1
|
Liu X, Tan Q, Wen J, Wang X, Yang G, Li Y, Lu M, Ye W, Si A, Ma S, Ding T, Sun L, Liu F, Zhang M, Jiang T, Gao W. Improving the cytotoxicity of immunotoxins by reducing the affinity of the antibody in acidic pH. J Transl Med 2023; 21:572. [PMID: 37626430 PMCID: PMC10463491 DOI: 10.1186/s12967-023-04210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/19/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Immunotoxins are antibody-toxin conjugates that bind to surface antigens and exert effective cytotoxic activity after internalization into tumor cells. Immunotoxins exhibit effective cytotoxicity and have been approved by the FDA to treat multiple hematological malignancies, such as hairy cell leukemia and cutaneous T-cell lymphoma. However, most of the internalized immunotoxin is degraded in lysosomes, and only approximately 5% of free toxin escapes into the cytosol to exert cytotoxicity. Many studies have improved immunotoxins by engineering the toxin fragment to reduce immunogenicity or increase stability, but how the antibody fragment contributes to the activity of immunotoxins has not been well demonstrated. METHODS In the current study, we used 32A9 and 42A1, two anti-GPC3 antibodies with similar antigen-binding capabilities and internalization rates, to construct scFv-mPE24 immunotoxins and evaluated their in vitro and in vivo antitumor activities. Next, the antigen-binding capacity, trafficking, intracellular protein stability and release of free toxin of 32A9 scFv-mPE24 and 42A1 scFv-mPE24 were compared to elucidate their different antitumor activities. Furthermore, we used a lysosome inhibitor to evaluate the degradation behavior of 32A9 scFv-mPE24 and 42A1 scFv-mPE24. Finally, the antigen-binding patterns of 32A9 and 42A1 were compared under neutral and acidic pH conditions. RESULTS Although 32A9 and 42A1 had similar antigen binding capacities and internalization rates, 32A9 scFv-mPE24 had superior antitumor activity compared to 42A1 scFv-mPE24. We found that 32A9 scFv-mPE24 exhibited faster degradation and drove efficient free toxin release compared to 42A1 scFv-mPE24. These phenomena were determined by the different degradation behaviors of 32A9 scFv-mPE24 and 42A1 scFv-mPE24 in lysosomes. Moreover, 32A9 was sensitive to the low-pH environment, which made the 32A9 conjugate easily lose antigen binding and undergo degradation in lysosomes, and the free toxin was then efficiently produced to exert cytotoxicity, whereas 42A1 was resistant to the acidic environment, which kept the 42A1 conjugate relatively stable in lysosomes and delayed the release of free toxin. CONCLUSIONS These results showed that a low pH-sensitive antibody-based immunotoxin degraded faster in lysosomes, caused effective free toxin release, and led to improved cytotoxicity compared to an immunotoxin based on a normal antibody. Our findings suggested that a low pH-sensitive antibody might have an advantage in the design of immunotoxins and other lysosomal degradation-dependent antibody conjugate drugs.
Collapse
Affiliation(s)
- Xiaoyu Liu
- School of Basic Medical Sciences and Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, 101 Longmian Road, Xuehai Building, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Qingqing Tan
- Department of Gynecology Oncology, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Jiaqi Wen
- School of Basic Medical Sciences and Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, 101 Longmian Road, Xuehai Building, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Xufei Wang
- School of Basic Medical Sciences and Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, 101 Longmian Road, Xuehai Building, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Gang Yang
- School of Basic Medical Sciences and Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, 101 Longmian Road, Xuehai Building, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yuxiao Li
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Ming Lu
- School of Basic Medical Sciences and Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, 101 Longmian Road, Xuehai Building, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Wei Ye
- School of Basic Medical Sciences and Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, 101 Longmian Road, Xuehai Building, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Anfeng Si
- Department of Surgical Oncology, Jinling Hospital, Medical School of Nanjing University, 34 Yanggongjing Road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Sujuan Ma
- School of Basic Medical Sciences and Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, 101 Longmian Road, Xuehai Building, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Tong Ding
- School of Basic Medical Sciences and Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, 101 Longmian Road, Xuehai Building, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Luan Sun
- School of Basic Medical Sciences and Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, 101 Longmian Road, Xuehai Building, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Fang Liu
- School of Basic Medical Sciences and Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, 101 Longmian Road, Xuehai Building, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Mei Zhang
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Tao Jiang
- Department of Surgical Oncology, Jinling Hospital, Medical School of Nanjing University, 34 Yanggongjing Road, Nanjing, 210000, Jiangsu, People's Republic of China.
| | - Wei Gao
- School of Basic Medical Sciences and Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, 101 Longmian Road, Xuehai Building, Nanjing, 211166, Jiangsu, People's Republic of China.
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China.
| |
Collapse
|
2
|
Yin L, Thaker H. Cancer Drug Delivery Systems Using Bacterial Toxin Translocation Mechanisms. Bioengineering (Basel) 2023; 10:813. [PMID: 37508840 PMCID: PMC10376142 DOI: 10.3390/bioengineering10070813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Recent advances in targeted cancer therapy hold great promise for both research and clinical applications and push the boundaries in finding new treatments for various currently incurable cancers. However, these therapies require specific cell-targeting mechanisms for the efficient delivery of drug cargo across the cell membrane to reach intracellular targets and avoid diffusion to unwanted tissues. Traditional drug delivery systems suffer from a limited ability to travel across the barriers posed by cell membranes and, therefore, there is a need for high doses, which are associated with adverse reactions and safety concerns. Bacterial toxins have evolved naturally to specifically target cell subtypes via their receptor binding module, penetrating the cell membrane efficiently through the membrane translocation process and then successfully delivering the toxic cargo into the host cytosol. They have, thus, been harnessed for the delivery of various drugs. In this review, we focus on bacterial toxin translocation mechanisms and recent progress in the targeted delivery systems of cancer therapy drugs that have been inspired by the receptor binding and membrane translocation processes of the anthrax toxin protective antigen, diphtheria toxin, and Pseudomonas exotoxin A. We also discuss the challenges and limitations of these studies that should be addressed before bacterial toxin-based drug delivery systems can become a viable new generation of drug delivery approaches in clinical translation.
Collapse
Affiliation(s)
- Linxiang Yin
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hatim Thaker
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Douglas LEJ, Reihill JA, Montgomery BM, Martin SL. Furin as a therapeutic target in cystic fibrosis airways disease. Eur Respir Rev 2023; 32:32/168/220256. [PMID: 37137509 PMCID: PMC10155048 DOI: 10.1183/16000617.0256-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/22/2023] [Indexed: 05/05/2023] Open
Abstract
Clinical management of cystic fibrosis (CF) has been greatly improved by the development of small molecule modulators of the CF transmembrane conductance regulator (CFTR). These drugs help to address some of the basic genetic defects of CFTR; however, no suitable CFTR modulators exist for 10% of people with CF (PWCF). An alternative, mutation-agnostic therapeutic approach is therefore still required. In CF airways, elevated levels of the proprotein convertase furin contribute to the dysregulation of key processes that drive disease pathogenesis. Furin plays a critical role in the proteolytic activation of the epithelial sodium channel; hyperactivity of which causes airways dehydration and loss of effective mucociliary clearance. Furin is also responsible for the processing of transforming growth factor-β, which is increased in bronchoalveolar lavage fluid from PWCF and is associated with neutrophilic inflammation and reduced pulmonary function. Pathogenic substrates of furin include Pseudomonas exotoxin A, a major toxic product associated with Pseudomonas aeruginosa infection and the spike glycoprotein of severe acute respiratory syndrome coronavirus 2, the causative pathogen for coronavirus disease 2019. In this review we discuss the importance of furin substrates in the progression of CF airways disease and highlight selective furin inhibition as a therapeutic strategy to provide clinical benefit to all PWCF.
Collapse
Affiliation(s)
- Lisa E J Douglas
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - James A Reihill
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | | - S Lorraine Martin
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
4
|
Chaurasia R, Vinetz JM. In silico prediction of molecular mechanisms of toxicity mediated by the leptospiral PF07598 gene family-encoded virulence-modifying proteins. Front Mol Biosci 2023; 9:1092197. [PMID: 36756251 PMCID: PMC9900628 DOI: 10.3389/fmolb.2022.1092197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023] Open
Abstract
Mechanisms of leptospirosis pathogenesis remain unclear despite the identification of a number of potential leptospiral virulence factors. We recently demonstrated potential mechanisms by which the virulence-modifying (VM) proteins-defined as containing a Domain of Unknown function (DUF1561), encoded by the PF07598 gene family-found only in group 1 pathogenic Leptospira-might mediate the clinical pathogenesis of leptospirosis. VM proteins belongs to classical AB toxin paradigm though have a unique AB domain architecture, unlike other AB toxins such as diphtheria toxin, pertussis toxin, shiga toxin, or ricin toxin which are typically encoded by two or more genes and self-assembled into a multi-domain holotoxin. Leptospiral VM proteins are secreted R-type lectin domain-containing exotoxins with discrete N-terminal ricin B-like domains involved in host cell surface binding, and a C-terminal DNase/toxin domain. Here we use the artificial intelligence-based AlphaFold algorithm and other computational tools to predict and elaborate on details of the VM protein structure-function relationship. Comparative AlphaFold and CD-spectroscopy defined the consistent secondary structure (Helix and ß-sheet) content, and the stability of the functional domains were further supported by molecular dynamics simulation. VM proteins comprises distinctive lectic family (QxW)3 motifs, the Mycoplasma CARDS toxin (D3 domain, aromatic patches), C-terminal similarity with mammalian DNase I. In-silico study proposed that Gln412, Gln523, His533, Thr59 are the high binding energy or ligand binding residues plausibly anticipates in the functional activities. Divalent cation (Mg+2-Gln412) and phosphate ion (PO4]-3-Arg615) interaction further supports the functional activities driven by C-terminal domain. Computation-driven structure-function studies of VM proteins will guide experimentation towards mechanistic understandings of leptospirosis pathogenesis, which underlie development of new therapeutic and preventive measures for this devastating disease.
