1
|
Biggar Y, Kamath AA, Breedon SA, Storey KB. NF-κB signaling and its anti-apoptotic effects in liver & skeletal muscle of dehydrated Xenopus laevis. Exp Cell Res 2025; 449:114579. [PMID: 40306608 DOI: 10.1016/j.yexcr.2025.114579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/27/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
The African clawed frog, Xenopus laevis, is able to survive prolonged arid conditions during seasonal droughts. During these conditions, X. laevis enters aestivation whereby its metabolic rate is suppressed, urea and ammonia levels increase, and its physiological functions slow. Various molecular mechanisms are employed by X. laevis to mitigate the deleterious effects of severe dehydration and hypometabolism, including pro-survival cellular processes that protect cells and tissues from damage and atrophy. While previous research has focused on antioxidant proteins' role in preventing oxidative stress, information on the role of anti-apoptotic signaling in X. laevis is lacking. As such, we investigated the role of nuclear factor-kappa B (NF-κB) signaling and its downstream target genes in liver and skeletal muscle tissue of X. laevis. The transcription factor, NF-κB, and its downstream target genes work to inhibit apoptotic machinery and promote cell survival. Herein, we found that NF-κB signaling activation in liver tissue leads to the selective upregulation of downstream anti-apoptotic proteins. In contrast, this upregulation occurs independently of NF-κB signaling in skeletal muscle tissue. Overall, our results serve to expand our knowledge of the anti-apoptotic mechanisms underlying the natural dehydration-tolerance of X. laevis, including its likely use in mitigating tissue atrophy during aestivation.
Collapse
Affiliation(s)
- Yulia Biggar
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Akshay A Kamath
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Sarah A Breedon
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada.
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
2
|
Kitasato L, Yamaoka-Tojo M, Suzuki M, Nakahara S, Iwaya T, Ogiso S, Murayama Y, Hashikata T, Misawa N, Kawashima R, Oikawa J, Nakamura M, Tokui Y, Naraba J, Nishii M, Kitasato H, Ako J. Fibroblasts activation by embryonic signal switching: A novel mechanism of placental growth factor-induced cardiac remodeling. Placenta 2024; 154:129-136. [PMID: 38971073 DOI: 10.1016/j.placenta.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
INTRODUCTION Cardiac remodeling is defined as cellular interstitial changes that lead dysfunction of the heart after injury. Placental growth factor (PlGF), a member of the VEGF family, has been reported to regulate cardiac hypertrophy in hemodynamic state. We therefore analyze the function of PlGF during cardiac remodeling using cardiac cells and fibroblasts, under Angiotensin II (AngII) stimulation. METHODS PlGF overexpressed mouse embryonic fibroblasts derived from C57BL/6 mice, were made by deficient retrovirus vector, designated as C57/PlGF. Only retrovirus vector introduced C57 cells (C57/EV) were used as control. After AngII stimulation, wound scratching assay and MTT proliferation assay with or without p38 MAPK inhibitor, SB205580 were performed in retrovirally-introduced C57 cells. Reactive oxygen species (ROS) production, NF-kB activation, IL-6 and TNF-α production were also measured. Then we assessed AngII-induced cell proliferation of mouse cardiac fibroblasts (CFs) and rat primary cardiomyocytes incubating with C57/PlGF conditioned-medium. RESULTS The PlGF production in C57/PlGF were confirmed by ELISA (1093.48 ± 3.5 pg/ml, ±SE). AngII-induced cell migration, proliferation and H2O2 production were increased in C57/PlGF compared with C57/EV. SB205580 inhibited the AngII-induced cell proliferation in C57/PlGF. In C57/PlGF cells, NF-kB activation was higher, followed by up-regulation of IL-6 and TNF-α production. CFs and cardiomyocytes proliferation increased when stimulated with C57/PlGF conditioned-medium. DISCUSSION The activation of fibroblast is stimulated by PlGF signaling via p38 MAPK/NF-kB pathway accompanied by elevation of ROS and inflammatory response. Furthermore, these signals stimulate the activation of CFs and cardiomyocytes, indicating that high circulating level of PlGF have a potential to regulate cardiac remodeling.
Collapse
Affiliation(s)
- Lisa Kitasato
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan.
| | - Minako Yamaoka-Tojo
- Department of Rehabilitation, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Machika Suzuki
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Shohei Nakahara
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Toshiyuki Iwaya
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Sho Ogiso
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Yusuke Murayama
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Takehiro Hashikata
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Nonoka Misawa
- Department of Regulation Biochemistry, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Rei Kawashima
- Department of Regulation Biochemistry, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Jun Oikawa
- Department of Kitasato Clinical Research Center, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Masaki Nakamura
- Department of Laboratory Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Yumi Tokui
- Department of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa, 252-0373, Japan; Department Environmental Microbiology, Kitasato University Graduate School of Medical Science, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Jun Naraba
- Department of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa, 252-0373, Japan; Department Environmental Microbiology, Kitasato University Graduate School of Medical Science, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Mototsugu Nishii
- Department of Emergency Medicine, Yokohama City University, School of Medicine, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Hidero Kitasato
- Department of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa, 252-0373, Japan; Department Environmental Microbiology, Kitasato University Graduate School of Medical Science, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan; Shibasaburo Kitasato Memorial Museum, 3199 Kitazato, Oguni, Aso, Kumamoto, 869-2505, Japan
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| |
Collapse
|
3
|
Hu X, Chen J, Dai W, Xiao Y, Chen X, Chen Z, Zhang S, Hu Y. PHLDA1-PRDM1 mediates the effect of lentiviral vectors on fate-determination of human retinal progenitor cells. Cell Mol Life Sci 2024; 81:305. [PMID: 39012348 PMCID: PMC11335229 DOI: 10.1007/s00018-024-05279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/30/2024] [Accepted: 05/13/2024] [Indexed: 07/17/2024]
Abstract
Lentiviral vectors have markedly enhanced gene therapy efficiency in treating congenital diseases, but their long-term safety remains controversial. Most gene therapies for congenital eye diseases need to be carried out at early ages, yet the assessment of related risks to ocular development posed by lentiviral vectors is challenging. Utilizing single-cell transcriptomic profiling on human retinal organoids, this study explored the impact of lentiviral vectors on the retinal development and found that lentiviral vectors can cause retinal precursor cells to shift toward photoreceptor fate through the up-regulation of key fate-determining genes such as PRDM1. Further investigation demonstrated that the intron and intergenic region of PRDM1 was bound by PHLDA1, which was also up-regulated by lentiviral vectors exposure. Importantly, knockdown of PHLDA1 successfully suppressed the lentivirus-induced differentiation bias of photoreceptor cells. The findings also suggest that while lentiviral vectors may disrupt the fate determination of retinal precursor cells, posing risks in early-stage retinal gene therapy, these risks could potentially be reduced by inhibiting the PHLDA1-PRDM1 axis.
Collapse
Affiliation(s)
- Xing Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jia Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Wangxuan Dai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yuhua Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Zheyao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Shuyao Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Youjin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
4
|
Anilkumar S, Wright-Jin E. NF-κB as an Inducible Regulator of Inflammation in the Central Nervous System. Cells 2024; 13:485. [PMID: 38534329 PMCID: PMC10968931 DOI: 10.3390/cells13060485] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
The NF-κB (nuclear factor K-light-chain-enhancer of activated B cells) transcription factor family is critical for modulating the immune proinflammatory response throughout the body. During the resting state, inactive NF-κB is sequestered by IκB in the cytoplasm. The proteasomal degradation of IκB activates NF-κB, mediating its translocation into the nucleus to act as a nuclear transcription factor in the upregulation of proinflammatory genes. Stimuli that initiate NF-κB activation are diverse but are canonically attributed to proinflammatory cytokines and chemokines. Downstream effects of NF-κB are cell type-specific and, in the majority of cases, result in the activation of pro-inflammatory cascades. Acting as the primary immune responders of the central nervous system, microglia exhibit upregulation of NF-κB upon activation in response to pathological conditions. Under such circumstances, microglial crosstalk with other cell types in the central nervous system can induce cell death, further exacerbating the disease pathology. In this review, we will emphasize the role of NF-κB in triggering neuroinflammation mediated by microglia.
Collapse
Affiliation(s)
- Sudha Anilkumar
- Neonatal Brain Injury Laboratory, Division of Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Elizabeth Wright-Jin
- Neonatal Brain Injury Laboratory, Division of Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA
- Division of Neurology, Department of Pediatrics, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
5
|
Harada M, Su-Harada K, Kimura T, Ono K, Ashida N. Sustained activation of NF-κB through constitutively active IKKβ leads to senescence bypass in murine dermal fibroblasts. Cell Cycle 2024; 23:308-327. [PMID: 38461418 PMCID: PMC11057680 DOI: 10.1080/15384101.2024.2325802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Although the transcription factor nuclear factor κB (NF-κB) plays a central role in the regulation of senescence-associated secretory phenotype (SASP) acquisition, our understanding of the involvement of NF-κB in the induction of cellular senescence is limited. Here, we show that activation of the canonical NF-κB pathway suppresses senescence in murine dermal fibroblasts. IκB kinase β (IKKβ)-depleted dermal fibroblasts showed ineffective NF-κB activation and underwent senescence more rapidly than control cells when cultured under 20% oxygen conditions, as indicated by senescence-associated β-galactosidase (SA-β-gal) staining and p16INK4a mRNA levels. Conversely, the expression of constitutively active IKKβ (IKKβ-CA) was sufficient to drive senescence bypass. Notably, the expression of a degradation-resistant form of inhibitor of κB (IκB), which inhibits NF-κB nuclear translocation, abolished senescence bypass, suggesting that the inhibitory effect of IKKβ-CA on senescence is largely mediated by NF-κB. We also found that IKKβ-CA expression suppressed the derepression of INK4/Arf genes and counteracted the senescence-associated loss of Ezh2, a catalytic subunit of the Polycomb repressive complex 2 (PRC2). Moreover, pharmacological inhibition of Ezh2 abolished IKKβ-CA-induced senescence bypass. We propose that NF-κB plays a suppressive role in the induction of stress-induced senescence through sustaining Ezh2 expression.
