1
|
Lautz LS, Dorne JLCM, Punt A. Application of partition coefficient methods to predict tissue:plasma affinities in common farm animals: Influence of ionisation state. Toxicol Lett 2024; 398:140-149. [PMID: 38925423 DOI: 10.1016/j.toxlet.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Tissue affinities are conventionally determined from in vivo steady-state tissue and plasma or plasma-water chemical concentration data. In silico approaches were initially developed for preclinical species but standardly applied and tested in human physiologically-based kinetic (PBK) models. Recently, generic PBK models for farm animals have been made available and require partition coefficients as input parameters. In the current investigation, data for species-specific tissue compositions have been collected, and prediction of chemical distribution in various tissues of livestock species for cattle, chicken, sheep and swine have been performed. Overall, tissue composition was very similar across the four farm animal species. However, small differences were observed in moisture, fat and protein content in the various organs within each species. Such differences could be attributed to factors such as variations in age, breed, and weight of the animals and general conditions of the animal itself. With regards to the predictions of tissue:plasma partition coefficients, 80 %, 71 %, 77 % of the model predictions were within a factor 10 using the methods of Berezhkovskiy (2004), Rodgers and Rowland (2006) and Schmitt (2008). The method of Berezhkovskiy (2004) was often providing the most reliable predictions except for swine, where the method of Schmitt (2008) performed best. In addition, investigation of the impact of chemical classes on prediction performance, all methods had very similar reliability. Notwithstanding, no clear pattern regarding specific chemicals or tissues could be detected for the values predicted outside a 10-fold change in certain chemicals or specific tissues. This manuscript concludes with the need for future research, particularly focusing on lipophilicity and species differences in protein binding.
Collapse
Affiliation(s)
- L S Lautz
- Wageningen Food Safety Research, Akkermaalsbos 2, Wageningen, WB 6708, the Netherlands.
| | - J-L C M Dorne
- European Food Safety Authority, Via Carlo Magno 1A, Parma 43126, Italy
| | - A Punt
- Wageningen Food Safety Research, Akkermaalsbos 2, Wageningen, WB 6708, the Netherlands
| |
Collapse
|
2
|
Lifante J, de la Fuente-Fernández M, Román-Carmena M, Fernandez N, Jaque García D, Granado M, Ximendes E. In vivo grading of lipids in fatty liver by near-infrared autofluorescence and reflectance. JOURNAL OF BIOPHOTONICS 2023; 16:e202200208. [PMID: 36377726 DOI: 10.1002/jbio.202200208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/16/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The prevalence of nonalcoholic fatty liver (NAFLD) is rapidly increasing worldwide. When untreated, it may lead to complications such as liver cirrhosis or hepatocarcinoma. The diagnosis of NAFLD is usually obtained by ultrasonography, a technique that can underestimate its prevalence. For this reason, physicians aspire for an accurate, cost-effective, and noninvasive method to determine both the presence and the specific stage of the NAFLD. In this paper, we report an integrated approach for the quantitative estimation of the density of triglycerides in the liver based on the use of autofluorescence and reflectance signals generated by the abdomen of obese C57BL6/J mice. Singular value decomposition is applied to the generated spectra and its corresponding regression model provided a determination coefficient of 0.99 and a root mean square error of 240 mg/dl. This, in turn, enabled the quantitative imaging of triglycerides density in the livers of mice under in vivo conditions.
Collapse
Affiliation(s)
- José Lifante
- Nanomaterials for Bioimaging Group (nanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- IRYCIS, Madrid, Spain
| | | | | | - Nuria Fernandez
- Nanomaterials for Bioimaging Group (nanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniel Jaque García
- Nanomaterials for Bioimaging Group (nanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- IRYCIS, Madrid, Spain
| | - Miriam Granado
- Nanomaterials for Bioimaging Group (nanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
| | - Erving Ximendes
- Nanomaterials for Bioimaging Group (nanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- IRYCIS, Madrid, Spain
| |
Collapse
|
3
|
Barry LA, Kay GW, Mitchell NL, Murray SJ, Jay NP, Palmer DN. Aggregation chimeras provide evidence of in vivo intercellular correction in ovine CLN6 neuronal ceroid lipofuscinosis (Batten disease). PLoS One 2022; 17:e0261544. [PMID: 35404973 PMCID: PMC9000108 DOI: 10.1371/journal.pone.0261544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/29/2022] [Indexed: 11/29/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs; Batten disease) are fatal, mainly childhood, inherited neurodegenerative lysosomal storage diseases. Sheep affected with a CLN6 form display progressive regionally defined glial activation and subsequent neurodegeneration, indicating that neuroinflammation may be causative of pathogenesis. In this study, aggregation chimeras were generated from homozygous unaffected normal and CLN6 affected sheep embryos, resulting in seven chimeric animals with varied proportions of normal to affected cells. These sheep were classified as affected-like, recovering-like or normal-like, based on their cell-genotype ratios and their clinical and neuropathological profiles. Neuropathological examination of the affected-like animals revealed intense glial activation, prominent storage body accumulation and severe neurodegeneration within all cortical brain regions, along with vision loss and decreasing intracranial volumes and cortical thicknesses consistent with ovine CLN6 disease. In contrast, intercellular communication affecting pathology was evident at both the gross and histological level in the normal-like and recovering-like chimeras, resulting in a lack of glial activation and rare storage body accumulation in only a few cells. Initial intracranial volumes of the recovering-like chimeras were below normal but progressively recovered to about normal by two years of age. All had normal cortical thicknesses, and none went blind. Extended neurogenesis was evident in the brains of all the chimeras. This study indicates that although CLN6 is a membrane bound protein, the consequent defect is not cell intrinsic. The lack of glial activation and inflammatory responses in the normal-like and recovering-like chimeras indicate that newly generated cells are borne into a microenvironment conducive to maturation and survival.
Collapse
Affiliation(s)
- Lucy Anne Barry
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Graham William Kay
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Nadia Lesley Mitchell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
- Department of Radiology, University of Otago, Christchurch, Canterbury, New Zealand
| | - Samantha Jane Murray
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Nigel P. Jay
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - David Norris Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
- Department of Radiology, University of Otago, Christchurch, Canterbury, New Zealand
- * E-mail:
| |
Collapse
|
4
|
Tuermer A, Mausbach S, Kaade E, Damme M, Sylvester M, Gieselmann V, Thelen M. CLN6 deficiency causes selective changes in the lysosomal protein composition. Proteomics 2021; 21:e2100043. [PMID: 34432360 DOI: 10.1002/pmic.202100043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/31/2021] [Accepted: 08/17/2021] [Indexed: 11/06/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) collectively account for the highest prevalence of inherited neurodegenerative diseases in childhood. This disease group is classified by the deposition of similar autofluorescence storage material in lysosomes that is accompanied by seizures, blindness and premature mortality in later disease stages. Defects in several genes affecting various proteins lead to NCL, one of them being CLN6, a transmembrane protein resident in the endoplasmic reticulum. Dysfunctionality of CLN6 causes variant late infantile NCL (vLINCL). The function of CLN6 and how its deficiency affects lysosomal integrity remains unknown. In this work, we performed a comparative proteomic analysis of isolated lysosomal fractions from liver tissue of nclf mice, a natural mouse model displaying a similar disease course than its human counterpart. We could identify a drastic reduction in the protein amounts of selected lysosomal proteins, amongst them several members of the NCL protein family. Most of these proteins were N-glycosylated, soluble hydrolases and their reduction in protein levels was verified by western blotting and enzymatic assays. Hereby we could directly link Cln6 dysfunction to changes in the lysosomal compartment and to other NCL forms.
Collapse
Affiliation(s)
- Andreas Tuermer
- Institute of Biochemistry and Molecular Biology, Rheinische-Friedrich-Wilhelms-University, Bonn, North Rhine-Westphalia, Germany
| | - Simone Mausbach
- Institute of Biochemistry and Molecular Biology, Rheinische-Friedrich-Wilhelms-University, Bonn, North Rhine-Westphalia, Germany
| | - Edgar Kaade
- Institute of Biochemistry and Molecular Biology, Rheinische-Friedrich-Wilhelms-University, Bonn, North Rhine-Westphalia, Germany
| | - Markus Damme
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology, Rheinische-Friedrich-Wilhelms-University, Bonn, North Rhine-Westphalia, Germany
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular Biology, Rheinische-Friedrich-Wilhelms-University, Bonn, North Rhine-Westphalia, Germany
| | - Melanie Thelen
- Institute of Biochemistry and Molecular Biology, Rheinische-Friedrich-Wilhelms-University, Bonn, North Rhine-Westphalia, Germany
| |
Collapse
|
5
|
Jolly RD, Dittmer KE, Jones BR, Worth AJ, Thompson KG, Johnstone AC, Palmer DN, Van de Water NS, Hemsley KM, Garrick DJ, Winchester BG, Walkley SU. Animal medical genetics: a historical perspective on more than 50 years of research into genetic disorders of animals at Massey University. N Z Vet J 2021; 69:255-266. [PMID: 33969809 DOI: 10.1080/00480169.2021.1928564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Over the last 50 years, there have been major advances in knowledge and technology regarding genetic diseases, and the subsequent ability to control them in a cost-effective manner. This review traces these advances through research into genetic diseases of animals at Massey University (Palmerston North, NZ), and briefly discusses the disorders investigated during that time, with additional detail for disorders of major importance such as bovine α-mannosidosis, ovine ceroid-lipofuscinosis, canine mucopolysaccharidosis IIIA and feline hyperchylomicronaemia. The overall research has made a significant contribution to veterinary medicine, has provided new biological knowledge and advanced our understanding of similar disorders in human patients, including testing various specific therapies prior to human clinical trials.