Collapse
|
5
|
Douglas LEJ, Reihill JA, Ho MWY, Axten JM, Campobasso N, Schneck JL, Rendina AR, Wilcoxen KM, Martin SL. A highly selective, cell-permeable furin inhibitor BOS-318 rescues key features of cystic fibrosis airway disease. Cell Chem Biol 2022; 29:947-957.e8. [PMID: 35202587 DOI: 10.1016/j.chembiol.2022.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
Abstract
In cystic fibrosis (CF), excessive furin activity plays a critical role in the activation of the epithelial sodium channel (ENaC), dysregulation of which contributes to airway dehydration, ineffective mucociliary clearance (MCC), and mucus obstruction. Here, we report a highly selective, cell-permeable furin inhibitor, BOS-318, that derives selectivity by eliciting the formation of a new, unexpected binding pocket independent of the active site catalytic triad. Using human ex vivo models, BOS-318 showed significant suppression of ENaC, which led to enhanced airway hydration and an ∼30-fold increase in MCC rate. Furin inhibition also protected ENaC from subsequent activation by neutrophil elastase, a soluble protease dominant in CF airways. Additional therapeutic benefits include protection against epithelial cell death induced by Pseudomonas aeruginosa exotoxin A. Our findings demonstrate the utility of selective furin inhibition as a mutation-agnostic approach that can correct features of CF airway pathophysiology in a manner expected to deliver therapeutic value.
Collapse
Affiliation(s)
- Lisa E J Douglas
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - James A Reihill
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Melisa W Y Ho
- GlaxoSmithKline Research and Development, Collegeville, PA 19426, USA
| | - Jeffrey M Axten
- GlaxoSmithKline Research and Development, Collegeville, PA 19426, USA
| | - Nino Campobasso
- GlaxoSmithKline Research and Development, Collegeville, PA 19426, USA
| | - Jessica L Schneck
- GlaxoSmithKline Research and Development, Collegeville, PA 19426, USA
| | - Alan R Rendina
- GlaxoSmithKline Research and Development, Collegeville, PA 19426, USA
| | | | - S Lorraine Martin
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
6
|
Ogura K, Yahiro K, Moss J. Cell Death Signaling Pathway Induced by Cholix Toxin, a Cytotoxin and eEF2 ADP-Ribosyltransferase Produced by Vibrio cholerae. Toxins (Basel) 2020; 13:toxins13010012. [PMID: 33374361 PMCID: PMC7824611 DOI: 10.3390/toxins13010012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Pathogenic microorganisms produce various virulence factors, e.g., enzymes, cytotoxins, effectors, which trigger development of pathologies in infectious diseases. Cholera toxin (CT) produced by O1 and O139 serotypes of Vibrio cholerae (V. cholerae) is a major cytotoxin causing severe diarrhea. Cholix cytotoxin (Cholix) was identified as a novel eukaryotic elongation factor 2 (eEF2) adenosine-diphosphate (ADP)-ribosyltransferase produced mainly in non-O1/non-O139 V. cholerae. The function and role of Cholix in infectious disease caused by V. cholerae remain unknown. The crystal structure of Cholix is similar to Pseudomonas exotoxin A (PEA) which is composed of an N-terminal receptor-recognition domain and a C-terminal ADP-ribosyltransferase domain. The endocytosed Cholix catalyzes ADP-ribosylation of eEF2 in host cells and inhibits protein synthesis, resulting in cell death. In a mouse model, Cholix caused lethality with severe liver damage. In this review, we describe the mechanism underlying Cholix-induced cytotoxicity. Cholix-induced apoptosis was regulated by mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) signaling pathways, which dramatically enhanced tumor necrosis factor-α (TNF-α) production in human liver, as well as the amount of epithelial-like HepG2 cancer cells. In contrast, Cholix induced apoptosis in hepatocytes through a mitochondrial-dependent pathway, which was not stimulated by TNF-α. These findings suggest that sensitivity to Cholix depends on the target cell. A substantial amount of information on PEA is provided in order to compare/contrast this well-characterized mono-ADP-ribosyltransferase (mART) with Cholix.
Collapse
Affiliation(s)
- Kohei Ogura
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-0942, Japan
- Correspondence: (K.O.); (K.Y.); Tel.: +81-76-265-2590 (K.O.); +81-43-226-2048 (K.Y.)
| | - Kinnosuke Yahiro
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Correspondence: (K.O.); (K.Y.); Tel.: +81-76-265-2590 (K.O.); +81-43-226-2048 (K.Y.)
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1590, USA;
| |
Collapse
|
7
|
Lopes Fischer N, Naseer N, Shin S, Brodsky IE. Effector-triggered immunity and pathogen sensing in metazoans. Nat Microbiol 2019; 5:14-26. [DOI: 10.1038/s41564-019-0623-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/29/2019] [Indexed: 01/06/2023]
|
8
|
Balasubramanian S, Pandranki L, Maupin S, Ramasamy K, Taylor AB, Hart PJ, Baseman JB, Kannan TR. Disulfide bond of Mycoplasma pneumoniae community-acquired respiratory distress syndrome toxin is essential to maintain the ADP-ribosylating and vacuolating activities. Cell Microbiol 2019; 21:e13032. [PMID: 30977272 DOI: 10.1111/cmi.13032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/19/2019] [Accepted: 04/03/2019] [Indexed: 01/13/2023]
Abstract
Mycoplasma pneumoniae is the leading cause of bacterial community-acquired pneumonia among hospitalised children in United States and worldwide. Community-acquired respiratory distress syndrome (CARDS) toxin is a key virulence determinant of M. pneumoniae. The N-terminus of CARDS toxin exhibits ADP-ribosyltransferase (ADPRT) activity, and the C-terminus possesses binding and vacuolating activities. Thiol-trapping experiments of wild-type (WT) and cysteine-to-serine-mutated CARDS toxins with alkylating agents identified disulfide bond formation at the amino terminal cysteine residues C230 and C247. Compared with WT and other mutant toxins, C247S was unstable and unusable for comparative studies. Although there were no significant variations in binding, entry, and retrograde trafficking patterns of WT and mutated toxins, C230S did not elicit vacuole formation in intoxicated cells. In addition, the ADPRT domain of C230S was more sensitive to all tested proteases when compared with WT toxin. Despite its in vitro ADPRT activity, the reduction of C230S CARDS toxin-mediated ADPRT activity-associated IL-1β production in U937 cells and the recovery of vacuolating activity in the protease-released carboxy region of C230S indicated that the disulfide bond was essential not only to maintain the conformational stability of CARDS toxin but also to properly execute its cytopathic effects.
Collapse
Affiliation(s)
- Sowmya Balasubramanian
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Lavanya Pandranki
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Suzanna Maupin
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Kumaraguruparan Ramasamy
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Alexander B Taylor
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX.,X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Peter John Hart
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX.,X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Joel B Baseman
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Thirumalai R Kannan
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
9
|
Iadarola MJ, Sapio MR, Wang X, Carrero H, Virata-Theimer ML, Sarnovsky R, Mannes AJ, FitzGerald DJ. Analgesia by Deletion of Spinal Neurokinin 1 Receptor Expressing Neurons Using a Bioengineered Substance P-Pseudomonas Exotoxin Conjugate. Mol Pain 2018; 13:1744806917727657. [PMID: 28814145 PMCID: PMC5574484 DOI: 10.1177/1744806917727657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell deletion approaches to pain directed at either the primary nociceptive afferents or
second-order neurons are highly effective analgesic manipulations. Second-order spinal
neurons expressing the neurokinin 1 (NK1) receptor are required for the perception of many
types of pain. To delete NK1+ neurons for the purpose of pain control, we generated a
toxin–peptide conjugate using DTNB-derivatized (Cys0) substance P (SP) and a
N-terminally truncated Pseudomonas exotoxin (PE35) that retains the endosome-release and
ADP-ribosylation enzymatic domains but with only one free sulfhydryl side chain for
conjugation. This allowed generation of a one-to-one product linked by a disulfide bond
(SP-PE35). In vitro, Chinese hamster ovary cells stably transfected with the NK1 receptor
exhibited specific cytotoxicity when exposed to SP-PE35
(IC50 = 5 × 10−11 M), whereas the conjugate was nontoxic to NK2
and NK3 receptor-bearing cell lines. In vivo studies showed that, after infusion into the
spinal subarachnoid space, the toxin was extremely effective in deleting NK1
receptor-expressing cells from the dorsal horn of the spinal cord. The specific cell
deletion robustly attenuated thermal and mechanical pain sensations and inflammatory
hyperalgesia but did not affect motoric capabilities. NK1 receptor cell deletion and
antinociception occurred without obvious lesion of non–receptor-expressing cells or
apparent reorganization of primary afferent innervation. These data demonstrate the
extraordinary selectivity and broad-spectrum antinociceptive efficacy of this
ligand-directed protein therapeutic acting via receptor-mediated endocytosis. The loss of
multiple pain modalities including heat and mechanical pinch, transduced by different
populations of primary afferents, shows that spinal NK1 receptor-expressing neurons are
critical points of convergence in the nociceptive transmission circuit. We further suggest
that therapeutic end points can be effectively and safely achieved when SP-PE35 is locally
infused, thereby producing a regionally defined analgesia.
Collapse
Affiliation(s)
- Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | | | - Xunde Wang
- Biotherapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Hector Carrero
- Pain and Neurosensory Mechanisms Branch, National Institutes of Dental and Craniofacial
| | - Maria Luisa Virata-Theimer
- Biotherapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Robert Sarnovsky
- Biotherapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - David J FitzGerald
- Biotherapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|
10
|
Krinsky N, Kaduri M, Zinger A, Shainsky-Roitman J, Goldfeder M, Benhar I, Hershkovitz D, Schroeder A. Synthetic Cells Synthesize Therapeutic Proteins inside Tumors. Adv Healthc Mater 2018; 7:e1701163. [PMID: 29283226 PMCID: PMC6684359 DOI: 10.1002/adhm.201701163] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/11/2017] [Indexed: 12/14/2022]
Abstract
Synthetic cells, artificial cell-like particles, capable of autonomously synthesizing RNA and proteins based on a DNA template, are emerging platforms for studying cellular functions and for revealing the origins-of-life. Here, it is shown for the first time that artificial lipid-based vesicles, containing the molecular machinery necessary for transcription and translation, can be used to synthesize anticancer proteins inside tumors. The synthetic cells are engineered as stand-alone systems, sourcing nutrients from their biological microenvironment to trigger protein synthesis. When pre-loaded with template DNA, amino acids and energy-supplying molecules, up to 2 × 107 copies of green fluorescent protein are synthesized in each synthetic cell. A variety of proteins, having molecular weights reaching 66 kDa and with diagnostic and therapeutic activities, are synthesized inside the particles. Incubating synthetic cells, encoded to secrete Pseudomonas exotoxin A (PE) with 4T1 breast cancer cells in culture, resulted in killing of most of the malignant cells. In mice bearing 4T1 tumors, histological evaluation of the tumor tissue after a local injection of PE-producing particles indicates robust apoptosis. Synthetic cells are new platforms for synthesizing therapeutic proteins on-demand in diseased tissues.
