1
|
Chrysostomou E, Mourikis P. The extracellular matrix niche of muscle stem cells. Curr Top Dev Biol 2024; 158:123-150. [PMID: 38670702 DOI: 10.1016/bs.ctdb.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Preserving the potency of stem cells in adult tissues is very demanding and relies on the concerted action of various cellular and non-cellular elements in a precise stoichiometry. This balanced microenvironment is found in specific anatomical "pockets" within the tissue, known as the stem cell niche. In this review, we explore the interplay between stem cells and their niches, with a primary focus on skeletal muscle stem cells and the extracellular matrix (ECM). Quiescent muscle stem cells, known as satellite cells are active producers of a diverse array of ECM molecules, encompassing major constituents like collagens, laminins, and integrins, some of which are explored in this review. The conventional perception of ECM as merely a structural scaffold is evolving. Collagens can directly interact as ligands with receptors on satellite cells, while other ECM proteins have the capacity to sequester growth factors and regulate their release, especially relevant during satellite cell turnover in homeostasis or activation upon injury. Additionally, we explore an evolutionary perspective on the ECM across a range of multicellular organisms and discuss a model wherein satellite cells are self-sustained by generating their own niche. Considering the prevalence of ECM proteins in the connective tissue of various organs it is not surprising that mutations in ECM genes have pathological implications, including in muscle, where they can lead to myopathies. However, the particular role of certain disease-related ECM proteins in stem cell maintenance highlights the potential contribution of stem cell deregulation to the progression of these disorders.
Collapse
Affiliation(s)
- Eleni Chrysostomou
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), Créteil, France
| | - Philippos Mourikis
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), Créteil, France.
| |
Collapse
|
2
|
Li M, Popovic Z, Chu C, Krämer BK, Hocher B. Endostatin in Renal and Cardiovascular Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2021; 7:468-481. [PMID: 34901193 PMCID: PMC8613550 DOI: 10.1159/000518221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/29/2021] [Indexed: 04/21/2023]
Abstract
UNLABELLED Endostatin, a protein derived from the cleavage of collagen XVIII by the action of proteases, is an endogenous inhibitor known for its ability to inhibit proliferation and migration of endothelial cells, angiogenesis, and tumor growth. Angiogenesis is defined as the formation of new blood vessels from pre-existing vasculature, which is crucial in many physiological processes, such as embryogenesis, tissue regeneration, and neoplasia. SUMMARY Increasing evidence shows that dysregulation of angiogenesis is crucial for the pathogenesis of renal and cardiovascular diseases. Endostatin plays a pivotal role in the regulation of angiogenesis. Recent studies have provided evidence that circulating endostatin increases significantly in patients with kidney and heart failure and may also contribute to disease progression. KEY MESSAGE In the current review, we summarize the latest findings on preclinical and clinical studies analyzing the impact of endostatin on renal and cardiovascular diseases.
Collapse
Affiliation(s)
- Mei Li
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- *Berthold Hocher,
| | - Zoran Popovic
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Chang Chu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Nephrology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Bernhard K. Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- European Center for Angioscience, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
- Center for Innate Immunoscience, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- Institute of Medical Diagnostics, IMD Berlin, Berlin, Germany
| |
Collapse
|
3
|
Ambade AS, Hassoun PM, Damico RL. Basement Membrane Extracellular Matrix Proteins in Pulmonary Vascular and Right Ventricular Remodeling in Pulmonary Hypertension. Am J Respir Cell Mol Biol 2021; 65:245-258. [PMID: 34129804 PMCID: PMC8485997 DOI: 10.1165/rcmb.2021-0091tr] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM), a highly organized network of structural and nonstructural proteins, plays a pivotal role in cellular and tissue homeostasis. Changes in the ECM are critical for normal tissue repair, whereas dysregulation contributes to aberrant tissue remodeling. Pulmonary arterial hypertension is a severe disorder of the pulmonary vasculature characterized by pathologic remodeling of the pulmonary vasculature and right ventricle, increased production and deposition of structural and nonstructural proteins, and altered expression of ECM growth factors and proteases. Furthermore, ECM remodeling plays a significant role in disease progression, as several dynamic changes in its composition, quantity, and organization are documented in both humans and animal models of disease. These ECM changes impact vascular cell biology and affect proliferation of resident cells. Furthermore, ECM components determine the tissue architecture of the pulmonary and myocardial vasculature as well as the myocardium itself and provide mechanical stability crucial for tissue homeostasis. However, little is known about the basement membrane (BM), a specialized, self-assembled conglomerate of ECM proteins, during remodeling. In the vasculature, the BM is in close physical association with the vascular endothelium and smooth muscle cells. While in the myocardium, each cardiomyocyte is enclosed by a BM that serves as the interface between cardiomyocytes and the surrounding interstitial matrix. In this review, we provide a brief overview on the current state of knowledge of the BM and its ECM composition and their impact on pulmonary vascular remodeling and right ventricle dysfunction and failure in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Anjira S Ambade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Rachel L Damico
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
4
|
Exploring the roles of MACIT and multiplexin collagens in stem cells and cancer. Semin Cancer Biol 2019; 62:134-148. [PMID: 31479735 DOI: 10.1016/j.semcancer.2019.08.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is ubiquitously involved in neoplastic transformation, tumour growth and metastatic dissemination, and the interplay between tumour and stromal cells and the ECM is now considered crucial for the formation of a tumour-supporting microenvironment. The 28 different collagens (Col) form a major ECM protein family and display extraordinary functional diversity in tissue homeostasis as well as in pathological conditions, with functions ranging from structural support for tissues to regulatory binding activities and storage of biologically active cryptic domains releasable through ECM proteolysis. Two subfamilies of collagens, namely the plasma membrane-associated collagens with interrupted triple-helices (MACITs, including ColXIII, ColXXIII and ColXXV) and the basement membrane-associated collagens with multiple triple-helix domains with interruptions (multiplexins, including ColXV and ColXVIII), have highly interesting regulatory functions in tissue and organ development, as well as in various diseases, including cancer. An increasing, albeit yet sparse, data suggest that these collagens play crucial roles in conveying regulatory signals from the extracellular space to cells. We summarize here the current knowledge about MACITs and multiplexins as regulators of stemness and oncogenic processes, as well as their roles in influencing cell fate decisions in healthy and cancerous tissues. In addition, we present a bioinformatic analysis of the impacts of MACITs and multiplexins transcript levels on the prognosis of patients representing a wide array of malignant diseases, to aid future diagnostic and therapeutic efforts.