Collapse
Affiliation(s)
- Masayuki Harada
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kanae Su-Harada
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Noboru Ashida
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Jung B, An YH, Jang SH, Ryu G, Jung S, Kim S, Kim C, Jang H. The tumor suppressive effect and apoptotic mechanism of TRAIL gene-containing recombinant NDV in TRAIL-resistant colorectal cancer HT-29 cells and TRAIL-nonresistant HCT116 cells, with each cell bearing a mouse model. Cancer Med 2023; 12:20380-20395. [PMID: 37843231 PMCID: PMC10652305 DOI: 10.1002/cam4.6622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND TRAIL is an anticancer drug that induces cancer cell apoptosis by interacting with death receptors (DRs). However, owing to low cell-surface expression of DRs, certain colorectal cancer (CRC) cells resist TRAIL-induced apoptosis. Newcastle disease virus (NDV) infection can elevate DR protein expression in cancer cells, potentially influencing their TRAIL sensitivity. However, the precise mechanism by which NDV infection modulates DR expression and impacts TRAIL sensitivity in cancer cells remains unknown. METHODS Herein, we developed nonpathogenic NDV VG/GA strain-based recombinant NDV (rNDV) and TRAIL gene-containing rNDV (rNDV-TRAIL). We observed that viral infections lead to increased DR and TRAIL expressions and activate signaling proteins involved in intrinsic and extrinsic apoptosis pathways. Experiments were conducted in vitro using TRAIL-resistant CRC cells (HT-29) and nonresistant CRC cells (HCT116) and in vivo using relevant mouse models. RESULTS rNDV-TRAIL was found to exhibit better apoptotic efficacy than rNDV in CRC cells. Notably, rNDV-TRAIL had the stronger cancer cell-killing effect in TRAIL-resistant CRC cells. Western blot analyses showed that both rNDV and rNDV-TRAIL infections activate signaling proteins involved in the intrinsic and extrinsic apoptotic pathways. Notably, rNDV-TRAIL promotes concurrent intrinsic and extrinsic signal transduction in both HCT-116 and HT-29 cells. CONCLUSIONS Therefore, rNDV-TRAIL infection effectively enhances DR expression in DR-depressed HT-29 cells. Moreover, the TRAIL protein expressed by rNDV-TRAIL effectively interacts with DR, leading to enhanced apoptosis in TRAIL-resistant HT-29 cells. Therefore, rNDV-TRAIL has potential as a promising therapeutic approach for treating TRAIL-resistant cancers.
Collapse
Affiliation(s)
| | | | - Sung Hoon Jang
- Graduate School of Medical Science, College of medicineYonsei UniversitySeoulRepublic of Korea
| | | | | | - Seonhee Kim
- Department of Physiology & Medical Science, College of MedicineChungnam National UniversityDaejeonRepublic of Korea
| | - Cuk‐Seong Kim
- Department of Physiology & Medical Science, College of MedicineChungnam National UniversityDaejeonRepublic of Korea
| | - Hyun Jang
- Libentech Co. LTDDaejeonRepublic of Korea
| |
Collapse
|
7
|
Timani KA, Rezaei S, Whitmill A, Liu Y, He JJ. Tip110/SART3-Mediated Regulation of NF-κB Activity by Targeting IκBα Stability Through USP15. Front Oncol 2022; 12:843157. [PMID: 35530338 PMCID: PMC9070983 DOI: 10.3389/fonc.2022.843157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
To date, there are a small number of nuclear-restricted proteins that have been reported to play a role in NF-κB signaling. However, the exact molecular mechanisms are not fully understood. Tip110 is a nuclear protein that has been implicated in multiple biological processes. In a previous study, we have shown that Tip110 interacts with oncogenic ubiquitin specific peptidase 15 (USP15) and that ectopic expression of Tip110 leads to re-distribution of USP15 from the cytoplasm to the nucleus. USP15 is known to regulate NF-κB activity through several mechanisms including modulation of IκBα ubiquitination. These findings prompted us to investigate the role of Tip110 in the NF-κB signaling pathway. We showed that Tip110 regulates NF-κB activity. The expression of Tip110 potentiated TNF-α-induced NF-κB activity and deletion of the nuclear localization domain in Tip110 abrogated this potentiation activity. We then demonstrated that Tip110 altered IκBα phosphorylation and stability in the presence of TNF-α. Moreover, we found that Tip110 and USP15 opposingly regulated NF-κB activity by targeting IκBα protein stability. We further showed that Tip110 altered the expression of NF-κB-dependent proinflammatory cytokines. Lastly, by using whole-transcriptome analysis of Tip110 knockout mouse embryonic stem cells, we found several NF-κB and NF-κB-related pathways were dysregulated. Taken together, these findings add to the nuclear regulation of NF-κB activity by Tip110 through IκBα stabilization and provide new evidence to support the role of Tip110 in controlling cellular processes such as cancers that involve proinflammatory responses.
Collapse
Affiliation(s)
- Khalid Amine Timani
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
- *Correspondence: Khalid Amine Timani,
| | - Sahar Rezaei
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| | - Amanda Whitmill
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Ying Liu
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| | - Johnny J. He
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| |
Collapse
|
8
|
Tiwari PC, Chaudhary MJ, Pal R, Kartik S, Nath R. Pharmacological, Biochemical and Immunological Studies on Protective Effect of Mangiferin in 6-Hydroxydopamine (6-OHDA)-Induced Parkinson's Disease in Rats. Ann Neurosci 2022; 28:137-149. [PMID: 35341236 PMCID: PMC8948331 DOI: 10.1177/09727531211051976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/25/2021] [Indexed: 01/24/2023] Open
Abstract
Background: Parkinson’s disease is a neurodegenerative disorder and is marked by
inflammation and death of neurons in the striatum region of the midbrain. It
has been reported that expression of NF-κB increases during Parkinson’s
disease, which promotes oxidative stress, stimulates release of
proinflammatory cytokines, and induces expression of nitric oxide.
Therefore, in this study, we have used mangiferin a specific NF-κB
inhibitor. Mangiferin is a polyphenolic compound traditionally used for its
antioxidant and anti-inflammatory properties. Methods: The study utilized male Wistar rats weighing 200–250 g (56 rats;
n = 8/group). On day “0,” stereotaxic surgery of rats
was done to induce 6-hydroxydopamine lesioning in rats. Coordinates for
substantia nigra were anteroposterior-2 mm, mediolateral-5 mm and
dorsoventral-8.2 mm. After 14 days, those rats which show at least 210
contralateral rotations after administration of apomorphine (0.5 mg/kg S.C.)
were selected for the study and were given treatment for 28 days. On day 28
of treatment, rats were subjected to behavioral studies to evaluate the
effect of mangiferin and their brains were taken out after euthanasia to
perform biochemical, molecular and immunological studies. Results: Treatment with mangiferin significantly improves the key parameters of
locomotor activity and oxidative stress and reduces the parameters of
inflammatory stress. Also, the activity of caspases was reduced. Significant
decrease in activity of both cyclooxygenase 1 and 2 was also observed.
Maximum improvement in all parameters was observed in rats treated with
grouping of mangiferin 45 µg/kg and levodopa 10 mg/kg. Treatment with
levodopa alone has no significant effect on biochemical and molecular
parameters though it significantly improves behavioral parameters. Conclusion: Current treatment of Parkinson’s disease does not target progression of
Parkinson’s disease. Results of this study suggest that mangiferin has
protective effect in hemi-Parkinsonian rats. Therefore, the combination
therapy of mangiferin and levodopa can be helpful in management of
Parkinson’s disease.
Collapse
Affiliation(s)
- Prafulla Chandra Tiwari
- Department of Pharmacology & Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Manju J Chaudhary
- Department of Physiology, Government Medical College, Kannauj, Uttar Pradesh, India
| | - Rishi Pal
- Department of Pharmacology & Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shipra Kartik
- Department of Pharmacology & Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rajendra Nath
- Department of Pharmacology & Therapeutics, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
9
|
Chukwurah E, Farabaugh KT, Guan BJ, Ramakrishnan P, Hatzoglou M. A tale of two proteins: PACT and PKR and their roles in inflammation. FEBS J 2021; 288:6365-6391. [PMID: 33387379 PMCID: PMC9248962 DOI: 10.1111/febs.15691] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Inflammation is a pathological hallmark associated with bacterial and viral infections, autoimmune diseases, genetic disorders, obesity and diabetes, as well as environmental stresses including physical and chemical trauma. Among numerous proteins regulating proinflammatory signaling, very few such as Protein kinase R (PKR), have been shown to play an all-pervading role in inflammation induced by varied stimuli. PKR was initially characterized as an interferon-inducible gene activated by viral double-stranded RNA with a role in protein translation inhibition. However, it has become increasingly clear that PKR is involved in multiple pathways that promote inflammation in response to stress activation, both dependent on and independent of its cellular protein activator of PKR (PACT). In this review, we discuss the signaling pathways that contribute to the initiation of inflammation, including Toll-like receptor, interferon, and RIG-I-like receptor signaling, as well as inflammasome activation. We go on to discuss the specific roles that PKR and PACT play in such proinflammatory signaling, as well as in metabolic syndrome- and environmental stress-induced inflammation.
Collapse
Affiliation(s)
- Evelyn Chukwurah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Kenneth T. Farabaugh
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| | | | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
10
|
The Effects of Continuous and Withdrawal Voluntary Wheel Running Exercise on the Expression of Senescence-Related Genes in the Visceral Adipose Tissue of Young Mice. Int J Mol Sci 2020; 22:ijms22010264. [PMID: 33383848 PMCID: PMC7794976 DOI: 10.3390/ijms22010264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 11/17/2022] Open
Abstract
Obesity has become a global medical problem. The upregulation of senescence-related markers in adipose tissue may cause impairment of adipose tissue and disorders of systemic metabolism. Weight control through diet has been found to ameliorate senescence in the adipose tissue. Exercise is also important in maintaining a healthy lifestyle, however, very few researchers have examined the relationship between senescence-related markers in adipose tissue. Dietary restriction is also reported to have a legacy effect, wherein the effects are maintained for some periods after the termination of the intervention. However, very few researchers have examined the relationship between exercise and senescence-related markers in adipose tissue. Besides, there is no study on the long-term effects of exercise. Hence, we investigated whether the exercise could change the expression of senescence-related genes in the visceral adipose tissue of young mice and whether there was a legacy effect of exercise for 10 weeks after the termination of exercise. Four-week-old male ICR mice were assigned to one of the three groups: 20 weeks of sedentary condition, 20 weeks of voluntary wheel running exercise, or 10 weeks of exercise followed by 10 weeks of sedentary condition. The mice showed decreased expression in genes related to senescence and senescence-associated secretory phenotype, such as p53, p16, and IL-6, in the visceral adipose tissue in response to exercise. These effects were maintained for 10 weeks after the mice stopped exercising. Our study is the first report that exercise reduces the expression of senescence-related genes in the visceral adipose tissue of young mice, and that exercise causes the legacy effect.
