1
|
Radwan NA, Atlam AI, Abdel-Malek AR, Moustafa AY. Nematicidal Potentiality of Four Marine Molluscans' Defensive Secretions From the Red Sea Against Syphacia obvelata (Nematoda: Oxyuridae) In Vitro. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:149-158. [PMID: 39473236 DOI: 10.1002/jez.2877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/20/2024] [Accepted: 10/01/2024] [Indexed: 02/04/2025]
Abstract
The continuous requirement to substitute safe and affordable alternatives for helminth medications, as well as address the resistance of some used drug classes, introduced bioactive products derived from marine animals into the field of competition; however, almost all the previous research only focused on their impact on bacterial and protozoal infection. In the present work, we investigated the potential in vitro nematocidal effect of the aqueous extract of defense secretions for four species of marine mollusks: two cephalopods, namely the cuttlefish Sepia pharaonis and the common Octopus Octopus vulagris and two gastropods, the sea hare Aplysia argus and the sea slug Berthillina citrina, against the adult murine pinworm Syphacia obvelata. Data showed dose and time efficacy in all examined extracts. The sea slug's skin acid secretion has the highest impact, causing death in the cultivated worms, followed by the ink of the sea hare, the common octopus and the cuttlefish, where LC90 after 10 h of exposure were 250, 290, 316, and 391 µg/mL, respectively. Comparatively with the control and albendazole-treated groups, the skin acid secretion of the sea slug caused the highest levels of the antioxidant enzymes SOD, Cat and GSH-PX; however, albendazole prompted the highest level of GSH-PX enzyme in all experimental groups.
Collapse
Affiliation(s)
- Nahla A Radwan
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Aalaa I Atlam
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Alaa Y Moustafa
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| |
Collapse
|
2
|
Rodrigues T, Guardiola FA, Almeida D, Antunes A. Aquatic Invertebrate Antimicrobial Peptides in the Fight Against Aquaculture Pathogens. Microorganisms 2025; 13:156. [PMID: 39858924 PMCID: PMC11767717 DOI: 10.3390/microorganisms13010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The intensification of aquaculture has escalated disease outbreaks and overuse of antibiotics, driving the global antimicrobial resistance (AMR) crisis. Antimicrobial peptides (AMPs) provide a promising alternative due to their rapid, broad-spectrum activity, low AMR risk, and additional bioactivities, including immunomodulatory, anticancer, and antifouling properties. AMPs derived from aquatic invertebrates, particularly marine-derived, are well-suited for aquaculture, offering enhanced stability in high-salinity environments. This study compiles and analyzes data from AMP databases and over 200 scientific sources, identifying approximately 350 AMPs derived from aquatic invertebrates, mostly cationic and α-helical, across 65 protein families. While in vitro assays highlight their potential, limited in vivo studies hinder practical application. These AMPs could serve as feed additives, therapeutic agents, or in genetic engineering approaches like CRISPR/Cas9-mediated transgenesis to enhance resilience of farmed species. Despite challenges such as stability, ecological impacts, and regulatory hurdles, advancements in peptidomimetics and genetic engineering hold significant promise. Future research should emphasize refining AMP enhancement techniques, expanding their diversity and bioactivity profiles, and prioritizing comprehensive in vivo evaluations. Harnessing the potential of AMPs represents a significant step forward on the path to aquaculture sustainability, reducing antibiotic dependency, and combating AMR, ultimately safeguarding public health and ecosystem resilience.
Collapse
Affiliation(s)
- Tomás Rodrigues
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Francisco Antonio Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Daniela Almeida
- Department of Zoology and Physical Anthropology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Agostinho Antunes
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Taheri-Anganeh M, Nezafat N, Gharibi S, Khatami SH, Vahedi F, Shabaninejad Z, Asadi M, Savardashtaki A, Movahedpour A, Ghasemi H. Designing a Secretory form of RTX-A as an Anticancer Toxin: An In Silico Approach. Recent Pat Biotechnol 2024; 18:332-343. [PMID: 38817010 DOI: 10.2174/0118722083267796231210060150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/29/2023] [Accepted: 11/17/2023] [Indexed: 06/01/2024]
Abstract
BACKGROUND Cancer is a leading cause of death and a significant public health issue worldwide. Standard treatment methods such as chemotherapy, radiotherapy, and surgery are only sometimes effective. Therefore, new therapeutic approaches are needed for cancer treatment. Sea anemone actinoporins are pore-forming toxins (PFTs) with membranolytic activities. RTX-A is a type of PFT that interacts with membrane phospholipids, resulting in pore formation. The synthesis of recombinant proteins in a secretory form has several advantages, including protein solubility and easy purification. In this study, we aimed to discover suitable signal peptides for producing RTX-A in Bacillus subtilis in a secretory form. METHODS Signal peptides were selected from the Signal Peptide Web Server. The probability and secretion pathways of the selected signal peptides were evaluated using the SignalP server. ProtParam and Protein-sol were used to predict the physico-chemical properties and solubility. AlgPred was used to predict the allergenicity of RTX-A linked to suitable signal peptides. Non-allergenic, stable, and soluble signal peptides fused to proteins were chosen, and their secondary and tertiary structures were predicted using GOR IV and I-TASSER, respectively. The PROCHECK server performed the validation of 3D structures. RESULTS According to bioinformatics analysis, the fusion forms of OSMY_ECOLI and MALE_ECOLI linked to RTX-A were identified as suitable signal peptides. The final proteins with signal peptides were stable, soluble, and non-allergenic for the human body. Moreover, they had appropriate secondary and tertiary structures. CONCLUSION The signal above peptides appears ideal for rationalizing secretory and soluble RTX-A. Therefore, the signal peptides found in this study should be further investigated through experimental researches and patents.
Collapse
Affiliation(s)
- Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saba Gharibi
- School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Melbourne, Australia
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Vahedi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marzieh Asadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
4
|
Sea Anemones, Actinoporins, and Cholesterol. Int J Mol Sci 2022; 23:ijms23158771. [PMID: 35955905 PMCID: PMC9369217 DOI: 10.3390/ijms23158771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Spanish or Spanish-speaking scientists represent a remarkably populated group within the scientific community studying pore-forming proteins. Some of these scientists, ourselves included, focus on the study of actinoporins, a fascinating group of metamorphic pore-forming proteins produced within the venom of several sea anemones. These toxic proteins can spontaneously transit from a water-soluble fold to an integral membrane ensemble because they specifically recognize sphingomyelin in the membrane. Once they bind to the bilayer, they subsequently oligomerize into a pore that triggers cell-death by osmotic shock. In addition to sphingomyelin, some actinoporins are especially sensible to some other membrane components such as cholesterol. Our group from Universidad Complutense of Madrid has focused greatly on the role played by sterols in this water–membrane transition, a question which still remains only partially solved and constitutes the main core of the article below.
Collapse
|
5
|
Estrella-Parra EA, Arreola R, Álvarez-Sánchez ME, Torres-Romero JC, Rojas-Espinosa O, De la Cruz-Santiago JA, Martinez-Benitez MB, López-Camarillo C, Lara-Riegos JC, Arana-Argáez VE, Ramírez-Camacho MA. Natural marine products as antiprotozoal agents against amitochondrial parasites. Int J Parasitol Drugs Drug Resist 2022; 19:40-46. [PMID: 35636129 PMCID: PMC9157375 DOI: 10.1016/j.ijpddr.2022.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/15/2022]
Abstract
The goal of this work is to compile and discuss molecules of marine origin reported in the scientific literature with anti-parasitic activity against Trichomonas, Giardia, and Entamoeba, parasites responsible for diseases that are major global health problems, and Microsporidial parasites as an emerging problem. The presented data correspond to metabolites with anti-parasitic activity in human beings that have been isolated by chromatographic techniques from marine sources and structurally elucidated by spectroscopic and spectrometric procedures. We also highlight some semi-synthetic derivatives that have been successful in enhancing the activity of original compounds. The biological oceanic reservoir offers the possibility to discover new biologically active molecules as lead compounds to develop new drug candidates. The molecular variety is extensive and must be correctly explored and managed. Also, it will be necessary to take some actions to preserve the source species from extinction or overharvest (e.g., by cryopreservation of coral spermatozoa, oocytes, embryos, and larvae) and coordinate appropriate exploitation to increase the chemical knowledge of the natural products generated in the oceans. Additional initiatives such as the total synthesis of complex natural products and their derivatives can help to prevent overharvest of the marine ecosystems and at the same time contribute to the discovery of new molecules.