Collapse
|
5
|
Walia A, Yang JF, Huang YH, Rosenblatt MI, Chang JH, Azar DT. Endostatin's emerging roles in angiogenesis, lymphangiogenesis, disease, and clinical applications. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1850:2422-38. [PMID: 26367079 PMCID: PMC4624607 DOI: 10.1016/j.bbagen.2015.09.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/02/2015] [Accepted: 09/10/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Angiogenesis is the process of neovascularization from pre-existing vasculature and is involved in various physiological and pathological processes. Inhibitors of angiogenesis, administered either as individual drugs or in combination with other chemotherapy, have been shown to benefit patients with various cancers. Endostatin, a 20-kDa C-terminal fragment of type XVIII collagen, is one of the most potent inhibitors of angiogenesis. SCOPE OF REVIEW We discuss the biology behind endostatin in the context of its endogenous production, the various receptors to which it binds, and the mechanisms by which it acts. We focus on its inhibitory role in angiogenesis, lymphangiogenesis, and cancer metastasis. We also present emerging clinical applications for endostatin and its potential as a therapeutic agent in the form a short peptide. MAJOR CONCLUSIONS The delicate balance between pro- and anti-angiogenic factors can be modulated to result in physiological wound healing or pathological tumor metastasis. Research in the last decade has emphasized an emerging clinical potential for endostatin as a biomarker and as a therapeutic short peptide. Moreover, elevated or depressed endostatin levels in diseased states may help explain the pathophysiological mechanisms of the particular disease. GENERAL SIGNIFICANCE Endostatin was once sought after as the 'be all and end all' for cancer treatment; however, research throughout the last decade has made it apparent that endostatin's effects are complex and involve multiple mechanisms. A better understanding of newly discovered mechanisms and clinical applications still has the potential to lead to future advances in the use of endostatin in the clinic.
Collapse
Affiliation(s)
- Amit Walia
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Jessica F Yang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Yu-Hui Huang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA.
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol 2015; 42:11-55. [PMID: 25701227 PMCID: PMC4859157 DOI: 10.1016/j.matbio.2015.02.003] [Citation(s) in RCA: 849] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
We provide a comprehensive classification of the proteoglycan gene families and respective protein cores. This updated nomenclature is based on three criteria: Cellular and subcellular location, overall gene/protein homology, and the utilization of specific protein modules within their respective protein cores. These three signatures were utilized to design four major classes of proteoglycans with distinct forms and functions: the intracellular, cell-surface, pericellular and extracellular proteoglycans. The proposed nomenclature encompasses forty-three distinct proteoglycan-encoding genes and many alternatively-spliced variants. The biological functions of these four proteoglycan families are critically assessed in development, cancer and angiogenesis, and in various acquired and genetic diseases where their expression is aberrant.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Zaferani A, Talsma DT, Yazdani S, Celie JWAM, Aikio M, Heljasvaara R, Navis GJ, Pihlajaniemi T, van den Born J. Basement membrane zone collagens XV and XVIII/proteoglycans mediate leukocyte influx in renal ischemia/reperfusion. PLoS One 2014; 9:e106732. [PMID: 25188209 PMCID: PMC4154753 DOI: 10.1371/journal.pone.0106732] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/09/2014] [Indexed: 01/23/2023] Open
Abstract
Collagen type XV and XVIII are proteoglycans found in the basement membrane zones of endothelial and epithelial cells, and known for their cryptic anti-angiogenic domains named restin and endostatin, respectively. Mutations or deletions of these collagens are associated with eye, muscle and microvessel phenotypes. We now describe a novel role for these collagens, namely a supportive role in leukocyte recruitment. We subjected mice deficient in collagen XV or collagen XVIII, and their compound mutant, as well as the wild-type control mice to bilateral renal ischemia/reperfusion, and evaluated renal function, tubular injury, and neutrophil and macrophage influx at different time points after ischemia/reperfusion. Five days after ischemia/reperfusion, the collagen XV, collagen XVIII and the compound mutant mice showed diminished serum urea levels compared to wild-type mice (all p<0.05). Histology showed reduced tubular damage, and decreased inflammatory cell influx in all mutant mice, which were more pronounced in the compound mutant despite increased expression of MCP-1 and TNF-α in double mutant mice compared to wildtype mice. Both type XV and type XVIII collagen bear glycosaminoglycan side chains and an in vitro approach with recombinant collagen XVIII fragments with variable glycanation indicated a role for these side chains in leukocyte migration. Thus, basement membrane zone collagen/proteoglycan hybrids facilitate leukocyte influx and tubular damage after renal ischemia/reperfusion and might be potential intervention targets for the reduction of inflammation in this condition.