Collapse
Affiliation(s)
- Nitzan Krinsky
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
- The Interdisciplinary Programs for Biotechnology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Maya Kaduri
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Assaf Zinger
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Janna Shainsky-Roitman
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Mor Goldfeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Itai Benhar
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Dov Hershkovitz
- Department of Pathology, Tel-Aviv Sourasky Medical Center, Tel Aviv, 6423906, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
11
|
Akbari B, Farajnia S, Ahdi Khosroshahi S, Safari F, Yousefi M, Dariushnejad H, Rahbarnia L. Immunotoxins in cancer therapy: Review and update. Int Rev Immunol 2017; 36:207-219. [DOI: 10.1080/08830185.2017.1284211] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Bahman Akbari
- Department of Medical Laboratory Sciences, School of Paramedicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fatemeh Safari
- Department of Medical Laboratory Sciences, School of Paramedicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammadreza Yousefi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dariushnejad
- Department of Medical Laboratory Sciences, School of Paramedicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rahbarnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Akbari B, Farajnia S, Zarghami N, Mahdieh N, Rahmati M, Khosroshahi SA, Barzegar A, Rahbarnia L. Construction, expression, and activity of a novel immunotoxin comprising a humanized antiepidermal growth factor receptor scFv and modified Pseudomonas aeruginosa exotoxin A. Anticancer Drugs 2017; 28:263-270. [PMID: 27861173 DOI: 10.1097/cad.0000000000000452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Overexpression of epidermal growth factor receptor (EGFR) plays a significant role in the development and metastasis of many solid tumors. Strategies based on anti-EGFR immunotoxins have shown promising results in several studies, but immunogenicity of antibody and toxin moieties is a limitation of this type of therapeutics. In the present study, a novel humanized anti-EGFR immunotoxin (huscFv-PE25) was developed by genetic fusing of a humanized anti-EGFR single-chain variable fragment (huscFv) with a modified Pseudomonas aeruginosa exotoxin A (PE25KDEL). The reactivity and toxicity of this immunotoxin with tumor cells were assessed by dot-blot, enzyme-linked immunosorbent assay, and MTT procedures. Results of enzyme-linked immunosorbent assay and dot-blot assay indicated that the immunotoxin recognizes and efficiently binds to EGFR-overexpressing tumor cells. MTT assay showed a specific growth-inhibitory effect of huscFv-PE25 on EGFR-overexpressing A431 cells, without any inhibitory effect on EGFR-negative cells. In conclusion, the results of this study indicated that huscFv-PE25 can recognize and exert an inhibitory effect on EGFR-overexpressing cancer cells, despite its smaller size and lower immunogenicity. This may provide a basis for the development of novel clinical therapeutic agents against EGFR-overexpressing tumor cells.
Collapse
Affiliation(s)
- Bahman Akbari
- aDepartment of Medical Biotechnology, Faculty of Advanced Medical Sciences bDrug Applied Research Center cStudent Research Committee dBiotechnology Research Center eInfection and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz fCardiogenetic Research Laboratory, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ferguson TEG, Reihill JA, Walker B, Hamilton RA, Martin SL. A Selective Irreversible Inhibitor of Furin Does Not Prevent Pseudomonas Aeruginosa Exotoxin A-Induced Airway Epithelial Cytotoxicity. PLoS One 2016; 11:e0159868. [PMID: 27459298 PMCID: PMC4961418 DOI: 10.1371/journal.pone.0159868] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022] Open
Abstract
Many bacterial and viral pathogens (or their toxins), including Pseudomonas aeruginosa exotoxin A, require processing by host pro-protein convertases such as furin to cause disease. We report the development of a novel irreversible inhibitor of furin (QUB-F1) consisting of a diphenyl phosphonate electrophilic warhead coupled with a substrate-like peptide (RVKR), that also includes a biotin tag, to facilitate activity-based profiling/visualisation. QUB-F1 displays greater selectivity for furin, in comparison to a widely used exemplar compound (furin I) which has a chloromethylketone warhead coupled to RVKR, when tested against the serine trypsin-like proteases (trypsin, prostasin and matriptase), factor Xa and the cysteine protease cathepsin B. We demonstrate QUB-F1 does not prevent P. aeruginosa exotoxin A-induced airway epithelial cell toxicity; in contrast to furin I, despite inhibiting cell surface furin-like activity to a similar degree. This finding indicates additional proteases, which are sensitive to the more broad-spectrum furin I compound, may be involved in this process.
Collapse
Affiliation(s)
- Timothy E. G. Ferguson
- Biomolecular Sciences Research Group, School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - James A. Reihill
- Biomolecular Sciences Research Group, School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Brian Walker
- Biomolecular Sciences Research Group, School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Robert A. Hamilton
- Biomolecular Sciences Research Group, School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - S. Lorraine Martin
- Biomolecular Sciences Research Group, School of Pharmacy, Queen’s University Belfast, Northern Ireland, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Michalska M, Wolf P. Pseudomonas Exotoxin A: optimized by evolution for effective killing. Front Microbiol 2015; 6:963. [PMID: 26441897 PMCID: PMC4584936 DOI: 10.3389/fmicb.2015.00963] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas Exotoxin A (PE) is the most toxic virulence factor of the pathogenic bacterium Pseudomonas aeruginosa. This review describes current knowledge about the intoxication pathways of PE. Moreover, PE represents a remarkable example for pathoadaptive evolution, how bacterial molecules have been structurally and functionally optimized under evolutionary pressure to effectively impair and kill their host cells.
Collapse
Affiliation(s)
- Marta Michalska
- Department of Urology, Medical Center, University of Freiburg Freiburg, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center, University of Freiburg Freiburg, Germany
| |
Collapse
|
15
|
Weldon JE, Skarzynski M, Therres JA, Ostovitz JR, Zhou H, Kreitman RJ, Pastan I. Designing the furin-cleavable linker in recombinant immunotoxins based on Pseudomonas exotoxin A. Bioconjug Chem 2015; 26:1120-8. [PMID: 25997032 PMCID: PMC7724502 DOI: 10.1021/acs.bioconjchem.5b00190] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Recombinant immunotoxins (RITs) are fusion proteins that join antibodies to protein toxins for targeted cell killing. RITs armed with Pseudomonas exotoxin A (PE) are undergoing clinical trials for the treatment of cancer. The current design of PE-based RITs joins an antibody fragment to the catalytic domain of PE using a polypeptide linker that is cleaved by the protease furin. Intracellular cleavage of native PE by furin is required for cytotoxicity, yet the PE cleavage site has been shown to be a poor furin substrate. Here we describe the rational design of more efficiently cleaved furin linkers in PE-based RITs, and experiments evaluating their effects on cleavage and cytotoxicity. We found that changes to the furin site could greatly influence both cleavage and cytotoxicity, but the two parameters were not directly correlated. Furthermore, the effects of alterations to the furin linker were not universal. Identical mutations in the anti-CD22 RIT HA22-LR often displayed different cytotoxicity from mutations in the anti-mesothelin RIT SS1-LR/GGS, underscoring the prominent role of the target site in their intoxication pathways. Combining several beneficial mutations in HA22-LR resulted in a variant (HA22-LR/FUR) with a remarkably enhanced cleavage rate and improved cytotoxicity against five B cell lines and similar or enhanced cytotoxicity in five out of six hairy cell leukemia patient samples. This result informs the design of protease-sensitive linkers and suggests that HA22-LR/FUR may be a candidate for further preclinical development.
Collapse
Affiliation(s)
- John E. Weldon
- Department of Biological Sciences, Jess and Mildred Fisher College of Science and Mathematics, Towson University, Towson, Maryland 21252, United States
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Martin Skarzynski
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jamy A. Therres
- Department of Biological Sciences, Jess and Mildred Fisher College of Science and Mathematics, Towson University, Towson, Maryland 21252, United States
| | - Joshua R. Ostovitz
- Department of Biological Sciences, Jess and Mildred Fisher College of Science and Mathematics, Towson University, Towson, Maryland 21252, United States
| | - Hong Zhou
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Robert J. Kreitman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
16
|
Shah NN, Stetler-Stevenson M, Yuan CM, Richards K, Delbrook C, Kreitman RJ, Pastan I, Wayne AS. Characterization of CD22 expression in acute lymphoblastic leukemia. Pediatr Blood Cancer 2015; 62:964-9. [PMID: 25728039 PMCID: PMC4405453 DOI: 10.1002/pbc.25410] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/03/2014] [Indexed: 11/12/2022]
Abstract
BACKGROUND CD22 is a B-lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL). PROCEDURE Properties of CD22 expression relevant to therapeutic targeting were characterized in primary samples obtained from children and young adults with relapsed and chemotherapy refractory B-precursor (pre-B) ALL. RESULTS CD22 expression was demonstrated in all subjects (n = 163) with detection on at least 90% of blasts in 155 cases. Median antigen site density of surface CD22 was 3,470 sites/cell (range 349-19,653, n = 160). Blasts from patients with known 11q23 (MLL) rearrangement had lower site density (median 1,590 sites/cell, range 349-3,624, n = 20 versus 3,853 sites/cell, range 451-19,653, n = 140; P = <0.0001) and 6 of 21 cases had sub-populations of blasts lacking CD22 expression (22%-82% CD22 +). CD22 expression was maintained in serial studies of 73 subjects, including those treated with anti-CD22 targeted therapy. The levels of soluble CD22 in blood and marrow by ELISA were low and not expected to influence the pharmacokinetics of anti-CD22 directed agents. CONCLUSIONS These characteristics make CD22 an excellent potential therapeutic target in patients with relapsed and chemotherapy-refractory ALL, although cases with MLL rearrangement require close study to exclude the presence of a CD22-negative blast population.