Collapse
Affiliation(s)
- R D Jolly
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - K E Dittmer
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - B R Jones
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - A J Worth
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - K G Thompson
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - A C Johnstone
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - D N Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - N S Van de Water
- Department of Diagnostic Genetics, Auckland City Hospital, Auckland District Health Board, Auckland, New Zealand
| | - K M Hemsley
- Childhood Dementia Research Group, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - D J Garrick
- School of Agriculture & Environment, Al Rae Centre for Genetics and Breeding, Massey University, Hamilton, New Zealand
| | - B G Winchester
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - S U Walkley
- School of Veterinary Science, Massey University, Palmerston North, New Zealand.,Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
6
|
Onyenwoke RU, Brenman JE. Lysosomal Storage Diseases-Regulating Neurodegeneration. J Exp Neurosci 2016; 9:81-91. [PMID: 27081317 PMCID: PMC4822725 DOI: 10.4137/jen.s25475] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a complex pathway regulated by numerous signaling events that recycles macromolecules and can be perturbed in lysosomal storage diseases (LSDs). The concept of LSDs, which are characterized by aberrant, excessive storage of cellular material in lysosomes, developed following the discovery of an enzyme deficiency as the cause of Pompe disease in 1963. Great strides have since been made in better understanding the biology of LSDs. Defective lysosomal storage typically occurs in many cell types, but the nervous system, including the central nervous system and peripheral nervous system, is particularly vulnerable to LSDs, being affected in two-thirds of LSDs. This review provides a summary of some of the better characterized LSDs and the pathways affected in these disorders.
Collapse
Affiliation(s)
- Rob U Onyenwoke
- Department of Pharmaceutical Science, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| | - Jay E Brenman
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.; Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Rama Rao KV, Kielian T. Neuron-astrocyte interactions in neurodegenerative diseases: Role of neuroinflammation. ACTA ACUST UNITED AC 2015; 6:245-263. [PMID: 26543505 DOI: 10.1111/cen3.12237] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selective neuron loss in discrete brain regions is a hallmark of various neurodegenerative disorders, although the mechanisms responsible for this regional vulnerability of neurons remain largely unknown. Earlier studies attributed neuron dysfunction and eventual loss during neurodegenerative diseases as exclusively cell autonomous. Although cell-intrinsic factors are one critical aspect in dictating neuron death, recent evidence also supports the involvement of other central nervous system cell types in propagating non-cell autonomous neuronal injury during neurodegenerative diseases. One such example is astrocytes, which support neuronal and synaptic function, but can also contribute to neuroinflammatory processes through robust chemokine secretion. Indeed, aberrations in astrocyte function have been shown to negatively impact neuronal integrity in several neurological diseases. The present review focuses on neuroinflammatory paradigms influenced by neuron-astrocyte cross-talk in the context of select neurodegenerative diseases.
Collapse
Affiliation(s)
- Kakulavarapu V Rama Rao
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
8
|
Rama Rao KV, Kielian T. Astrocytes and lysosomal storage diseases. Neuroscience 2015; 323:195-206. [PMID: 26037807 DOI: 10.1016/j.neuroscience.2015.05.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 12/19/2022]
Abstract
Lysosomal storage diseases (LSDs) encompass a wide range of disorders characterized by inborn errors of lysosomal function. The majority of LSDs result from genetic defects in lysosomal enzymes, although some arise from mutations in lysosomal proteins that lack known enzymatic activity. Neuropathological abnormalities are a feature of several LSDs and when severe, represent an important determinant in disease outcome. Glial dysfunction, particularly in astrocytes, is also observed in numerous LSDs and has been suggested to impact neurodegeneration. This review will discuss the potential role of astrocytes in LSDs and highlight the possibility of targeting glia as a beneficial strategy to counteract the neuropathology associated with LSDs.
Collapse
Affiliation(s)
- K V Rama Rao
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - T Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
9
|
Cell biology of the NCL proteins: What they do and don't do. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2242-55. [PMID: 25962910 DOI: 10.1016/j.bbadis.2015.04.027] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 02/06/2023]
Abstract
The fatal, primarily childhood neurodegenerative disorders, neuronal ceroid lipofuscinoses (NCLs), are currently associated with mutations in 13 genes. The protein products of these genes (CLN1 to CLN14) differ in their function and their intracellular localization. NCL-associated proteins have been localized mostly in lysosomes (CLN1, CLN2, CLN3, CLN5, CLN7, CLN10, CLN12 and CLN13) but also in the Endoplasmic Reticulum (CLN6 and CLN8), or in the cytosol associated to vesicular membranes (CLN4 and CLN14). Some of them such as CLN1 (palmitoyl protein thioesterase 1), CLN2 (tripeptidyl-peptidase 1), CLN5, CLN10 (cathepsin D), and CLN13 (cathepsin F), are lysosomal soluble proteins; others like CLN3, CLN7, and CLN12, have been proposed to be lysosomal transmembrane proteins. In this review, we give our views and attempt to summarize the proposed and confirmed functions of each NCL protein and describe and discuss research results published since the last review on NCL proteins. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)".
Collapse
|
10
|
The neuronal ceroid-lipofuscinoses: A historical introduction. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1795-800. [DOI: 10.1016/j.bbadis.2012.08.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 11/22/2022]
|
11
|
NCL disease mechanisms. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1882-93. [DOI: 10.1016/j.bbadis.2013.05.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 01/13/2023]
|
12
|
Maruyama W, Kato Y, Yamamoto T, Oh-Hashi K, Hashizume Y, Naoi M. Peroxynitrite induces neuronal cell death in aging and age-associated disorders: A review. J Am Aging Assoc 2013; 24:11-8. [PMID: 23604871 DOI: 10.1007/s11357-001-0002-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Peroxynitrite produced from nitric oxide and superoxide has been proposed to cause neuronal dysfunction and cell death in aging and age-related degenerative diseases. 3-Nitrotyosine, an oxidation product of tyrosine by peroxynitrite, was reported to increase in degenerating brains. In this paper, involvement of peroxynitrite in neuronal cell death was studied by analyses of human brains and in vitro experiments on cell death induced by a peroxynitrite-generating agent, SIN-1. 3-Nitrotyrosine-containing proteins were detected in lipofuscin, a typical aging-related pigment in human brains. The cytotoxicity of peroxynitrite was examined in human dopaminergic SH-SY5Y cells by use of SIN-1. SIN-1 induced apoptotic cell death in the cells, and increased the level of 3-nitrotyrosine-containing proteins. The intracellular transduction of death signal was studied in apoptosis induced by peroxynitrite. Apoptosis was induced by sequential death cascade, collapse of mitochondrial membrane potential, activation of caspases and fragmentation of nuclear DNA. In addition, phosphorylation of p38 mitogen activated phosphokinase (MAPK) was found to be associated with apoptosis by SIN-1, as shown by inhibition of apoptotic process by SB202190, a p38 inhibitor. Involvement of peroxynitrite in the cell death is discussed in relation to neuronal degeneration in aging and age-associated diseases.