Collapse
Affiliation(s)
- Azadeh Zaferani
- Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| | - Ditmer T. Talsma
- Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Saleh Yazdani
- Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Johanna W. A. M. Celie
- Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Mari Aikio
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Ritva Heljasvaara
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Gerjan J. Navis
- Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jacob van den Born
- Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Chen P, Cescon M, Bonaldo P. The Role of Collagens in Peripheral Nerve Myelination and Function. Mol Neurobiol 2014; 52:216-25. [PMID: 25143238 DOI: 10.1007/s12035-014-8862-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/11/2014] [Indexed: 02/07/2023]
Abstract
In the peripheral nervous system, myelin is formed by Schwann cells, which are surrounded by a basal lamina. Extracellular matrix (ECM) molecules in the basal lamina play an important role in regulating Schwann cell functions, including adhesion, survival, spreading, and myelination, as well as in supporting neurite outgrowth. Collagens are a major component of ECM molecules, which include 28 types that differ in structure and function. A growing body of evidence suggests that collagens are key components of peripheral nerves, where they not only provide a structural support but also affect cell behavior by triggering intracellular signals. In this review, we will summarize the main properties of collagen family, discuss the role of extensively studied collagen types (collagens IV, V, VI, and XV) in Schwann cell function and myelination, and provide a detailed overview of the recent advances with respect to these collagens in peripheral nerve function.
Collapse
Affiliation(s)
- Peiwen Chen
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy,
| | | | | |
Collapse
|
9
|
Cuesta AM, Sánchez-Martín D, Blanco-Toribio A, Villate M, Enciso-Álvarez K, Alvarez-Cienfuegos A, Sainz-Pastor N, Sanz L, Blanco FJ, Alvarez-Vallina L. Improved stability of multivalent antibodies containing the human collagen XV trimerization domain. MAbs 2012; 4:226-32. [PMID: 22453098 DOI: 10.4161/mabs.4.2.19140] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We recently described the in vitro and in vivo properties of an engineered homotrimeric antibody made by fusing the N-terminal trimerization region of collagen XVIII NC1 domain to the C-terminus of a scFv fragment [trimerbody (scFv-NC1) 3; 110 kDa]. Here, we demonstrated the utility of the N-terminal trimerization region of collagen XV NC1 domain in the engineering of trivalent antibodies. We constructed several scFv-based trimerbodies containing the human type XV trimerization domain and demonstrated that all the purified trimerbodies were trimeric in solution and exhibited excellent antigen binding capacity. Importantly, type XV trimerbodies demonstrated substantially greater thermal and serum stability and resistance to protease digestion than type XVIII trimerbodies. In summary, the small size, high expression level, solubility and stability of the trimerization domain of type XV collagen make it the ideal choice for engineering homotrimeric antibodies for cancer detection and therapy.
Collapse
Affiliation(s)
- Angel M Cuesta
- Madrid, Spain; Molecular Immunology Unit; Hospital Universitario Puerta de Hierro
| | - David Sánchez-Martín
- Madrid, Spain; Molecular Immunology Unit; Hospital Universitario Puerta de Hierro
| | | | - Maider Villate
- Structural Biology Unit; CIC bioGUNE, Parque Tecnológico de Bizkaia; Derio, Spain
| | - Kelly Enciso-Álvarez
- Madrid, Spain; Molecular Immunology Unit; Hospital Universitario Puerta de Hierro
| | | | - Noelia Sainz-Pastor
- Madrid, Spain; Molecular Immunology Unit; Hospital Universitario Puerta de Hierro
| | - Laura Sanz
- Madrid, Spain; Molecular Immunology Unit; Hospital Universitario Puerta de Hierro
| | - Francisco J Blanco
- Structural Biology Unit; CIC bioGUNE, Parque Tecnológico de Bizkaia; Derio, Spain; IKERBASQUE; Basque Foundation for Science; Bilbao, Spain
| | - Luis Alvarez-Vallina
- Madrid, Spain; Molecular Immunology Unit; Hospital Universitario Puerta de Hierro
| |
Collapse
|
10
|
Stevenson W, Cheng SF, Dastjerdi MH, Ferrari G, Dana R. Corneal neovascularization and the utility of topical VEGF inhibition: ranibizumab (Lucentis) vs bevacizumab (Avastin). Ocul Surf 2012; 10:67-83. [PMID: 22482468 DOI: 10.1016/j.jtos.2012.01.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/10/2012] [Accepted: 01/14/2012] [Indexed: 12/21/2022]
Abstract
Corneal avascularity is necessary for the preservation of optimal vision. The cornea maintains a dynamic balance between pro- and antiangiogenic factors that allows it to remain avascular under normal homeostatic conditions; however, corneal avascularity can be compromised by pathologic conditions that negate the cornea's "angiogenic privilege." The clinical relevance of corneal neovascularization has long been recognized, but management of this condition has been hindered by a lack of safe and effective therapeutic modalities. Herein, the etiology, epidemiology, pathogenesis, and treatment of corneal neovascularization are reviewed. Additionally, the authors' recent findings regarding the clinical utility of topical ranibizumab (Lucentis®) and bevacizumab (Avastin®) in the treatment of corneal neovascularization are summarized. These findings clearly indicate that ranibizumab and bevacizumab are safe and effective treatments for corneal neovascularization when appropriate precautions are observed. Although direct comparisons are not conclusive, the results suggest that ranibizumab may be modestly superior to bevacizumab in terms of both onset of action and degree of efficacy. In order to justify the increased cost of ranibizumab, it will be necessary to demonstrate meaningful treatment superiority in a prospective, randomized, head-to-head comparison study.