Collapse
Affiliation(s)
- Nirali N. Shah
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD
| | | | | | - Kelly Richards
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD
| | - Cindy Delbrook
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD
| | | | - Ira Pastan
- Laboratory of Molecular Biology, CCR, NCI, NIH, Bethesda, MD
| | - Alan S. Wayne
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD,Laboratory of Molecular Biology, CCR, NCI, NIH, Bethesda, MD,Children's Center for Cancer and Blood Diseases, Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
17
|
Targeted killing of rhabdomyosarcoma cells by a MAP-based human cytolytic fusion protein. Cancer Lett 2015; 365:149-55. [PMID: 25888452 DOI: 10.1016/j.canlet.2015.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/02/2015] [Accepted: 04/04/2015] [Indexed: 12/26/2022]
Abstract
The treatment of rhabdomyosarcoma (RMS) is challenging, and the prognosis remains especially poor for high-grade RMS with metastasis. The conventional treatment of RMS is based on multi-agent chemotherapy combined with resection and radiotherapy, which are often marked by low success rate. Alternative therapeutic options include the combination of standard treatments with immunotherapy. We generated a microtubule-associated protein (MAP)-based fully human cytolytic fusion protein (hCFP) targeting the fetal acetylcholine receptor, which is expressed on RMS cells. We were able to express and purify functional scFv35-MAP from Escherichia coli cells. Moreover, we found that scFv35-MAP is rapidly internalized by target cells after binding its receptor, and exhibits specific cytotoxicity toward FL-OH1 and RD cells in vitro. We also confirmed that scFv35-MAP induces apoptosis in FL-OH1 and RD cells. The in vivo potential of scFv35-MAP will need to be considered in further studies.
Collapse
|
18
|
Klausz K, Kellner C, Derer S, Valerius T, Staudinger M, Burger R, Gramatzki M, Peipp M. The novel multispecies Fc-specific Pseudomonas exotoxin A fusion protein α-Fc-ETA' enables screening of antibodies for immunotoxin development. J Immunol Methods 2015; 418:75-83. [PMID: 25701195 DOI: 10.1016/j.jim.2015.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 01/18/2023]
Abstract
Immunoconjugates that deliver cytotoxic payloads to cancer cells represent a promising class of therapeutic agents which are intensively investigated in various clinical applications. Prerequisites for the generation of effective immunoconjugates are antibodies which efficiently deliver the respective cytotoxic payload. To facilitate the selection of human or mouse antibodies that display favorable characteristics as immunotoxins, we developed a novel Pseudomonas exotoxin A (ETA)-based screening protein. The α-Fc-ETA' consists of a multispecies-specific Fc-binding domain antibody genetically fused to a truncated ETA version (ETA'). α-Fc-ETA' non-covalently bound to human and mouse antibodies but did not form immune complexes with bovine immunoglobulins. In combination with antibodies harboring human or mouse Fc domains α-Fc-ETA' inhibited proliferation of antigen-expressing tumor cells. The cytotoxic effects were strictly antibody dependent and were observed with low α-Fc-ETA' concentrations. Mouse antibodies directed against CD7 and CD317/HM1.24 that previously had been used for the generation of functional recombinant immunotoxins, also showed activity in combination with α-Fc-ETA' by inhibiting growth of antigen-positive myeloma and leukemia cell lines. In contrast, α-kappa-ETA', a similarly designed human kappa light chain-specific fusion protein, was only specifically active in combination with antibodies containing a human kappa light chain. Thus, the novel α-Fc-ETA' fusion protein is broadly applicable in screening antibodies and Fc-containing antibody derivatives from different species to select for candidates with favorable characteristics for immunotoxin development.
Collapse
Affiliation(s)
- Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Christian Kellner
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Stefanie Derer
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Matthias Staudinger
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Renate Burger
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany.
| |
Collapse
|
19
|
Antignani A, Sarnovsky R, FitzGerald DJ. ABT-737 promotes the dislocation of ER luminal proteins to the cytosol, including pseudomonas exotoxin. Mol Cancer Ther 2014; 13:1655-63. [PMID: 24739394 DOI: 10.1158/1535-7163.mct-13-0998] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Impaired apoptosis is often a key element in tumor development. Therefore, drugs mimicking prosurvival antagonists offer promise as cancer therapeutics. When ABT-737, a BH3-only mimetic, was added to KB3-1 human cervical adenocarcinoma cells, we noted an induction of an endoplasmic reticulum (ER) stress response and the dislocation of ER luminal proteins, including chaperones, to the cell cytosol. Furthermore, when immunotoxin (antibody-toxin chimeric molecule) and ABT-737 combinations were added to cells, there was enhanced toxin-mediated inhibition of protein synthesis, consistent with enhanced translocation of toxin to the cytosol. A similar enhancement was not seen with thapsigargin, suggesting that ER stress alone was not responsible for enhanced translocation. Cytosol preparations from ABT-737-treated but not from thapsigargin-treated cells revealed the presence of greater amounts of processed 37-kDa toxin fragment compared with the addition of immunotoxin alone. As early as 4 hours after the addition of ABT-737 and immunotoxin, there was release of mitochondrial cytochrome c and activation of caspase-3/7 indicating that the combination caused apoptotic cell death. These results were reflected in decreased cellular ATP levels that were noted with combinations of ABT-737 and immunotoxin but not with either agent alone or with combinations of thapsigargin and immunotoxin. We conclude that ABT-737 increases ER permeability, promoting the dislocation of toxin from the ER to the cytosol resulting in early apoptotic cell death. These mechanistic insights suggest why this class of BH3-only mimetic synergizes in a particular way with Pseudomonas exotoxin-based immunotoxins.
Collapse
Affiliation(s)
- Antonella Antignani
- Authors' Affiliation: Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Robert Sarnovsky
- Authors' Affiliation: Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - David J FitzGerald
- Authors' Affiliation: Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
20
|
Abstract
Unconjugated monoclonal antibodies that target hematopoietic differentiation antigens have been developed to treat hematologic malignancies. Although some of these have activity against chronic lymphocytic leukemia and hairy cell leukemia, in general, monoclonal antibodies have limited efficacy as single agents in the treatment of leukemia. To increase their potency, the binding domains of monoclonal antibodies can be attached to protein toxins. Such compounds, termed immunotoxins, are delivered to the interior of leukemia cells based on antibody specificity for cell surface target antigens. Recombinant immunotoxins have been shown to be highly cytotoxic to leukemic blasts in vitro, in xenograft model systems, and in early-phase clinical trials in humans. These agents will likely play an increasing role in the treatment of leukemia.
Collapse
|
21
|
Teter K. Toxin instability and its role in toxin translocation from the endoplasmic reticulum to the cytosol. Biomolecules 2013; 3:997-1029. [PMID: 24970201 PMCID: PMC4030972 DOI: 10.3390/biom3040997] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 12/21/2022] Open
Abstract
AB toxins enter a host cell by receptor-mediated endocytosis. The catalytic A chain then crosses the endosome or endoplasmic reticulum (ER) membrane to reach its cytosolic target. Dissociation of the A chain from the cell-binding B chain occurs before or during translocation to the cytosol, and only the A chain enters the cytosol. In some cases, AB subunit dissociation is facilitated by the unique physiology and function of the ER. The A chains of these ER-translocating toxins are stable within the architecture of the AB holotoxin, but toxin disassembly results in spontaneous or assisted unfolding of the isolated A chain. This unfolding event places the A chain in a translocation-competent conformation that promotes its export to the cytosol through the quality control mechanism of ER-associated degradation. A lack of lysine residues for ubiquitin conjugation protects the exported A chain from degradation by the ubiquitin-proteasome system, and an interaction with host factors allows the cytosolic toxin to regain a folded, active state. The intrinsic instability of the toxin A chain thus influences multiple steps of the intoxication process. This review will focus on the host-toxin interactions involved with A chain unfolding in the ER and A chain refolding in the cytosol.
Collapse
Affiliation(s)
- Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA.
| |
Collapse
|
22
|
Li X, Saeki R, Watari A, Yagi K, Kondoh M. Tissue distribution and safety evaluation of a claudin-targeting molecule, the C-terminal fragment of Clostridium perfringens enterotoxin. Eur J Pharm Sci 2013; 52:132-7. [PMID: 24231339 DOI: 10.1016/j.ejps.2013.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 10/25/2013] [Accepted: 10/25/2013] [Indexed: 01/19/2023]
Abstract
We previously found that claudin (CL) is a potent target for cancer therapy using a CL-3 and -4-targeting molecule, namely the C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE). Although CL-3 and -4 are expressed in various normal tissues, the safety of this CL-targeting strategy has never been investigated. Here, we evaluated the tissue distribution of C-CPE in mice. Ten minutes after intravenous injection into mice, C-CPE was distributed to the liver and kidney (24.0% and 9.5% of the injected dose, respectively). The hepatic level gradually fell to 3.2% of the injected dose by 3 h post-injection, whereas the renal C-CPE level gradually rose to 46.5% of the injected dose by 6 h post-injection and then decreased. A C-CPE mutant protein lacking the ability to bind CL accumulated in the liver to a much lesser extent (2.0% of the dose at 10 min post-injection) than did C-CPE, but its renal profile was similar to that of C-CPE. To investigate the acute toxicity of CL-targeted toxin, we intravenously administered C-CPE-fused protein synthesis inhibitory factor to mice. The CL-targeted toxin dose-dependently increased the levels of serum biomarkers of liver injury, but not of kidney injury. Histological examination confirmed that injection of CL-targeted toxin injured the liver but not the kidney. These results indicate that potential adverse hepatic effects should be considered in C-CPE-based cancer therapy.
Collapse
Affiliation(s)
- Xiangru Li
- Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Rie Saeki
- Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akihiro Watari
- Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kiyohito Yagi
- Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masuo Kondoh
- Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
23
|
Hu X, Wei H, Xiang L, Chertov O, Wayne AS, Bera TK, Pastan I. Methylation of the DPH1 promoter causes immunotoxin resistance in acute lymphoblastic leukemia cell line KOPN-8. Leuk Res 2013; 37:1551-6. [PMID: 24070652 PMCID: PMC3818433 DOI: 10.1016/j.leukres.2013.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
Moxetumomab pasudotox (HA22) is an immunotoxin with an anti-CD22 Fv fused to a portion of Pseudomonas exotoxin A that kills CD22 expressing ALL cells. HA22 produced significant responses in some cases of ALL. To understand how to increase response rate, we isolated HA22-resistant KOPN-8 cells and found that HA22 cannot inactivate elongation factor-2 (EF2) due to low levels of DPH1 RNA and protein. Resistance was associated with methylation of the CpG island in the DPH1 promoter. 5-Azacytidine prevented resistance and methylation of the CpG residues and merits evaluation to determine if it can increase the efficacy of HA22 in ALL.