Collapse
|
11
|
Carrà G, Lingua MF, Maffeo B, Taulli R, Morotti A. P53 vs NF-κB: the role of nuclear factor-kappa B in the regulation of p53 activity and vice versa. Cell Mol Life Sci 2020; 77:4449-4458. [PMID: 32322927 PMCID: PMC11104960 DOI: 10.1007/s00018-020-03524-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/06/2020] [Accepted: 04/06/2020] [Indexed: 12/18/2022]
Abstract
The onco-suppressor p53 is a transcription factor that regulates a wide spectrum of genes involved in various cellular functions including apoptosis, cell cycle arrest, senescence, autophagy, DNA repair and angiogenesis. p53 and NF-κB generally have opposing effects in cancer cells. While p53 activity is associated with apoptosis induction, the stimulation of NF-κB has been demonstrated to promote resistance to programmed cell death. Although the transcription factor NF-κB family is considered as the master regulator of cancer development and maintenance, it has been mainly studied in relation to its ability to regulate p53. This has revealed the importance of the crosstalk between NF-κB, p53 and other crucial cell signaling pathways. This review analyzes the various mechanisms by which NF-κB regulates the activity of p53 and the role of p53 on NF-κB activity.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy.
| | | | - Beatrice Maffeo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy.
| |
Collapse
|
12
|
Li C, Yang J, Liu C, Wang X, Zhang L. Long non-coding RNAs in hepatocellular carcinoma: Ordering of the complicated lncRNA regulatory network and novel strategies for HCC clinical diagnosis and treatment. Pharmacol Res 2020; 158:104848. [DOI: 10.1016/j.phrs.2020.104848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
|
13
|
Dapagliflozin improves behavioral dysfunction of Huntington's disease in rats via inhibiting apoptosis-related glycolysis. Life Sci 2020; 257:118076. [PMID: 32659371 DOI: 10.1016/j.lfs.2020.118076] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
AIMS Huntington's disease is a rare neurodegenerative disorder which is associated with defected glucose metabolism with consequent behavioral disturbance including memory and locomotion. 3-nitropropionic acid (3-NP) can cause, in high single dose, an acute striatal injury/Huntington's disease. Dapagliflozin, which is one of the longest duration of action of SGLTIs family, may be able to diminish that injury and its resultant behavioral disturbances. MATERIAL AND METHODS Forty rats were divided into four groups (n = 10 in each group): normal control group (CTRL), dapagliflozin (CTRL + DAPA) group, 3-nitropropionic acid (3-NP) group, and dapagliflozin plus 3-nitropropionic acid (DAPA + 3-NP) group. Behavioral tests (beam walking test, hanging wire test, limb withdrawal test, Y-maze spontaneous alteration, elevated plus maze) were performed with evaluating neurological scoring. In striatum, neurotransmitters (glutamate, aspartate, GABA, ACh and AChE activity) were measured. In addition, apoptosis and glycolysis markers (NF-κB, Cyt-c, lactate, HK-II activity, P53, calpain, PEA15 and TIGAR) were determined. Inflammation (IL-1β, IL-6, IL-8 and TNF-α) and autophagy (beclin-1, LC3 and DRAM) indicators were measured. Additionally, histopathological screening was conducted. KEY FINDINGS 3-Nitropropionic acid had the ability to perturb the neurotransmission which was reflected in impaired behavioral outcome. All of glycolysis, apoptosis and inflammation markers were elevated after 3-NP acute intoxication but autophagy parameters, except DRAM, were reduced. However, DAPA markedly reversed the abovementioned parameters. SIGNIFICANCE Dapagliflozin demonstrated anti-glycolytic, anti-apoptotic, anti-inflammatory and autophagic effects on 3-NP-damaged striatal cells and promoted the behavioral outcome.
Collapse
|
14
|
Wang L, Tan Z, Zhang Y, Kady Keita N, Liu H, Zhang Y. ADAM12 silencing promotes cellular apoptosis by activating autophagy in choriocarcinoma cells. Int J Oncol 2020; 56:1162-1174. [PMID: 32319603 PMCID: PMC7115740 DOI: 10.3892/ijo.2020.5007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
ADAM metallopeptidase domain 12 (ADAM12) has been demonstrated to mediate cell proliferation and apoptosis resistance in several types of cancer cells. However, the effect of ADAM12 silencing on the proliferation and apoptosis of choriocarcinoma cells remains unknown. The present study revealed that ADAM12 silencing significantly inhibited cellular activity and proliferation in the human choriocarcinoma JEG3 cell line and increased the rate of apoptosis. In addition, ADAM12 silencing significantly increased the expression levels of the autophagy proteins microtubule-associated protein-light-chain 3 (LC3B) and autophagy related 5 (ATG5) and the fluorescence density of LC3B in JEG-3 cells. However, the suppression of autophagy by 3-methyladenine could block ADAM12 silencing-induced cellular apoptosis. ADAM12 silencing reduced the levels of the inflammatory factors interleukin-1β, interferon-γ and TNF-α, and inactivated nuclear p65-NF-κB and p-mTOR in JEG-3 cells. The downregulation of p-mTOR expression by ADAM12 silencing was rescued in 3-methyladenine-treated JEG-3 cells, indicating that mTOR might participate in the autophagy-mediated pro-apoptotic effect of ADAM12 silencing. In conclusion, ADAM12 silencing promoted cellular apoptosis in human choriocarcinoma JEG3 cells, which might be associated with autophagy and the mTOR response. These findings indicate that ADAM12 silencing might be a potential novel therapeutic target for choriocarcinoma.
Collapse
Affiliation(s)
- Lin Wang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Zhihui Tan
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Ying Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Nankoria Kady Keita
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Huining Liu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yu Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
15
|
Upregulation of CASP9 through NF-κB and Its Target MiR-1276 Contributed to TNFα-promoted Apoptosis of Cancer Cells Induced by Doxorubicin. Int J Mol Sci 2020; 21:ijms21072290. [PMID: 32225068 PMCID: PMC7177739 DOI: 10.3390/ijms21072290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022] Open
Abstract
Under some conditions, nuclear factor-κB (NF-κB) has a pro-apoptotic role, but the mechanisms underlying this function remain unclear. This study demonstrated that NF-κB directly binds to CASP9 and miR1276 in tumor necrosis factor α (TNFα)-treated HeLa and HepG2 cells. NF-κB upregulated CASP9 expression, whereas downregulated miR1276 expression in the TNFα-treated cells. The miR1276 repressed CASP9 expression in both cells. As a result, a typical NF-κB-mediated coherent feed-forward loop was formed in the TNFα-treated cells. It was proposed that the NF-κB-mediated loop may contribute to cell apoptosis under certain conditions. This opinion was supported by the following evidence: TNFα promoted the apoptosis of HeLa and HepG2 cells induced by doxorubicin (DOX). CASP9 was significantly upregulated and activated by TNFα in the DOX-induced cells. Moreover, a known inhibitor of CASP9 activation significantly repressed the TNFα promotion of apoptosis induced by DOX. These findings indicate that CASP9 is a new mediator of the NF-κB pro-apoptotic pathway, at least in such conditions. This study therefore provides new insights into the pro-apoptotic role of NF-κB. The results also shed new light on the molecular mechanism underlying TNFα-promotion of cancer cells apoptosis induced by some anticancer drugs such as DOX.
Collapse
|
16
|
Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol 2019; 136:27-41. [DOI: 10.1016/j.yjmcc.2019.09.001] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022]
|
17
|
N-acetyl-cysteine blunts 6-hydroxydopamine- and l-buthionine-sulfoximine-induced apoptosis in human mesenchymal stromal cells. Mol Biol Rep 2019; 46:4423-4435. [DOI: 10.1007/s11033-019-04897-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
|
18
|
Bedoya-Medina J, Mendivil-Perez M, Rey-Suarez P, Jimenez-Del-Rio M, Núñez V, Velez-Pardo C. L-amino acid oxidase isolated from Micrurus mipartitus snake venom (MipLAAO) specifically induces apoptosis in acute lymphoblastic leukemia cells mostly via oxidative stress-dependent signaling mechanism. Int J Biol Macromol 2019; 134:1052-1062. [PMID: 31129208 DOI: 10.1016/j.ijbiomac.2019.05.174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 12/27/2022]
Abstract
The effect of Micrurus mipartitus snake venom as a therapeutic alternative for T-acute lymphoblastic leukemia (ALL) is still unknown. This study was aimed to evaluate the cytotoxic effect of M. mipartitus snake venom and a new L-amino acid oxidase (LAAO), named MipLAAO, on human peripheral blood lymphocytes (PBL) and on T-ALL cells (Jurkat), and its mechanism of action. PBL and Jurkat cells were treated with venom and MipLAAO, and morphological changes in the cell nucleus/DNA, mitochondrial membrane potential, levels of intracellular reactive oxygen species and cellular apoptosis markers were determined by fluorescence microscopy, flow cytometry and pharmacological inhibition. Venom and MipLAAO induced apoptotic cell death in Jurkat cells, but not in PBL, in a dose-response manner. Additionally, venom and MipLAAO increased dichlorofluorescein fluorescence intensity, indicative of H2O2 production, increased DJ-1 Cys106-sulfonate, as a marker of intracellular stress and induced the up-regulation of PUMA, p53 and phosphorylation of c-JUN. Additionally, it increased the expression of apoptotic CASPASE-3. In conclusion, M. mipartitus venom and MipLAAO selectively induces apoptosis in Jurkat cells through a H2O2-mediated signaling pathway dependent mostly on CASPASE-3 pathway. Our findings support the potential use of M. mipartitus snake venom compounds as a potential treatment for T-ALL.
Collapse
Affiliation(s)
- Jesus Bedoya-Medina
- Programa de Ofidismo y Escorpionismo, Universidad de Antioquia, Medellín, Colombia
| | - Miguel Mendivil-Perez
- Grupo de Neurociencias, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, bloque 1, laboratorio 412, SIU, Medellín, Colombia
| | - Paola Rey-Suarez
- Programa de Ofidismo y Escorpionismo, Universidad de Antioquia, Medellín, Colombia
| | - Marlene Jimenez-Del-Rio
- Grupo de Neurociencias, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, bloque 1, laboratorio 412, SIU, Medellín, Colombia
| | - Vitelbina Núñez
- Programa de Ofidismo y Escorpionismo, Universidad de Antioquia, Medellín, Colombia; Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Carlos Velez-Pardo
- Grupo de Neurociencias, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, bloque 1, laboratorio 412, SIU, Medellín, Colombia.
| |
Collapse
|
19
|
Zhang WW, Li L, Li D, Liu J, Li X, Li W, Xu X, Zhang MJ, Chandler LA, Lin H, Hu A, Xu W, Lam DMK. The First Approved Gene Therapy Product for Cancer Ad-p53 (Gendicine): 12 Years in the Clinic. Hum Gene Ther 2019; 29:160-179. [PMID: 29338444 DOI: 10.1089/hum.2017.218] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gendicine (recombinant human p53 adenovirus), developed by Shenzhen SiBiono GeneTech Co. Ltd., was approved in 2003 by the China Food and Drug Administration (CFDA) as a first-in-class gene therapy product to treat head and neck cancer, and entered the commercial market in 2004. Gendicine is a biological therapy that is delivered via minimally invasive intratumoral injection, as well as by intracavity or intravascular infusion. The wild-type (wt) p53 protein expressed by Gendicine-transduced cells is a tumor suppressor that is activated by cellular stress, and mediates cell-cycle arrest and DNA repair, or induces apoptosis, senescence, and/or autophagy, depending upon cellular stress conditions. Based on 12 years of commercial use in >30,000 patients, and >30 published clinical studies, Gendicine has exhibited an exemplary safety record, and when combined with chemotherapy and radiotherapy has demonstrated significantly higher response rates than for standard therapies alone. In addition to head and neck cancer, Gendicine has been successfully applied to treat various other cancer types and different stages of disease. Thirteen published studies that include long-term survival data showed that Gendicine combination regimens yield progression-free survival times that are significantly longer than standard therapies alone. Although the p53 gene is mutated in >50% of all human cancers, p53 mutation status did not significantly influence efficacy outcomes and long-term survival rate for Ad-p53-treated patients. To date, Shenzhen SiBiono GeneTech has manufactured 41 batches of Gendicine in compliance with CFDA QC/QA requirements, and 169,571 vials (1.0 × 1012 vector particles per vial) have been used to treat patients. No serious adverse events have been reported, except for vector-associated transient fever, which occurred in 50-60% of patients and persisted for only a few hours. The manufacturing accomplishments and clinical experience with Gendicine, as well as the understanding of its cellular mechanisms of action and implications, could provide valuable insights for the international gene therapy community and add valuable data to promote further developments and advancements in the gene therapy field.