Collapse
Affiliation(s)
- William Stevenson
- Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
11
|
Boudko SP, Engel J, Bächinger HP. The crucial role of trimerization domains in collagen folding. Int J Biochem Cell Biol 2012; 44:21-32. [DOI: 10.1016/j.biocel.2011.09.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/27/2011] [Accepted: 09/27/2011] [Indexed: 10/17/2022]
|
12
|
Seppinen L, Pihlajaniemi T. The multiple functions of collagen XVIII in development and disease. Matrix Biol 2011; 30:83-92. [DOI: 10.1016/j.matbio.2010.11.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 12/11/2022]
|
13
|
Wirz JA, Boudko SP, Lerch TF, Chapman MS, Bächinger HP. Crystal structure of the human collagen XV trimerization domain: a potent trimerizing unit common to multiplexin collagens. Matrix Biol 2011; 30:9-15. [PMID: 20932905 PMCID: PMC3048825 DOI: 10.1016/j.matbio.2010.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/25/2010] [Accepted: 09/29/2010] [Indexed: 12/01/2022]
Abstract
Correct folding of the collagen triple helix requires a self-association step which selects and binds α-chains into trimers. Here we report the crystal structure of the trimerization domain of human type XV collagen. The trimerization domain of type XV collagen contains three monomers each composed of four β-sheets and an α-helix. The hydrophobic core of the trimer is devoid of solvent molecules and is shaped by β-sheet planes from each monomer. The trimerization domain is extremely stable and forms at picomolar concentrations. It is found that the trimerization domain of type XV collagen is structurally similar to that of type XVIII, despite only 32% sequence identity. High structural conservation indicates that the multiplexin trimerization domain represents a three dimensional fold that allows for sequence variability while retaining structural integrity necessary for tight and efficient trimerization.
Collapse
Affiliation(s)
- Jacqueline A. Wirz
- Research Department of Shriners Hospital for Children, 3101 SW Sam Jackson Pk. Rd., Portland, OR 97239, USA
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, 3191 SW Sam Jackson Pk. Rd., Portland, OR 97239, USA
| | - Sergei P. Boudko
- Research Department of Shriners Hospital for Children, 3101 SW Sam Jackson Pk. Rd., Portland, OR 97239, USA
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, 3191 SW Sam Jackson Pk. Rd., Portland, OR 97239, USA
| | - Thomas F. Lerch
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, 3191 SW Sam Jackson Pk. Rd., Portland, OR 97239, USA
| | - Michael S. Chapman
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, 3191 SW Sam Jackson Pk. Rd., Portland, OR 97239, USA
| | - Hans Peter Bächinger
- Research Department of Shriners Hospital for Children, 3101 SW Sam Jackson Pk. Rd., Portland, OR 97239, USA
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, 3191 SW Sam Jackson Pk. Rd., Portland, OR 97239, USA
| |
Collapse
|
14
|
Hurskainen M, Ruggiero F, Hägg P, Pihlajaniemi T, Huhtala P. Recombinant human collagen XV regulates cell adhesion and migration. J Biol Chem 2009; 285:5258-65. [PMID: 20040604 DOI: 10.1074/jbc.m109.033787] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-terminal end of collagen XV, restin, has been the focus of several studies, but the functions of full-length collagen XV have remained unknown. We describe here studies on the production, purification, and function of collagen XV and the production of a monoclonal N-terminal antibody to it. Full-length human collagen XV was produced in insect cells using baculoviruses and purified from the cell culture medium. The yield was 15 mg/liter of cell culture medium. The collagen XV was shown to be trimeric, with disulfide bonds in the collagenous region. Rotary shadowing electron microscopy revealed rod-like molecules with a mean length of 241.8 nm and with a globular domain at one end. The globular domain was verified to be the N-terminal end by N-terminal antibody binding. The molecules show flexibility in their conformation, presumably due to the many interruptions in their collagenous domains. The ability of collagen XV to serve as a substrate for cells was tested in cell adhesion assays, and it was shown that cells did not bind to collagen XV-coated surfaces. When added to the culture medium of fibroblasts and fibrosarcoma cells, however, collagen XV rapidly bound to their fibronectin network. Solid phase assays showed that collagen XV binds to fibronectin, laminin, and vitronectin and that it binds to the collagen/gelatin-binding domain of fibronectin. No binding was detected to fibrillar collagens, fibril-associated collagens, or decorin. Interestingly, collagen XV was found to inhibit the adhesion and migration of fibrosarcoma cells when present in fibronectin-containing matrices.
Collapse
Affiliation(s)
- Merja Hurskainen
- Oulu Centre for Cell-Matrix Research, Department of Medical Biochemistry and Molecular Biology, Institute of Biomedicine, University of Oulu, 90014 Oulu, Finland
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Abstract
The collagens represent a family of trimeric extracellular matrix molecules used by cells for structural integrity and other functions. The three alpha chains that form the triple helical part of the molecule are composed of repeating peptide triplets of glycine-X-Y. X and Y can be any amino acid but are often proline and hydroxyproline, respectively. Flanking the triple helical regions (i.e., Col domains) are non-glycine-X-Y regions, termed non-collagenous domains. These frequently contain recognizable peptide modules found in other matrix molecules. Proper tissue function depends on correctly assembled molecular aggregates being incorporated into the matrix. This review highlights some of the structural characteristics of collagen types I-XXVIII.
Collapse
|
17
|
Boudko SP, Sasaki T, Engel J, Lerch TF, Nix J, Chapman MS, Bächinger HP. Crystal structure of human collagen XVIII trimerization domain: A novel collagen trimerization Fold. J Mol Biol 2009; 392:787-802. [PMID: 19631658 DOI: 10.1016/j.jmb.2009.07.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 07/17/2009] [Accepted: 07/18/2009] [Indexed: 11/15/2022]
Abstract
Collagens contain a unique triple-helical structure with a repeating sequence -G-X-Y-, where proline and hydroxyproline are major constituents in X and Y positions, respectively. Folding of the collagen triple helix requires trimerization domains. Once trimerized, collagen chains are correctly aligned and the folding of the triple helix proceeds in a zipper-like fashion. Here we report the isolation, characterization, and crystal structure of the trimerization domain of human type XVIII collagen, a member of the multiplexin family. This domain differs from all other known trimerization domains in other collagens and exhibits a high trimerization potential at picomolar concentrations. Strong chain association and high specificity of binding are needed for multiplexins, which are present at very low levels.