Collapse
Affiliation(s)
- Edgar Antonio Estrella-Parra
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Unidad Nacional Autónoma de México, Av. De los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, Mexico
| | - Rodrigo Arreola
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, México City, DF, Mexico
| | - Maria Elizbeth Álvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo 290, Col. Del Valle, 03100, Mexico City, Mexico.
| | | | - Oscar Rojas-Espinosa
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), 11340, Ciudad de México, Mexico
| | - José Alberto De la Cruz-Santiago
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, México City, DF, Mexico
| | - Máximo Berto Martinez-Benitez
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, México City, DF, Mexico
| | - Cesar López-Camarillo
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, México City, DF, Mexico
| | | | | | | |
Collapse
|
6
|
Menezes C, Thakur NL. Sea anemone venom: Ecological interactions and bioactive potential. Toxicon 2022; 208:31-46. [DOI: 10.1016/j.toxicon.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
|
7
|
Mostafa O, Al-Shehri M, Moustafa M, Al-Emam A. Cnidarians as a potential source of antiparasitic drugs. Parasitol Res 2021; 121:35-48. [PMID: 34842987 DOI: 10.1007/s00436-021-07387-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
New antiparasitic drugs are urgently required for treating parasitic infections. The marine environment has proven to be a valuable source of compounds with therapeutic properties against many diseases, including parasitic diseases. Cnidarian venoms are known for their toxicological properties and are candidates for developing medications. In this review, the antiparasitic properties of cnidarian toxins, discovered over the last two decades, were examined. A total of 61 cnidarian compounds from 18 different genera of cnidaria were studied for their antiparasitic activities. The assessed genera belonged mainly to three geographical areas: South America, North America, and Southeast Asia. The in vitro activities of crude extracts and compounds against a range of parasites including Plasmodium falciparum, Trypanosoma brucei gambiense, T. cruzi, T. congolense, Leishmania donovani, L. chagasi, L. braziliensis, and Giardia duodenalis are reviewed. The challenges involved in developing these compounds into effective drugs are discussed.
Collapse
Affiliation(s)
- Osama Mostafa
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohammed Al-Shehri
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia. .,Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt.
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
Samavarchi Tehrani S, Gharibi S, Movahedpour A, Goodarzi G, Jamali Z, Khatami SH, Maniati M, Ranjbar M, Shabaninejad Z, Savardashtaki A, Taheri-Anganeh M. Design and evaluation of scFv-RTX-A as a novel immunotoxin for breast cancer treatment: an in silico approach. J Immunoassay Immunochem 2021; 42:19-33. [PMID: 32845824 DOI: 10.1080/15321819.2020.1812640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) is overexpressed in breast cancer (BC) patients. Hence, immunotherapy is a proper treatment option for HER2-positive BC patients. Accumulating evidence has indicated that immunotoxin therapy is a novel approach to improve the potency of targeted therapy. Immunotoxins are antibodies or antibody fragments coupled with a toxin. We designed an immunotoxin. The physicochemical properties were evaluated using ProtParam servers and secondary structure was examined by PROSO II and GORV. Using I-TASSER, a 3D model was built and refined by GalaxyRefine. The model was validated using PROCHECK and RAMPAGE. To predict immunotoxin allergenicity and mRNA stability, AlgPred server and RNAfold were used. Furthermore, the immunotoxin and HER2 were docked by ZDOCK. The scFv+RTX-A could be a non-allergenic and stable chimeric protein, and the secondary structure of its components did not alter, and this protein had a proper 3D structure that might have stable mRNA structure which could bind to HER2. Given the fact that the designed immunotoxin was a non-allergenic and stable chimeric protein and that it could bind with high affinity to HER2 receptors, we proposed that this chimeric protein could be a useful candidate for HER-2 positive BC patients.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Gharibi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Clinical Biochemistry, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Zeinab Jamali
- Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmoud Maniati
- Department of English, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Ranjbar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, School of Basic Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Research Institute on Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
9
|
Jayathilake JMNJ, Gunathilake KVK. Cnidarian toxins: recent evidences for potential therapeutic uses. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1837268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- J. M. N. J. Jayathilake
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - K. V. K. Gunathilake
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
10
|
Ultrastructure and Molecular Toxicological Effects of the Coronate Scyphomedusa Linuche unguiculata Venom on Giardia duodenalis. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00649-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Jiemy WF, Hiew LF, Sha HX, In LLA, Hwang JS. Evaluation of Hydra HALT-1 as a toxin moiety for recombinant immunotoxin. BMC Biotechnol 2020; 20:31. [PMID: 32552895 PMCID: PMC7301450 DOI: 10.1186/s12896-020-00628-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/10/2020] [Indexed: 01/28/2023] Open
Abstract
Background Immunotoxin is a hybrid protein consisting of a toxin moiety that is linked to a targeting moiety for the purpose of specific elimination of target cells. Toxins used in traditional immunotoxins are practically difficult to be produced in large amount, have poor tissue penetration and a complex internalization process. We hypothesized that the smaller HALT-1, a cytolysin derived from Hydra magnipapillata, can be used as the toxin moiety in construction of a recombinant immunotoxin. Results In this study, pro-inflammatory macrophage was selected as the target cell due to its major roles in numerous inflammatory and autoimmune disorders. We aimed to construct macrophage-targeted recombinant immunotoxins by combining HALT-1 with anti-CD64-scFv in two orientations, and to assess whether their cytotoxic activity and binding capability could be preserved upon molecular fusion. The recombinant immunotoxins, HALT-1-scFv and scFv-HALT-1, were successfully constructed and expressed in Escherichia coli (E. coli). Our data showed that HALT-1 still exhibited significant cytotoxicity against CD64+ and CD64− cell lines upon fusion with anti-CD64 scFv, although it had half cytotoxic activity as compared to HALT-1 alone. As positioning HALT-1 at N- or C-terminus did not affect its potency, the two constructs demonstrated comparable cytotoxic activities with IC50 lower in CD64+ cell line than in CD64− cell line. In contrast, the location of targeting moieties anti-CD64 scFv at C-terminal end was crucial in maintaining the scFv binding capability. Conclusions HALT-1 could be fused with anti-CD64-scFv via a fsexible polypeptide linker. Upon the successful production of this recombinant HALT-1 scFv fusion protein, HALT-1 was proven effective for killing two human cell lines. Hence, this preliminary study strongly suggested that HALT-1 holds potential as the toxin moiety in therapeutic cell targeting.
Collapse
Affiliation(s)
- William F Jiemy
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Lih Fhung Hiew
- Department of Biological Sciences, School of Science and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Hong Xi Sha
- Department of Biological Sciences, School of Science and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Lionel L A In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Jung Shan Hwang
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
12
|
Pore-forming toxins from sea anemones: from protein-membrane interaction to its implications for developing biomedical applications. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2020. [DOI: 10.1016/bs.abl.2020.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Mariottini GL, Grice ID. Natural Compounds and Drug Discovery: Can Cnidarian Venom Play a Role? Cent Nerv Syst Agents Med Chem 2019; 19:114-118. [PMID: 30827266 DOI: 10.2174/1871524919666190227234834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/22/2019] [Accepted: 01/26/2019] [Indexed: 11/22/2022]
Abstract
Natural compounds extracted from organisms and microorganisms are an important resource for the development of drugs and bioactive molecules. Many such compounds have made valuable contributions in diverse fields such as human health, pharmaceutics and industrial applications. Presently, however, research on investigating natural compounds from marine organisms is scarce. This is somewhat surprising considering that the marine environment makes a major contribution to Earth's ecosystems and consequently possesses a vast storehouse of diverse marine species. Interestingly, of the marine bioactive natural compounds identified to date, many are venoms, coming from Cnidarians (jellyfish, sea anemones, corals). Cnidarians are therefore particularly interesting marine species, producing important biological compounds that warrant further investigation for their development as possible therapeutic agents. From an experimental aspect, this review aims to emphasize and update the current scientific knowledge reported on selected biological activity (antiinflammatory, antimicrobial, antitumoral, anticoagulant, along with several less studied effects) of Cnidarian venoms/extracts, highlighting potential aspects for ongoing research towards their utilization in human therapeutic approaches.