Collapse
Affiliation(s)
- Wei-Wei Zhang
- 1 LifeTech Biosciences Group, Hong Kong .,2 Angionetics, Inc., San Diego, California
| | - Longjiang Li
- 3 State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dinggang Li
- 4 Beijing Haidian Hospital Center for Cancer Gene Therapy, Beijing, China
| | - Jiliang Liu
- 5 Shenzhen Hengsheng Hospital Cancer Center, Shenzhen, China
| | - Xiuqin Li
- 6 China Medical University Shengjing Hospital Department of Obstetrics and Gynecology, Shenyang, China
| | - Wei Li
- 7 Shenzhen SiBiono GeneTech Co. Ltd., Shenzhen, China
| | - Xiaolong Xu
- 7 Shenzhen SiBiono GeneTech Co. Ltd., Shenzhen, China
| | - Michael J Zhang
- 8 Department of Medicine University of Minnesota Medical School, Minneapolis, Minnesota
| | | | - Hong Lin
- 7 Shenzhen SiBiono GeneTech Co. Ltd., Shenzhen, China
| | - Aiguo Hu
- 7 Shenzhen SiBiono GeneTech Co. Ltd., Shenzhen, China
| | - Wei Xu
- 7 Shenzhen SiBiono GeneTech Co. Ltd., Shenzhen, China
| | | |
Collapse
|
20
|
Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, Hohensinner P, Basílio J, Petzelbauer P, Assinger A, Schmid JA. Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Front Immunol 2019; 10:85. [PMID: 30778349 PMCID: PMC6369217 DOI: 10.3389/fimmu.2019.00085] [Citation(s) in RCA: 428] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor NF-κB is a central mediator of inflammation with multiple links to thrombotic processes. In this review, we focus on the role of NF-κB signaling in cell types within the vasculature and the circulation that are involved in thrombo-inflammatory processes. All these cells express NF-κB, which mediates important functions in cellular interactions, cell survival and differentiation, as well as expression of cytokines, chemokines, and coagulation factors. Even platelets, as anucleated cells, contain NF-κB family members and their corresponding signaling molecules, which are involved in platelet activation, as well as secondary feedback circuits. The response of endothelial cells to inflammation and NF-κB activation is characterized by the induction of adhesion molecules promoting binding and transmigration of leukocytes, while simultaneously increasing their thrombogenic potential. Paracrine signaling from endothelial cells activates NF-κB in vascular smooth muscle cells and causes a phenotypic switch to a “synthetic” state associated with a decrease in contractile proteins. Monocytes react to inflammatory situations with enforced expression of tissue factor and after differentiation to macrophages with altered polarization. Neutrophils respond with an extension of their life span—and upon full activation they can expel their DNA thereby forming so-called neutrophil extracellular traps (NETs), which exert antibacterial functions, but also induce a strong coagulatory response. This may cause formation of microthrombi that are important for the immobilization of pathogens, a process designated as immunothrombosis. However, deregulation of the complex cellular links between inflammation and thrombosis by unrestrained NET formation or the loss of the endothelial layer due to mechanical rupture or erosion can result in rapid activation and aggregation of platelets and the manifestation of thrombo-inflammatory diseases. Sepsis is an important example of such a disorder caused by a dysregulated host response to infection finally leading to severe coagulopathies. NF-κB is critically involved in these pathophysiological processes as it induces both inflammatory and thrombotic responses.
Collapse
Affiliation(s)
- Marion Mussbacher
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Manuel Salzmann
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria
| | - Bastian Hoesel
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | | | - Hannes Datler
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Philipp Hohensinner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - José Basílio
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelial Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Johannes A Schmid
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Pan Y, Hui X, Hoo RLC, Ye D, Chan CYC, Feng T, Wang Y, Lam KSL, Xu A. Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J Clin Invest 2019; 129:834-849. [PMID: 30667374 DOI: 10.1172/jci123069] [Citation(s) in RCA: 331] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
Persistent, unresolved inflammation in adipose tissue is a major contributor to obesity-associated metabolic complications. However, the molecular links between lipid-overloaded adipocytes and inflammatory immune cells in obese adipose tissues remain elusive. Here we identified adipocyte-secreted microRNA-34a (miR-34a) as a key mediator through its paracrine actions on adipose-resident macrophages. The expression of miR-34a in adipose tissues was progressively increased with the development of dietary obesity. Adipose-selective or adipocyte-specific miR-34a-KO mice were resistant to obesity-induced glucose intolerance, insulin resistance, and systemic inflammation, and this was accompanied by a significant shift in polarization of adipose-resident macrophages from proinflammatory M1 to antiinflammatory M2 phenotype. Mechanistically, mature adipocyte-secreted exosomes transported miR-34a into macrophages, thereby suppressing M2 polarization by repressing the expression of Krüppel-like factor 4 (Klf4). The suppressive effects of miR-34a on M2 polarization and its stimulation of inflammatory responses were reversed by ectopic expression of Klf4 in both bone marrow-derived macrophages and adipose depots of obese mice. Furthermore, increased miR-34a expression in visceral fat of overweight/obese subjects correlated negatively with reduced Klf4 expression, but positively with the parameters of insulin resistance and metabolic inflammation. In summary, miR-34a was a key component of adipocyte-secreted exosomal vesicles that transmitted the signal of nutrient overload to the adipose-resident macrophages for exacerbation of obesity-induced systemic inflammation and metabolic dysregulation.
Collapse
Affiliation(s)
- Yong Pan
- State Key Laboratory of Pharmaceutical Biotechnology.,Department of Medicine, and
| | - Xiaoyan Hui
- State Key Laboratory of Pharmaceutical Biotechnology.,Department of Medicine, and
| | - Ruby Lai Chong Hoo
- State Key Laboratory of Pharmaceutical Biotechnology.,Department of Pharmacy and Pharmacology, The University of Hong Kong, Hong Kong, China
| | - Dewei Ye
- Joint Laboratory between Guangdong and Hong Kong on Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Research Center of Metabolic Diseases of Integrated Western and Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | | | - Tianshi Feng
- State Key Laboratory of Pharmaceutical Biotechnology.,Department of Pharmacy and Pharmacology, The University of Hong Kong, Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology.,Department of Pharmacy and Pharmacology, The University of Hong Kong, Hong Kong, China
| | - Karen Siu Ling Lam
- State Key Laboratory of Pharmaceutical Biotechnology.,Department of Medicine, and
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology.,Department of Medicine, and.,Department of Pharmacy and Pharmacology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
Goyal U, Ta M. p53-NF-κB Crosstalk in Febrile Temperature-Treated Human Umbilical Cord-Derived Mesenchymal Stem Cells. Stem Cells Dev 2018; 28:56-68. [PMID: 30319075 DOI: 10.1089/scd.2018.0115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are successful for their therapeutic application in immune and inflammatory contexts due to their anti-inflammatory, trophic, and immunomodulatory roles. However, though MSCs have the potential to provide regenerative treatment toward a wide range of devastating diseases, massive cell death of transplanted MSCs remains an obstacle to overcome. The relation between MSCs and inflammation is multifactorial and challenging to comprehend. Fever is a critical component of the inflamed microenvironment. Also, the choice of MSC source could be critical in determining the fate of transplanted cells under stress conditions. Here we investigated the thermosensitivity of Wharton's jelly MSCs (WJ-MSCs) to elevated temperature in the physiological fever range. We explored the effect of febrile range temperature on morphology, viability, proliferation kinetics, and cell cycle status of WJ-MSCs. WJ-MSCs adopted a flattened morphology at 40°C, and our data from proliferation kinetics study using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and apoptosis assays showed that WJ-MSCs had reduced proliferation and viability at 40°C compared with control cultures. There was also a G0/G1 cell cycle arrest, which was further confirmed by messenger RNA (mRNA) levels of genes specific for different stages of cell cycle. On evaluating p53 status, we observed an increase in p53 protein expression and its nuclear localization in WJ-MSCs exposed to 40°C. Its downstream effector p21 too was upregulated. Moreover, this temperature-induced p53 induction was inhibited on exposure to 40°C in the presence of NF-κB pathway inhibitor, pyrrolidinedithiocarbamate (PDTC) or endonuclease-prepared small interfering RNA (esiRNA) targeting p65. Febrile temperature exposure did not affect the senescence status of WJ-MSCs. The MSC-specific surface antigen profile at 40°C was similar to control WJ-MSCs. Our findings suggest that under febrile temperature stress conditions, WJ-MSCs exhibit G0/G1 cell cycle arrest and reduction in viable cell count, while retaining their basic characteristics, with an underlying interplay of p53 and NF-κB pathway.
Collapse
Affiliation(s)
- Umesh Goyal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, India
| | - Malancha Ta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, India
| |
Collapse
|
23
|
NF-κB Signaling in Targeting Tumor Cells by Oncolytic Viruses-Therapeutic Perspectives. Cancers (Basel) 2018; 10:cancers10110426. [PMID: 30413032 PMCID: PMC6265863 DOI: 10.3390/cancers10110426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, oncolytic virotherapy became a promising therapeutic approach, leading to the introduction of a novel generation of anticancer drugs. However, despite evoking an antitumor response, introducing an oncolytic virus (OV) to the patient is still inefficient to overcome both tumor protective mechanisms and the limitation of viral replication by the host. In cancer treatment, nuclear factor (NF)-κB has been extensively studied among important therapeutic targets. The pleiotropic nature of NF-κB transcription factor includes its involvement in immunity and tumorigenesis. Therefore, in many types of cancer, aberrant activation of NF-κB can be observed. At the same time, the activity of NF-κB can be modified by OVs, which trigger an immune response and modulate NF-κB signaling. Due to the limitation of a monotherapy exploiting OVs only, the antitumor effect can be enhanced by combining OV with NF-κB-modulating drugs. This review describes the influence of OVs on NF-κB activation in tumor cells showing NF-κB signaling as an important aspect, which should be taken into consideration when targeting tumor cells by OVs.
Collapse
|
24
|
Inoue K, Fry EA. Tumor suppression by the EGR1, DMP1, ARF, p53, and PTEN Network. Cancer Invest 2018; 36:520-536. [PMID: 30396285 PMCID: PMC6500763 DOI: 10.1080/07357907.2018.1533965] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 02/25/2018] [Accepted: 10/05/2018] [Indexed: 01/08/2023]
Abstract
Recent studies have indicated that EGR1 is a direct regulator of tumor suppressors including TGFβ1, PTEN, and p53. The Myb-like transcription factor Dmp1 is a physiological regulator of the Arf-p53 pathway through transactivation of the Arf promoter and physical interaction of p53. The Dmp1 promoter has binding sites for Egr proteins, and Egr1 is a target for Dmp1. Crosstalks between p53 and PTEN have been reported. The Egr1-Dmp1-Arf-p53-Pten pathway displays multiple modes of interaction with each other, suggesting the existence of a functional network of tumor suppressors that maintain normal cell growth and prevent the emergence of incipient cancer cells.
