptors, ligands for which are peptides composed of 30-40 amino acids. The impetus for studying how glucagon interacts with its membrane receptor is to gain insight into the mechanism of glucagon action in normal physiology as well as in diabetes mellitus. The principal approach toward this goal is to design and synthesize antagonists of glucagon that will bind with high affinity to the GR but will not activate it. Site-directed mutagenesis of the GR has provided some insight into the interactions between glucagon and GR. The rational design of potent antagonists has been hampered by the lack of structural information on receptor-bound glucagon. To obtain adequate amounts of receptor protein for structural studies, a tetracycline-inducible HEK293S GnT1(-) cell line that stably expresses human GR at high-levels was developed. The recombinant receptor protein was characterized, solubilized, and isolated by one-step affinity chromatography. This report describes a feasible approach for the preparation of human GR and other family B GPCRs in the quantities required for structural studies.
Collapse
|
47
|
Körner MU, Hayes GM, Carrigan PE, Rehmann R, Miller LJ, Reubi JC. Wild-type and splice-variant secretin receptors in lung cancer: overexpression in carcinoid tumors and peritumoral lung tissue. Mod Pathol 2008; 21:387-95. [PMID: 18223557 DOI: 10.1038/modpathol.3801005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gastrointestinal peptide hormone receptors, like somatostatin receptors, are often overexpressed in human cancer, allowing receptor-targeted tumor imaging and therapy. A novel candidate for these applications is the secretin receptor recently identified in pancreatic and cholangiocellular carcinomas. In the present study, secretin receptors were assessed in a non-gastrointestinal tissue, the human lung. Non-small-cell lung cancers (n=26), small-cell lung cancers (n=10), bronchopulmonary carcinoid tumors (n=29), and non-neoplastic lung (n=46) were investigated for secretin receptor protein expression with in vitro receptor autoradiography, using (125)I-[Tyr(10)] rat secretin and for secretin receptor transcripts with RT-PCR. Secretin receptor protein expression was found in 62% of bronchopulmonary carcinoids in moderate to high density, in 12% of non-small cell lung cancers in low density, but not in small cell lung cancers. In tumors found to be secretin receptor positive by autoradiography, RT-PCR revealed transcripts for the wild-type secretin receptor and for novel secretin receptor splice variants. In the non-neoplastic lung, secretin receptor protein expression was observed in low density along the alveolar septa in direct tumor vicinity in cases of acute inflammation, but not in histologically normal lung. In the autoradiographically positive peritumoral lung, RT-PCR showed transcripts for the wild-type secretin receptor and for a secretin receptor spliceoform different from those occurring in lung and gut tumors. In conclusion, secretin receptors are new markers for bronchopulmonary carcinoid tumors, and represent the molecular basis for an in vivo targeting of carcinoid tumors for diagnosis and therapy. Furthermore, secretin receptors may play a role in peritumoral lung pathophysiology. Secretin receptor mis-splicing specifically occurs in tumor and non-tumor lung pathology.
Collapse
Affiliation(s)
- Meike U Körner
- Division of Cell Biology and Experimental Cancer Research, Institute of Pathology of the University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
48
|
Intenzo CM, Jabbour S, Lin HC, Miller JL, Kim SM, Capuzzi DM, Mitchell EP. Scintigraphic imaging of body neuroendocrine tumors. Radiographics 2007; 27:1355-69. [PMID: 17848696 DOI: 10.1148/rg.275065729] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radionuclide imaging is often used in the diagnosis and work-up of a wide range of neoplasms, on the basis of the biologic behavior of the tumor. Neuroendocrine tumors are a subgroup of neoplasms that are generally small and slow growing, and consequently their identification with conventional anatomic imaging can be difficult. Depending on the physiologic properties of the tumor, functional images obtained with radionuclides are often complementary to anatomic images, not only in the localization of the tumor and its metastases, but also in the assessment of prognosis and response to therapy. Familiarity with the choice of the appropriate radiopharmaceutical, proper imaging protocols, and the wide range of imaging patterns will enable the radiologist to guide the clinician in case management.
Collapse
Affiliation(s)
- Charles M Intenzo
- Department of Radiology, Thomas Jefferson University School of Medicine, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Wheatley M, Simms J, Hawtin SR, Wesley VJ, Wootten D, Conner M, Lawson Z, Conner AC, Baker A, Cashmore Y, Kendrick R, Parslow RA. Extracellular loops and ligand binding to a subfamily of Family A G-protein-coupled receptors. Biochem Soc Trans 2007; 35:717-20. [PMID: 17635132 DOI: 10.1042/bst0350717] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
GPCRs (G-protein-coupled receptors) are a large family of structurally related proteins which mediate their effects by coupling to G-proteins. The V(1a)R (V(1a) vasopressin receptor) is a member of a family of related GPCRs that are activated by vasopressin {AVP ([Arg(8)]vasopressin)}, OT (oxytocin) and related peptides. These receptors are members of a subfamily of Family A GPCRs called the neurohypophysial peptide hormone receptor family. GPCRs exhibit a conserved tertiary structure comprising a bundle of seven TM (transmembrane) helices linked by alternating ECLs (extracellular loops) and ICLs (intracellular loops). The cluster of TM helices is functionally important for ligand binding, and, furthermore, activation of GPCRs involves movement of these TM helices. Consequently, it might be assumed that the extracellular face of GPCRs is composed of peptide linkers that merely connect important TM helices. However, using a systematic mutagenesis approach and focusing on the N-terminus and the second ECL of the V(1a)R, we have established that these extracellular domains fulfil a range of important roles with respect to GPCR signalling, including agonist binding, ligand selectivity and receptor activation.
Collapse
Affiliation(s)
- M Wheatley
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Miller LJ, Dong M, Harikumar KG, Gao F. Structural basis of natural ligand binding and activation of the Class II G-protein-coupled secretin receptor. Biochem Soc Trans 2007; 35:709-12. [PMID: 17635130 DOI: 10.1042/bst0350709] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The secretin receptor is prototypic of Class II GPCRs (G-protein-coupled receptors), based on its structural and functional characteristics and those of its natural agonist ligand. Secretin represents a linear 27-residue peptide with diffuse pharmacophoric domain. The secretin receptor includes the typical signature sequences for this receptor family within its predicted transmembrane segments and the highly conserved six cysteine residues contributing to three intradomain disulfide bonds within its long N-terminus. This domain is critical for secretin binding based on receptor mutagenesis and photoaffinity labelling studies. Full agonist analogues of secretin incorporating a photolabile moiety at various positions throughout the pharmacophore covalently label residues within this region, while only N-terminal probes have labelled the core helical bundle domain. Combining insights coming from receptor structural studies, peptide structure-activity relationship considerations, photoaffinity labelling, and application of fluorescence techniques has resulted in the development of a working model of the secretin-receptor complex. This supports the initial docking of the peptide agonist within a cleft in the receptor N-terminus, providing the opportunity for an endogenous sequence within that domain to interact with the core of the receptor. This interaction is believed to be key in the molecular basis of conformational change associated with activation of this receptor. The site of action of this endogenous agonist could also provide a possible target for small molecule agonists to act.
Collapse
Affiliation(s)
- L J Miller
- Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ 85259, USA.
| | | | | | | |
Collapse
|