Collapse
Affiliation(s)
- W Maruyama
- Laboratory of Biochemistry and Metabolism, Department of Basic Gerontology, National Institute for Longevity Sciences, 36-3 Gengo, Morioka-cho, Obu, 474-8522 Aichi
| | | | | | | | | | | |
Collapse
|
13
|
Kollmann K, Uusi-Rauva K, Scifo E, Tyynelä J, Jalanko A, Braulke T. Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1866-81. [PMID: 23402926 DOI: 10.1016/j.bbadis.2013.01.019] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 01/17/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCL) comprise a group of inherited lysosomal disorders with variable age of onset, characterized by lysosomal accumulation of autofluorescent ceroid lipopigments, neuroinflammation, photoreceptor- and neurodegeneration. Most of the NCL-related genes encode soluble and transmembrane proteins which localize to the endoplasmic reticulum or to the endosomal/lysosomal compartment and directly or indirectly regulate lysosomal function. Recently, exome sequencing led to the identification of four novel gene defects in NCL patients and a new NCL nomenclature currently comprising CLN1 through CLN14. Although the precise function of most of the NCL proteins remains elusive, comprehensive analyses of model organisms, particularly mouse models, provided new insight into pathogenic mechanisms of NCL diseases and roles of mutant NCL proteins in cellular/subcellular protein and lipid homeostasis, as well as their adaptive/compensatorial regulation at the transcriptional level. This review summarizes the current knowledge on the expression, function and regulation of NCL proteins and their impact on lysosomal integrity. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
Affiliation(s)
- Katrin Kollmann
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Use of model organisms for the study of neuronal ceroid lipofuscinosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1842-65. [PMID: 23338040 DOI: 10.1016/j.bbadis.2013.01.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 12/26/2022]
Abstract
Neuronal ceroid lipofuscinoses are a group of fatal progressive neurodegenerative diseases predominantly affecting children. Identification of mutations that cause neuronal ceroid lipofuscinosis, and subsequent functional and pathological studies of the affected genes, underpins efforts to investigate disease mechanisms and identify and test potential therapeutic strategies. These functional studies and pre-clinical trials necessitate the use of model organisms in addition to cell and tissue culture models as they enable the study of protein function within a complex organ such as the brain and the testing of therapies on a whole organism. To this end, a large number of disease models and genetic tools have been identified or created in a variety of model organisms. In this review, we will discuss the ethical issues associated with experiments using model organisms, the factors underlying the choice of model organism, the disease models and genetic tools available, and the contributions of those disease models and tools to neuronal ceroid lipofuscinosis research. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
|
15
|
Thelen M, Daμμe M, Schweizer M, Hagel C, Wong AM, Cooper JD, Braulke T, Galliciotti G. Disruption of the autophagy-lysosome pathway is involved in neuropathology of the nclf mouse model of neuronal ceroid lipofuscinosis. PLoS One 2012; 7:e35493. [PMID: 22536393 PMCID: PMC3335005 DOI: 10.1371/journal.pone.0035493] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/16/2012] [Indexed: 11/18/2022] Open
Abstract
Variant late-infantile neuronal ceroid lipofuscinosis, a fatal lysosomal storage disorder accompanied by regional atrophy and pronounced neuron loss in the brain, is caused by mutations in the CLN6 gene. CLN6 is a non-glycosylated endoplasmic reticulum (ER)-resident membrane protein of unknown function. To investigate mechanisms contributing to neurodegeneration in CLN6 disease we examined the nclf mouse, a naturally occurring model of the human CLN6 disease. Prominent autofluorescent and electron-dense lysosomal storage material was found in cerebellar Purkinje cells, thalamus, hippocampus, olfactory bulb and in cortical layer II to V. Another prominent early feature of nclf pathogenesis was the localized astrocytosis that was evident in many brain regions and the more widespread microgliosis. Expression analysis of mutant Cln6 found in nclf mice demonstrated synthesis of a truncated protein with a reduced half-life. Whereas the rapid degradation of the mutant Cln6 protein can be inhibited by proteasomal inhibitors, there was no evidence for ER stress or activation of the unfolded protein response in various brain areas during postnatal development. Age-dependent increases in LC3-II, ubiquitinated proteins, and neuronal p62-positive aggregates were observed, indicating a disruption of the autophagy-lysosome degradation pathway of proteins in brains of nclf mice, most likely due to defective fusion between autophagosomes and lysosomes. These data suggest that proteasomal degradation of mutant Cln6 is sufficient to prevent the accumulation of misfolded Cln6 protein, whereas lysosomal dysfunction impairs constitutive autophagy promoting neurodegeneration.
Collapse
Affiliation(s)
- Melanie Thelen
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Daμμe
- Department of Biochemistry 1, University Bielefeld, Bielefeld, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrew M.S. Wong
- Department of Neuroscience and Centre for the Cellular Basis of Behaviour, MRC Centre for Neurodegeneration Research, Kinǵs College London, Institute of Psychiatry, London, United Kingdom
| | - Jonathan D. Cooper
- Department of Neuroscience and Centre for the Cellular Basis of Behaviour, MRC Centre for Neurodegeneration Research, Kinǵs College London, Institute of Psychiatry, London, United Kingdom
| | - Thomas Braulke
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giovanna Galliciotti
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
16
|
Traina G, Bigini P, Federighi G, Sitia L, Paroni G, Fiordaliso F, Salio M, Bendotti C, Brunelli M. Lipofuscin accumulation and gene expression in different tissues of mnd mice. Mol Neurobiol 2012; 45:247-57. [PMID: 22399241 DOI: 10.1007/s12035-012-8248-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 02/15/2012] [Indexed: 12/12/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are a group of lysosomal storage diseases characterized by neurological impairment and blindness. NCLs are almost always due to single mutations in different genes (CLN1-CLN8). Ubiquitous accumulation of undigested material and of a hydrophobic inner mitochondrial membrane protein, the subunit c of mitochondrial ATP synthase, has been described. Although protein mutation(s) in the endoplasmic reticulum-lysosomes axis can modify the trafficking and the recycling of different molecules, one of the upstream targets in these diseases may be represented by the balance of gene expression. To understand if and how neurons modify the levels of important genes during the first phases of the disease, it is important to characterize the mechanisms of neurodegeneration. Due to the impossibility of performing this analysis in humans, alternative models of investigation are required. In this study, a mouse model of human NCL8, the mnd mouse has been employed. The mnd mice recapitulate many clinical and histopathological features described in NCL8 patients. In this study, we found an altered expression of different genes in both central and peripheral organs associated with lipopigment accumulation. This is a preliminary approach, which could also be of interest in providing new diagnostic tools for NCLs.
Collapse
Affiliation(s)
- Giovanna Traina
- Department of Economics and Food Sciences, University of Perugia, Via San Costanzo, 06126 Perugia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Thelen M, Fehr S, Schweizer M, Braulke T, Galliciotti G. High expression of disease-related Cln6 in the cerebral cortex, purkinje cells, dentate gyrus, and hippocampal ca1 neurons. J Neurosci Res 2011; 90:568-74. [PMID: 22012656 DOI: 10.1002/jnr.22773] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 07/22/2011] [Accepted: 07/26/2011] [Indexed: 12/12/2022]
Abstract
Mutations in the CLN6 gene cause a variant form of late infantile neuronal ceroid lipofuscinosis, a relentless neurodegenerative disease that is inherited as an autosomal recessive trait in humans and in the naturally occurring nclf mouse strain. The CLN6 protein is localized in the endoplasmic reticulum, but it has an unknown function. To develop a molecular understanding of neurodegeneration induced by mutations in CLN6, we examined the spatial and temporal distribution of Cln6 mRNA expression in murine brain. By using Northern blot and tissue qPCR array techniques, a single Cln6 transcript was detected throughout the adult brain, with greatest expression in the cerebellum and hypothalamus. Real-time qPCR showed 2.4-4-fold increases in Cln6 mRNA levels in the cortex and cerebellum during the first 28 days of life, with less prominent enhancement of expression in the hippocampus. In situ hybridization analyses demonstrated Cln6 expression in brainstem, dentate gyrus, and hippocampal neurons of newborn P0 mice. From P14 onward, Cln6 expression is widely distributed throughout the brain and is most prominent in cells of cortical layers II-VI, the Purkinje cell layer, dentate gyrus, and hippocampal CA1 region of adult mice. In different regions of the brain in P0 and P28 nclf mice, the Cln6 mRNA abundance was reduced by 30-40% compared with control mice. These findings implicate Cln6 in the survival and maturation of specific neuronal populations during development and make it possible to compare regional Cln6 expression with the distribution of subsequent pathology.
Collapse
Affiliation(s)
- Melanie Thelen
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | |
Collapse
|
18
|
Seehafer SS, Pearce DA. Spectral properties and mechanisms that underlie autofluorescent accumulations in Batten disease. Biochem Biophys Res Commun 2009; 382:247-51. [PMID: 19248764 DOI: 10.1016/j.bbrc.2009.02.099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Accepted: 02/18/2009] [Indexed: 11/24/2022]
Abstract
Neuronal Ceroid Lipofuscinoses (NCLs) have an incidence of 1 in 12,500 live births. These devastating neurodegenerative lysosomal storage diseases are characterized by the lysosomal accumulation of autofluorescent storage material (AFSM) similar to that seen in aging cells. Using patient derived lymphoblasts from three genetically distinct NCLs we report that AFSM for each NCL has distinct spectral properties. Moreover, by using pharmacological inhibitors to disrupt various biochemical pathways in normal control lymphoblasts we have determined that disruptions in microtubule assembly and non-muscle myosin II function results in accumulation of lysosomal AFSM. Interestingly, inhibition of autophagy did not result in AFSM. We conclude that cellular disturbances outside the lysosome in addition to compromised function of this organelle can result in accumulation of lysosomal AFSM in NCLs and possibly as a result of cellular aging.