Collapse
Affiliation(s)
- Kazushi Inoue
- The Department of Pathology, Wake Forest University Health Sciences,
Medical Center Boulevard, Winston-Salem, NC 27157 USA
| | - Elizabeth A. Fry
- The Department of Pathology, Wake Forest University Health Sciences,
Medical Center Boulevard, Winston-Salem, NC 27157 USA
| |
Collapse
|
25
|
Sharif U, Mahmud NM, Kay P, Yang YC, Harding SP, Grierson I, Kamalden TA, Jackson MJ, Paraoan L. Advanced glycation end products-related modulation of cathepsin L and NF-κB signalling effectors in retinal pigment epithelium lead to augmented response to TNFα. J Cell Mol Med 2018; 23:405-416. [PMID: 30338926 PMCID: PMC6307775 DOI: 10.1111/jcmm.13944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 01/02/2023] Open
Abstract
The retinal pigment epithelium (RPE) plays a central role in neuroretinal homoeostasis throughout life. Altered proteolysis and inflammatory processes involving RPE contribute to the pathophysiology of age‐related macular degeneration (AMD), but the link between these remains elusive. We report for the first time the effect of advanced glycation end products (AGE)—known to accumulate on the ageing RPE's underlying Bruch's membrane in situ—on both key lysosomal cathepsins and NF‐κB signalling in RPE. Cathepsin L activity and NF‐κB effector levels decreased significantly following 2‐week AGE exposure. Chemical cathepsin L inhibition also decreased total p65 protein levels, indicating that AGE‐related change of NF‐κB effectors in RPE cells may be modulated by cathepsin L. However, upon TNFα stimulation, AGE‐exposed cells had significantly higher ratio of phospho‐p65(Ser536)/total p65 compared to non‐AGEd controls, with an even higher fold increase than in the presence of cathepsin L inhibition alone. Increased proportion of active p65 indicates an AGE‐related activation of NF‐κB signalling in a higher proportion of cells and/or an enhanced response to TNFα. Thus, NF‐κB signalling modulation in the AGEd environment, partially regulated via cathepsin L, is employed by RPE cells as a protective (para‐inflammatory) mechanism but renders them more responsive to pro‐inflammatory stimuli.
Collapse
Affiliation(s)
- Umar Sharif
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Nur Musfirah Mahmud
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.,Eye Research Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Paul Kay
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Yit C Yang
- Ophthalmology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | - Simon P Harding
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Ian Grierson
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | | | - Malcolm J Jackson
- Department of Musculoskeletal Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Luminita Paraoan
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
26
|
Choi SE, Park YS, Koh HC. NF-κB/p53-activated inflammatory response involves in diquat-induced mitochondrial dysfunction and apoptosis. ENVIRONMENTAL TOXICOLOGY 2018; 33:1005-1018. [PMID: 29484840 DOI: 10.1002/tox.22552] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 06/08/2023]
Abstract
Inflammation generated by environmental toxicants including pesticides could be one of the factors underlying neuronal cell damage in neurodegenerative diseases. In this study, we investigated the mechanisms by which inflammatory responses contribute to apoptosis in PC12 cells treated with diquat. We found that diquat induced apoptosis, as demonstrated by the activation of caspases and nuclear condensation, inhibition of mitochondrial complex I activity, and decreased ATP level in PC12 cells. Diquat also reduced the dopamine level, indicating that cell death induced by diquat is due to cytotoxicity of dopaminergic neuronal components in these cells. Exposure of PC12 cells to diquat led to the production of reactive oxygen species (ROS), and the antioxidant N-acetyl-cystein attenuated the cytotoxicity of caspase-3 pathways. These results demonstrate that diquat-induced apoptosis is involved in mitochondrial dysfunction through production of ROS. Furthermore, diquat increased expression of cyclooxygenase-2 (COX-2) and tumor necrosis factor-α (TNF-α) via inflammatory stimulation. Diquat induced nuclear accumulation of NF-κB and p53 proteins. Importantly, an inhibitor of NF-κB nuclear translocation blocked the increase of p53. Both NF-κB and p53 inhibitors also blocked the diquat-induced inflammatory response. Pretreatment of cells with meloxicam, a COX-2 inhibitor, also blocked apoptosis and mitochondrial dysfunction. These results represent a unique molecular characterization of diquat-induced cytotoxicity in PC12 cells. Our results demonstrate that diquat induces cell damage in part through inflammatory responses via NF-κB-mediated p53 signaling. This suggests the potential to generate mitochondrial damage via inflammatory responses and inflammatory stimulation-related neurodegenerative disease.
Collapse
Affiliation(s)
- Su Eun Choi
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul, Republic of Korea
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Yun Sun Park
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul, Republic of Korea
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyun Chul Koh
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul, Republic of Korea
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Hanyang Biomedical Research Institute, Seoul, Republic of Korea
| |
Collapse
|
27
|
Ruiz-Moreno C, Velez-Pardo C, Jimenez-Del-Rio M. Vitamin E d-α-Tocopheryl Polyethylene Glycol Succinate (TPGS) Provokes Cell Death in Human Neuroblastoma SK-N-SH Cells via a Pro-Oxidant Signaling Mechanism. Chem Res Toxicol 2018; 31:945-953. [PMID: 30092128 DOI: 10.1021/acs.chemrestox.8b00138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neuroblastoma (NB) is the most common neoplasm during infancy. Unfortunately, NB is still a lethal cancer. Therefore, innovative curative therapies are immediately required. In this study, we showed the prodeath activity of TPGS in human NB SK-N-SH cancer cells. NB cells were exposed to TPGS (10-80 μM). We report for the first time that TPGS induces cell death by apoptosis in NB cells via a pro-oxidant-mediated signaling pathway. Certainly, H2O2 directly oxidizes DJ-1 cysteine106-thiolate into DJ-1 cysteine106-sulfonate, indirectly activates the transcription factors NF-kappaB, p53, and c-JUN, induces the upregulation of mitochondria regulator proteins BAX/PUMA, and provokes the loss of mitochondrial membrane potential (ΔΨm) and the activation of caspase-3/AIF, leading to nuclear disintegration, demonstrated by cellular and biochemical techniques such as fluorescence microscopy, flow cytometry, and Western blot analysis. Since TPGS is a U.S. Food and Drug Administration (FDA)-approved pharmaceutical excipient, this molecule might be used in clinical trials for NB treatment.
Collapse
Affiliation(s)
- Cristian Ruiz-Moreno
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine , University of Antioquia (UdeA) , Calle 70 No. 52-21 and Calle 62 No. 52-59, Building 1, Room 412 , SIU Medellin 500001 , Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine , University of Antioquia (UdeA) , Calle 70 No. 52-21 and Calle 62 No. 52-59, Building 1, Room 412 , SIU Medellin 500001 , Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine , University of Antioquia (UdeA) , Calle 70 No. 52-21 and Calle 62 No. 52-59, Building 1, Room 412 , SIU Medellin 500001 , Colombia
| |
Collapse
|
28
|
Zeng X, Xi Y, Jiang W. Protective roles of flavonoids and flavonoid-rich plant extracts against urolithiasis: A review. Crit Rev Food Sci Nutr 2018; 59:2125-2135. [DOI: 10.1080/10408398.2018.1439880] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiangquan Zeng
- Bioengineering Department, College of Food Science and Nutritional Engineering, China Agricultural University, Qinghua Donglu No. 17, Beijing, PR China
| | - Yu Xi
- Bioengineering Department, College of Food Science and Nutritional Engineering, China Agricultural University, Qinghua Donglu No. 17, Beijing, PR China
| | - Weibo Jiang
- Bioengineering Department, College of Food Science and Nutritional Engineering, China Agricultural University, Qinghua Donglu No. 17, Beijing, PR China
| |
Collapse
|
29
|
Gupta P, Zaidi AH, Manna SK. Suppression of IKK, but not activation of p53 is responsible for cell death mediated by naturally occurring oxidized tetranortriterpenoid. J Cell Biochem 2018; 119:6828-6841. [PMID: 29738082 DOI: 10.1002/jcb.26879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 03/21/2018] [Indexed: 12/11/2022]
Abstract
Tetranortriterpenoids (limonoids) obtained from the neem tree (Azadirachta indica) have gained significant attention due to their anti-proliferative properties. Here we are investigating the role of a highly oxidized tetranortriterpenoid, azadirachtin on induction of the cell death. Using various apoptotic assays, we show that azadirachtin induces cell death independent of cell types. Although azadirachtin-treated cells show increased expression of p53, but no phosphorylation of p53 (at Ser15 and Ser46) is detected. In silico analysis reveals that azadirachtin interacts with Mdm2 in the p53 binding site, postulating the mutually exclusive interaction of p53 and azadirachtin with Mdm2. Surprisingly, azadirachtin potentiates cell death efficiently in both p53 wild-type and p53 negative cells. In addition, we find azadirachtin suppresses nuclear transcription factor kappaB (NF-κB) by inhibiting the phosphorylation of upstream inhibitory subunit of NF-κB (IκB) kinase (IKK). Further, azadirachtin is unable to potentiate apoptosis in NF-κB-downregulated (IκB-DN) cells, whereas ectopic expression of p65 rescues azadirachtin-mediated apoptosis, regardless of their p53 status. Hence, our data suggest that azadirachtin mediates cell death through inhibition of NF-κB, but not due to the activation of p53. In conclusion, this study proposes azadirachtin as a potential therapeutic agent where insensitivity toward chemotherapy occurs due to the inactivation or mutations in p53.
Collapse
Affiliation(s)
- Pankaj Gupta
- Laboratory of Immunology and Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, Telangana, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Adeel H Zaidi
- Laboratory of Immunology and Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, Telangana, India
| | - Sunil K Manna
- Laboratory of Immunology and Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, Telangana, India
| |
Collapse
|
30
|
Ann P, Seagle BLL, Shilpi A, Kandpal M, Shahabi S. Association of increased primary breast tumor AGR2 with decreased disease-specific survival. Oncotarget 2018; 9:23114-23125. [PMID: 29796176 PMCID: PMC5955412 DOI: 10.18632/oncotarget.25225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Objective Tumor expression of Anterior Gradient 2 (AGR2), an endoplasmic reticulum protein disulfide isomerase, was associated with decreased breast cancer survival. We aimed to validate the association of tumor AGR2 mRNA expression with disease-specific survival (DSS) and identify differentially expressed signaling pathways between high and low AGR2 expression tumor groups. Methods Primary tumor mRNA expression data from the METABRIC study was used to evaluate AGR2 expression as a prognostic factor for DSS while adjusting for survival-determining confounders using Cox proportional-hazards regression. Differentially expressed genes and signaling pathway differences between high and low AGR2 groups were determined by modular enrichment analyses using DAVID and Ingenuity Pathway Analysis. Results Increased tumor AGR2 mRNA expression was associated with decreased DSS among 1,341 women (per each standard deviation increase of AGR2 expression: HR 1.14, 95% CI: 1.01-1.29, P = 0.03). Pathway analyses supported prior experimental studies showing that estrogen receptor 1 (ESR1) regulated AGR2 expression. Canonical signaling pathways significantly differentially represented between high and low AGR2 groups included those involved in inflammation and immunity. Conclusion Increased primary tumor AGR2 expression was associated with decreased DSS. Pathway analyses suggested that increased AGR2 was associated with endoplasmic reticular homeostasis, possibly allowing tumor cells to overcome hypoxic stress and meet the increased protein demand of tumorigenesis, thereby preventing unfolded protein response-mediated apoptosis.