Collapse
Affiliation(s)
- Gian Luigi Mariottini
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, Italy
| | - Irwin Darren Grice
- Institute for Glycomics and School of Medical Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
14
|
Leychenko E, Isaeva M, Tkacheva E, Zelepuga E, Kvetkina A, Guzev K, Monastyrnaya M, Kozlovskaya E. Multigene Family of Pore-Forming Toxins from Sea Anemone Heteractis crispa. Mar Drugs 2018; 16:E183. [PMID: 29794988 PMCID: PMC6025637 DOI: 10.3390/md16060183] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 11/23/2022] Open
Abstract
Sea anemones produce pore-forming toxins, actinoporins, which are interesting as tools for cytoplasmic membranes study, as well as being potential therapeutic agents for cancer therapy. This investigation is devoted to structural and functional study of the Heteractis crispa actinoporins diversity. Here, we described a multigene family consisting of 47 representatives expressed in the sea anemone tentacles as prepropeptide-coding transcripts. The phylogenetic analysis revealed that actinoporin clustering is consistent with the division of sea anemones into superfamilies and families. The transcriptomes of both H. crispa and Heteractis magnifica appear to contain a large repertoire of similar genes representing a rapid expansion of the actinoporin family due to gene duplication and sequence divergence. The presence of the most abundant specific group of actinoporins in H. crispa is the major difference between these species. The functional analysis of six recombinant actinoporins revealed that H. crispa actinoporin grouping was consistent with the different hemolytic activity of their representatives. According to molecular modeling data, we assume that the direction of the N-terminal dipole moment tightly reflects the actinoporins' ability to possess hemolytic activity.
Collapse
Affiliation(s)
- Elena Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
- School of Natural Sciences, Far Eastern Federal University, Sukhanova Street 8, Vladivostok 690091, Russia.
| | - Marina Isaeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
- School of Natural Sciences, Far Eastern Federal University, Sukhanova Street 8, Vladivostok 690091, Russia.
| | - Ekaterina Tkacheva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Elena Zelepuga
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Aleksandra Kvetkina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Konstantin Guzev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Margarita Monastyrnaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Emma Kozlovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| |
Collapse
|
15
|
Soto C, Bergado G, Blanco R, Griñán T, Rodríguez H, Ros U, Pazos F, Lanio ME, Hernández AM, Álvarez C. Sticholysin II-mediated cytotoxicity involves the activation of regulated intracellular responses that anticipates cell death. Biochimie 2018; 148:18-35. [DOI: 10.1016/j.biochi.2018.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 02/07/2018] [Indexed: 12/12/2022]
|
16
|
Self-homodimerization of an actinoporin by disulfide bridging reveals implications for their structure and pore formation. Sci Rep 2018; 8:6614. [PMID: 29700324 PMCID: PMC5920107 DOI: 10.1038/s41598-018-24688-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/04/2018] [Indexed: 11/17/2022] Open
Abstract
The Trp111 to Cys mutant of sticholysin I, an actinoporin from Stichodactyla helianthus sea anemone, forms a homodimer via a disulfide bridge. The purified dimer is 193 times less hemolytic than the monomer. Ultracentrifugation, dynamic light scattering and size-exclusion chromatography demonstrate that monomers and dimers are the only independent oligomeric states encountered. Indeed, circular dichroism and fluorescence spectroscopies showed that Trp/Tyr residues participate in homodimerization and that the dimer is less thermostable than the monomer. A homodimer three-dimensional model was constructed and indicates that Trp147/Tyr137 are at the homodimer interface. Spectroscopy results validated the 3D-model and assigned 85° to the disulfide bridge dihedral angle responsible for dimerization. The homodimer model suggests that alterations in the membrane/carbohydrate-binding sites in one of the monomers, as result of dimerization, could explain the decrease in the homodimer ability to form pores.
Collapse
|
17
|
Lazcano-Pérez F, Zavala-Moreno A, Rufino-González Y, Ponce-Macotela M, García-Arredondo A, Cuevas-Cruz M, Gómez-Manzo S, Marcial-Quino J, Arreguín-Lozano B, Arreguín-Espinosa R. Hemolytic, anticancer and antigiardial activity of Palythoa caribaeorum venom. J Venom Anim Toxins Incl Trop Dis 2018; 24:12. [PMID: 29692802 PMCID: PMC5905176 DOI: 10.1186/s40409-018-0149-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/27/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cnidarian venoms and extracts have shown a broad variety of biological activities including cytotoxic, antibacterial and antitumoral effects. Most of these studied extracts were obtained from sea anemones or jellyfish. The present study aimed to determine the toxic activity and assess the antitumor and antiparasitic potential of Palythoa caribaeorum venom by evaluating its in vitro toxicity on several models including human tumor cell lines and against the parasite Giardia intestinalis. METHODS The presence of cytolysins and vasoconstrictor activity of P. caribaeorum venom were determined by hemolysis, PLA2 and isolated rat aortic ring assays, respectively. The cytotoxic effect was tested on HCT-15 (human colorectal adenocarcinoma), MCF-7 (human mammary adenocarcinoma), K562 (human chronic myelogenous leukemia), U251 (human glyoblastoma), PC-3 (human prostatic adenocarcinoma) and SKLU-1 (human lung adenocarcinoma). An in vivo toxicity assay was performed with crickets and the antiparasitic assay was performed against G. intestinalis at 24 h of incubation. RESULTS P. caribaeorum venom produced hemolytic and PLA2 activity and showed specific cytotoxicity against U251 and SKLU-1 cell lines, with approximately 50% growing inhibition. The venom was toxic to insects and showed activity against G. intestinalis in a dose-dependent manner by possibly altering its membrane osmotic equilibrium. CONCLUSION These results suggest that P. caribaeorum venom contains compounds with potential therapeutic value against microorganisms and cancer.
Collapse
Affiliation(s)
- Fernando Lazcano-Pérez
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, C.P. 04510. Apdo, Postal 70250 Mexico City, Mexico
| | - Ariana Zavala-Moreno
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, C.P. 04510. Apdo, Postal 70250 Mexico City, Mexico
| | - Yadira Rufino-González
- Laboratorio de Parasitología Experimental, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, 04530 Mexico City, Mexico
| | - Martha Ponce-Macotela
- Laboratorio de Parasitología Experimental, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, 04530 Mexico City, Mexico
| | - Alejandro García-Arredondo
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010 Querétaro, Mexico
| | - Miguel Cuevas-Cruz
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, C.P. 04510. Apdo, Postal 70250 Mexico City, Mexico
| | - Saúl Gómez-Manzo
- CONACYT-Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Mexico City, Mexico
| | - Jaime Marcial-Quino
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, 04530 Mexico City, Mexico
| | - Barbarín Arreguín-Lozano
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, C.P. 04510. Apdo, Postal 70250 Mexico City, Mexico
- Laboratorio de Parasitología Experimental, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, 04530 Mexico City, Mexico
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010 Querétaro, Mexico
- CONACYT-Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Mexico City, Mexico
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, 04530 Mexico City, Mexico
| | - Roberto Arreguín-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, C.P. 04510. Apdo, Postal 70250 Mexico City, Mexico
| |
Collapse
|
18
|
Biophysical and biochemical strategies to understand membrane binding and pore formation by sticholysins, pore-forming proteins from a sea anemone. Biophys Rev 2017; 9:529-544. [PMID: 28853034 DOI: 10.1007/s12551-017-0316-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022] Open
Abstract
Actinoporins constitute a unique class of pore-forming toxins found in sea anemones that are able to bind and oligomerize in membranes, leading to cell swelling, impairment of ionic gradients and, eventually, to cell death. In this review we summarize the knowledge generated from the combination of biochemical and biophysical approaches to the study of sticholysins I and II (Sts, StI/II), two actinoporins largely characterized by the Center of Protein Studies at the University of Havana during the last 20 years. These approaches include strategies for understanding the toxin structure-function relationship, the protein-membrane association process leading to pore formation and the interaction of toxin with cells. The rational combination of experimental and theoretical tools have allowed unraveling, at least partially, of the complex mechanisms involved in toxin-membrane interaction and of the molecular pathways triggered upon this interaction. The study of actinoporins is important not only to gain an understanding of their biological roles in anemone venom but also to investigate basic molecular mechanisms of protein insertion into membranes, protein-lipid interactions and the modulation of protein conformation by lipid binding. A deeper knowledge of the basic molecular mechanisms involved in Sts-cell interaction, as described in this review, will support the current investigations conducted by our group which focus on the design of immunotoxins against tumor cells and antigen-releasing systems to cell cytosol as Sts-based vaccine platforms.