Collapse
Affiliation(s)
- Sergei P Boudko
- Research Department of Shriners Hospital for Children, Portland, OR 97239, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Iozzo RV, Zoeller JJ, Nyström A. Basement membrane proteoglycans: modulators Par Excellence of cancer growth and angiogenesis. Mol Cells 2009; 27:503-13. [PMID: 19466598 PMCID: PMC6712562 DOI: 10.1007/s10059-009-0069-0] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 04/25/2009] [Indexed: 01/13/2023] Open
Abstract
Proteoglycans located in basement membranes, the nanostructures underling epithelial and endothelial layers, are unique in several respects. They are usually large, elongated molecules with a collage of domains that share structural and functional homology with numerous extracellular matrix proteins, growth factors and surface receptors. They mainly carry heparan sulfate side chains and these contribute not only to storing and preserving the biological activity of various heparan sulfate-binding cytokines and growth factors, but also in presenting them in a more "active configuration" to their cognate receptors. Abnormal expression or deregulated function of these proteoglycans affect cancer and angiogenesis, and are critical for the evolution of the tumor microenvironment. This review will focus on the functional roles of the major heparan sulfate proteoglycans from basement membrane zones: perlecan, agrin and collagen XVIII, and on their roles in modulating cancer growth and angiogenesis.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
19
|
Lesional expression of the endogenous angiogenesis inhibitor endostatin/collagen XVIII following traumatic brain injury (TBI). Exp Neurol 2007; 208:228-37. [DOI: 10.1016/j.expneurol.2007.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 07/23/2007] [Accepted: 07/25/2007] [Indexed: 11/17/2022]
|
20
|
Mueller CA, Conrad S, Schluesener HJ, Pietsch T, Schwab JM. Spinal cord injury-induced expression of the antiangiogenic endostatin/collagen XVIII in areas of vascular remodelling. J Neurosurg Spine 2007; 7:205-14. [PMID: 17688061 DOI: 10.3171/spi-07/08/205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECT Spinal cord injury (SCI) induces the disruption of neural and vascular structures. In contrast to the emerging knowledge of mechanisms regulating the onset of the postinjury angiogenic response, little is known about counterregulatory signals. METHODS Using immunohistochemical methods, the authors investigated the expression of the endogenous angiogenic inhibitor endostatin/collagen XVIII during the tissue remodeling response to SCI. RESULTS After SCI, endostatin/collagen XVIII+ cells accumulated at the lesion site, in pannecrotic regions (especially in areas of cavity formation), at the lesion margin/areas of ongoing secondary damage, and in perivascular Virchow-Robin spaces. In remote areas (> 0.75 cm from the epicenter) a more modest accumulation of endostatin/collagen XVIII+ cells was observed, especially in areas of pronounced Wallerian degeneration. The numbers of endostatin/collagen XVIII+ cells reached their maximum on Day 7 after SCI. The cell numbers remained elevated in both, the lesion and remote regions, compared with control spinal cords for 4 weeks afterwards. In addition to being predominantly confined to ED1+-activated microglia/macrophages within the pannecrotic lesion core, endostatin/collagen XVIII expression was frequently detected by the endothelium/vessel walls. Numbers of lesional endostatin/collagen XVIII+ endothelium/vessel walls were found to increase early by Day 1 postinjury, reaching their maximum on Day 3 and declining subsequently to enhanced (above control) levels 30 days after SCI. CONCLUSIONS The authors detected that in comparison to the early expression of neoangiogenic factors, there was a postponed lesional expression of the antiangiogenic endostatin/collagen XVIII. Furthermore, the expression of endostatin/collagen XVIII was localized to areas of neovascular pruning and retraction (cavity formation). The expression of endostatin/collagen XVIII by macrophages in a "late" activated phagocytic mode suggests that this factor plays a role in counteracting the preceding "early" neoangiogenic response after SCI.
Collapse
Affiliation(s)
- Christian A Mueller
- Institute of Brain Research, University of Tübingen Medical School, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
21
|
Dudek AZ, Bodempudi V, Welsh BW, Jasinski P, Griffin RJ, Milbauer L, Hebbel RP. Systemic inhibition of tumour angiogenesis by endothelial cell-based gene therapy. Br J Cancer 2007; 97:513-22. [PMID: 17653078 PMCID: PMC2360342 DOI: 10.1038/sj.bjc.6603883] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Angiogenesis and post-natal vasculogenesis are two processes involved in the formation of new vessels, and both are essential for tumour growth and metastases. We isolated endothelial cells from human blood mononuclear cells by selective culture. These blood outgrowth cells expressed endothelial cell markers and responded correctly to functional assays. To evaluate the potential of blood outgrowth endothelial cells (BOECs) to construct functional vessels in vivo, NOD-SCID mice were implanted with Lewis lung carcinoma cells subcutaneously (s.c.). Blood outgrowth endothelial cells were then injected through the tail vein. Initial distribution of these cells occurred throughout the lung, liver, spleen, and tumour vessels, but they were only found in the spleen, liver, and tumour tissue 48 h after injection. By day 24, they were mainly found in the tumour vasculature. Tumour vessel counts were also increased in mice receiving BOEC injections as compared to saline injections. We engineered BOECs to deliver an angiogenic inhibitor directly to tumour endothelium by transducing them with the gene for human endostatin. These cells maintained an endothelial phenotype and decreased tumour vascularisation and tumour volume in mice. We conclude that BOECs have the potential for tumour-specific delivery of cancer gene therapy.