Collapse
Affiliation(s)
- Sabrina S Seehafer
- Center for Neural Development and Disease, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|
19
|
Hong S, Pedersen PL. ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas. Microbiol Mol Biol Rev 2008; 72:590-641, Table of Contents. [PMID: 19052322 PMCID: PMC2593570 DOI: 10.1128/mmbr.00016-08] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ATP synthase, a double-motor enzyme, plays various roles in the cell, participating not only in ATP synthesis but in ATP hydrolysis-dependent processes and in the regulation of a proton gradient across some membrane-dependent systems. Recent studies of ATP synthase as a potential molecular target for the treatment of some human diseases have displayed promising results, and this enzyme is now emerging as an attractive molecular target for the development of new therapies for a variety of diseases. Significantly, ATP synthase, because of its complex structure, is inhibited by a number of different inhibitors and provides diverse possibilities in the development of new ATP synthase-directed agents. In this review, we classify over 250 natural and synthetic inhibitors of ATP synthase reported to date and present their inhibitory sites and their known or proposed modes of action. The rich source of ATP synthase inhibitors and their known or purported sites of action presented in this review should provide valuable insights into their applications as potential scaffolds for new therapeutics for human and animal diseases as well as for the discovery of new pesticides and herbicides to help protect the world's food supply. Finally, as ATP synthase is now known to consist of two unique nanomotors involved in making ATP from ADP and P(i), the information provided in this review may greatly assist those investigators entering the emerging field of nanotechnology.
Collapse
Affiliation(s)
- Sangjin Hong
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205-2185, USA
| | | |
Collapse
|
20
|
Herrmann P, Druckrey-Fiskaaen C, Kouznetsova E, Heinitz K, Bigl M, Cotman SL, Schliebs R. Developmental impairments of select neurotransmitter systems in brains of Cln3(Deltaex7/8) knock-in mice, an animal model of juvenile neuronal ceroid lipofuscinosis. J Neurosci Res 2008; 86:1857-70. [PMID: 18265413 DOI: 10.1002/jnr.21630] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neuronal ceroidlipofuscinoses (NCL) are a group of neurodegenerative disorders and are the most common lysosomal storage diseases of infancy and childhood. Juvenile NCL is caused by CLN3 mutation, producing retinal degeneration, uncontrollable seizures, cognitive and motor decline, and early death before the age of 30 years. To study the pathogenetic mechanisms of the disease, Cln3 knock-in mice (Cln3(Deltaex7/8)) have been generated, which reproduce the 1.02-kb deletion in the CLN3 gene observed in more than 85% of juvenile NCL patients. To characterize the impact of the common Cln3 mutation on development of autofluorescent storage material, gliosis, glucose metabolism, oxidative stress, and transmitter receptors during postnatal brain maturation, brain tissue of Cln3(Deltaex7/8) mice at the ages of 3, 4, 5, 6, 9, and 19 months was subjected to immunocytochemistry to label gliotic markers and nitric oxide synthases; photometric assays to assess enzyme activities of glycolysis and antioxidative defense systems; and level of reactive nitrogen species as well as quantitative receptor autoradiography to detect select cholinergic, glutamatergic, and GABAergic receptor subtypes. The developmental increase in cerebral cortical autofluorescent lipofuscin-like deposition is accompanied by a significant astro- and microgliosis, increased activities of lactate dehydrogenase and phosphofructokinase, decreased level of glutathione peroxidase, enhanced amount of reactive nitrogen species, and lowered binding levels of N-methyl-D-aspartate- and M1-muscarinic acetylcholine receptors in select brain regions but hardly in GABA(A) receptor sites compared with wild-type mice. Detailed elucidation of the sequence of pathological events during postnatal development highlights new potential strategies for symptomatic treatment of the disease.
Collapse
Affiliation(s)
- Philipp Herrmann
- Paul-Flechsig-Institut for Brain Research, Department of Neurochemistry, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Katz ML, Sanders DN, Mooney BP, Johnson GS. Accumulation of glial fibrillary acidic protein and histone H4 in brain storage bodies of Tibetan terriers with hereditary neuronal ceroid lipofuscinosis. J Inherit Metab Dis 2007; 30:952-63. [PMID: 18004671 DOI: 10.1007/s10545-007-0683-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 09/20/2007] [Accepted: 10/04/2007] [Indexed: 11/26/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are inherited neurodegenerative diseases characterized by massive accumulation of autofluorescent storage bodies in neurons and other cells. A late-onset form of NCL occurs in Tibetan terrier dogs. Gel electrophoretic analyses of isolated storage body proteins from brains of affected dogs indicated that a protein of approximately 50 kDa was consistently prominent and a 16 kDa component was present in some brain storage body preparations. Mass spectral analysis identified the 50 kDa protein as glial fibrillary acidic protein (GFAP), isoform 2. GFAP identification was supported by immunoblot and immunohistochemical analyses. Histone H4 was the major protein in the 16 kDa component. Specific accumulation of GFAP and histone H4 in storage bodies has not been previously reported for any of the NCLs. Tibetan terrier NCL may be the canine correlate of one of the human adult-onset NCLs for which the genetic bases and storage body compositions have not yet been determined.
Collapse
Affiliation(s)
- M L Katz
- Mason Eye Institute, University of Missouri School of Medicine, One Hospital Dr., Columbia, MO 65212, USA.
| | | | | | | |
Collapse
|
22
|
Haltia M. The neuronal ceroid-lipofuscinoses: From past to present. Biochim Biophys Acta Mol Basis Dis 2006; 1762:850-6. [PMID: 16908122 DOI: 10.1016/j.bbadis.2006.06.010] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 06/28/2006] [Indexed: 10/24/2022]
Abstract
The neuronal ceroid-lipofuscinoses (NCLs) are inherited lysosomal storage diseases and constitute the most common group of children's progressive encephalopathies. Most childhood forms of NCL are clinically characterized by progressive loss of vision as well as mental and motor deterioration, epileptic seizures, and premature death, while the rare adult forms are dominated by dementia. All forms of NCL share common pathomorphological features. Autofluorescent, periodic acid-Schiff- and Sudan black B-positive granules, resistant to lipid solvents, accumulate in the cytoplasm of most nerve cells, and there is progressive and remarkably selective neuronal degeneration and loss. For a long time, the NCLs were grouped under the heading of the "amaurotic family idiocies" and conceived as lipidoses. However, in the late 1980s and 1990s the NCL storage cytosomes were shown to consist largely of two hydrophobic proteins: either subunit c of mitochondrial ATP synthase or sphingolipid activator proteins A and D. Since 1995 numerous mutations in at least seven different genes have been shown to underlie the multiple human and animal forms of NCL. This review discusses the historical evolution of the NCL concept and the impact of the recent biochemical and molecular genetic findings on our views on the classification and pathogenesis of these devastating brain disorders.
Collapse
Affiliation(s)
- Matti Haltia
- Department of Pathology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
| |
Collapse
|
23
|
Tian Y, Sohar I, Taylor JW, Lobel P. Determination of the Substrate Specificity of Tripeptidyl-peptidase I Using Combinatorial Peptide Libraries and Development of Improved Fluorogenic Substrates. J Biol Chem 2006; 281:6559-72. [PMID: 16339154 DOI: 10.1074/jbc.m507336200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Classical late-infantile neuronal ceroid lipofuscinosis is a fatal neurodegenerative disease caused by mutations in CLN2, the gene encoding the lysosomal protease tripeptidyl-peptidase I (TPP I). The natural substrates for TPP I and the pathophysiological processes associated with lysosomal storage and disease progression are not well understood. Detailed characterization of TPP I substrate specificity should provide insights into these issues and also aid in the development of improved clinical and biochemical assays. To this end, we constructed fluorogenic and standard combinatorial peptide libraries and analyzed them using fluorescence and mass spectrometry-based activity assays. The fluorogenic group 7-amino-4-carbamoylmethylcoumarin was incorporated into a series of 7-amino-4-carbamoylmethylcoumarin tripeptide libraries using a design strategy that allowed systematic evaluation of the P1, P2, and P3 positions. TPP I digestion of these substrates liberates the fluorescence group and results in a large increase in fluorescence that can be used to calculate kinetic parameters and to derive the substrate specificity constant kcat/KM. In addition, we implemented a mass spectrometry-based assay to measure the hydrolysis of individual peptides in peptide pools and thus expand the scope of the analysis. Nonfluorogenic tetrapeptide and pentapeptide libraries were synthesized and analyzed to evaluate P1' and P2' residues. Together, this analysis allowed us to predict the relative specificity of TPP I toward a wide range of potential biological substrates. In addition, we evaluated a variety of new fluorogenic peptides with a P3 Arg residue, and we demonstrated their superiority compared with the widely used substrate Ala-Ala-Phe-AMC for selectively measuring TPP I activity in biological specimens.