Collapse
Affiliation(s)
- Xiaobo Hu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hui Wei
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Laiman Xiang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Oleg Chertov
- Protein Chemistry Laboratory, Advanced Technology Program, SAIC-Frederick, Frederick National Laboratory for Cancer Research, NCI, Frederick, MD, USA
| | - Alan S. Wayne
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tapan K. Bera
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
24
|
Antignani A, FitzGerald D. Immunotoxins: the role of the toxin. Toxins (Basel) 2013; 5:1486-502. [PMID: 23965432 PMCID: PMC3760048 DOI: 10.3390/toxins5081486] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/30/2013] [Accepted: 08/06/2013] [Indexed: 02/07/2023] Open
Abstract
Immunotoxins are antibody-toxin bifunctional molecules that rely on intracellular toxin action to kill target cells. Target specificity is determined via the binding attributes of the chosen antibody. Mostly, but not exclusively, immunotoxins are purpose-built to kill cancer cells as part of novel treatment approaches. Other applications for immunotoxins include immune regulation and the treatment of viral or parasitic diseases. Here we discuss the utility of protein toxins, of both bacterial and plant origin, joined to antibodies for targeting cancer cells. Finally, while clinical goals are focused on the development of novel cancer treatments, much has been learned about toxin action and intracellular pathways. Thus toxins are considered both medicines for treating human disease and probes of cellular function.
Collapse
Affiliation(s)
- Antonella Antignani
- Authors to whom correspondence should be addressed; E-Mail: (A.A.); (D.F.); Tel.: +1-301-496-9457 (D.F.); Fax: +1-301-402-1344 (D.F.)
| | - David FitzGerald
- Authors to whom correspondence should be addressed; E-Mail: (A.A.); (D.F.); Tel.: +1-301-496-9457 (D.F.); Fax: +1-301-402-1344 (D.F.)
| |
Collapse
|
25
|
Microtubule-associated protein tau facilitates the targeted killing of proliferating cancer cells in vitro and in a xenograft mouse tumour model in vivo. Br J Cancer 2013; 109:1570-8. [PMID: 23942071 PMCID: PMC3776980 DOI: 10.1038/bjc.2013.457] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 01/01/2023] Open
Abstract
Background: Antibody drug conjugates (ADCs) and immunotoxins (ITs) are promising anticancer immunotherapeutics. Despite their encouraging performance in clinical trials, both ADCs and ITs often suffer from disadvantages such as stoichiometrically undefined chemical linkage of the cytotoxic payload (ADCs) and the potential immunogenicity of toxins derived from bacteria and plants (ITs). Methods: Human microtubule-associated protein tau (MAP) was cloned in-frame with human EGF, expressed in E. coli and purified by standard chromatographic methods. The in vitro activity was confirmed by flow cytometry, cell viability assays and tubulin polymerisation assay. The in vivo efficacy was demonstrated using noninvasive far-red in vivo imaging. Results: The EGF-MAP selectively induced apoptosis in EGFR-overexpressing proliferating cancer cells through stabilisation of microtubules. Nonproliferating cells were not affected, demonstrating superior selectivity of EGF-MAP for cancer cells. The EGF-MAP was well tolerated at high doses in mice compared with the ETA'-based control. The in vivo efficacy of EGF-MAP was demonstrated in a tumour xenograft mouse model. Conclusion: Our data indicate the general mechanism of action for a new class of human immunotherapeutic reagents suitable for the treatment of cancer. This approach combines the binding specificity of targeting ligands with the selective cytotoxicity of MAP towards proliferating cells.
Collapse
|
26
|
Yan B, Ouyang Q, Zhao Z, Cao F, Wang T, Jia X, Meng Y, Jiang S, Liu J, Chen R, Jia L, Zhang R, Wen W, Jin B, Chen S, Zhao J, Yang A. Potent killing of HBV-related hepatocellular carcinoma by a chimeric protein of anti-HBsAg single-chain antibody and truncated Bid. Biomaterials 2013; 34:4880-4889. [PMID: 23562050 DOI: 10.1016/j.biomaterials.2013.03.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/15/2013] [Indexed: 01/18/2023]
Abstract
Targeted therapy is needed for hepatitis B virus (HBV)-mediated hepatocellular carcinoma (HCC) which shows overexpression of HBV surface antigen (HBsAg). We previously developed scFv15, a human single-chain antibody against HBsAg. Here we tested the strategic feasibility of scFv15-mediated delivery of apoptotic effectors for HBsAg-targeted HCC therapy and application of HA2 motif of influenza hemagglutinin to enhance endosome escape and antitumor effect. A class of HBsAg-targeted immunoproapoptotic molecule was generated by sequentially fusing scFv15, the furin-cleavable motif from diphtheria toxin (Fdt), HA2 and a truncated apoptotic protein Bid (tBid). The resulting scFv15-Fdt-HA2-tBid was prokaryotically expressed and functionally characterized for HBsAg-binding capacity, endosome escape activity and antitumor effect as compared with scFv15-Fdt-tBid. Both scFv15-Fdt-HA2-tBid and scFv15-Fdt-tBid retained affinity and specificity for HBsAg, and bound and selectively killed HBsAg-positive HCC cells via apoptosis. Notably, the IC50 of scFv15-Fdt-HA2-tBid in HBsAg-positive PLC/PRF/5 cells was 10 times lower than that of scFv15-Fdt-tBid. In vivo imaging of antitumor activity demonstrated 95% growth inhibition of orthotopic HCC by scFv15-Fdt-HA2-tBid compared with 75% suppression by scFv15-Fdt-tBid. This study represents an extended application of the immunoproapoptotic strategy in the treatment of HBsAg-positive HCC and shows significant potential of HA2 as a functional enhancer for endosome-encapsulated antibody-conjugates.
Collapse
Affiliation(s)
- Bo Yan
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Novel cholix toxin variants, ADP-ribosylating toxins in Vibrio cholerae non-O1/non-O139 strains, and their pathogenicity. Infect Immun 2012; 81:531-41. [PMID: 23230295 DOI: 10.1128/iai.00982-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cholix toxin (ChxA) is a recently discovered exotoxin in Vibrio cholerae which has been characterized as a third member of the eukaryotic elongation factor 2-specific ADP-ribosyltransferase toxins, in addition to exotoxin A of Pseudomonas aeruginosa and diphtheria toxin of Corynebacterium diphtheriae. These toxins consist of three characteristic domains for receptor binding, translocation, and catalysis. However, there is little information about the prevalence of chxA and its genetic variations and pathogenic mechanisms. In this study, we screened the chxA gene in a large number (n = 765) of V. cholerae strains and observed its presence exclusively in non-O1/non-O139 strains (27.0%; 53 of 196) and not in O1 (n = 485) or O139 (n = 84). Sequencing of these 53 chxA genes generated 29 subtypes which were grouped into three clusters designated chxA I, chxA II, and chxA III. chxA I belongs to the prototype, while chxA II and chxA III are newly discovered variants. ChxA II and ChxA III had unique receptor binding and catalytic domains, respectively, in comparison to ChxA I. Recombinant ChxA I (rChxA I) and rChxA II but not rChxA III showed variable cytotoxic effects on different eukaryotic cells. Although rChxA II was more lethal to mice than rChxA I when injected intravenously, no enterotoxicity of any rChxA was observed in a rabbit ileal loop test. Hepatocytes showed coagulation necrosis in rChxA I- or rChxA II-treated mice, seemingly the major target for ChxA. The present study illustrates the potential of ChxA as an important virulence factor in non-O1/non-O139 V. cholerae, which may be associated with extraintestinal infections rather than enterotoxicity.
Collapse
|
29
|
Furusho Y, Miyata M, Matsuyama T, Nagai T, Li H, Akasaki Y, Hamada N, Miyauchi T, Ikeda Y, Shirasawa T, Ide K, Tei C. Novel Therapy for Atherosclerosis Using Recombinant Immunotoxin Against Folate Receptor β-Expressing Macrophages. J Am Heart Assoc 2012; 1:e003079. [PMID: 23130174 PMCID: PMC3487340 DOI: 10.1161/jaha.112.003079] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 06/19/2012] [Indexed: 12/02/2022]
Abstract
Background Folate receptor β (FRβ) is induced during macrophage activation. A recombinant immunotoxin consisting of the truncated Pseudomonas exotoxin A (PE38) conjugated to an anti-FRβ antibody (anti–FRβ-PE38) has been reported to kill activated macrophages in inflammatory diseases. To elucidate the effect of an immunotoxin targeting FRβ on atherosclerosis, we determined the presence of FRβ-expressing macrophages in atherosclerotic lesions and administered the FRβ immunotoxin in apolipoprotein E–deficient mice. Methods and Results The FRβ-expressing macrophages were observed in atherosclerotic lesions of apolipoprotein E–deficient mice. At 15 or 35 weeks of age, the apolipoprotein E–deficient mice were divided into 3 groups and were intravenously administered 0.1 mg/kg of anti–FRβ-PE38 (immunotoxin group), 0.1 mg/kg of PE38 (toxin group), or 0.1 mL of saline (control group) every 3 days, for a total of 5 times for each age group. The mice were analyzed at 21 or 41 weeks of age. Treatment with the immunotoxin resulted in 31% and 22% reductions in atherosclerotic lesions of the 21- and 41-week-old mice, respectively (P<0.05). Administration of immunotoxin reduced the numbers of FRβ- and tumor necrosis factor-α–expressing macrophages, reduced cell proliferation, and increased the number of apoptotic cells (P<0.05). Real-time polymerase chain reaction demonstrated that the expression of FRβ and tumor necrosis factor-α mRNA was significantly decreased in the immunotoxin group (P<0.05). Conclusions These results suggest that FRβ-expressing macrophages exist in the atherosclerotic lesions of apolipoprotein E–deficient mice and that FRβ immunotoxin administration reduces the progression of atherosclerotic lesions in younger and older individuals. The recombinant FRβ immunotoxin targeting activated macrophages could provide a novel therapeutic tool for atherosclerosis. (J Am Heart Assoc. 2012;1:e003079 doi: 10.1161/JAHA.112.003079.)
Collapse
Affiliation(s)
- Yuko Furusho
- Department of Cardiovascular, Respiratory, and Metabolic Medicine, Kagoshima University, Kagoshima, Japan (Y.F., M.M., Y.A., N.H., T. Miyauchi, Y.I., T.S., K.I., C.T.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pak Y, Zhang Y, Pastan I, Lee B. Antigen shedding may improve efficiencies for delivery of antibody-based anticancer agents in solid tumors. Cancer Res 2012; 72:3143-52. [PMID: 22562466 PMCID: PMC3408876 DOI: 10.1158/0008-5472.can-11-3925] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recombinant immunotoxins (RIT) are targeted anticancer agents that are composed of a targeting antibody fragment and a protein toxin fragment. SS1P is a RIT that targets mesothelin on the surface of cancer cells and is being evaluated in patients with mesothelioma. Mesothelin, like many other target antigens, is shed from the cell surface. However, whether antigen shedding positively or negatively affects the delivery of RIT remains unknown. In this study, we used experimental data with SS1P to develop a mathematical model that describes the relationship between tumor volume changes and the dose level of the administered RIT, while accounting for the potential effects of antigen shedding.