Collapse
MESH Headings
- Angiogenesis Inhibitors/genetics
- Animals
- Carcinoma, Lewis Lung/blood supply
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/therapy
- Cells, Cultured
- Endostatins/genetics
- Endostatins/therapeutic use
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelial Cells/transplantation
- Genetic Therapy/methods
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Nude
- Mice, SCID
- Models, Biological
- Neoplasm Transplantation
- Neovascularization, Pathologic/therapy
- Phenotype
- Transfection
Collapse
Affiliation(s)
- A Z Dudek
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Khoshnoodi J, Cartailler JP, Alvares K, Veis A, Hudson BG. Molecular recognition in the assembly of collagens: terminal noncollagenous domains are key recognition modules in the formation of triple helical protomers. J Biol Chem 2006; 281:38117-21. [PMID: 17082192 DOI: 10.1074/jbc.r600025200] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha-chains of the collagen superfamily are encoded with information that specifies self-assembly into fibrils, microfibrils, and networks that have diverse functions in the extracellular matrix. A key self-organizing step, common to all collagen types, is trimerization that selects, binds, and registers cognate alpha-chains for assembly of triple helical protomers that subsequently oligomerize into specific suprastructures. In this article, we review recent findings on the mechanism of chain selection and infer that terminal noncollagenous domains function as recognition modules in trimerization and are therefore key determinants of specificity in the assembly of suprastructures. This mechanism is also illustrated with computer-generated animations.
Collapse
Affiliation(s)
- Jamshid Khoshnoodi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-2372, USA
| | | | | | | | | |
Collapse
|
23
|
Heljasvaara R, Nyberg P, Luostarinen J, Parikka M, Heikkilä P, Rehn M, Sorsa T, Salo T, Pihlajaniemi T. Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases. Exp Cell Res 2005; 307:292-304. [PMID: 15950618 DOI: 10.1016/j.yexcr.2005.03.021] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 03/04/2005] [Accepted: 03/14/2005] [Indexed: 11/29/2022]
Abstract
Endostatin, a potent inhibitor of endothelial cell proliferation, migration, angiogenesis and tumor growth, is proteolytically cleaved from the C-terminal noncollagenous NC1 domain of type XVIII collagen. We investigated the endostatin formation from human collagen XVIII by several MMPs in vitro. The generation of endostatin fragments differing in molecular size (24-30 kDa) and in N-terminal sequences was identified in the cases of MMP-3, -7, -9, -13 and -20. The cleavage sites were located in the protease-sensitive hinge region between the trimerization and endostatin domains of NC1. MMP-1, -2, -8 and -12 did not show any significant activity against the C-terminus of collagen XVIII. The anti-proliferative effect of the 20-kDa endostatin, three longer endostatin-containing fragments generated in vitro by distinct MMPs and the entire NC1 domain, on bFGF-stimulated human umbilical vein endothelial cells was established. The anti-migratory potential of some of these fragments was also studied. In addition, production of endostatin fragments between 24-30 kDa by human hepatoblastoma cells was shown to be due to MMP action on type XVIII collagen. Our results indicate that certain, especially cancer-related, MMP family members can generate biologically active endostatin-containing polypeptides from collagen XVIII and thus, by releasing endostatin fragments, may participate in the inhibition of endothelial cell proliferation, migration and angiogenesis.
Collapse
Affiliation(s)
- Ritva Heljasvaara
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, University of Oulu, PO Box 5000, FIN-90014 Oulu, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Angiogenesis, the formation of new blood vessels, is required for many pathologic processes, including invasive tumor growth as well as physiologic organ/tissue maintenance. Angiogenesis during development and adulthood is likely regulated by a balance between endogenous proangiogenic and antiangiogenic factors. It is speculated that tumor growth requires disruption of such balance; thus, the angiogenic switch must be turned "on" for cancer progression. If the angiogenic switch needs to be turned on to facilitate the tumor growth, the question remains as to what the physiologic status of this switch is in the adult human body; is it "off," with inhibitors outweighing the stimulators, or maintained at a fine "balance," keeping the proangiogenic properties of many factors at a delicate "activity" balance with endogenous inhibitors of angiogenesis. The physiologic status of this balance is important to understand as it might determine an individual's predisposition to turn the switch on during pathologic events dependent on angiogenesis. Conceivably, if the physiologic angiogenesis balance in human population exists somewhere between off and even balance, an individual's capacity and rate to turn the switch on might reflect their normal physiologic angiogenic status. In this regard, although extensive knowledge has been gained in our understanding of endogenous growth factors that stimulate angiogenesis, the activities associated with endogenous inhibitors are poorly understood. In this review, we will present an overview of the knowledge gained in studies related to the identification and characterization of 27 different endogenous inhibitors of angiogenesis.
Collapse
Affiliation(s)
- Pia Nyberg
- Center for Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
25
|
Abstract
Collagen XVIII is a component of basement membranes (BMs) with the structural properties of both a collagen and a proteoglycan. Proteolytic cleavage within its C-terminal domain releases a fragment, endostatin, which has been reported to have anti-angiogenesis effects. Molecular studies demonstrated binding of the endostatin domain to heparan sulfate and to BM components like laminin and perlecan, but the functional role of these interactions in vivo remains unknown. Insights into the physiological function of collagen XVIII/endostatin have recently been obtained through the identification of inactivating mutations in the human collagen XVIII/endostatin gene (COL18A1) in patients with Knobloch syndrome, characterized by age-dependent vitreoretinal degeneration and occipital encephalocele. That collagen XVIII/endostatin has an essential role in ocular development and the maintenance of visual function is further demonstrated by the ocular abnormalities seen in mice lacking collagen XVIII/endostatin. Age-dependent loss of vision in these mutant mice is associated with pathological accumulation of deposits under the retinal pigment epithelium, as seen in early stages of age-related macular degeneration in humans. In addition, recent evidence suggests that lack of collagen XVIII/endostatin predisposes to hydrocephalus formation. These recent findings demonstrate an important role for collagen XVIII/endostatin in cell-matrix interactions in certain tissues that may be compensated for in other tissues expressing this collagen.