Collapse
Affiliation(s)
- Yu Tian
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
24
|
Seehafer SS, Pearce DA. You say lipofuscin, we say ceroid: defining autofluorescent storage material. Neurobiol Aging 2006; 27:576-88. [PMID: 16455164 DOI: 10.1016/j.neurobiolaging.2005.12.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 11/22/2005] [Accepted: 12/08/2005] [Indexed: 01/15/2023]
Abstract
Accumulation of intracellular autofluorescent material or "aging pigment" has been characterized as a normal aging event. Certain diseases also exhibit a similar accumulation of intracellular autofluorescent material. However, autofluorescent storage material associated with aging and disease has distinct characteristics. Lipofuscin is a common term for aging pigments, whereas ceroid is used to describe pathologically derived storage material, for example, in the neuronal ceroid lipofuscinoses (NCLs). NCLs are a family of neurodegenerative diseases that are characterized by an accumulation of autofluorescent storage material (ceroid) in the lysosome, which has been termed "lipofuscin-like". There have been many studies that describe this autofluorescent storage material, but what is it? Is this accumulation lipofuscin or ceroid? In this review we will try to answer the following questions: (1) What is lipofuscin and ceroid? (2) What contributes to the accumulation of this storage material in one or the other? (3) Does this material have an effect on cellular function? Studying parallels between the accumulation of lipofuscin and ceroid may provide insight into the biological relevance of these phenomena.
Collapse
Affiliation(s)
- Sabrina S Seehafer
- Center for Aging and Developmental Biology, Aab Institute of Biomedical Sciences, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|
25
|
Abd El Mohsen MM, Iravani MM, Spencer JPE, Rose S, Fahim AT, Motawi TMK, Ismail NAF, Jenner P. Age-associated changes in protein oxidation and proteasome activities in rat brain: Modulation by antioxidants. Biochem Biophys Res Commun 2005; 336:386-91. [PMID: 16139799 DOI: 10.1016/j.bbrc.2005.07.201] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 07/30/2005] [Indexed: 11/26/2022]
Abstract
The free radical theory of ageing postulates that age-associated neurodegeneration is caused by an imbalance between pro-oxidants and antioxidants resulting in oxidative stress. The current study showed regional variation in brain susceptibility to age-associated oxidative stress as shown by increased lipofuscin deposition and protein carbonyl levels in male rats of age 15-16 months compared to control ones (3-5 months). The hippocampus is the area most vulnerable to change compared to the cortex and cerebellum. However, proteasomal enzyme activity was not affected by age in any of the brain regions studied. Treatment with melatonin or coenzyme Q10 for 4 weeks reduced the lipofuscin content of the hippocampus and carbonyl level. However, both melatonin and coenzyme Q10 treatments inhibited beta-glutamyl peptide hydrolase activity. This suggests that these molecules can alter proteasome function independently of their antioxidant actions.
Collapse
Affiliation(s)
- Manal M Abd El Mohsen
- Molecular Nutrition Group, School of Food Biosciences, University of Reading, P.O. Box 226, Whiteknights, Reading RG6 6AP, UK.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Szweda PA, Camouse M, Lundberg KC, Oberley TD, Szweda LI. Aging, lipofuscin formation, and free radical-mediated inhibition of cellular proteolytic systems. Ageing Res Rev 2004; 2:383-405. [PMID: 14522242 DOI: 10.1016/s1568-1637(03)00028-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Alterations in a wide array of physiological functions are a normal consequence of aging. Importantly, aged individuals exhibit an enhanced susceptibility to various degenerative diseases and appear less able than their young and adult counterparts to withstand (patho)physiological stress. Elucidation of mechanisms at play in the aging process would benefit the development of effective strategies for enhancing the quality of life for the elderly. It is likely that decrements in cellular and physiological function that occur during aging are the net result of numerous interacting factors. The current review focuses on the potential contribution(s) of free radical-mediated modifications to protein structure/function and alterations in the activities of two major proteolytic systems within cells, lysosomes and the proteasome, to the age-dependent accumulation of fluorescent intracellular granules, termed lipofuscin. Specifically, aging appears to influence the interplay between the occurrences of free radical-derived modifications to protein and the ability of cells to carry out critical proteolytic functions. We present immunochemical and ultrastructural evidence demonstrating the occurrence of a fluorescent protein cross-link derived from free radical-mediated reaction(s) within lipofuscin granules of rat cerebral cortex neurons. In addition, we provide evidence that a fluorophore-modified protein present in lipofuscin granules is the alpha subunit of F1F0-ATP synthase, a mitochondrial protein. It has previously been shown that protein(s) bearing this particular fluorescent cross-link are resistant to proteolysis and can inhibit the proteasome in a non-competitive fashion (J. Biol. Chem. 269 (1994a) 21639; FEBS Lett. 405 (1997) 21). Therefore, the current findings demonstrate that free radical-mediated modifications to protein(s) that lead to the production of inhibitor(s) of cellular proteolytic systems are present on specific protein components of lipofuscin. In addition, the mitochondrial origin of one of these proteins indicates specific intracellular pathways likely to be influenced by free radical events and participate in the formation of lipofuscin. The results of these studies are related to previous in vitro and in vivo observations in the field, thus shedding light on potential consequences to cellular function. In addition, future research directions suggested by the available evidence are discussed.
Collapse
Affiliation(s)
- Pamela A Szweda
- Department of Physiology and Biophysics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4970, USA.
| | | | | | | | | |
Collapse
|
27
|
Au DWT. The application of histo-cytopathological biomarkers in marine pollution monitoring: a review. MARINE POLLUTION BULLETIN 2004; 48:817-34. [PMID: 15111029 DOI: 10.1016/j.marpolbul.2004.02.032] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
During the past two decades, a variety of histopathological alterations in fish and bivalves have been developed and used as biomarkers in pollution monitoring. Some of these have been successfully adopted in major national monitoring programmes, while others, although show promise, are still in the experimental stage. This paper critically reviews the scientific basis, cause and effect relationship, reliability, advantages and limitations of 14 histo-cytopathological biomarkers. The usefulness and practical application of each biomarker have been evaluated against a number of objective criteria including: ecological relevance, sensitivity, specificity, dose-response relationship, confounding factors, technical difficulties and cost-effectiveness.
Collapse
Affiliation(s)
- D W T Au
- Centre of Coastal Pollution and Conservation, Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
28
|
Ezaki J, Kominami E. The intracellular location and function of proteins of neuronal ceroid lipofuscinoses. Brain Pathol 2004; 14:77-85. [PMID: 14997940 PMCID: PMC8095780 DOI: 10.1111/j.1750-3639.2004.tb00501.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Neuronal ceroid lipofuscinoses are a group of diseases characterized by accumulation of hydrophobic proteins in lysosomes of neurons and other types of cells. NCLs are caused by at least 8 mutant genes (CLN1-CLN8), though CLN4 and CLN7 have not yet been identified. Except for Cln1p, the protein encoded by CLN1, the defective proteins are associated with lysosomal accumulation of mitochondrial ATP synthase subunit c. Cln1p and Cln2p are soluble lysosomal enzymes, targeted to lysosomes in a mannose 6-phosphate dependent manner. Mutations in the lysosomal protease cathepsin D cause another NCL. Cln3p, Cln5p, Cln6p and Cln8p are thought to be transmembrane proteins. Cln3p and Cln5p are localized in the endosome-lysosomal compartment. Deficiency of endosomal membrane protein CLC-3, a member of the chloride channel family, causes NCL-like phenotype and lysosomal storage of subunit c. Herein, we review the features of NCL and NCL-related proteins and discuss the involvement of the proteins in lysosomal degradation of subunit c.
Collapse
Affiliation(s)
- Junji Ezaki
- Department of Biochemistry, Juntendo University School of Medicine, 2‐1‐1 Hongo, Bunkyo‐ku, Tokyo 113‐8421, Japan
| | - Eiki Kominami
- Department of Biochemistry, Juntendo University School of Medicine, 2‐1‐1 Hongo, Bunkyo‐ku, Tokyo 113‐8421, Japan
| |
Collapse
|
29
|
Jolly RD, Palmer DN, Dalefield RR. The analytical approach to the nature of lipofuscin (age pigment). Arch Gerontol Geriatr 2004; 34:205-17. [PMID: 14764324 DOI: 10.1016/s0167-4943(01)00219-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2001] [Revised: 11/05/2001] [Accepted: 11/06/2001] [Indexed: 01/10/2023]
Abstract
Analytical studies of three lipopigments show that much can be achieved. Lipopigment from ovine ceroid-lipofuscinosis is composed of discrete protein and lipid molecules in orderly arrays and lipid peroxidation is not involved in its formation. Subunit c of mitochondrial ATP synthase accounts for approximately 50% of accumulated material and is specific to the disease process in this and other forms of the disease. Lipofuscin from bovine heart was mostly soluble and also contained discrete proteins, lipids and metals. Equine thyroid lipofuscin was less soluble but also had a relatively high protein content, probably derived from thyroglobulin. Although sugar could not be measured quantitatively, staining reactions and elemental analyses suggested it could also be a significant component. Some may be present as derivatives in the form of advanced glycation products. It is proposed that protein, the dominant molecular species present, is the important constituent in lipofuscinogenesis rather than lipid peroxidation. Whereas this latter may play some part in the maturation of lipofuscin, this has not been shown experimentally and is not likely to be the initiating mechanism.