Collapse
Affiliation(s)
- Youngshang Pak
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 609-735, Republic of Korea
| | - Yujian Zhang
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
| | - Ira Pastan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
| | - Byungkook Lee
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
| |
Collapse
|
31
|
Nedergaard MK, Hedegaard CJ, Poulsen HS. Targeting the epidermal growth factor receptor in solid tumor malignancies. BioDrugs 2012; 26:83-99. [PMID: 22385404 DOI: 10.2165/11599760-000000000-00000] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The epidermal growth factor receptor (EGFR) is over-expressed, as well as mutated, in many types of cancers. In particular, the EGFR variant type III mutant (EGFRvIII) has attracted much attention as it is frequently and exclusively found on many tumor cells, and hence both EGFR and EGFRvIII have been proposed as valid targets in many cancer therapy settings. Different strategies have been developed in order to either inhibit EGFR/EGFRvIII activity or to ablate EGFR/EGFRvIII-positive tumor cells. Drugs that inhibit these receptors include monoclonal antibodies (mAbs) that bind to the extracellular part of EGFR, blocking the binding sites for the EGFR ligands, and intracellular tyrosine kinase inhibitors (TKIs) that block the ATP binding site of the tyrosine kinase domain. Besides an EGFRvIII-targeted vaccine, conjugated anti-EGFR mAbs have been used in different settings to deliver lethal agents to the EGFR/EGFRvIII-positive cells; among these are radio-labelled mAbs and immunotoxins. This article reviews the current status and efficacy of EGFR/EGFRvIII-targeted therapies.
Collapse
Affiliation(s)
- Mette K Nedergaard
- Department of Radiation Biology, Finsencenter, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | |
Collapse
|
32
|
Fieldhouse RJ, Jørgensen R, Lugo MR, Merrill AR. The 1.8 Å cholix toxin crystal structure in complex with NAD+ and evidence for a new kinetic model. J Biol Chem 2012; 287:21176-88. [PMID: 22535961 DOI: 10.1074/jbc.m111.337311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Certain Vibrio cholerae strains produce cholix, a potent protein toxin that has diphthamide-specific ADP-ribosyltransferase activity against eukaryotic elongation factor 2. Here we present a 1.8 Å crystal structure of cholix in complex with its natural substrate, nicotinamide adenine dinucleotide (NAD(+)). We also substituted hallmark catalytic residues by site-directed mutagenesis and analyzed both NAD(+) binding and ADP-ribosyltransferase activity using a fluorescence-based assay. These data are the basis for a new kinetic model of cholix toxin activity. Further, the new structural data serve as a reference for continuing inhibitor development for this toxin class.
Collapse
Affiliation(s)
- Robert J Fieldhouse
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
33
|
Dunbar TL, Yan Z, Balla KM, Smelkinson MG, Troemel ER. C. elegans detects pathogen-induced translational inhibition to activate immune signaling. Cell Host Microbe 2012; 11:375-86. [PMID: 22520465 PMCID: PMC3334869 DOI: 10.1016/j.chom.2012.02.008] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/06/2012] [Accepted: 02/14/2012] [Indexed: 12/20/2022]
Abstract
Pathogens commonly disrupt host cell processes or cause damage, but the surveillance mechanisms used by animals to monitor these attacks are poorly understood. Upon infection with pathogenic Pseudomonas aeruginosa, the nematode C. elegans upregulates infection response gene irg-1 using the zip-2 bZIP transcription factor. Here we show that P. aeruginosa infection inhibits mRNA translation in the intestine via the endocytosed translation inhibitor Exotoxin A, which leads to an increase in ZIP-2 protein levels. In the absence of infection we find that the zip-2/irg-1 pathway is upregulated following disruption of several core host processes, including inhibition of mRNA translation. ZIP-2 induction is conferred by a conserved upstream open reading frame in zip-2 that could derepress ZIP-2 translation upon infection. Thus, translational inhibition, a common pathogenic strategy, can trigger activation of an immune surveillance pathway to provide host defense.
Collapse
Affiliation(s)
- Tiffany L Dunbar
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
34
|
Weldon JE, Pastan I. A guide to taming a toxin--recombinant immunotoxins constructed from Pseudomonas exotoxin A for the treatment of cancer. FEBS J 2011; 278:4683-700. [PMID: 21585657 PMCID: PMC3179548 DOI: 10.1111/j.1742-4658.2011.08182.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pseudomonas exotoxin A (PE) is a highly toxic protein secreted by the opportunistic pathogen Pseudomonas aeruginosa. The modular structure and corresponding mechanism of action of PE make it amenable to extensive modifications that can redirect its potent cytotoxicity from disease to a therapeutic function. In combination with a variety of artificial targeting elements, such as receptor ligands and antibody fragments, PE becomes a selective agent for the elimination of specific cell populations. This review summarizes our current understanding of PE, its intoxication pathway, and the ongoing efforts to convert this toxin into a treatment for cancer.
Collapse
Affiliation(s)
- John E Weldon
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
| | | |
Collapse
|
35
|
Méré J, Chopard C, Bonhoure A, Morlon-Guyot J, Beaumelle B. Increasing stability and toxicity of Pseudomonas exotoxin by attaching an antiproteasic Peptide. Biochemistry 2011; 50:10052-60. [PMID: 22014283 DOI: 10.1021/bi2010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trypsin-like activities are present within the endocytic pathway and allow cells to inactivate a fraction of incoming toxins, such as Pseudomonas exotoxin (PE), that require endocytic uptake before reaching the cytosol to inactivate protein synthesis. PE is a favorite toxin for building immunotoxins. The latter are promising molecules to fight cancer or transplant rejection, and producing more active toxins is a key challenge. More broadly, increasing protein stability is a potentially useful approach to improve the efficiency of therapeutic proteins. We report here that fusing an antiproteasic peptide (bovine pancreatic trypsin inhibitor, BPTI) to PE increases its toxicity to human cancer cell lines by 20-40-fold. Confocal microscopic examination of toxin endocytosis, digestion, and immunoprecipitation experiments showed that the fused antiproteasic peptide specifically protects PE from trypsin-like activities. Hence, the attached BPTI acts as a bodyguard for the toxin within the endocytic pathway. Moreover, it increased the PE elimination half-time in mice by 70%, indicating that the fused BPTI stabilizes the toxin in vivo. This BPTI-fusion approach may be useful for protecting other circulating or internalized proteins of therapeutic interest from premature degradation.
Collapse
Affiliation(s)
- Jocelyn Méré
- CPBS, UMR 5236 CNRS, 1919 route de Mende, 34293 Montpellier, France
| | | | | | | | | |
Collapse
|
36
|
Toxin-based therapeutic approaches. Toxins (Basel) 2010; 2:2519-83. [PMID: 22069564 PMCID: PMC3153180 DOI: 10.3390/toxins2112519] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 10/25/2010] [Accepted: 10/26/2010] [Indexed: 01/08/2023] Open
Abstract
Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin.
Collapse
|
37
|
El Hage T, Lorin S, Decottignies P, Djavaheri-Mergny M, Authier F. Proteolysis of Pseudomonas exotoxin A within hepatic endosomes by cathepsins B and D produces fragments displaying in vitro ADP-ribosylating and apoptotic effects. FEBS J 2010; 277:3735-49. [PMID: 20718861 DOI: 10.1111/j.1742-4658.2010.07775.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To assess Pseudomonas exotoxin A (ETA) compartmentalization, processing and cytotoxicity in vivo, we have studied the fate of internalized ETA with the use of the in vivo rodent liver model following toxin administration, cell-free hepatic endosomes, and pure in vitro protease assays. ETA taken up into rat liver in vivo was rapidly associated with plasma membranes (5-30 min), internalized within endosomes (15-60 min), and later translocated into the cytosolic compartment (30-90 min). Coincident with endocytosis of intact ETA, in vivo association of the catalytic ETA-A subunit and low molecular mass ETA-A fragments was observed in the endosomal apparatus. After an in vitro proteolytic assay with an endosomal lysate and pure proteases, the ETA-degrading activity was attributed to the luminal species of endosomal acidic cathepsins B and D, with the major cleavages generated in vitro occurring mainly within domain III of ETA-A. Cell-free endosomes preloaded in vivo with ETA intraluminally processed and extraluminally released intact ETA and ETA-A in vitro in a pH-dependent and ATP-dependent manner. Rat hepatic cells underwent in vivo intrinsic apoptosis at a late stage of ETA infection, as assessed by the mitochondrial release of cytochrome c, caspase-9 and caspase-3 activation, and DNA fragmentation. In an in vitro assay, intact ETA induced ADP-ribosylation of EF-2 and mitochondrial release of cytochrome c, with the former effect being efficiently increased by a cathepsin B/cathepsin D pretreatment. The data show a novel processing pathway for internalized ETA, involving cathepsins B and D, resulting in the production of ETA fragments that may participate in cytotoxicity and mitochondrial dysfunction.
Collapse
|
38
|
Mitchell LA, Koval M. Specificity of interaction between clostridium perfringens enterotoxin and claudin-family tight junction proteins. Toxins (Basel) 2010; 2:1595-611. [PMID: 22069652 PMCID: PMC3153273 DOI: 10.3390/toxins2071595] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/07/2010] [Accepted: 06/23/2010] [Indexed: 01/21/2023] Open
Abstract
Clostridium perfringens enterotoxin (CPE), a major cause of food poisoning, forms physical pores in the plasma membrane of intestinal epithelial cells. The ability of CPE to recognize the epithelium is due to the C-terminal binding domain, which binds to a specific motif on the second extracellular loop of tight junction proteins known as claudins. The interaction between claudins and CPE plays a key role in mediating CPE toxicity by facilitating pore formation and by promoting tight junction disassembly. Recently, the ability of CPE to distinguish between specific claudins has been used to develop tools for studying roles for claudins in epithelial barrier function. Moreover, the high affinity of CPE to selected claudins makes CPE a useful platform for targeted drug delivery to tumors expressing these claudins.