Collapse
Affiliation(s)
- Alexander G Marneros
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
26
|
Elamaa H, Sormunen R, Rehn M, Soininen R, Pihlajaniemi T. Endostatin overexpression specifically in the lens and skin leads to cataract and ultrastructural alterations in basement membranes. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:221-9. [PMID: 15632014 PMCID: PMC1602290 DOI: 10.1016/s0002-9440(10)62246-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Endostatin, a proteolytic fragment of type XVIII collagen, has been shown to inhibit angiogenesis, tumor growth, and endothelial cell proliferation and migration. We analyzed its functions in vivo by generating transgenic mice in which it was overexpressed in the skin and lens capsule under the keratin K14 promoter. Opacity of the lens occurred at 4 months of age in the mouse line J4, with the highest level of endostatin expression. The lens epithelial cells appeared to lose contact with the capsule and began to vacuolize. In 1-year-old mice the lens epithelial cell layer had entirely degenerated, and instead, large plaques of spindle-shaped cells had formed in the anterior region of the lens. Moreover, a widening of the epidermal basement membrane (BM) zone of the skin was observed in electron microscopy. The epidermal BM was conspicuously altered in the J4 mice with high transgene expression, including clear broadening and occurrence of pearl-like protrusions in some areas, whereas the BM was more even in appearance but consistently broadened in the mouse line G20 with moderate transgene expression. In both lines the BM was continuous. Measurements indicated that the lamina densa was 78.54 +/- 53.10 nm in line J4, the large variation reflecting the protrusions of the lamina densa, and 44.24 +/- 11.52 nm in line G20, compared with 33.74 +/- 9.96 nm in wild-type adult mice. Immunoelectron microscopy of wild-type mouse skin type XVIII collagen showed a polarized orientation in the BMs, with the C-terminal endostatin region localized in the lamina densa and the N terminus in average approximately 40 nm more on the dermal side. Type XVIII collagen was dispersed in the transgenic skin, suggesting that the transgene-derived endostatin fragment displaces the full-length collagen XVIII. This may impair the anchoring of the lamina densa to the dermis and thereby lead to loosening of the BMs, resembling the previously observed situation in collagen XVIII-null mice.
Collapse
Affiliation(s)
- Harri Elamaa
- Department of Medical Biochemistry and Molecular Biology, Biocenter Oulu, University of Oulu, Aapistie 7, FI 90220, Oulu, Finland
| | | | | | | | | |
Collapse
|
27
|
Kefalides NA, Borel JP. Minor Proteins of Basement Membranes, Minor Collagens of the Basement Membrane Zone. CURRENT TOPICS IN MEMBRANES 2005. [DOI: 10.1016/s1063-5823(05)56007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Extracellular matrix and the development of disease: The role of its components in cancer progression. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1574-3349(05)15007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
29
|
Nyberg P, Heikkilä P, Sorsa T, Luostarinen J, Heljasvaara R, Stenman UH, Pihlajaniemi T, Salo T. Endostatin inhibits human tongue carcinoma cell invasion and intravasation and blocks the activation of matrix metalloprotease-2, -9, and -13. J Biol Chem 2003; 278:22404-11. [PMID: 12690120 DOI: 10.1074/jbc.m210325200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endostatin, a 20-kDa collagen XVIII fragment, inhibits angiogenesis and tumor growth in vivo, but the mechanisms are still unclear. Matrix metalloproteases (MMPs), a family of extracellular and membrane-associated endopeptidases, collectively digest almost all extracellular matrix and basement membrane components, and thus play an important role in tumor progression. We studied the effects of recombinant human endostatin on human MMP-2, -9, -8, and -13. We found that endostatin inhibited the activation and catalytic activity of pro-MMP-9 and -13 as well as recombinant pro-MMP-2. It prevented the fragmentation of pro-MMP-2 that was associated with reduction of catalytic activity. Endostatin had no effect on MMP-8 as shown by collagenase activity assays. An in vitro migration assay and an in vivo chicken chorioallantoic membrane intravasation assay with the human tongue squamous cell carcinoma cell line HSC-3 revealed the biphasic nature of endostatin; low endostatin concentrations inhibited intravasation and migration of these cells in a dose-dependent manner, but at increased concentrations, the inhibitory effect was far less efficient. The results show that endostatin blocks the activation and activities of certain tumor-associated pro-MMPs, such as pro-MMP-2, -9, and -13, which may explain, at least in part, the antitumor effect of endostatin. Our results also suggest that endostatin inhibits tumor progression by directly affecting the tumor cells and not just acting via endothelial cells and blockage of angiogenesis.
Collapse
Affiliation(s)
- Pia Nyberg
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, FIN-90014 Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Vainio S, Lin Y, Pihlajaniemi T. Induced repatterning of type XVIII collagen associates with ectopic Sonic hedgehog and lung surfactant C gene expression and changes in epithelial epigenesis in the ureteric bud. J Am Soc Nephrol 2003; 14 Suppl 1:S3-8. [PMID: 12761231 DOI: 10.1097/01.asn.0000068682.41378.c4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
How cell and tissue interactions lead to complex organ structures and differentiated cell types during organogenesis is one of the most fundamental questions in developmental biology. The embryonic lung and kidney of the mouse are useful models for studying the molecular mechanisms of morphogenesis, and in both of these organs, the epithelial bud undergoes a characteristic branching process. This review discusses the potential role of an extracellular matrix molecule, type XVIII collagen, in the generation of the branching patterns in the lung and kidney and how its experimental respecification in tissue recombinants between the ureteric bud and lung mesenchyme correlates with changes in expression of signaling molecules such as sonic hedgehog and changes in cell fate as judged by ectopic expression of the lung surfactant C gene.