Collapse
Affiliation(s)
- Robert D Jolly
- Department of Veterinary Pathology and Public Health, Massey University, Palmerston North, New Zealand.
| | | | | |
Collapse
|
30
|
Porta EA, Berra A, Monserrat AJ, Benavides SH. Differential lectin histochemical studies on lipofuscin (age-pigment) and on selected ceroid pigments. Arch Gerontol Geriatr 2004; 34:193-203. [PMID: 14764323 DOI: 10.1016/s0167-4943(01)00224-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2001] [Revised: 11/19/2001] [Accepted: 11/29/2001] [Indexed: 11/23/2022]
Abstract
The persistent indiscriminate use of the term lipofuscin for the pigments encountered in pathological conditions, and which should be most properly termed ceroid pigments, is still creating unnecessary conceptual and nomenclature problems, and a great deal of confusion. While both the age-dependent lipofuscin and the pathologically formed ceroid pigments have somewhat similar physical and histochemical properties, sufficient differences to properly identify these two types of pigments are presented in this communication. In addition, because little is known on the saccharide components of lipofuscin and ceroid pigments in situ, we have in recent years explored the lectin binding characteristics of lipofuscin in human and rats, as well as in diverse ceroid pigments experimentally induced in rats. Our lectin histochemical results showed qualitative and quantitative differences in the saccharide composition between human cerebral neurolipofuscin and the intra and extracellular ceroid pigment of human atheromas, as well as, between rat lipofuscin and the ceroid pigments induced in these animals.
Collapse
Affiliation(s)
- Eduardo A Porta
- Department of Pathology, School of Medicine, University of Hawaii, 1960 East-West Road, Honolulu, HI 96822, USA.
| | | | | | | |
Collapse
|
31
|
Abstract
The lysosomal disease concept was developed by Hers in 1963. At the time, few could have imagined the breadth and depth of knowledge about cell biology that these disorders would reveal. With a collective hindsight of nearly four decades, it is fair to say that we have learned more about the lysosomal system of cells through the study of these rare diseases than by any other means. Given the advancements of the past year, it is apparent that some of the most significant insights are yet to come, as we delineate the last remaining and most enigmatic of these diseases.
Collapse
Affiliation(s)
- S U Walkley
- Sidney Weisner Laboratory of Genetic Neurological Disease, Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
32
|
Abstract
This chapter summarizes the recent advances that have been made with respect to biochemical characterization of the neurodegenerative diseases collectively known as neuronal ceroid lipofuscinoses (NCL) or Batten disease. Genomic and proteomic approaches have presently identified eight different forms of NCL (namely, CLN1 through CLN8) based on mutations in specific genes. CLN1 and CLN2 are caused by mutations in genes that encodes lysosomal enzymes,palmitoyl protein thioesterase and pepstatin-insensitive proteinase, respectively. The protein involved in the etiology of CLN3 is a highly hydrophobic, presumably transmembrane protein. NCL are considered as lysosomal storage diseases because of the accumulation of autofluorescent inclusion bodies. The composition of inclusion bodies varies in different forms of the NCL. The major storage component in CLN2 is the subunit c of mitochondrial ATP synthase complex and its accumulation is the direct result of lack of CLN2p in this disease. Mannose-6-phosphorylated glycoproteins accumulate in CLN3 and most likely their accumulation is the result of an intrinsic activity of the CLN3 protein. Significant levels of oligosaccharyl diphosphodolichol also accumulate in CLN3 and CLN2, whereas lysosomal sphingolipid activator proteins (saposins A and D) constitute major component of the storage material in CLN 1. The issue of selective loss of neuronal and retinal cells in NCL still remains to be addressed. Identification of natural substrates for the various enzymes involved in NCL may help in the characterization of the cytotoxic factor(s) and also in designing rationale therapeutic interventions for these group of devastating diseases.
Collapse
Affiliation(s)
- M A Junaid
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314, USA.
| | | |
Collapse
|
33
|
Katz ML, Shibuya H, Johnson GS. Animal models for the ceroid lipofuscinoses. ADVANCES IN GENETICS 2001; 45:183-203. [PMID: 11332773 DOI: 10.1016/s0065-2660(01)45011-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- M L Katz
- University of Missouri School of Medicine, Mason Eye Institute, Columbia 65212, USA.
| | | | | |
Collapse
|
34
|
Au DW, Wu RS. A field study on EROD activity and quantitative hepatocytological changes in an immature demersal fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2001; 115:23-32. [PMID: 11586770 DOI: 10.1016/s0269-7491(01)00095-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Demersal fish, Solea ovata, were sampled from a reference site and a site where highly contaminated sediment is dumped. Sexually immature fish from the contaminated site exhibited significantly higher EROD activity compared with counterparts sampled from the reference site. No significant difference in EROD activity could be found for sexually mature males and females between sites. The relationship between EROD activity and quantitative changes in hepatic lipofuscin/ceroid, as well as peroxisome, was investigated for immature S. ovata. A significant correlation was found between EROD activity and volume density of lipofuscin/ceroid in fish hepatocyte (r = 0.750; P < 0.05), but no significant correlation was discernible between EROD activity and peroxisomes. Results from this field study corroborate our earlier laboratory findings, in which induction of EROD activity by intraperitoneal injection of benzo[a]pyrene was associated with increase in absolute volume and absolute number of lipofuscin/ceroid in hepatocytes. The present study provides further evidence that induction of EROD activity is associated with an increase in hepatic lipofuscin/ceroid and possibly cytological damages in immature S. ovata. This cytological change may serve as a potential marker for exposure to PAHs and PCBs.
Collapse
Affiliation(s)
- D W Au
- Centre for Coastal Pollution and Conservation, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| | | |
Collapse
|
35
|
Hagopian K. Preparative electrophoretic method for the purification of a hydrophobic membrane protein: subunit c of the mitochondrial ATP synthase from rat liver. Anal Biochem 1999; 273:240-51. [PMID: 10469495 DOI: 10.1006/abio.1999.4219] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A method is described for the purification of subunit c of ATP synthase from rat liver mitochondria. After sample preparation and solvent extraction, the protein was purified to homogeneity by a single-step preparative electrophoretic procedure, using aqueous buffer and containing lithium dodecyl sulfate. The subunit is an extremely hydrophobic and insoluble protein and all solubilization attempts, using a variety of detergents, were unsuccessful except for lithium dodecyl sulfate. Buffer exchange and FPLC gel filtration removed the detergent from the purified sample, leaving the protein in a soluble form. The mammalian protein is composed of 75 amino acid residues, with a molecular mass of 7602 Da and is classified as a proteolipid. Subunit c accounts for 25 and 85% of the intralysosomal accumulation, within neurons, of storage material in juvenile and late-infantile forms of Batten's disease, respectively. This purification procedure allows access to a continuous supply of pure subunit c from a conventional source such as rat liver and preserves precious autopsy materials. The protein could be used as substrate in future proteolytic studies involving pepstatin-insensitive lysosomal proteases and for raising of more specific antibodies. The procedure could also be adapted/modified and used as a model for purifying other extremely insoluble proteins.
Collapse
Affiliation(s)
- K Hagopian
- Department of Neurochemistry, Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom.
| |
Collapse
|
36
|
Ezaki J, Tanida I, Kanehagi N, Kominami E. A lysosomal proteinase, the late infantile neuronal ceroid lipofuscinosis gene (CLN2) product, is essential for degradation of a hydrophobic protein, the subunit c of ATP synthase. J Neurochem 1999; 72:2573-82. [PMID: 10349869 DOI: 10.1046/j.1471-4159.1999.0722573.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The specific accumulation of the hydrophobic protein, subunit c of ATP synthase, in lysosomes from the cells of patients with the late infantile form of neuronal ceroid lipofuscinosis (LINCL) is caused by lysosomal proteolytic dysfunction. The defective gene in LINCL (CLN2 gene) has been identified recently. To elucidate the mechanism of lysosomal storage of subunit c, antibodies against the human CLN2 gene product (Cln2p) were prepared. Immunoblot analysis indicated that Cln2p is a 46-kDa protein in normal control skin fibroblasts and carrier heterozygote cells, whereas it was absent in cells from four patients with LINCL. RT-PCR analysis indicated the presence of mRNA for CLN2 in cells from the four different patients tested, suggesting a low efficiency of translation of mRNA or the production of the unstable translation products in these patient cells. Pulse-chase analysis showed that Cln2p was synthesized as a 67-kDa precursor and processed to a 46-kDa mature protein (t(1/2) = 1 h). Subcellular fractionation analysis indicated that Cln2p is localized with cathepsin B in the high-density lysosomal fractions. Confocal immunomicroscopic analysis also revealed that Cln2p is colocalized with a lysosomal soluble marker, cathepsin D. The immunodepletion of Cln2p from normal fibroblast extracts caused a loss in the degradative capacity of subunit c, but not the beta subunit of ATP synthase, suggesting that the absence of Cln2p provokes the lysosomal accumulation of subunit c.