Collapse
|
19
|
Frangež R, Šuput D, Molgó J, Benoit E. Ostreolysin A/Pleurotolysin B and Equinatoxins: Structure, Function and Pathophysiological Effects of These Pore-Forming Proteins. Toxins (Basel) 2017; 9:toxins9040128. [PMID: 28379176 PMCID: PMC5408202 DOI: 10.3390/toxins9040128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 12/17/2022] Open
Abstract
Acidic ostreolysin A/pleurotolysin B (OlyA/PlyB, formerly known as ostreolysin (Oly), and basic 20 kDa equinatoxins (EqTs) are cytolytic proteins isolated from the edible mushroom Pleurotus ostreatus and the sea anemone Actinia equina, respectively. Both toxins, although from different sources, share many similar biological activities: (i) colloid-osmotic shock by forming pores in cellular and artificial membranes enriched in cholesterol and sphingomyelin; (ii) increased vascular endothelial wall permeability in vivo and perivascular oedema; (iii) dose-dependent contraction of coronary vessels; (iv) haemolysis with pronounced hyperkalaemia in vivo; (v) bradycardia, myocardial ischemia and ventricular extrasystoles accompanied by progressive fall of arterial blood pressure and respiratory arrest in rodents. Both types of toxins are haemolytic within nanomolar range concentrations, and it seems that hyperkalaemia plays an important role in toxin cardiotoxicity. However, it was observed that the haemolytically more active EqT III is less toxic than EqT I, the most toxic and least haemolytic EqT. In mice, EqT II is more than 30 times more toxic than OlyA/PlyB when applied intravenously. These observations imply that haemolysis with hyperkalaemia is not the sole cause of the lethal activity of both toxins. Additional mechanisms responsible for lethal action of the two toxins are direct effects on heart, coronary vasoconstriction and related myocardial hypoxia. In this review, we appraise the pathophysiological mechanisms related to the chemical structure of OlyA/PlyB and EqTs, as well as their toxicity.
Collapse
Affiliation(s)
- Robert Frangež
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana; 1115-Ljubljana, Slovenia.
| | - Dušan Šuput
- Laboratory for Cell Physiology and Toxinology, Institute of Pathophysiology, School of Medicine, University of Ljubljana, P.O. Box 11, 1105-Ljubljana, Slovenia.
| | - Jordi Molgó
- DRF/Institut de Sciences de la Vie Frédéric Joliot/SIMOPRO, CEA de Saclay, and Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197 CNRS/Université Paris-Sud, 91190 Gif-sur-Yvette, France.
| | - Evelyne Benoit
- DRF/Institut de Sciences de la Vie Frédéric Joliot/SIMOPRO, CEA de Saclay, and Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197 CNRS/Université Paris-Sud, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
20
|
García-Linares S, Maula T, Rivera-de-Torre E, Gavilanes JG, Slotte JP, Martínez-Del-Pozo Á. Role of the Tryptophan Residues in the Specific Interaction of the Sea Anemone Stichodactyla helianthus's Actinoporin Sticholysin II with Biological Membranes. Biochemistry 2016; 55:6406-6420. [PMID: 27933775 DOI: 10.1021/acs.biochem.6b00935] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Actinoporins are pore-forming toxins from sea anemones. Upon interaction with sphingomyelin-containing bilayers, they become integral oligomeric membrane structures that form a pore. Sticholysin II from Stichodactyla helianthus contains five tryptophans located at strategic positions; its role has now been studied using different mutants. Results show that W43 and W115 play a determinant role in maintaining the high thermostability of the protein, while W146 provides specific interactions for protomer-protomer assembly. W110 and W114 sustain the hydrophobic effect, which is one of the major driving forces for membrane binding in the presence of Chol. However, in its absence, additional interactions with sphingomyelin are required. These conclusions were confirmed with two sphingomyelin analogues, one of which had impaired hydrogen bonding properties. The results obtained support actinoporins' Trp residues playing a major role in membrane recognition and binding, but their residues have an only minor influence on the diffusion and oligomerization steps needed to assemble a functional pore.
Collapse
Affiliation(s)
- Sara García-Linares
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense , Madrid, Spain.,Biochemistry, Faculty of Science and Engineering, Åbo Akademi University , Turku, Finland
| | - Terhi Maula
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University , Turku, Finland
| | | | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense , Madrid, Spain
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University , Turku, Finland
| | | |
Collapse
|
21
|
Ponnappan N, Budagavi DP, Yadav BK, Chugh A. Membrane-active peptides from marine organisms--antimicrobials, cell-penetrating peptides and peptide toxins: applications and prospects. Probiotics Antimicrob Proteins 2016; 7:75-89. [PMID: 25559972 DOI: 10.1007/s12602-014-9182-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Marine organisms are known to be a rich and unique source of bioactive compounds as they are exposed to extreme conditions in the oceans. The present study is an attempt to briefly describe some of the important membrane-active peptides (MAPs) such as antimicrobial peptides (AMPs), cell-penetrating peptides (CPPs) and peptide toxins from marine organisms. Since both AMPs and CPPs play a role in membrane perturbation and exhibit interchangeable role, they can speculatively fall under the broad umbrella of MAPs. The study focuses on the structural and functional characteristics of different classes of marine MAPs. Further, AMPs are considered as a potential remedy to antibiotic resistance acquired by several pathogens. Peptides from marine organisms show novel post-translational modifications such as cysteine knots, halogenation and histidino-alanine bridge that enable these peptides to withstand harsh marine environmental conditions. These unusual modifications of AMPs from marine organisms are expected to increase their half-life in living systems, contributing to their increased bioavailability and stability when administered as drug in in vivo systems. Apart from AMPs, marine toxins with membrane-perturbing properties could be essentially investigated for their cytotoxic effect on various pathogens and their cell-penetrating activity across various mammalian cells. The current review will help in identifying the MAPs from marine organisms with crucial post-translational modifications that can be used as template for designing novel therapeutic agents and drug-delivery vehicles for treatment of human diseases.
Collapse
Affiliation(s)
- Nisha Ponnappan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | | | | | | |
Collapse
|
22
|
Mariottini GL, Grice ID. Antimicrobials from Cnidarians. A New Perspective for Anti-Infective Therapy? Mar Drugs 2016; 14:E48. [PMID: 27005633 PMCID: PMC4820302 DOI: 10.3390/md14030048] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 02/14/2016] [Accepted: 02/18/2016] [Indexed: 01/27/2023] Open
Abstract
The ability of microbes to counter the scientific and therapeutic advancements achieved during the second half of the twentieth century to provide effective disease treatments is currently a significant challenge for researchers in biology and medicine. The discovery of antibiotics, and the subsequent development of synthetic antimicrobial compounds, altered our therapeutic approach towards infectious diseases, and improved the quality and length of life for humans and other organisms. The current alarming rise in cases of antibiotic-resistance has forced biomedical researchers to explore new ways to recognize and/or produce new antimicrobials or to find other approaches for existing therapeutics. Aquatic organisms are known to be a source of compounds having the potential to play a role in fighting the battle against pathogenic microbes. In this connection, cnidarians occupy a pre-eminent role. Over the past few decades several studies have explored the antimicrobial/antibiotic properties of cnidarian extracts with the aim of isolating compounds possessing useful therapeutic features. This paper aims to review the existing data on this subject, taking into account the possible utilization of identified compounds.
Collapse
Affiliation(s)
- Gian Luigi Mariottini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Viale Benedetto XV 5, Genova I-16132, Italy.
| | - Irwin Darren Grice
- Institute for Glycomics and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport 4222, Queensland, Australia.
| |
Collapse
|
23
|
The effect of cholesterol on the long-range network of interactions established among sea anemone Sticholysin II residues at the water-membrane interface. Mar Drugs 2015; 13:1647-65. [PMID: 25815890 PMCID: PMC4413179 DOI: 10.3390/md13041647] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/03/2015] [Accepted: 03/16/2015] [Indexed: 12/21/2022] Open
Abstract
Actinoporins are α-pore forming proteins with therapeutic potential, produced by sea anemones. Sticholysin II (StnII) from Stichodactyla helianthus is one of its most extensively characterized members. These proteins remain stably folded in water, but upon interaction with lipid bilayers, they oligomerize to form a pore. This event is triggered by the presence of sphingomyelin (SM), but cholesterol (Chol) facilitates pore formation. Membrane attachment and pore formation require changes involving long-distance rearrangements of residues located at the protein-membrane interface. The influence of Chol on membrane recognition, oligomerization, and/or pore formation is now studied using StnII variants, which are characterized in terms of their ability to interact with model membranes in the presence or absence of Chol. The results obtained frame Chol not only as an important partner for SM for functional membrane recognition but also as a molecule which significantly reduces the structural requirements for the mentioned conformational rearrangements to occur. However, given that the DOPC:SM:Chol vesicles employed display phase coexistence and have domain boundaries, the observed effects could be also due to the presence of these different phases on the membrane. In addition, it is also shown that the Arg51 guanidinium group is strictly required for membrane recognition, independently of the presence of Chol.