Collapse
Affiliation(s)
- Phoebe Ann
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, 60611 Chicago, IL, USA
| | - Brandon-Luke L Seagle
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, 60611 Chicago, IL, USA
| | - Arunima Shilpi
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, 60611 Chicago, IL, USA
| | - Manoj Kandpal
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, 60611 Chicago, IL, USA
| | - Shohreh Shahabi
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, 60611 Chicago, IL, USA
| |
Collapse
|
31
|
Sakowicz A. The role of NFκB in the three stages of pregnancy - implantation, maintenance, and labour: a review article. BJOG 2018; 125:1379-1387. [PMID: 29460466 DOI: 10.1111/1471-0528.15172] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2018] [Indexed: 12/14/2022]
Abstract
The transcription factor nuclear factor kappa B (NFκB) controls the expression of over 400 genes, some of which are associated with reproductive events. During implantation, immune cells accumulate in the maternal-fetal interface; they secrete inflammatory mediators under the control of NFĸB, the level of which also rises. NFĸB is then downregulated to maintain gestation, but its level rises again before birth to manage prostaglandin, cytokine, and chemokine synthesis, and to stimulate uterine contraction. This review summarises the current state of knowledge about NFκB and its role in the molecular regulation of processes related to pregnancy development. TWEETABLE ABSTRACT This review examines the current state of knowledge about role of NFκB in the development of pregnancy.
Collapse
Affiliation(s)
- A Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
32
|
Huang Q, Xie D, Mao H, Wang H, Wu Z, Huang K, Wan Y, Xu Q, Hu C. Ctenopharyngodon idella p53 mediates between NF-κB and PKR at the transcriptional level. FISH & SHELLFISH IMMUNOLOGY 2017; 69:258-264. [PMID: 28818618 DOI: 10.1016/j.fsi.2017.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/26/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
p53, NF-κB and PKR are well-known to be involved in antiviral response. Although p53 has been reported in fish, its role in the regulation of NF-κB and PKR is not well understood. Here, we cloned and characterized the full length of cDNA sequence of grass carp (Ctenopharyngodon idella) p53 (Cip53) and its promoter sequence. The full length cDNA of Cip53 was 1879 bp with an ORF of 1116 bp encoding a polypeptide of 371 amino acids. Phylogenetic tree analysis revealed that Cip53 shares high homology with Dario rerio p53 (Drp53). Similar to those of Cip65 and CiPKR, the expression of Cip53 in CIK cells was significantly up-regulated after stimulation with poly I:C. To further understand the roles of fish p53 in the transcriptional control of NF-κB and PKR, Cip53 and Cip65 were expressed in E. coli BL21 and purified by affinity chromatography with the Ni-NTA His-Bind resin. In vitro, gel mobility shift assays demonstrated that the high affinity interaction between Cip65 and Cip53 promoter. Similarly, Cip53 bound to CiPKR promoter with high affinity. Dual-luciferase reporter assays showed that Cip65 activated Cip53 promoter and Cip53 activated CiPKR promoter, respectively. In addition, the role of p53 in p65-p53-PKR transcription pathway was explored. When Cip53 was knockdown in CIK cells, the mRNA levels of Cip65 and CiPKR were decreased. Taken together, p53 may play pivotal roles in transcription pathway of NF-κB and PKR in fish.
Collapse
Affiliation(s)
- Qingli Huang
- College of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Dingkun Xie
- College of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Huiling Mao
- College of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang 330031, China.
| | - Haizhou Wang
- College of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Zhen Wu
- College of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Keyi Huang
- College of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Yiqi Wan
- College of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Qun Xu
- College of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- College of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
33
|
Gu Y, Ampofo E, Menger MD, Laschke MW. miR‐191 suppresses angiogenesis by activation of NF‐kB signaling. FASEB J 2017; 31:3321-3333. [DOI: 10.1096/fj.201601263r] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Yuan Gu
- Institute for Clinical and Experimental SurgerySaarland University Homburg/Saar Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental SurgerySaarland University Homburg/Saar Germany
| | - Michael D. Menger
- Institute for Clinical and Experimental SurgerySaarland University Homburg/Saar Germany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental SurgerySaarland University Homburg/Saar Germany
| |
Collapse
|
34
|
Serotonin transporter and receptor ligands with antidepressant activity as neuroprotective and proapoptotic agents. Pharmacol Rep 2017; 69:469-478. [DOI: 10.1016/j.pharep.2017.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 12/23/2022]
|
35
|
Dutta RK, Kondeti VK, Sharma I, Chandel NS, Quaggin SE, Kanwar YS. Beneficial Effects of Myo-Inositol Oxygenase Deficiency in Cisplatin-Induced AKI. J Am Soc Nephrol 2017; 28:1421-1436. [PMID: 27895157 PMCID: PMC5407728 DOI: 10.1681/asn.2016070744] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/17/2016] [Indexed: 11/03/2022] Open
Abstract
Overexpression of the proximal tubular enzyme myo-inositol oxygenase (MIOX) induces oxidant stress in vitro However, the relevance of MIOX to tubular pathobiology remains enigmatic. To investigate the role of MIOX in cisplatin-induced tubular AKI, we generated conditional MIOX-overexpressing transgenic (MIOX-TG) mice and MIOX-knockout (MIOX-/-) mice with tubule-specific MIOX overexpression or knockout, respectively. Compared with cisplatin-treated wild-type (WT) mice, cisplatin-treated MIOX-TG mice had even greater increases in urea, creatinine, and KIM-1 levels and more tubular injury and apoptosis, but these effects were attenuated in cisplatin-treated MIOX-/- mice. Similarly, MIOX-TG mice had the highest and MIOX-/- mice had the lowest renal levels of Bax, cleaved caspase-3, and NADPH oxidase-4 expression and reactive oxygen species (ROS) generation after cisplatin treatment. In vitro, cisplatin dose-dependently increased ROS generation in LLC-PK1 cells. Furthermore, MIOX overexpression in these cells accentuated cisplatin-induced ROS generation and perturbations in the ratio of GSH to oxidized GSH, whereas MIOX-siRNA or N-acetyl cysteine treatment attenuated these effects. Additionally, the cisplatin-induced enhancement of p53 activation, NF-κB binding to DNA, and NF-κB nuclear translocation in WT mice was exacerbated in MIOX-TG mice but absent in MIOX-/- mice. In vitro, MIOX-siRNA or NAC treatment reduced the dose-dependent increase in p53 expression induced by cisplatin. We also observed a remarkable influx of inflammatory cells and upregulation of cytokines in kidneys of cisplatin-treated MIOX-TG mice. Finally, analysis of genomic DNA in WT mice revealed cisplatin-induced hypomethylation of the MIOX promoter. These data suggest that MIOX overexpression exacerbates, whereas MIOX gene disruption protects against, cisplatin-induced AKI.
Collapse
Affiliation(s)
| | | | | | | | | | - Yashpal S Kanwar
- Departments of Pathology and
- Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
36
|
Krishnaraj J, Kowshik J, Sebastian R, Raghavan SC, Nagini S. Exposure to welding fumes activates DNA damage response and redox-sensitive transcription factor signalling in Sprague-Dawley rats. Toxicol Lett 2017; 274:8-19. [DOI: 10.1016/j.toxlet.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
|
37
|
Baeeri M, Momtaz S, Navaei-Nigjeh M, Niaz K, Rahimifard M, Ghasemi-Niri SF, Sanadgol N, Hodjat M, Sharifzadeh M, Abdollahi M. Molecular evidence on the protective effect of ellagic acid on phosalone-induced senescence in rat embryonic fibroblast cells. Food Chem Toxicol 2017; 100:8-23. [PMID: 27965107 DOI: 10.1016/j.fct.2016.12.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/02/2016] [Accepted: 12/10/2016] [Indexed: 01/09/2023]
Abstract
Salient evidence testifies the link between organophosphorus (OPs) exposure and the formation of free radical oxidants; and it is well accepted that free radicals are one of the basic concerns of senescence. To show the oxidative features of phosalone (PLN) as a key member of OPs, to induce senescence in rat embryonic fibroblast (REF) cells and to demonstrate the beneficial effects of the known antioxidant ellagic acid (EA) in diminishing the PLN-induced toxic effects, the levels of cell viability, oxidative stress markers, inflammatory cytokines, telomerase activity, and the expression of the genes related to senescence were investigated. Our results lend support to the hypothesis that PLN enhances the entire premature senescence parameters of REF cells. This accounts for the mechanistic approval of the role of OPs in induction of senescence in rat fibroblasts. Moreover, incorporation of EA diminished PLN toxicity mainly through suppression of p38 and p53 at gene and protein levels, and tempered the inflammation factors (TNF-α, IL-1β, IL-6 and NF-κB), which further affected cell division. Analysis of cell cycle showed that the percentage of G0/G1 arrest, in REF cells treated by EA was elevated as compared to control and PLN treated cells.
Collapse
Affiliation(s)
- Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Group, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Group, Tehran University of Medical Sciences, Tehran, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Mona Navaei-Nigjeh
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Group, Tehran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamal Niaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Group, Tehran University of Medical Sciences, Tehran, Iran; International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Group, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Farnaz Ghasemi-Niri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Group, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Sanadgol
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Group, Tehran University of Medical Sciences, Tehran, Iran; Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Mahshid Hodjat
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Group, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Group, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Group, Tehran University of Medical Sciences, Tehran, Iran; International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
38
|
Szoltysek K, Walaszczyk A, Janus P, Kimmel M, Widlak P. Irradiation with UV-C inhibits TNF-α-dependent activation of the NF-κB pathway in a mechanism potentially mediated by reactive oxygen species. Genes Cells 2016; 22:45-58. [PMID: 27976481 DOI: 10.1111/gtc.12455] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/30/2016] [Indexed: 12/25/2022]
Abstract
Pathways depending on the NF-κB transcription factor are essential components of cellular response to stress. Plethora of stimuli modulating NF-κB includes inflammatory signals, ultraviolet radiation (UV) and reactive oxygen species (ROS), yet interference between different factors affecting NF-κB remains relatively understudied. Here, we aim to characterize the influence of UV radiation on TNF-α-induced activity of the NF-κB pathway. We document inhibition of TNF-α-induced activation of NF-κB and subsequent suppression of NF-κB-regulated genes in cells exposed to UV-C several hours before TNF-α stimulation. Accumulation of ROS and subsequent activation of NRF2, p53, AP-1 and NF-κB-dependent pathways, with downstream activation of antioxidant mechanisms (e.g., SOD2 and HMOX1 expression), is observed in the UV-treated cells. Moreover, NF-κB inhibition is not observed if generation of UV-induced ROS is suppressed by chemical antioxidants. It is noteworthy that stimulation with TNF-α also generates a wave of ROS, which is suppressed in cells pre-treated by UV. We postulate that irradiation with UV-C activates antioxidant mechanisms, which in turn affect ROS-mediated activation of NF-κB by TNF-α. Considering a potential cross talk between p53 and NF-κB, we additionally compare observed effects in p53-proficient and p53-deficient cells and find the UV-mediated suppression of TNF-α-activated NF-κB in both types of cells.