Collapse
Affiliation(s)
- J Ezaki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
37
|
Chapter 11 The Neuronal Ceroid-lipofuscinoses (Batten Disease). ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1566-3124(08)60031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
38
|
Salonen T, Hellsten E, Horelli-Kuitunen N, Peltonen L, Jalanko A. Mouse palmitoyl protein thioesterase: gene structure and expression of cDNA. Genome Res 1998; 8:724-30. [PMID: 9685319 PMCID: PMC310755 DOI: 10.1101/gr.8.7.724] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/1997] [Accepted: 05/22/1998] [Indexed: 11/24/2022]
Abstract
Palmitoyl protein thioesterase (PPT) is the defective enzyme in infantile neuronal ceroid lipofuscinosis (INCL), which is a recessively inherited, progressive neurodegenerative disorder. We present here the cloning, chromosomal mapping, genomic structure, and the expression of the cDNA of mouse PPT. The mouse PPT gene spans >21 kb of genomic DNA and contains nine exons with a coding sequence of 918 bp. Fluorescence in situ hybridization to metaphase chromosomes localized the mouse PPT gene to the chromosome 4 conserved syntenic region with human chromosome 1p32 where the human PPT is located. PPT is expressed widely in a variety of mouse tissues. The mouse PPT cDNA is conserved highly with the human and rat PPT both at the nucleotide and amino acid sequence level. Transient expression of mouse PPT in COS-1 cells yielded a 38/36-kD differentially glycosylated polypeptide that was also secreted into culture media. Immunofluorescence analysis of transiently transfected HeLa cells indicated lysosomal localization of mouse PPT. Based on the high conservation of the gene and polypeptide structure as well as similar processing and intracellular localization, the function of PPT in mouse and human are likely to be very similar.
Collapse
Affiliation(s)
- T Salonen
- National Public Health Institute and Institute of Biomedicine, Department of Human Molecular Genetics, University of Helsinki, FIN-00300 Helsinki, Finland
| | | | | | | | | |
Collapse
|
39
|
Palmer DN, Tyynelä J, van Mil HC, Westlake VJ, Jolly RD. Accumulation of sphingolipid activator proteins (SAPs) A and D in granular osmiophilic deposits in miniature Schnauzer dogs with ceroid-lipofuscinosis. J Inherit Metab Dis 1997; 20:74-84. [PMID: 9061571 DOI: 10.1023/a:1005365709340] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The neuronal ceroid-lipofuscinoses (NCL, Batten disease) are fatal inherited neurodegenerative diseases of children characterized by retinal and brain atrophy and the accumulation of electron-dense storage bodies in cells. Mutations in different genes underlie different major forms. The infantile disease (CLN-1, McKusick 256730) is distinguished by the storage of the sphingolipid activator proteins (SAPs) A and D in distinctive granular osmiophilic deposits (GRODs). This contrasts with the other major forms, where subunit c of mitochondrial ATP synthase is stored in various multilamellar profiles. Ceroid-lipofuscinoses also occur in dogs, including a form in miniature Schnauzers with distinctive granular osmiophilic deposit-like storage bodies. Antisera to SAPs A and D reacted to these storage bodies in situ. The presence of SAP D was confirmed by Western blotting and of SAP A by protein sequencing. Neither subunit c of mitochondrial ATP synthase nor of vacuolar ATPase is stored. This suggests that there are two families of ceroid-lipofuscinoses, the subunit c-storing forms, and those in which SAPs A and D, and perhaps other proteins, accumulate. Further work is required to determine whether other forms with granular osmiophilic deposits belong to the latter class and the genetic relationships between them and the human infantile disease.
Collapse
Affiliation(s)
- D N Palmer
- Centre for Molecular Biology, Lincoln University, Canterbury, New Zealand
| | | | | | | | | |
Collapse
|
40
|
Ansari NH, He Q, Cook JD, Wen J, Srivastava SK. Delivery of liposome-sequestered hydrophobic proteins to lysosomes of normal and Batten disease cells. J Neurosci Res 1997; 47:341-7. [PMID: 9039656 DOI: 10.1002/(sici)1097-4547(19970201)47:3<341::aid-jnr12>3.0.co;2-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have developed a method to deliver hydrophobic proteins such as ATP synthase subunit c and ubiquitin to lysosomes of PMN (polymorphonucleocytes) and fibroblasts. ATP synthase subunit c is stored in the lysosomes of various tissues in late infantile and juvenile forms of neuronal ceriod lipofuscinosis, also called Batten disease (BD). Whether this protein storage is due to an abbreviation in protein or in the lysosomal hydrolases of BD is still not clear. We have sequestered this protein and ubiquitin in the lipid membrane of liposomes. The liposomes coated with autologous heat-aggregated IgG or apolipoprotein E when presented to the PMN and fibroblasts, respectively, accumulated in the lysosomes. Both normal and BD PMN degraded 125I-ubiquitin; the rate of degradation was, however, slower by Batten PMN. These studies indicate that a hydrophobic molecule such as subunit c can be delivered to PMN and fibroblasts, and the sequestered proteins are accessible to lysosomal hydrolases. Therefore, this technique can be used to study the metabolism of highly hydrophobic proteins by lysosomes, especially the biochemical mechanism(s) of subunit c storage in BD.
Collapse
Affiliation(s)
- N H Ansari
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77555-0647, USA
| | | | | | | | | |
Collapse
|
41
|
Palmer DN, Hay JM. The neuronal ceroid lipofuscinoses (Batten disease): a group of lysosomal proteinoses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 389:129-36. [PMID: 8861002 DOI: 10.1007/978-1-4613-0335-0_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- D N Palmer
- Centre for Molecular Biology, AVSG, Lincoln University, Canterbury, New Zealand
| | | |
Collapse
|
42
|
Abstract
Serious studies of the formation mechanisms of age-related pigments and their possible cellular influence have been hampered for a long time by discrepancies and controversies over the definition, fluorescence emission, origin, and composition of these pigments. This review discusses several critical controversies in this field and lay special emphasis on the cellular and biochemical reactions related to the formation mechanisms of lipofuscin, ceroid, advanced glycation end-products (AGEs), and age pigment like fluorophores (APFs). Various amino compounds and their reaction with secondary aldehydic products of oxygen free radical-induced oxidation, particularly lipid peroxidation, are important sources of the fluorophores of ceroid/lipofuscin, which progressively accumulate as a result of phagocytosis and autophagocytosis of modified biomaterials within secondary lysosomes of postmitotic and other cells. Lipofuscin is the classical age pigment of postmitotic cells, while ceroid accumulates due to pathologic and experimental processes. There are good reasons to consider both ceroid and lipofuscin as materials of the same principal origin. The age-related intracellular fluorophores of retinal pigment epithelium (RPE) seems to represent a special class of lipofuscin, which partly contains derivatives of retinoids and carotenoids. Saccharide-originated fluorophores, principally AGEs formed during glycation/Maillard reactions, may be mainly responsible for the extracellular fluorescence of long-lived proteins, such as collagen, elastin, and lens crystalline. Although lipofuscin, ceroid, AGEs, and APFs can be produced from different types of biological materials due to different side reactions of essential biology, the crosslinking of carbonyl-amino compounds is recognized as a common process during their formation.
Collapse
Affiliation(s)
- D Yin
- Department of Pathology, Linköping University, Sweden
| |
Collapse
|
43
|
Ansari NH, Cook JD, Khanna P, Srivastava SK. ATP synthase subunit C storage in the polymorphonucleocytes of late infantile and juvenile batten patients. Int J Dev Neurosci 1995; 13:455-62. [PMID: 7484216 DOI: 10.1016/0736-5748(95)00011-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In late infantile and juvenile forms of neuronal ceroid lipofuscinosis, commonly known as Batten disease (BD). ATP synthase subunit c accumulates in the lysosomes of neural cells. By using polyclonal antibodies, raised against bovine liver subunit c and an image analysis system for the quantification of antibody-linked alkaline phosphatase reaction, we have demonstrated that polymorphonucleocytes (PMN) from a late infantile and a juvenile BD patient stored several-fold more subunit c as compared to normal PMN.