Collapse
Affiliation(s)
- Leslie A. Mitchell
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, 205 Whitehead Bldg, 615 Michael St. Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Michael Koval
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, 205 Whitehead Bldg, 615 Michael St. Emory University School of Medicine, Atlanta, GA 30322, USA;
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-404-712-2976; Fax: +1-404-712-2974
| |
Collapse
|
39
|
Hansen JK, Weldon JE, Xiang L, Beers R, Onda M, Pastan I. A recombinant immunotoxin targeting CD22 with low immunogenicity, low nonspecific toxicity, and high antitumor activity in mice. J Immunother 2010; 33:297-304. [PMID: 20445350 PMCID: PMC7291874 DOI: 10.1097/cji.0b013e3181cd1164] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recombinant immunotoxins (RITs) are genetically engineered proteins designed to kill cancer cells. The RIT HA22 contains the Fv portion of an anti-CD22 antibody fused to a 38 kDa fragment of Pseudomonas exotoxin A (PE38). As PE38 is a bacterial protein, patients frequently produce antibodies that neutralize its activity, preventing retreatment. We have earlier shown in mice that PE38 contains 7 major B-cell epitopes located in domains II and III of the protein. Here we present a new mutant RIT, HA22-LR-6X, in which we removed most B-cell epitopes by deleting domain II and mutating 6 residues in domain III. HA22-LR-6X is cytotoxic to several lymphoma cell lines, has very low nonspecific toxicity, and retains potent antitumor activity in mice with CA46 lymphomas. To assess its immunogenicity, we immunized 3 MHC-divergent strains of mice with 5 microg doses of HA22-LR-6X, and found that HA22-LR-6X elicited significantly lower antibody responses than HA22 or other mutant RITs with fewer epitopes removed. Furthermore, large (50 microg) doses of HA22-LR-6X induced markedly lower antibody responses than 5 microg of HA22, indicating that high doses can be administered with low immunogenicity. Our experiments show that we have correctly identified and removed B-cell epitopes from PE38, producing a highly active immunotoxin with low immunogenicity and low animal toxicity. Future studies will determine if these properties carry over to humans with cancer.
Collapse
Affiliation(s)
- Johanna K. Hansen
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute; Bethesda, MD
- National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD
| | - John E. Weldon
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute; Bethesda, MD
- National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD
| | - Laiman Xiang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Richard Beers
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Masanori Onda
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| |
Collapse
|
40
|
Zielinski R, Lyakhov I, Jacobs A, Chertov O, Kramer-Marek G, Francella N, Stephen A, Fisher R, Blumenthal R, Capala J. Affitoxin--a novel recombinant, HER2-specific, anticancer agent for targeted therapy of HER2-positive tumors. J Immunother 2009; 32:817-25. [PMID: 19752752 PMCID: PMC3402039 DOI: 10.1097/cji.0b013e3181ad4d5d] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Expression of the human epidermal growth factor receptor 2 (HER2) is amplified in 25% to 30% of breast cancers and has been associated with an unfavorable prognosis. Here we report the construction, purification, and characterization of Affitoxin-a novel class of HER2-specific cytotoxic molecules combining HER2-specific Affibody molecule as a targeting moiety and PE38KDEL, which is a truncated version of Pseudomonas exotoxin A, as a cell killing agent. It is highly soluble and does not require additional refolding, oxidation, or reduction steps during its purification. Using surface plasmon resonance technology and competitive binding assays, we have shown that Affitoxin binds specifically to HER2 with nanomolar affinity. We have also observed a high correlation between HER2 expression and retention of Affitoxin bound to the cell surface. Affitoxin binding and internalization is followed by Pseudomonas exotoxin A activity domain-mediated ADP-ribosylation of translation elongation factor 2 and, consequently, inhibition of protein synthesis as shown by protein expression analysis of HER2-positive cells treated with Affitoxin. Measured IC50 value for HER2-negative cells MDA-MB468 (65+/-2.63 pM) was more than 20 times higher than the value for low HER2 level-expressing MCF7 cells (2.56+/-0.1 pM), and almost 3 orders of magnitude higher for its HER2-overexpressing derivative MCF7/HER2 (62.7+/-5.9 fM). These studies suggest that Affitoxin is an attractive PE38-based candidate for treatment of HER2-positive tumors.
Collapse
Affiliation(s)
- Rafal Zielinski
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ilya Lyakhov
- SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD
| | - Amy Jacobs
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Oleg Chertov
- SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD
| | - Gabriela Kramer-Marek
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Nicholas Francella
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | | | - Robert Blumenthal
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jacek Capala
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
41
|
Saeki R, Kondoh M, Kakutani H, Tsunoda SI, Mochizuki Y, Hamakubo T, Tsutsumi Y, Horiguchi Y, Yagi K. A novel tumor-targeted therapy using a claudin-4-targeting molecule. Mol Pharmacol 2009; 76:918-26. [PMID: 19638534 DOI: 10.1124/mol.109.058412] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Carcinogenesis is often accompanied by dysfunctional tight junction (TJs), resulting in the loss of cellular polarity. Claudin, a tetra-transmembrane protein, plays a pivotal role in the barrier and fence functions of TJs. Claudin-4 is deregulated in various cancers, including breast, prostate, ovarian, and gastric cancer. Claudin-4 may be a promising target molecule for tumor therapy, but the claudin-targeting strategy has never been fully developed. In the present study, we prepared a claudin-4-targeting molecule by fusion of the C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) with the protein synthesis inhibitory factor (PSIF) derived from Pseudomonas aeruginosa exotoxin. PSIF was not cytotoxic to claudin-4-expressing cells, whereas C-CPE-PSIF was cytotoxic. Cells that express claudin-1, -2, and -5 were less sensitive to C-CPE-PSIF. Pretreatment of the cells with C-CPE attenuated C-CPE-PSIF-induced cytotoxicity, and mutation of C-CPE in the claudin-4-binding residues attenuated the cytotoxicity of C-CPE-PSIF. TJ-undeveloped cells were more sensitive to C-CPE-PSIF than TJ-developed cells. It is noteworthy that polarized epithelial cells are sensitive to C-CPE-PSIF applied to the basal side, whereas the cells were less sensitive to C-CPE-PSIF applied to the apical side. Intratumoral injection of C-CPE-PSIF reduced tumor growth. This is the first report to indicate that a claudin-4-targeting strategy may be a promising method to overcome the malignant tumors.
Collapse
Affiliation(s)
- Rie Saeki
- Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Morlon-Guyot J, Méré J, Bonhoure A, Beaumelle B. Processing of Pseudomonas aeruginosa exotoxin A is dispensable for cell intoxication. Infect Immun 2009; 77:3090-9. [PMID: 19380469 PMCID: PMC2708563 DOI: 10.1128/iai.01390-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/07/2009] [Accepted: 04/13/2009] [Indexed: 01/09/2023] Open
Abstract
Exotoxin A is a major virulence factor of Pseudomonas aeruginosa. This toxin binds to a specific receptor on animal cells, allowing endocytosis of the toxin. Once in endosomes, the exotoxin can be processed by furin to generate a C-terminal toxin fragment that lacks the receptor binding domain and is retrogradely transported to the endoplasmic reticulum for retrotranslocation to the cytosol through the Sec61 channel. The toxin then blocks protein synthesis by ADP ribosylation of elongation factor 2, thereby triggering cell death. A shorter intracellular route has also been described for this toxin. It involves direct translocation of the entire toxin from endosomes to the cytosol and therefore does not rely on furin-mediated cleavage. To examine the implications of endosomal translocation in the intoxication process, we investigated whether the toxin required furin-mediated processing in order to kill cells. We used three different approaches. We first fused to the N terminus of the toxin proteins with different unfolding abilities so that they inhibited or did not inhibit endosomal translocation of the chimera. We then assayed the amount of toxin fragments delivered to the cytosol during cell intoxication. Finally we used furin inhibitors and examined the fate and intracellular localization of the toxin and its receptor. The results showed that exotoxin cytotoxicity results largely from endosomal translocation of the entire toxin. We found that the C-terminal fragment was unstable in the cytosol.
Collapse
|
43
|
Liu TF, Cai J, Gibo DM, Debinski W. Reoxygenation of hypoxic glioblastoma multiforme cells potentiates the killing effect of an interleukin-13-based cytotoxin. Clin Cancer Res 2009; 15:160-8. [PMID: 19118043 DOI: 10.1158/1078-0432.ccr-08-2151] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Hypoxia is a cause for resistance to cancer therapies. Molecularly targeted recombinant cytotoxins have shown clinical efficacy in the treatment of patients with primary brain tumors, glioblastoma multiforme, but it is not known whether hypoxia influences their antitumor effect. EXPERIMENTAL DESIGN We have exposed glioblastoma multiforme cells, such as U-251 MG, U-373 MG, SNB-19, and A-172 MG, to either anoxia or hypoxia and then reoxygenated them while treating with an interleukin (IL)-13-based diphtheria toxin (DT)-containing cytotoxin, DT-IL13QM. We measured the levels of immunoreactive IL-13Ralpha2, a receptor that mediates IL-13-cytotoxin cell killing, and the levels of active form of furin, a protease that activates the bacterial toxin portion in a cytotoxin. RESULTS We found that anoxia/hypoxia significantly alters the responsiveness of glioblastoma multiforme cells to DT-IL13QM. Interestingly, bringing these cells back to normoxia caused them to become even more susceptible to the cytotoxin than the cells maintained under normoxia. Anoxia/hypoxia caused a highly prominent decrease in the immunoreactive levels of both IL-13R and active forms of furin, and reoxygenation not only restored their levels but also became higher than that in normoxic glioblastoma multiforme cells. CONCLUSIONS Our results show that a recombinant cytotoxin directed against glioblastoma multiforme cells kills these cells much less efficiently under anoxic/hypoxic conditions. The reoxygenation brings unexpected additional benefit of making glioblastoma multiforme cells even more responsive to the killing effect of a cytotoxin.