Collapse
|
24
|
García-Ortega L, Alegre-Cebollada J, García-Linares S, Bruix M, Martínez-Del-Pozo A, Gavilanes JG. The behavior of sea anemone actinoporins at the water-membrane interface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2275-88. [PMID: 21621507 DOI: 10.1016/j.bbamem.2011.05.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 01/13/2023]
Abstract
Actinoporins constitute a group of small and basic α-pore forming toxins produced by sea anemones. They display high sequence identity and appear as multigene families. They show a singular behaviour at the water-membrane interface: In aqueous solution, actinoporins remain stably folded but, upon interaction with lipid bilayers, become integral membrane structures. These membranes contain sphingomyelin, display phase coexistence, or both. The water soluble structures of the actinoporins equinatoxin II (EqtII) and sticholysin II (StnII) are known in detail. The crystalline structure of a fragaceatoxin C (FraC) nonamer has been also determined. The three proteins fold as a β-sandwich motif flanked by two α-helices, one of them at the N-terminal end. Four regions seem to be especially important: A cluster of aromatic residues, a phosphocholine binding site, an array of basic amino acids, and the N-terminal α-helix. Initial binding of the soluble monomers to the membrane is accomplished by the cluster of aromatic amino acids, the array of basic residues, and the phosphocholine binding site. Then, the N-terminal α-helix detaches from the β-sandwich, extends, and lies parallel to the membrane. Simultaneously, oligomerization occurs. Finally, the extended N-terminal α-helix penetrates the membrane to build a toroidal pore. This model has been however recently challenged by the cryo-EM reconstruction of FraC bound to phospholipid vesicles. Actinoporins structural fold appears across all eukaryotic kingdoms in other functionally unrelated proteins. Many of these proteins neither bind to lipid membranes nor induce cell lysis. Finally, studies focusing on the therapeutic potential of actinoporins also abound.
Collapse
Affiliation(s)
- Lucía García-Ortega
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
25
|
Pentón D, Pérez-Barzaga V, Díaz I, Reytor ML, Campos J, Fando R, Calvo L, Cilli EM, Morera V, Castellanos-Serra LR, Pazos F, Lanio ME, Alvarez C, Pons T, Tejuca M. Validation of a mutant of the pore-forming toxin sticholysin-I for the construction of proteinase-activated immunotoxins. Protein Eng Des Sel 2011; 24:485-93. [PMID: 21296830 DOI: 10.1093/protein/gzr002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The use of pore-forming toxins from sea anemones (actinoporins) in the construction of immunotoxins (ITs) against tumour cells is an alternative for cancer therapy. However, the main disadvantage of actinoporin-based ITs obtained so far has been the poor cellular specificity associated with the toxin's ability to bind and exert its activity in almost any cell membrane. Our final goal is the construction of tumour proteinase-activated ITs using a cysteine mutant at the membrane binding region of sticholysin-I (StI), a cytolysin isolated from the sea anemone Stichodactyla helianthus. The mutant and the ligand moiety would be linked by proteinase-sensitive peptides through the StI cysteine residue blocking the toxin binding region and hence the IT non-specific killing activity. To accomplish this objective the first step was to obtain the mutant StI W111C, and to evaluate the impact of mutating tryptophan 111 by cysteine on the toxin pore-forming capacity. After proteolysis of the cleavage sequence, a short peptide would remain attached to the toxin. The next step was to evaluate whether this mutant is able to form pores even with a residual peptide linked to cysteine 111. In this work we demonstrated that (i) StI W111C shows pore-forming capacity in a nanomolar range, although it is 8-fold less active than the wild-type recombinant StI, corroborating the previously reported importance of residue 111 for the binding of StI to membranes, and (ii) the mutant is able to form pores even with a residual seven-residue peptide linked to cysteine 111. In addition, it was demonstrated that binding of a large molecule to cysteine 111 renders an inactive toxin that is no longer able to bind to the membrane. These results validate the mutant StI W111C for its use in the construction of tumour proteinase-activated ITs.
Collapse
Affiliation(s)
- David Pentón
- Faculty of Biology, Center for Protein Studies, University of Havana, Calle 25 #455 e/ J e I, Vedado, Ciudad de La Habana, Cuba
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Uechi GI, Toma H, Arakawa T, Sato Y. Molecular characterization on the genome structure of hemolysin toxin isoforms isolated from sea anemone Actineria villosa and Phyllodiscus semoni. Toxicon 2010; 56:1470-6. [PMID: 20837039 DOI: 10.1016/j.toxicon.2010.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/31/2010] [Accepted: 09/06/2010] [Indexed: 11/16/2022]
Abstract
We recently identified the existence of new isoforms of Avt-I (from sea anemone Actineria villosa) and Pstx20 (from sea anemone Phyllodiscus semoni) hemolytic toxins, and named them Avt-II and Pst-I. Avt-II and Pst-I differ in length by 14 and 7 bp, respectively, as compared to their corresponding isoform genes. Both newly found isoform genes have the coding regions with the identical length of 1033 bp. The restriction fragment length polymorphism analysis with endonuclease HphI was able to clearly distinguish between the two Avt isoforms, but not Pstx isoforms, and based on the densitometric analysis of DNA bands, it indicated that relative expression levels of Avt-I and Avt-II genes were 18.3% and 81.7%, respectively. PCR amplification of the two Avt isoform genes using the genomic DNA as template indicated the existence of two introns within each toxin isoform gene. The first intron with the identical 242 bp in length for both Avt isoform was found within the 5'-untranslated region, and the second intron with lengths of 654 bp and 661 bp in Avt-I and Avt-II isoforms, respectively, was found within the signal sequence coding region. This is for the first time to identify the existence of introns within hemolysin genes of sea anemone. Having several unique characteristics that have identified only for a new member of actinoporin family of A. villosa and P. semoni, e.g., strong toxicity and genes with introns, it is plausible to speculate that these toxins have a unique genetic evolutionary linage differed from that for other sea anemone hemolytic toxins.
Collapse
Affiliation(s)
- Gen-Ichiro Uechi
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto Nagasaki City, Nagasaki 852 8523, Japan
| | | | | | | |
Collapse
|
27
|
Bakrač B, Anderluh G. Molecular Mechanism of Sphingomyelin-Specific Membrane Binding and Pore Formation by Actinoporins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010. [DOI: 10.1007/978-1-4419-6327-7_9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Álvarez C, Mancheño JM, Martínez D, Tejuca M, Pazos F, Lanio ME. Sticholysins, two pore-forming toxins produced by the Caribbean Sea anemone Stichodactyla helianthus: Their interaction with membranes. Toxicon 2009; 54:1135-47. [DOI: 10.1016/j.toxicon.2009.02.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Kristan KC, Viero G, Dalla Serra M, Macek P, Anderluh G. Molecular mechanism of pore formation by actinoporins. Toxicon 2009; 54:1125-34. [PMID: 19268680 DOI: 10.1016/j.toxicon.2009.02.026] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Actinoporins are effective pore-forming toxins produced by sea anemones. These extremely potent, basic 20 kDa proteins readily form pores in membranes that contain sphingomyelin. Much has been learned about the molecular basis of their pore-forming mechanism in recent years. Pore formation is a multi-step process that involves recognition of membrane sphingomyelin, firm binding to the membrane accompanied by the transfer of the N-terminal region to the lipid-water interface and finally pore formation after oligomerisation of three to four monomers. The final conductive pathway is formed by amphipathic alpha-helices, hence actinoporins are an important example of so-called alpha-helical pore-forming toxins. Actinoporins have become useful model proteins to study protein-membrane interactions, specific recognition of lipids in the membrane, and protein oligomerisation in the lipid milieu. Recent sequence and structural data of proteins similar to actinoporins indicate that they are not a unique family restricted to sea anemones as was long believed. An AF domain superfamily (abbreviated from actinoporin-like proteins and fungal fruit-body lectins) was defined and shown to contain members from three animal and two plant phyla. On the basis of functional properties of some members we hypothesise that AF domain proteins are peripheral membrane proteins. Finally, ability of actinoporins to form transmembrane pores has been exploited in some novel biomedical applications.