Collapse
Affiliation(s)
- N H Ansari
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77555-0355, USA
| | | | | | | |
Collapse
|
44
|
Jolly RD. Comparative biology of the neuronal ceroid-lipofuscinoses (NCL): an overview. AMERICAN JOURNAL OF MEDICAL GENETICS 1995; 57:307-11. [PMID: 7668352 DOI: 10.1002/ajmg.1320570240] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Multiple forms of ceroid-lipofuscinosis occur in human beings and animals. They are characterized by brain and retinal atrophy associated with selective necrosis of neurons. This neurodegenerative disease appears associated with the disease process rather than storage of fluorescent lipopigment per se, and there is now growing evidence that pathogenesis may involve mitochondria rather than a primary defect of lysosomal catabolism. Of the forms of ceroid-lipofuscinosis studied, most but not all reflect accumulation of subunit c of mitochondrial ATP synthase. If there is a common denominator between all forms other than the presence of fluorescent lipopigment, then it may be the accumulation of hydrophobic protein. Analogous diseases in animals can be expected to reflect the same spectrum of biochemical changes, and they warrant in-depth study to help understand the pathogenesis and heterogeneity of the group.
Collapse
Affiliation(s)
- R D Jolly
- Department of Veterinary Pathology and Public Health, Massey University, Palmerston North, New Zealand
| |
Collapse
|
45
|
Palmer DN, Bayliss SL, Westlake VJ. Batten disease and the ATP synthase subunit c turnover pathway: raising antibodies to subunit c. AMERICAN JOURNAL OF MEDICAL GENETICS 1995; 57:260-5. [PMID: 7668342 DOI: 10.1002/ajmg.1320570230] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Analysis of storage bodies in the ceroid-lipofuscinoses (Batten disease) has demonstrated a high protein content suggestive of a proteinosis. Direct N-terminal sequencing has shown that subunit c of mitochondrial ATP synthase is specifically stored in the disease in sheep and cattle, and in the human late infantile and juvenile diseases, as well as in 3 breeds of dogs. No differences have been found between the stored subunit c and that in normal mitochondria. No other mitochondrial components are stored. Different proteins, sphingolipid activator proteins (SAPs or saposins) A and D, are stored in the infantile disease. Linkage studies have shown that different forms of ceroid-lipofuscinosis are coded for on different genes on different chromosomes. The genes for subunit c, its production, its insertion into mitochondria, and mitochondrial function are normal. This suggests that underlying the various forms of the disease is a family of lesions in the normal pathway of subunit c turnover, after its normal insertion into the ATP synthase complex. Antibodies to subunit c offer one way of mapping that pathway and detecting the sites of lesions. Specific antibodies have been raised against stored subunit c, using a liposomal adjuvant system which proved superior to classical adjuvants. These antibodies are also useful diagnostically, both in Western blotting and in immunocytochemistry.
Collapse
Affiliation(s)
- D N Palmer
- Centre for Molecular Biology, Lincoln University, Canterbury, New Zealand
| | | | | |
Collapse
|
46
|
Elleder M, Drahota Z, Lisá V, Mares V, Mandys V, Müller J, Palmer DN. Tissue culture loading test with storage granules from animal models of neuronal ceroid-lipofuscinosis (Batten disease): testing their lysosomal degradability by normal and Batten cells. AMERICAN JOURNAL OF MEDICAL GENETICS 1995; 57:213-21. [PMID: 7668332 DOI: 10.1002/ajmg.1320570220] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Storage granules (SGs) from ovine and canine models of Batten disease were found to be easily phagocytosed by four cell types studied. The cell types tested were human fibroblasts and peripheral monocytes (control and from a late infantile Batten disease patient), rat C6 cell line, and neonatal cardiomyocytes. The phagocytosed SGs elicited an increase in acid phosphatase activity which was localized in the phagolysosome. After phagocytosis SGs were followed for various times ranging from 7 to 21 days and were found to be of unchanged density (phase contrast), autofluorescence, and ultrastructural appearance. These findings point to their undergradability, or very low degree of degradability, in phagolysosomes in both normal or Batten cultured cells. The Batten disease SGs are not toxic and did not cause any adverse affect on the host cells. Either the normal clearance rate from lysosomes is too slow to be measured by this technique or subunit c accumulation in lysosomes need not result from a primary lysosomal protease defect. Subunit c may aggregate, because of the lack of some normally preventive factor, resulting in a physical barrier to the degradation of this highly apolar molecule.
Collapse
Affiliation(s)
- M Elleder
- Hlava's 1st Institute of Pathology, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The ceroid-lipofuscinoses are a group of inherited neurodegenerative diseases of human beings characterized by the accumulation of a fluorescent lipopigment in neurons and other cells within the body. There is usually atrophy of both brain and retina with preferential loss of particular neurons. Biochemically, the diseases divide into at least two groups, i.e. those that accumulate subunit c of mitochondrial ATP synthase and those that do not. Dolichol pyrophosphate linked oligosaccharides are also present in storage material. As the underlying biochemical anomalies are not known, the various clinicopathological entities are classified on clinical grounds, by age of onset and, to a lesser extent, by the course of the disease. The best recognized diseases are infantile, late infantile, early juvenile, juvenile and adult onset forms but other variants occur indicating considerable heterogeneity within the group. The infantile, late infantile and juvenile diseases are not allelic. Analogous diseases occur in a variety of animal species. That in the sheep has been extensively studied as a model of the human disease and is the prototype subunit c storage disease.
Collapse
Affiliation(s)
- R D Jolly
- Faculty of Veterinary Science, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
48
|
Dalefield RR, Palmer DN, Jolly RD. Lipofuscin and abnormalities in colloid in the equine thyroid gland in relation to age. J Comp Pathol 1994; 111:389-99. [PMID: 7884056 DOI: 10.1016/s0021-9975(05)80097-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lipofuscin accumulation and other histological changes in thyroid tissue, previously reported to be age-related, were studied in 31 horses aged up to 35 years. The number of lipofuscin granules relative to thyrocytes increased from birth to 5 years of age. There was a wide individual variation in the number of lipofuscin granules in thyrocytes in mature horses, but this was not directly related to age. Several abnormalities were identified in thyroid colloid. The prevalence of spherites, lipofuscin granules, nucleated cells and shreds of colloid increased with age, but the prevalence of calcium oxalate crystals, erythrocytes, basophilic zones and solid fragments of colloid did not. In horses younger than 7 years, particularly large lipofuscin granules were found in thyrocytes of a small proportion of follicles which also contained abnormal colloid. Such follicles became more common in older horses without being accompanied by large lipofuscin granules. No correlation was found between granule numbers and frequency of colloid abnormalities. These results cast doubt on the traditional assumption that lipofuscin is indigestible cellular residue, since there was little evidence for excretion of granules. It is postulated that lipofuscin in this tissue may be a normal stage in lysosomal catabolism.
Collapse
Affiliation(s)
- R R Dalefield
- Department of Veterinary Pathology and Public Health, Massey University, Palmerston North, New Zealand
| | | | | |
Collapse
|
49
|
Dunn WA, Raizada MK, Vogt ES, Brown EA. Growth factor-induced neurite growth in primary neuronal cultures of dogs with neuronal ceroid lipofuscinosis. Int J Dev Neurosci 1994; 12:185-96. [PMID: 7942092 DOI: 10.1016/0736-5748(94)90040-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL) is a type of lysosomal storage disease resulting in the progressive deterioration of neuronal function. Little is known about the genetics, pathophysiology and biochemical basis of this disease. This is, in part, due to the complexity of the central nervous system and the lack of an in vitro model. In this report, we describe the conditions to establish neuronal cells in primary culture from the brains of newborn English setters with NCL, a canine model for this disease. Over 80% of the neuronal cells from normal dog brain establish well-developed interconnecting networks of long neurites. On the contrary, approximately 50% of the neurons cultured from NCL dog brains do not assemble neurites. Of those NCL neurons with processes, the neurites are routinely shorter and fewer in number than those seen in normal cultures. In addition, the characteristic inclusion bodies, pathological markers for this disease in vivo, are prevalent in the soma of cultured neuronal cells isolated from NCL dog brain. A time-dependent maturation of the inclusion bodies suggests a progression of the disease state in culture. The reduced ability of the NCL neurons to establish neurites prompted us to examine the effects of growth factors on neurite assembly. Our data show that insulin-like growth factor I, epidermal growth factor and platelet-derived growth factor are capable of stimulating neurite outgrowth of NCL neurons. We report the establishment and morphological characterization of neuronal cultures from normal and NCL dog brains. The abnormal morphology of cultured NCL neurons can, in part, be alleviated by supplementing the medium with growth factors. The results suggest that this cellular model of NCL will be useful to study the molecular and physiological mechanisms of NCL disease, as well as to test potential therapeutic agents and candidate genes.
Collapse
Affiliation(s)
- W A Dunn
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville 32610
| | | | | | | |
Collapse
|
50
|
Jolly RD, Palmer DN, Studdert VP, Sutton RH, Kelly WR, Koppang N, Dahme G, Hartley WJ, Patterson JS, Riis RC. Canine ceroid-lipofuscinoses: A review and classification. J Small Anim Pract 1994. [DOI: 10.1111/j.1748-5827.1994.tb03290.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|