Collapse
Affiliation(s)
- Tie Fu Liu
- Brain Tumor Center of Excellence, Department of Neurosurgery Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
44
|
Weldon JE, Xiang L, Chertov O, Margulies I, Kreitman RJ, FitzGerald DJ, Pastan I. A protease-resistant immunotoxin against CD22 with greatly increased activity against CLL and diminished animal toxicity. Blood 2009; 113:3792-800. [PMID: 18988862 PMCID: PMC2670794 DOI: 10.1182/blood-2008-08-173195] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 10/28/2008] [Indexed: 11/20/2022] Open
Abstract
Immunotoxins based on Pseudomonas exotoxin A (PE) are promising anticancer agents that combine a variable fragment (Fv) from an antibody to a tumor-associated antigen with a 38-kDa fragment of PE (PE38). The intoxication pathway of PE immunotoxins involves receptor-mediated internalization and trafficking through endosomes/lysosomes, during which the immunotoxin undergoes important proteolytic processing steps but must otherwise remain intact for eventual transport to the cytosol. We have investigated the proteolytic susceptibility of PE38 immunotoxins to lysosomal proteases and found that cleavage clusters within a limited segment of PE38. We subsequently generated mutants containing deletions in this region using HA22, an anti-CD22 Fv-PE38 immunotoxin currently undergoing clinical trials for B-cell malignancies. One mutant, HA22-LR, lacks all identified cleavage sites, is resistant to lysosomal degradation, and retains excellent biologic activity. HA22-LR killed chronic lymphocytic leukemia cells more potently and uniformly than HA22, suggesting that lysosomal protease digestion may limit immunotoxin efficacy unless the susceptible domain is eliminated. Remarkably, mice tolerated doses of HA22-LR at least 10-fold higher than lethal doses of HA22, and these higher doses exhibited markedly enhanced antitumor activity. We conclude that HA22-LR advances the therapeutic efficacy of HA22 by using an approach that may be applicable to other PE-based immunotoxins.
Collapse
MESH Headings
- ADP Ribose Transferases/adverse effects
- ADP Ribose Transferases/genetics
- ADP Ribose Transferases/pharmacokinetics
- ADP Ribose Transferases/pharmacology
- Animals
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/pharmacology
- Bacterial Toxins/adverse effects
- Bacterial Toxins/genetics
- Bacterial Toxins/pharmacokinetics
- Bacterial Toxins/pharmacology
- Clinical Trials as Topic
- Endosomes/metabolism
- Exotoxins/adverse effects
- Exotoxins/genetics
- Exotoxins/pharmacokinetics
- Exotoxins/pharmacology
- Female
- Humans
- Immunoglobulin Variable Region/adverse effects
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/pharmacology
- Immunotoxins/adverse effects
- Immunotoxins/genetics
- Immunotoxins/pharmacokinetics
- Immunotoxins/pharmacology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Lysosomes/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mutation
- Sialic Acid Binding Ig-like Lectin 2
- Virulence Factors/adverse effects
- Virulence Factors/genetics
- Virulence Factors/pharmacokinetics
- Virulence Factors/pharmacology
- Xenograft Model Antitumor Assays
- Pseudomonas aeruginosa Exotoxin A
Collapse
Affiliation(s)
- John E Weldon
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4264, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Wolf P, Elsässer-Beile U. Pseudomonas exotoxin A: from virulence factor to anti-cancer agent. Int J Med Microbiol 2009; 299:161-76. [PMID: 18948059 DOI: 10.1016/j.ijmm.2008.08.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 07/07/2008] [Accepted: 08/13/2008] [Indexed: 11/24/2022] Open
Abstract
The pathogenic bacterium Pseudomonas aeruginosa has the ability to cause severe acute and chronic infections in humans. Pseudomonas exotoxin A (PE) is the most toxic virulence factor of this bacterium. It has ADP-ribosylation activity and decisively affects the protein synthesis of the host cells. The cytotoxic pathways of PE have been elucidated, and it could be shown that PE uses several molecular strategies developed under evolutionary pressure for effective killing. Interestingly, a medical benefit from this molecule has also been ascertained in recent years and several PE-based immunotoxins have been constructed and tested in preclinical and clinical trials against different cancers. In these molecules, the enzymatic active domain of PE is specifically targeted to tumor-related antigens. This review describes the current knowledge about the cytotoxic pathways of PE. Additionally, it summarizes preclinical and clinical trials of PE-based immunotoxins and furthermore discusses current problems and answers with these agents.
Collapse
Affiliation(s)
- Philipp Wolf
- Department of Urology, University of Freiburg, Germany.
| | | |
Collapse
|
46
|
Mammalian cell expression of an active site mutant of Pseudomonas exotoxin disrupts LRP1 maturation. J Biomed Sci 2008; 15:427-39. [DOI: 10.1007/s11373-008-9245-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 02/25/2008] [Indexed: 01/22/2023] Open
|
47
|
Jørgensen R, Purdy AE, Fieldhouse RJ, Kimber MS, Bartlett DH, Merrill AR. Cholix toxin, a novel ADP-ribosylating factor from Vibrio cholerae. J Biol Chem 2008; 283:10671-8. [PMID: 18276581 DOI: 10.1074/jbc.m710008200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ADP-ribosyltransferases are a class of enzymes that display activity in a variety of bacterial pathogens responsible for causing diseases in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report the characterization of a novel toxin from Vibrio cholerae, which we call cholix toxin. The toxin is active against mammalian cells (IC(50) = 4.6 +/- 0.4 ng/ml) and crustaceans (Artemia nauplii LD(50) = 10 +/- 2 mug/ml). Here we show that this toxin is the third member of the diphthamide-specific class of ADP-ribose transferases and that it possesses specific ADP-ribose transferase activity against ribosomal eukaryotic elongation factor 2. We also describe the high resolution crystal structures of the multidomain toxin and its catalytic domain at 2.1- and 1.25-A resolution, respectively. The new structural data show that cholix toxin possesses the necessary molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm, and inhibition of protein synthesis by specific modification of elongation factor 2. The crystal structures also provide important insight into the structural basis for activation of toxin ADP-ribosyltransferase activity. These results indicate that cholix toxin may be an important virulence factor of Vibrio cholerae that likely plays a significant role in the survival of the organism in an aquatic environment.
Collapse
Affiliation(s)
- René Jørgensen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Ornatowski W, Poschet JF, Perkett E, Taylor-Cousar JL, Deretic V. Elevated furin levels in human cystic fibrosis cells result in hypersusceptibility to exotoxin A-induced cytotoxicity. J Clin Invest 2007; 117:3489-97. [PMID: 17948127 PMCID: PMC2030457 DOI: 10.1172/jci31499] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 08/14/2007] [Indexed: 11/17/2022] Open
Abstract
Progressive pulmonary disease and infections with Pseudomonas aeruginosa remain an intractable problem in cystic fibrosis (CF). At the cellular level, CF is characterized by organellar hyperacidification, which results in altered protein and lipid glycosylation. Altered pH of the trans-Golgi network (TGN) may further disrupt the protein processing and packaging that occurs in this organelle. Here we measured activity of the major TGN endoprotease furin and demonstrated a marked upregulation in human CF cells. Increased furin activity was linked to elevated production in CF of the immunosuppressive and tissue remodeling cytokine TGF-beta and its downstream effects, including macrophage deactivation and augmented collagen secretion by epithelial cells. As furin is responsible for the proteolytic processing of a range of endogenous and exogenous substrates including growth factors and bacterial toxins, we determined that elevated furin-dependent activation of exotoxin A caused increased cell death in CF respiratory epithelial cells compared with genetically matched CF transmembrane conductance regulator-corrected cells. Thus elevated furin levels in CF respiratory epithelial cells contributes to bacterial toxin-induced cell death, fibrosis, and local immunosuppression. These data suggest that the use of furin inhibitors may represent a strategy for pharmacotherapy in CF.
Collapse
Affiliation(s)
- Wojciech Ornatowski
- Department of Molecular Genetics and Microbiology,
Department of Cell Biology and Physiology,
Department of Pediatrics, and
Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Jens F. Poschet
- Department of Molecular Genetics and Microbiology,
Department of Cell Biology and Physiology,
Department of Pediatrics, and
Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Elizabeth Perkett
- Department of Molecular Genetics and Microbiology,
Department of Cell Biology and Physiology,
Department of Pediatrics, and
Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Jennifer L. Taylor-Cousar
- Department of Molecular Genetics and Microbiology,
Department of Cell Biology and Physiology,
Department of Pediatrics, and
Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Vojo Deretic
- Department of Molecular Genetics and Microbiology,
Department of Cell Biology and Physiology,
Department of Pediatrics, and
Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
49
|
Ackerman AL, Giodini A, Cresswell P. A role for the endoplasmic reticulum protein retrotranslocation machinery during crosspresentation by dendritic cells. Immunity 2006; 25:607-17. [PMID: 17027300 DOI: 10.1016/j.immuni.2006.08.017] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 07/26/2006] [Accepted: 08/14/2006] [Indexed: 10/24/2022]
Abstract
Crosspresentation of exogenous antigens (Ags) to CD8(+) T cells by dendritic cells generally requires their entry into the cytosol. Here we show that both soluble and phagocytosed extracellular Ags accessed the cytosol via molecular components required for endoplasmic reticulum (ER)-associated degradation (ERAD). Exogenous Pseudomonas aeruginosa Exotoxin A, which inhibits protein translocation from the ER to the cytosol, abrogated crosspresentation. Exotoxin A also prevented the transporter associated with antigen processing (TAP) inhibitor, ICP47, from entering the cytosol and blocking TAP-mediated peptide transport. In an in vitro model of retrotranslocation, the AAA ATPase p97, an enzyme critical for ERAD, was the only cytosolic cofactor required for protein export from isolated phagosomes. Functional p97 was also required for crosspresentation but not conventional presentation. Thus, crosspresentation appears to result from an adaptation of the retrotranslocation mechanisms involved in the degradation of misfolded ER proteins.
Collapse
Affiliation(s)
- Anne L Ackerman
- Howard Hughes Medical Institute, Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
50
|
Pastrana DV, FitzGerald DJ. A nonradioactive, cell-free method for measuring protein synthesis inhibition by Pseudomonas exotoxin. Anal Biochem 2006; 353:266-71. [PMID: 16647035 DOI: 10.1016/j.ab.2006.03.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 03/15/2006] [Accepted: 03/22/2006] [Indexed: 11/25/2022]
Abstract
Pseudomonas exotoxin A (PE) inhibits protein synthesis by NAD-dependent ADP-ribosylation of eukaryotic elongation factor 2. Traditionally, toxin activity has been characterized, either in living cells or cell-free systems, using radioactive compounds for quantification. The increased costs of radioactive waste disposal together with heightened security concerns have made the use of radioactive isotopes less attractive for routine laboratory assays. We therefore adapted a cell-free rabbit reticulocyte in vitro transcription-translation system that utilizes a reporter (beta-galactosidase) to measure toxin activity. The assay for PE is rapid, scalable, log-linear, NAD dependent and can be used to assess the neutralizing activity of anti-PE antibody preparations.
Collapse
Affiliation(s)
- Diana V Pastrana
- Laboratory of Molecular Biology, CCR, National Cancer Institute, Bethesda, MD 20892-4263, USA
| | | |
Collapse
|