Collapse
Affiliation(s)
- Katarina Crnigoj Kristan
- Department of Biology, Biotechnical faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
30
|
Tejuca M, Anderluh G, Dalla Serra M. Sea anemone cytolysins as toxic components of immunotoxins. Toxicon 2009; 54:1206-14. [PMID: 19268683 DOI: 10.1016/j.toxicon.2009.02.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The use of membrane active toxins as toxic moieties in the construction of immunotoxins (ITs) is an attractive alternative to overcome some of the problems of classical ITs since these new conjugates are based in the use of a different mechanism of killing undesired cells. Pore-forming cytolysins from sea anemones were used in the construction of ITs targeted to different cell types including tumour cell lines and the parasite Giardia duodenalis. The results obtained support the feasibility of directing these cytolysins to the surface of the cancer cells or the parasite through their conjugation to monoclonal antibodies recognizing tumour-associated or parasite antigens, respectively. However the main problem with the IT constructed in this fashion is the lack of specificity associated with the toxin moiety. An approach designed to overcome this limitation was the construction of inactive cytolysin with built-in biological "trigger" that renders the toxin active in the presence of tumour-specific proteinases. This construction is considered as a proof of concept to demonstrate the feasibility of such activation systems in the construction of ITs based on pore-forming cytolysins from sea anemones with reduced unspecific activity. The future prospects of the use of the N-terminal region of actinoporins for construction of IT is also described.
Collapse
Affiliation(s)
- Mayra Tejuca
- Centro de Estudios de Proteínas y Departamento de Bioquímica, Facultad de Biologia, Universidad de La Habana, Calle 25 #455 e/ J e I, Vedado, Ciudad de La Habana, Cuba.
| | | | | |
Collapse
|
31
|
Martínez D, Otero A, Alvarez C, Pazos F, Tejuca M, Lanio ME, Gutiérrez-Aguirre I, Barlic A, Iloro I, Arrondo JL, González-Mañas JM, Lissi E. Effect of sphingomyelin and cholesterol on the interaction of St II with lipidic interfaces. Toxicon 2007; 49:68-81. [PMID: 17113118 DOI: 10.1016/j.toxicon.2006.09.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 09/13/2006] [Accepted: 09/15/2006] [Indexed: 11/17/2022]
Abstract
Sticholysin II (St II) is a cytolysin produced by the sea anemone Stichodactyla helianthus, characterized by forming oligomeric pores in natural and artificial membranes. In the present work the influence of the membrane lipidic components sphingomyelin (SM) and cholesterol (Cho) on binding and functional activity of St II, was evaluated using ELISA, lipid monolayers and liposomes. The aim of this work was to establish the promoting role of Cho and SM, both in St II binding and pore formation efficiency. In general the association (evaluated by ELISA and incorporation to phospholipid monolayers) of St II to lipids mixtures was better than to any one of the single components. Regarding the unique role of SM, it was found that, albeit inefficiently, St II binds to phosphatidylcholine (PC):Cho monolayers and liposomes, and is able to form active pores in these bilayers. The results in monolayers and liposomes show that the presence of SM and large amounts of Cho leads to the highest values of critical pressure and rate of association to monolayers, the most favorable interaction with liposomes, and the fastest rate of pore formation, in spite of the rigidity of the layers as suggested by the high generalized polarization (GP) of Laurdan incorporated to liposomes and FTIR data. Taken together, the present results show that the joint presence of SM and Cho, both in binary and ternary (PC containing) mixtures provide conditions particularly suitable for St II binding and function. We suggest that microdomains present in the bilayers could be important for toxin-membrane association.
Collapse
Affiliation(s)
- Diana Martínez
- Facultad de Biología, Universidad de la Habana, Centro de Estudio de Proteínas, Calle 25 no 455, CP 10400, Cuba.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Casallanovo F, de Oliveira FJF, de Souza FC, Ros U, Martínez Y, Pentón D, Tejuca M, Martínez D, Pazos F, Pertinhez TA, Spisni A, Cilli EM, Lanio ME, Alvarez C, Schreier S. Model peptides mimic the structure and function of the N-terminus of the pore-forming toxin sticholysin II. Biopolymers 2006; 84:169-80. [PMID: 16170802 DOI: 10.1002/bip.20374] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To investigate the role of the N-terminal region in the lytic mechanism of the pore-forming toxin sticholysin II (St II), we studied the conformational and functional properties of peptides encompassing the first 30 residues of the protein. Peptides containing residues 1-30 (P1-30) and 11-30 (P11-30) were synthesized and their conformational properties were examined in aqueous solution as a function of peptide concentration, pH, ionic strength, and addition of the secondary structure-inducing solvent trifluoroethanol (TFE). CD spectra showed that increasing concentration, pH, and ionic strength led to aggregation of P1-30; as a consequence, the peptide acquired beta-sheet conformation. In contrast, P11-30 exhibited practically no conformational changes under the same conditions, remaining essentially structureless. Moreover, this peptide did not undergo aggregation. These differences clearly point to the modulating effect of the first 10 hydrophobic residues on the peptides aggregation and conformational properties. In TFE both the first ten hydrophobic peptides acquired alpha-helical conformation, albeit to a different extent, P11-30 displayed lower alpha-helical content. P1-30 presented a larger fraction of residues in alpha-helical conformation in TFE than that found in St II's crystal structure for that portion of the protein. Since TFE mimics the membrane environment, such increase in helical content could also occur upon toxin binding to membranes and represent a step in the mechanism of pore formation. The peptides conformational properties correlated well with their functional behavior. Thus, P1-30 exhibited much higher hemolytic activity than P11-30. In addition, P11-30 was able to block the toxin's hemolytic activity. The size of pores formed in red blood cells by P1-30 was estimated by measuring the permeability to PEGs of different molecular mass. The pore radius (0.95 +/- 0.01 nm) was very similar to that of the pore formed by the toxin. The results demonstrate that the synthetic peptide P1-30 is a good model of St II conformation and function and emphasize the contribution of the toxin's N-terminal region, and, in particular, the hydrophobic residues 1-10 to pore formation.
Collapse
Affiliation(s)
- Fábio Casallanovo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Vakorina TI, Klyshko EV, Monastyrnaya MM, Kozlovskaya EP. Conformational Stability and Hemolytic Activity of Actinoporin RTX-SII from the Sea Anemone Radianthus macrodactylus. BIOCHEMISTRY (MOSCOW) 2005; 70:790-8. [PMID: 16097943 DOI: 10.1007/s10541-005-0185-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The spatial organization of actinoporin RTX-SII from the sea anemone Radianthus macrodactylus on the level of tertiary and secondary structures was studied by UV and CD spectroscopy and intrinsic protein fluorescence. The specific and molar extinction coefficients of RTX-SII were determined. The percentages of canonical secondary structures of actinoporin were calculated. The tertiary structure of the polypeptide is well developed and its secondary structure is highly ordered and contains about 50% antiparallel folded beta-sheets. The irreversible thermal denaturation of RTX-SII was studied by CD spectroscopy; a conformational transition occurs at 53 degrees C. Above this temperature irreversible conformational changes are observed in the secondary and tertiary structures. This is accompanied by redistribution of the content of regular and distorted forms of beta-sheet and also by increase in the content of an unordered form. It is suggested that an intermediate is formed in the process of thermal denaturation. Acid-base titration of RTX-SII results in irreversible conformational changes at pH below 2.0 and above 12.0. As shown by intrinsic protein fluorescence, tyrosine residues of RTX-SII make a fundamental contribution to emission, and the total fluorescence depends more on temperature and ionic strength of the solution than tryptophan fluorescence. The data on conformational stability of actinoporin are correlated with data on its hemolytic activity. Activity of RTX-SII significantly decreases at increased temperature and slightly decreases at low pH. Hemolytic activity drastically increases at high pH. Increase in the actinoporin activity at pH above 10 seems to be caused by ionization of the molecule.
Collapse
Affiliation(s)
- T I Vakorina
- Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia.
| | | | | | | |
Collapse
|
34
|
Potrich C, Tomazzolli R, Dalla Serra M, Anderluh G, Malovrh P, Macek P, Menestrina G, Tejuca M. Cytotoxic Activity of a Tumor Protease-Activated Pore-Forming Toxin. Bioconjug Chem 2005; 16:369-76. [PMID: 15769091 DOI: 10.1021/bc049873z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Equinatoxin II is a pore forming toxin produced by the sea anemone Actinia equina. It is able to kill very unspecifically most cell types by the membrane-perturbing action of an amphiphilic alpha-helix located at its N-terminal. A normally active N-terminal mutant, containing one single cys in the amphiphilic alpha-helix, becomes totally inactive when it is bound to avidin via a biotinylated linker. By choosing, as a linker, a peptide containing a tumor protease cleavage site, we were able to construct an enzymatically activable conjugate which should be selective for tumor cells. The introduced cleavage site was designed in order to be digested by both cathepsin B and matrix metalloproteases (MMPs). We confirmed that this conjugate could be activated in vitro by cathepsin B and MMPs. After having measured the enzymatic activity of fibrosarcoma and breast carcinoma cells, we analyzed the cytotoxic effect of the conjugate on the same lines and on human red blood cells (HRBC) as controls. We found that the conjugate was activated, at least in part, by the tumor cell lines used, whereas it was inactive on HRBC. That the activation process was dependent on the enzymatic action of cathepsin B and MMPs, was indicated by three lines of evidence: (1) binding occurred normally on all type of cells including HRBC which however were insensitive being devoid of enzymes; (2) the cytotoxic effect correlated with the amount of cathepsin B activity expressed by the cells; (3) conjugate activation was reduced by specific inhibitors of cathepsin B and MMPs. These results demonstrate the possibility of tumor cell killing by a pore-forming toxin conjugate specifically activated by tumor proteases.