Collapse
Affiliation(s)
- Katarzyna Szoltysek
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Wybrzeze Armii Krajowej 15, Gliwice, Poland
| | - Anna Walaszczyk
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Wybrzeze Armii Krajowej 15, Gliwice, Poland
| | - Patryk Janus
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Wybrzeze Armii Krajowej 15, Gliwice, Poland.,Systems Engineering Group, Silesian University of Technology, Akademicka 16, Gliwice, Poland
| | - Marek Kimmel
- Systems Engineering Group, Silesian University of Technology, Akademicka 16, Gliwice, Poland.,Departments of Statistics and Bioengineering, Rice University, 6100 Main Street, Houston, TX, USA
| | - Piotr Widlak
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Wybrzeze Armii Krajowej 15, Gliwice, Poland
| |
Collapse
|
39
|
Denamur S, Boland L, Beyaert M, Verstraeten SL, Fillet M, Tulkens PM, Bontemps F, Mingeot-Leclercq MP. Subcellular mechanisms involved in apoptosis induced by aminoglycoside antibiotics: Insights on p53, proteasome and endoplasmic reticulum. Toxicol Appl Pharmacol 2016; 309:24-36. [DOI: 10.1016/j.taap.2016.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 12/21/2022]
|
40
|
Chen RP, Huang ZL, Liu LX, Xiang MQ, Li GP, Feng JL, Liu B, Wu LF. Involvement of endoplasmic reticulum stress and p53 in lncRNA MEG3-induced human hepatoma HepG2 cell apoptosis. Oncol Rep 2016; 36:1649-57. [PMID: 27432655 DOI: 10.3892/or.2016.4919] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/27/2016] [Indexed: 02/05/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. Although downregulation of lncRNA maternally expressed gene 3 (MEG3) has been identified in several types of cancers, little is known concerning its biological role and regulatory mechanism in hepatoma. Our previous studies demonstrated that MEG3 induces apoptosis in a p53-dependent manner. The aim of the present study was to determine whether endoplasmic reticulum (ER) stress is involved in MEG3‑induced apoptosis. Recombinant lentiviral vectors containing MEG3 (Lv‑MEG3) were constructed and transfected into HepG2 cells. A 3‑(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, RT‑PCR, flow cytometry, western blot analysis, immunofluorescence and immunohistochemistry were applied. Transfected HepG2 cells were also transplanted into nude mice, and the tumor growth curves were determined. The results showed that the recombinant lentivirus of MEG3 was transfected successfully into the HepG2 cells and the expression level of MEG3 was significantly increased. Ectopic expression of MEG3 inhibited HepG2 cell proliferation in vitro and in vivo, and also induced apoptosis. Ectopic expression of MEG3 increased ER stress‑related proteins 78‑kDa glucose‑regulated protein (GRP78), inositol‑requiring enzyme 1 (IRE1), RNA‑dependent protein kinase‑like ER kinase (PERK), activating transcription factor 6 (ATF6), C/EBP homologous protein (CHOP), caspase‑3, as well as p53 and NF‑κB expression accompanied by NF‑κB translocation from the cytoplasm to the nucleus. Furthermore, inhibition of NF‑κB with Bay11‑7082 decreased p53 expression in the MEG3‑transfected cells. These results indicate that MEG3 inhibits cell proliferation and induces apoptosis, partially via the activation of the ER stress and p53 pathway, in which NF‑κB signaling is required for p53 activation in ER stress.
Collapse
Affiliation(s)
- Rui-Pei Chen
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Zhen-Lun Huang
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Li-Xuan Liu
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Meng-Qi Xiang
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Guo-Ping Li
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jia-Lin Feng
- Department of Information, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Bin Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Ling-Fei Wu
- Department of Gastroenterology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| |
Collapse
|
41
|
Diaz-Aguirre V, Velez-Pardo C, Jimenez-Del-Rio M. Fructose sensitizes Jurkat cells oxidative stress-induced apoptosis via caspase-dependent and caspase-independent mechanisms. Cell Biol Int 2016; 40:1162-1173. [DOI: 10.1002/cbin.10653] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/31/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Viviana Diaz-Aguirre
- Neuroscience Research Group; Faculty of Medicine; Medical Research Institute; University of Antioquia (UdeA); Calle 70 No. 52-21 and Calle 62 # 52-59, Building 1, Room 412 SIU Medellin Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group; Faculty of Medicine; Medical Research Institute; University of Antioquia (UdeA); Calle 70 No. 52-21 and Calle 62 # 52-59, Building 1, Room 412 SIU Medellin Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group; Faculty of Medicine; Medical Research Institute; University of Antioquia (UdeA); Calle 70 No. 52-21 and Calle 62 # 52-59, Building 1, Room 412 SIU Medellin Colombia
| |
Collapse
|
42
|
Kumar S, Tiku AB. Biochemical and Molecular Mechanisms of Radioprotective Effects of Naringenin, a Phytochemical from Citrus Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1676-85. [PMID: 26881453 DOI: 10.1021/acs.jafc.5b05067] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The present study was aimed to evaluate the radioprotective effects of naringenin in vivo using Swiss albino mice as a model system. Oral administration of 50 mg/kg body weight of naringenin for 7 days prior to radiation exposure protected mice against radiation-induced DNA, chromosomal and membrane damage. Naringenin pretreatment also increased the antioxidant status of irradiated mice. Multiple factors operating at cellular and molecular levels led to increased endogenous spleen colonies and survival of mice. Although naringenin induces apoptosis in cancer cells we found that it can protect against radiation-induced apoptosis in normal cells by modulating the expression of p53, Bax, and Bcl-2. The results from the present study indicate that naringenin inhibits the NF-kB pathway and down regulates radiation-induced apoptotic proteins resulting in radioprotection at the cellular, tissue and organism levels.
Collapse
Affiliation(s)
- Sumit Kumar
- Radiation and Cancer Therapeutics Laboratory, School of Life Science, Jawaharlal Nehru University , New Delhi, India 110067
| | - Ashu Bhan Tiku
- Radiation and Cancer Therapeutics Laboratory, School of Life Science, Jawaharlal Nehru University , New Delhi, India 110067
| |
Collapse
|
43
|
Ghose J, Bhattacharyya NP. Transcriptional regulation of microRNA-100, -146a, and -150 genes by p53 and NFκB p65/RelA in mouse striatal STHdh(Q7)/ Hdh(Q7) cells and human cervical carcinoma HeLa cells. RNA Biol 2016; 12:457-77. [PMID: 25757558 DOI: 10.1080/15476286.2015.1014288] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNA (miRNA) genes generally share many features common to those of protein coding genes. Various transcription factors (TFs) and co-regulators are also known to regulate miRNA genes. Here we identify novel p53 and NFκB p65/RelA responsive miRNAs and demonstrate that these 2 TFs bind to the regulatory sequences of miR-100, -146a and -150 in both mouse striatal and human cervical carcinoma cells and regulate their expression. p53 represses the miRNAs while NFκB p65/RelA induces them. Further, we provide evidence that exogenous p53 inhibits NFκB p65/RelA activity by reducing its nuclear content and competing with it for CBP binding. This suggests for the existence of a functional cross-talk between the 2 TFs in regulating miRNA expression. Moreover, promoter occupancy assay reveals that exogenous p53 excludes NFκB p65/RelA from its binding site in the upstream sequence of miR-100 gene thereby causing its repression. Thus, our work identifies novel p53 and NFκB p65/RelA responsive miRNAs in human and mouse and uncovers possible mechanisms of co-regulation of miR-100. It is to be mentioned here that cross-talks between p53 and NFκB p65/RelA have been observed to define the outcome of several biological processes and that the pro-apoptotic effect of p53 and the pro-survival functions of NFκB can be largely mediated via the biological roles of the miRNAs these TFs regulate. Our observation with cell lines thus provides an important platform upon which further work is to be done to establish the biological significance of such co-regulation of miRNAs by p53 and NFκB p65/RelA.
Collapse
Key Words
- ChIP, Chromatin immunoprecipitation
- Co-IP, Co-immunoprecipitation
- NFκB p65/RelA
- NFκB, nuclear factor kappa-light-chain-enhancer of activated B cells
- RLU, Relative light unit
- RNA POL II, RNA Polymerase II
- RNA POL III, RNA Polymerase III
- RT-PCR, Reverse transcription polymerase chain reaction
- TF, Transcriptional factor
- TFBS
- Transcription factor binding site
- WB, Western blot
- miR-100
- miR-146a
- miR-150
- miRNA gene regulation
- miRNAs, microRNAs
- microRNA
- p53
- p53, tumor protein 53
- p65, RELA, RELA
- transcription factor
- v-rel avian reticuloendotheliosis viral oncogene homolog A
Collapse
Affiliation(s)
- Jayeeta Ghose
- a Crystallography and Molecular Biology Division; Saha Institute of Nuclear Physics ; Bidhannagar, Kolkata , India
| | | |
Collapse
|
44
|
Baicalein alleviates doxorubicin-induced cardiotoxicity via suppression of myocardial oxidative stress and apoptosis in mice. Life Sci 2016; 144:8-18. [DOI: 10.1016/j.lfs.2015.11.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/30/2015] [Accepted: 11/19/2015] [Indexed: 01/20/2023]
|
45
|
The inhibition of PI3K and NFκB promoted curcumin-induced cell cycle arrest at G2/M via altering polyamine metabolism in Bcl-2 overexpressing MCF-7 breast cancer cells. Biomed Pharmacother 2015; 77:150-60. [PMID: 26796279 DOI: 10.1016/j.biopha.2015.12.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/06/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022] Open
Abstract
Bcl-2 protein has been contributed with number of genes which are involved in oncogenesis. Among the many targets of Bcl-2, NFκB have potential role in induction of cell cycle arrest. Curcumin has potential therapeutic effects against breast cancer through multiple signaling pathways. In this study, we investigated the role of curcumin in induction of cell cycle arrest via regulating of NFκB and polyamine biosynthesis in wt and Bcl-2+ MCF-7 cells. To examine the effect of curcumin on cell cycle regulatory proteins, PI3K/Akt, NFκB pathways and polyamine catabolism, we performed immunoblotting assay. In addition, cell cycle analysis was performed by flow cytometry. The results indicated that curcumin induced cell cycle arrest at G2/M phase by downregulation of cyclin B1 and Cdc2 and inhibited colony formation in MCF-7wt cells. However, Bcl-2 overexpression prevented the inhibition of cell cycle associated proteins after curcumin treatment. The combination of LY294002, PI3K inhibitor, and curcumin induced cell cycle arrest by decreasing CDK4, CDK2 and cyclin E2 in Bcl-2+ MCF-7 cells. Moreover, LY294002 further inhibited the phosphorylation of Akt in Bcl-2+ MCF-7 cells. Curcumin could suppress the nuclear transport of NFκB through decreasing the interaction of P-IκB-NFκB. The combination of wedelolactone, NFκB inhibitor, and curcumin acted different on SSAT expression in wt MCF-7 and Bcl-2+ MCF-7 cells. NFκB inhibition increased the SSAT after curcumin treatment in Bcl-2 overexpressed MCF-7 cells. Inhibition of NFκB activity as well as suppression of ROS generation with NAC resulted in the partial relief of cells from G2/M checkpoint after curcumin treatment in wt MCF-7 cells. In conclusion, the potential role of curcumin in induction of cell cycle arrest is related with NFκB-regulated polyamine biosynthesis.