Collapse
Affiliation(s)
- C Potrich
- CNR-ITC Istituto di Biofisica Sezione di Trento, Via Sommarive 18, 38050 Povo (TN) Italy.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Anderluh G, Razpotnik A, Podlesek Z, Macek P, Separovic F, Norton RS. Interaction of the eukaryotic pore-forming cytolysin equinatoxin II with model membranes: 19F NMR studies. J Mol Biol 2005; 347:27-39. [PMID: 15733915 DOI: 10.1016/j.jmb.2004.12.058] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 12/23/2004] [Accepted: 12/28/2004] [Indexed: 11/19/2022]
Abstract
Sea anemones produce a family of 18-20 kDa proteins, the actinoporins, which lyse cells by forming pores in cell membranes. Sphingomyelin plays an important role in their lytic activity, with membranes lacking this lipid being largely refractory to these toxins. As a means of characterising membrane binding by the actinoporin equinatoxin II (EqTII), we have used 19F NMR to probe the environment of Trp residues in the presence of micelles and bicelles. Trp was chosen as previous data from mutational studies and truncated analogues had identified the N-terminal helix of EqTII and the surface aromatic cluster including tryptophan residues 112 and 116 as being important for membrane interactions. The five tryptophan residues were replaced with 5-fluorotryptophan and assigned by site-directed mutagenesis. The 19F resonance of W112 was most affected in the presence of phospholipid micelles or bicelles, followed by W116, with further change induced by the addition of sphingomyelin. Although binding to phosphatidylcholine is not sufficient to enable pore formation in bilayer membranes, this interaction had a greater effect on the tryptophan residues in our studies than the subsequent interaction with sphingomyelin. Furthermore, sphingomyelin had a direct effect on EqTII in both model membranes, so its role in EqTII pore formation involves more than simply an indirect effect mediated via bulk lipid properties. The lack of change in chemical shift for W149 even in the presence of sphingomyelin indicates that, at least in the model membranes studied here, interaction with sphingomyelin was not sufficient to trigger dissociation of the N-terminal helix from the beta-sandwich, which forms the bulk of the protein.
Collapse
Affiliation(s)
- Gregor Anderluh
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
36
|
Il?ina AP, Monastyrnaya MM, Sokotun IN, Egorov TA, Nazarenko YA, Likhatskaya GN, Kozlovskaya EP. Actinoporins from the Sea of Japan anemone Oulactis orientalis: Isolation and partial characterization. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2005. [DOI: 10.1007/s11171-005-0004-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Tejuca M, Díaz I, Figueredo R, Roque L, Pazos F, Martínez D, Iznaga-Escobar N, Pérez R, Alvarez C, Lanio ME. Construction of an immunotoxin with the pore forming protein StI and ior C5, a monoclonal antibody against a colon cancer cell line. Int Immunopharmacol 2004; 4:731-44. [PMID: 15135315 DOI: 10.1016/j.intimp.2004.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2003] [Revised: 08/01/2003] [Accepted: 02/19/2004] [Indexed: 10/26/2022]
Abstract
Sticholysin I (StI), a potent cytolysin isolated from the sea anemone Stichodactyla helianthus, was linked to the monoclonal antibody (mAb) ior C5. StI acts by forming hydrophilic pores in the membrane of the attacked cells leading to osmotic lysis. ior C5 is a murine IgG1, which recognizes the tumor associated antigen (TAA) ior C2. The cytolysin and the mAb were coupled by using the heterobifunctional cross-linking reagent sulfosuccinimidyl 4-(N-maleimidomethyl)-cyclohexane-1-carboxylate (SMCC). Two hybrid molecules composed by one ior C5 and one or two StI molecules were obtained (named conjugated I and II, respectively). The purified conjugates were evaluated by a binding affinity assay against an ior C2-positive colon cancer cell line (SW948). Both molecules were able to recognize the antigen (Ag) in the same way that unconjugated ior C5 does. The activity of both conjugates against human erythrocytes and SW948 cells was assessed. They lost most of their hemolytic activity but their residual activity was very similar. Nevertheless, when their cytotoxicity was studied on the SW948 cell line, only conjugate II killed efficiently the cells, indicating a specific mAb-Ag interaction. In this chimeric molecule the ratio between the cytotoxic and the hemolytic activity was larger than that of the free cytolysin. This fact indicates an increase of the specificity of the toxic effect toward the SW948 cell line and consequently an increase of the difference between its hemolytic and cytotoxic doses. The results herein support the feasibility of directing StI to the surface of cancer cells expressing ior C2 Ag via the mAb ior C5.
Collapse
Affiliation(s)
- M Tejuca
- Centro de Estudios de Proteínas y Departamento de Bioquímica, Facultad de Biologia, Universidad de La Habana, Cuba.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jiang X, Chen H, Yang W, Liu Y, Liu W, Wei J, Tu H, Xie X, Wang L, Xu A. Functional expression and characterization of an acidic actinoporin from sea anemone Sagartia rosea. Biochem Biophys Res Commun 2004; 312:562-70. [PMID: 14680802 DOI: 10.1016/j.bbrc.2003.10.159] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Indexed: 11/24/2022]
Abstract
Src I is the first reported acidic actinoporin from sea anemone Sagartia rosea with a pI value of 4.8 and comprises 13.9% alpha-helix, 65.1% beta-sheet, and 18.2% random coil. For structure-function studies, Src I was expressed in Escherichia coli as a cleavable fusion protein. Recombinant Src I exhibited obviously hemolytic activity, but the fusion protein Trx-Src I almost lost its hemolytic activity, suggesting the importance of the N-terminal amphiphilic alpha-helix for its functional activity. The cytotoxic effects of Src I depending on the toxin concentration and incubation time were also observed on cultured cells. Among five cell lines: NIH/3T3, U251, NSCLC, BEL-7402, and BGC-823, NSCLC was the most sensitive cells with ID(50) 2.8 microg/ml and BGC-823 was the least sensitive cells with ID(50) 7.4 microg/ml. After incubated with lipid SUVs, such as SM-SUVs and SM/PC-SUVs, the hemolytic activity of Src I was inhibited to some extent. When incubated with calcein-entrapped lipid LUVs, such as SM-LUVs, SM/PC-LUVs, and SM/PG-LUVs, Src I induced release of entrapped calcein. According to the interaction with lipid vesicles, we proposed that it was the membrane matrix made up of phospholipids, not a particular phospholipid that facilitates Src I to react properly.
Collapse
Affiliation(s)
- Xiaoyu Jiang
- The Open Laboratory for Marine Functional Genomics of National High-Tech Development, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cristina Pico M, Basulto A, del Monte A, Hidalgo A, Eliana Lanio M, Alvarez C, Felicó E, Otero A. Cross-reactivity and inhibition of haemolysis by polyclonal antibodies raised against St II, a cytolysin from the sea anemone Stichodactyla helianthus. Toxicon 2004; 43:167-71. [PMID: 15019476 DOI: 10.1016/j.toxicon.2003.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 11/18/2003] [Accepted: 11/19/2003] [Indexed: 11/17/2022]
Abstract
The immunogenicity of sticholysin II (St II), a pore-forming polypeptide from the sea anemone Stichodactyla helianthus, was studied in rabbits using two adjuvants, Freund's and aluminium hydroxide. High titres of antibodies were raised against St II with Freund's adjuvant (FA). The structural homology between sticholysins I and II was also revealed by cross-reactivity assays. Since the oil constituent of FA neutralized the St II haemolytic activity, immunizations with St II-Freund's emulsions were carried out with the inactivated cytolysin. Purified anti-St II IgG also neutralized the St II haemolytic activity.
Collapse
Affiliation(s)
- María Cristina Pico
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 No. 455, entre J e I. Vedado, Ciudad Habana 10400, Cuba.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Alvarez C, Tejuca M, Pazos I, Lanio M, Garateix A, Aneiros A. Overview of Marine Toxin Research in Cuba. ACTA ACUST UNITED AC 2003. [DOI: 10.1080/08865140302430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Monastyrnaya MM, Zykova TA, Apalikova OV, Shwets TV, Kozlovskaya EP. Biologically active polypeptides from the tropical sea anemone Radianthus macrodactylus. Toxicon 2002; 40:1197-217. [PMID: 12165324 DOI: 10.1016/s0041-0101(02)00139-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Some biologically active polypeptides, three high and two low molecular weight cytolysins and four trypsin inhibitors were isolated from the sea anemone Radianthus macrodactylus and characterized. The purification steps involved acetone precipitation, gel filtration, ion-exchange, and affinity chromatography, and ion-exchange and reverse-phase HPLC. The relative molecular weight of high molecular weight Radianthus cytolysins named according to their N-terminal amino acids RTX-A (Ala), RTX-S (Ser) and RTX-G (Gly) was about 20,000. The isoelectric points were 9.8 for RTX-A and RTX-S, and 10.5 for RTX-G. The hemolytic activities of RTX-A, RTX-S and RTX-G were 3.5 x 10(4), 5.0 x10(4), and 1.0 x10(4)HU/mg, respectively, and were inhibited by sphingomyelin. The N-terminal amino acid sequence of RTX-A was determined as ALAGAIIAGAGLGLKILIEVLGEG-VKVKI-. Molecular weight of low molecular weight Radianthus cytolysins RmI, RmII, and of one trypsin inhibitor InI were 5100, 6100 and 7100, respectively. Isoelectric points for RmI and RmII were 9.2 and 9.3. Their hemolytic activity worked out 25 and 20 HU/mg, and was not inhibited by sphingomyelin. Toxicity of RmI and RmII was assessed by their histaminolytic activity. Amino acid composition of RmI and RmII was similar to that of tealiatoxin, histaminolytic cytolysin from the sea anemone Tealia felina.
Collapse
Affiliation(s)
- Margarita M Monastyrnaya
- Pacific Institute of Bioorganic Chemistry of the Far Eastern Branch of the Russian Academy of Sciences, pr. 100 let Vladivostoku 159, 690022, Vladivostok, Russian Federation.
| | | | | | | | | |
Collapse
|
42
|
Abstract
More than 32 species of sea anemones have been reported to produce lethal cytolytic peptides and proteins. Based on their primary structure and functional properties, cytolysins have been classified into four polypeptide groups. Group I consists of 5-8 kDa peptides, represented by those from the sea anemones Tealia felina and Radianthus macrodactylus. These peptides form pores in phosphatidylcholine containing membranes. The most numerous is group II comprising 20 kDa basic proteins, actinoporins, isolated from several genera of the fam. Actiniidae and Stichodactylidae. Equinatoxins, sticholysins, and magnificalysins from Actinia equina, Stichodactyla helianthus, and Heteractis magnifica, respectively, have been studied mostly. They associate typically with sphingomyelin containing membranes and create cation-selective pores. The crystal structure of equinatoxin II has been determined at 1.9A resolution. Lethal 30-40 kDa cytolytic phospholipases A(2) from Aiptasia pallida (fam. Aiptasiidae) and a similar cytolysin, which is devoid of enzymatic activity, from Urticina piscivora, form group III. A thiol-activated cytolysin, metridiolysin, with a mass of 80 kDa from Metridium senile (fam. Metridiidae) is a single representative of the fourth family. Its activity is inhibited by cholesterol or phosphatides. Biological, structure-function, and pharmacological characteristics of these cytolysins are reviewed.
Collapse
Affiliation(s)
- Gregor Anderluh
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111,1000 Ljubljana, Slovenia
| | | |
Collapse
|
43
|
Hinds MG, Zhang W, Anderluh G, Hansen PE, Norton RS. Solution structure of the eukaryotic pore-forming cytolysin equinatoxin II: implications for pore formation. J Mol Biol 2002; 315:1219-29. [PMID: 11827489 DOI: 10.1006/jmbi.2001.5321] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sea anemones produce a family of 18-20 kDa proteins, the actinoporins, that lyse cells by forming pores in cell membranes. Sphingomyelin plays an important role in their lytic activity, with membranes lacking this lipid being largely refractory to these toxins. The structure of the actinoporin equinatoxin II in aqueous solution, determined from NMR data, consists of two short helices packed against opposite faces of a beta-sandwich structure formed by two five-stranded beta-sheets. The protein core has extensive hydrophobic interfaces formed by residues projecting from the internal faces of the two beta-sheets. 15N relaxation data show uniform backbone dynamics, implying that equinatoxin II in solution is relatively rigid, except at the N terminus; its inferred rotational correlation time is consistent with values for monomeric proteins of similar mass. Backbone amide exchange rate data also support the view of a stable structure, even though equinatoxin II lacks disulfide bonds. As monitored by NMR, it unfolds at around 70 degrees C at pH 5.5. At 25 degrees C the structure is stable over the pH range 2.5-7.3 but below pH 2.5 it undergoes a slow transition to an incompletely unfolded structure resembling a molten globule. Equinatoxin II has two significant patches of positive electrostatic potential formed by surface-exposed Lys and Arg residues, which may assist its interaction with charged regions of the lipid head groups. Tyr and Trp residues on the surface may also contribute by interacting with the carbonyl groups of the acyl chains of target membranes. Data from mutational studies and truncated analogues identify two regions of the protein involved in membrane interactions, the N-terminal helix and the Trp-rich region. Once the protein is anchored, the N-terminal helix may penetrate the membrane, with up to four helices lining the pore, although other mechanisms of pore formation cannot be ruled out.
Collapse
Affiliation(s)
- Mark G Hinds
- Biomolecular Research Institute, 343 Royal Parade, Parkville 3052, Australia
| | | | | | | | | |
Collapse
|
44
|
Valcarcel CA, Dalla Serra M, Potrich C, Bernhart I, Tejuca M, Martinez D, Pazos F, Lanio ME, Menestrina G. Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus. Biophys J 2001; 80:2761-74. [PMID: 11371451 PMCID: PMC1301462 DOI: 10.1016/s0006-3495(01)76244-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Sticholysin I and II (St I and St II), two basic cytolysins purified from the Caribbean sea anemone Stichodactyla helianthus, efficiently permeabilize lipid vesicles by forming pores in their membranes. A general characteristic of these toxins is their preference for membranes containing sphingomyelin (SM). As a consequence, vesicles formed by equimolar mixtures of SM with phosphatidylcholine (PC) are very good targets for St I and II. To better characterize the lipid dependence of the cytolysin-membrane interaction, we have now evaluated the effect of including different lipids in the composition of the vesicles. We observed that at low doses of either St I or St II vesicles composed of SM and phosphatidic acid (PA) were permeabilized faster and to a higher extent than vesicles of PC and SM. As in the case of PC/SM mixtures, permeabilization was optimal when the molar ratio of PA/SM was ~1. The preference for membranes containing PA was confirmed by inhibition experiments in which the hemolytic activity of St I was diminished by pre-incubation with vesicles of different composition. The inclusion of even small proportions of PA into PC/SM LUVs led to a marked increase in calcein release caused by both St I and St II, reaching maximal effect at ~5 mol % of PA. Inclusion of other negatively charged lipids (phosphatidylserine (PS), phosphatidylglycerol (PG), phosphatidylinositol (PI), or cardiolipin (CL)), all at 5 mol %, also elicited an increase in calcein release, the potency being in the order CL approximately PA >> PG approximately PI approximately PS. However, some boosting effect was also obtained, including the zwitterionic lipid phosphatidylethanolamine (PE) or even, albeit to a lesser extent, the positively charged lipid stearylamine (SA). This indicated that the effect was not mediated by electrostatic interactions between the cytolysin and the negative surface of the vesicles. In fact, increasing the ionic strength of the medium had only a small inhibitory effect on the interaction, but this was actually larger with uncharged vesicles than with negatively charged vesicles. A study of the fluidity of the different vesicles, probed by the environment-sensitive fluorescent dye diphenylhexatriene (DPH), showed that toxin activity was also not correlated to the average membrane fluidity. It is suggested that the insertion of the toxin channel could imply the formation in the bilayer of a nonlamellar structure, a toroidal lipid pore. In this case, the presence of lipids favoring a nonlamellar phase, in particular PA and CL, strong inducers of negative curvature in the bilayer, could help in the formation of the pore. This possibility is confirmed by the fact that the formation of toxin pores strongly promotes the rate of transbilayer movement of lipid molecules, which indicates local disruption of the lamellar structure.
Collapse
Affiliation(s)
- C A Valcarcel
- CNR-ITC, Centro di Fisica degli Stati Aggregati, I-38050 Povo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|