Collapse
|
46
|
Fernández Larrosa PN, Ruíz Grecco M, Mengual Gómez D, Alvarado CV, Panelo LC, Rubio MF, Alonso DF, Gómez DE, Costas MA. RAC3 more than a nuclear receptor coactivator: a key inhibitor of senescence that is downregulated in aging. Cell Death Dis 2015; 6:e1902. [PMID: 26469953 PMCID: PMC4632280 DOI: 10.1038/cddis.2015.218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 06/24/2015] [Accepted: 07/01/2015] [Indexed: 11/10/2022]
Abstract
Receptor-associated coactivator 3 (RAC3) is a nuclear receptor coactivator usually overexpressed in tumors that exerts oncogenic functions in the cytoplasm and the nucleus. Although as part of its oncogenic actions it was previously identified as an inhibitor of apoptosis and autophagy, its expression is required in order to preserve the pluripotency and embryonic stem cell self-renewal. In this work we investigated its role in cellular senescence. We found that RAC3 overexpression in the nontumoral HEK293 cells inhibits the premature senescence induced by hydrogen peroxide or rapamycin. The mechanism involves not only the inhibition of autophagy early induced by these stimuli in the pathway to senescence, but also the increase in levels and nuclear localization of both the cell cycle suppressors p53/p21 and the longevity promoters FOXO1A, FOXO3A and SIRT1. Furthermore, we found that RAC3 overexpression is required in order to maintain the telomerase activity. In tumoral HeLa cells its activity was inhibited by depletion of RAC3 inducing replicative senescence. Moreover, we demonstrated that in vivo, levels of RAC3 are downregulated in the liver from aged as compared with young rats, whereas the levels of p21 are increased, correlating with the expected senescent cell contents in aged tissues. A similar downregulation of RAC3 was observed in the premature and replicative senescence of human fetal WI-38 cells and premature senescence of hepatocyte HepG2 cell line. Taken together, all these results demonstrate that RAC3 is an inhibitor of senescence whose downregulation in aged individuals could be probably a tumor suppressor mechanism, avoiding the clonal expansion of risky old cells having damaged DNA.
Collapse
Affiliation(s)
- P N Fernández Larrosa
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, Buenos Aires C1427ARO, Argentina
| | - M Ruíz Grecco
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, Buenos Aires C1427ARO, Argentina
| | - D Mengual Gómez
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes, R. Sáenz Peña 352, Bernal, Buenos Aires B1876BXD Argentina
| | - C V Alvarado
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, Buenos Aires C1427ARO, Argentina
| | - L C Panelo
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, Buenos Aires C1427ARO, Argentina
| | - M F Rubio
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, Buenos Aires C1427ARO, Argentina
| | - D F Alonso
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes, R. Sáenz Peña 352, Bernal, Buenos Aires B1876BXD Argentina
| | - D E Gómez
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes, R. Sáenz Peña 352, Bernal, Buenos Aires B1876BXD Argentina
| | - M A Costas
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, Buenos Aires C1427ARO, Argentina
| |
Collapse
|
47
|
Saeed NM, El-Naga RN, El-Bakly WM, Abdel-Rahman HM, Salah ElDin RA, El-Demerdash E. Epigallocatechin-3-gallate pretreatment attenuates doxorubicin-induced cardiotoxicity in rats: A mechanistic study. Biochem Pharmacol 2015; 95:145-155. [PMID: 25701654 DOI: 10.1016/j.bcp.2015.02.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 12/24/2022]
Abstract
Doxorubicin (DOX) is a widely used chemotherapeutic agent however its clinical use is limited by cumulative cardiotoxicity. Epigallocatechin-3-gallate (EGCG), a main catechin in green tea, possesses a potent antioxidant, anti-apoptotic and anticancer properties. The current study aimed to investigate the potential protective effect of EGCG against DOX-induced cardiotoxicity. Firstly the potential cardioprotective dose of EGCG was screened at different doses (10, 20 and 40 mg/kg/day) against a single dose of DOX (15 mg/kg; i.p.). EGCG protected against DOX-induced ECG changes, leakage of cardiac enzymes (creatine kinase isoenzyme-MB, and lactate dehydrogenase) and histopathological changes. The dose of 40 mg/kg EGCG was selected for further assessment to address the EGCG cardioprotective mechanisms. EGCG was given orally 3 times/week for 4 consecutive weeks and DOX (2.5 mg/kg; i.p.) 3 times/week on the last 2 weeks. EGCG significantly ameliorated oxidative stress injury evoked by DOX as evidenced by inhibition of reduced glutathione depletion and lipid peroxidation as well as elevation of antioxidant enzyme activities. DOX caused down-regulation of ErbB2 expression while EGCG pretreatment significantly increased ErbB2 expression indicating its effect on pro-survival pathway. Furthermore, DOX provoked apoptotic responses evidenced by increasing the expression of nuclear factor kappa-B, tumor suppressor protein p53, calpain 2, caspases 3 and 12. Additionally basal level of Hsp70 was reduced in DOX-intoxicated group. EGCG pretreatment significantly ameliorated these apoptotic signals indicating its anti-inflammatory and anti-apoptotic actions. In conclusion, EGCG possesses cardioprotective action against DOX-induced cardiotoxicity by suppressing oxidative stress, inflammation and apoptotic signals as well as activation of pro-survival pathways.
Collapse
Affiliation(s)
- Noha M Saeed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Reem N El-Naga
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Wesam M El-Bakly
- Department of Pharmacology & Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hanaa M Abdel-Rahman
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Rania A Salah ElDin
- Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
48
|
Kumar D, Singla SK, Puri V, Puri S. The restrained expression of NF-kB in renal tissue ameliorates folic acid induced acute kidney injury in mice. PLoS One 2015; 10:e115947. [PMID: 25559736 PMCID: PMC4283964 DOI: 10.1371/journal.pone.0115947] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 11/27/2014] [Indexed: 01/13/2023] Open
Abstract
The Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) represent family of structurally-related eukaryotic transcription factors which regulate diverse array of cellular processes including immunological responses, inflammation, apoptosis, growth & development. Increased expression of NF-kB has often been seen in many diverse diseases, suggesting the importance of genomic deregulation to disease pathophysiology. In the present study we focused on acute kidney injury (AKI), which remains one of the major risk factor showing a high rate of mortality and morbidity. The pathology associated with it, however, remains incompletely known though inflammation has been reported to be one of the major risk factor in the disease pathophysiology. The role of NF-kB thus seemed pertinent. In the present study we show that high dose of folic acid (FA) induced acute kidney injury (AKI) characterized by elevation in levels of blood urea nitrogen & serum creatinine together with extensive tubular necrosis, loss of brush border and marked reduction in mitochondria. One of the salient observations of this study was a coupled increase in the expression of renal, relA, NF-kB2, and p53 genes and proteins during folic acid induced AKI (FA AKI). Treatment of mice with NF-kB inhibitor, pyrrolidine dithio-carbamate ammonium (PDTC) lowered the expression of these transcription factors and ameliorated the aberrant renal function by decreasing serum creatinine levels. In conclusion, our results suggested that NF-kB plays a pivotal role in maintaining renal function that also involved regulating p53 levels during FA AKI.
Collapse
Affiliation(s)
- Dev Kumar
- Department of Biochemistry, Panjab University, Chandigarh, India
| | | | - Veena Puri
- Centre for Systems Biology & Bioinformatics, Panjab University, Chandigarh, India
| | - Sanjeev Puri
- Biotechnology Branch, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
- Centre for Stem Cell & Tissue Engineering, Panjab University, Chandigarh, India
- * E-mail:
| |
Collapse
|
49
|
Sahu BD, Koneru M, Bijargi SR, Kota A, Sistla R. Chromium-induced nephrotoxicity and ameliorative effect of carvedilol in rats: Involvement of oxidative stress, apoptosis and inflammation. Chem Biol Interact 2014; 223:69-79. [DOI: 10.1016/j.cbi.2014.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/05/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
|
50
|
Holla S, Ghorpade DS, Singh V, Bansal K, Balaji KN. Mycobacterium bovis BCG promotes tumor cell survival from tumor necrosis factor-α-induced apoptosis. Mol Cancer 2014; 13:210. [PMID: 25208737 PMCID: PMC4174669 DOI: 10.1186/1476-4598-13-210] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 09/05/2014] [Indexed: 11/18/2022] Open
Abstract
Background Increased incidence of lung cancer among pulmonary tuberculosis patients suggests mycobacteria-induced tumorigenic response in the host. The alveolar epithelial cells, candidate cells that form lung adenocarcinoma, constitute a niche for mycobacterial replication and infection. We thus explored the possible mechanism of M. bovis Bacillus Calmette-Guérin (BCG)-assisted tumorigenicity in type II epithelial cells, human lung adenocarcinoma A549 and other cancer cells. Methods Cancer cell lines originating from lung, colon, bladder, liver, breast, skin and cervix were treated with tumor necrosis factor (TNF)-α in presence or absence of BCG infection. p53, COP1 and sonic hedgehog (SHH) signaling markers were determined by immunoblotting and luciferase assays, and quantitative real time PCR was done for p53-responsive pro-apoptotic genes and SHH signaling markers. MTT assays and Annexin V staining were utilized to study apoptosis. Gain- and loss-of-function approaches were used to investigate the role for SHH and COP1 signaling during apoptosis. A549 xenografted mice were used to validate the contribution of BCG during TNF-α treatment. Results Here, we show that BCG inhibits TNF-α-mediated apoptosis in A549 cells via downregulation of p53 expression. Substantiating this observation, BCG rescued A549 xenografts from TNF-α-mediated tumor clearance in nude mice. Furthermore, activation of SHH signaling by BCG induced the expression of an E3 ubiquitin ligase, COP1. SHH-driven COP1 targeted p53, thereby facilitating downregulation of p53-responsive pro-apoptotic genes and inhibition of apoptosis. Similar effects of BCG could be shown for HCT116, T24, MNT-1, HepG2 and HELA cells but not for HCT116 p53-/- and MDA-MB-231 cells. Conclusion Our results not only highlight possible explanations for the coexistence of pulmonary tuberculosis and lung cancer but also address probable reasons for failure of BCG immunotherapy of cancers. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-210) contains supplementary material, which is available to authorized users.
Collapse
|