Collapse
Affiliation(s)
- Seppo Vainio
- Biocenter Oulu, University of Oulu, Oulu, Finland.
| | | | | |
Collapse
|
31
|
Abstract
In recent years, the basement membrane (BM)--a specialized form of extracellular matrix (ECM)--has been recognized as an important regulator of cell behaviour, rather than just a structural feature of tissues. The BM mediates tissue compartmentalization and sends signals to epithelial cells about the external microenvironment. The BM is also an important structural and functional component of blood vessels, constituting an extracellular microenvironment sensor for endothelial cells and pericytes. Vascular BM components have recently been found to be involved in the regulation of tumour angiogenesis, making them attractive candidate targets for potential cancer therapies.
Collapse
Affiliation(s)
- Raghu Kalluri
- Center for Matrix Biology, Department of Medicine, Dana 514, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA.
| |
Collapse
|
32
|
Affiliation(s)
- Henry Harris
- Sir William Dunn School of Pathology, University of Oxford, UK.
| |
Collapse
|
33
|
Miosge N, Simniok T, Sprysch P, Herken R. The collagen type XVIII endostatin domain is co-localized with perlecan in basement membranes in vivo. J Histochem Cytochem 2003; 51:285-96. [PMID: 12588956 DOI: 10.1177/002215540305100303] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The C-terminal globular endostatin domain of collagen type XVIII is anti-angiogenic in a variety of experimental tumor models, and clinical trials to test it as an anti-tumor agent are already under way. In contrast, many of its cell biological properties are still unknown. We systematically localized the mRNA of collagen type XVIII with the help of in situ hybridization (ISH) and detected it in epithelial and mesenchymal cells of almost all organ systems throughout mouse development. Light and electron microscopic immunohistochemistry (IHC) revealed that the endostatin domain is a widespread component of almost all epithelial basement membranes in all major developing organs, and in all basement membranes of capillaries and blood vessels. Furthermore, quantitative immunogold double labeling demonstrated a co-localization of 50% of the detected endostatin domain together with perlecan in basement membranes in vivo. We conclude that the endostatin domain of collagen type XVIII plays a role, even in early stages of mouse development, other than regulating angiogenesis. In the adult, the endostatin domain could well be involved in connecting collagen type XVIII to the basement membrane scaffolds. At least in part, perlecan appears to be an adaptor molecule for the endostatin domain in basement membranes in vivo.
Collapse
Affiliation(s)
- Nicolai Miosge
- Zentrum Anatomie, Abteilung Histologie, Göttingen, Germany.
| | | | | | | |
Collapse
|
34
|
Ortega N, Werb Z. New functional roles for non-collagenous domains of basement membrane collagens. J Cell Sci 2002; 115:4201-14. [PMID: 12376553 PMCID: PMC2789001 DOI: 10.1242/jcs.00106] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Collagens IV, XV and XVIII are major components of various basement membranes. In addition to the collagen-specific triple helix, these collagens are characterized by the presence of several non-collagenous domains. It is clear now that these ubiquitous collagen molecules are involved in more subtle and sophisticated functions than just the molecular architecture of basement membranes, particularly in the context of extracellular matrix degradation. Degradation of the basement membrane collagens occurs during numerous physiological and pathological processes such as embryonic development or tumorigenesis and generates collagen fragments. These fragments are involved in the regulation of functions differing from those of their original intact molecules. The non-collagenous C-terminal fragment NC1 of collagen IV, XV and XVIII have been recently highlighted in the literature because of their potential in reducing angiogenesis and tumorigenesis, but it is clear that their biological functions are not limited to these processes. Proteolytic release of soluble NC1 fragments stimulates migration, proliferation, apoptosis or survival of different cell types and suppresses various morphogenetic events.
Collapse
|
35
|
Muona A, Eklund L, Väisänen T, Pihlajaniemi T. Developmentally regulated expression of type XV collagen correlates with abnormalities in Col15a1(-/-) mice. Matrix Biol 2002; 21:89-102. [PMID: 11827796 DOI: 10.1016/s0945-053x(01)00187-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lack of type XV collagen in mice results in mild skeletal myopathy and increases vulnerability to exercise-induced skeletal muscle and cardiac injury [Proc. Natl. Acad. Sci. USA 98 (2001), 1194]. The expression of type XV collagen was studied during murine fetal development from 10.5 to 18.5 dpc using immunofluorescence. The first sign of type expression was seen in the capillaries of many tissues at 10.5 dpc, some of them showing developmental transitions in the expression. Interestingly, capillaries forming the blood-brain barrier and those of the sinusoidal type were essentially lacking in this collagen. Early expression was also detected in the skeletal muscle and peripheral nerves, while expression in the heart, kidney and lung appeared to be developmentally regulated. In addition, distinct staining was found in the perichondrium of the cartilage. Collectively, the dynamics of its expression during development, its localization in the basement membrane--fibrillar matrix interface and the consequences of its absence in mice suggest a structural role in providing stability at least in skeletal muscle and capillaries. The early prominent expression of type XV collagen in newly forming blood vessels could also indicate a possible role in angiogenic processes.
Collapse
Affiliation(s)
- Anu Muona
- Collagen Research Unit, Biocenter and Department of Medical Biochemistry, P.O. Box 5000, FIN-90014 University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|
36
|
Karihaloo A, Karumanchi SA, Barasch J, Jha V, Nickel CH, Yang J, Grisaru S, Bush KT, Nigam S, Rosenblum ND, Sukhatme VP, Cantley LG. Endostatin regulates branching morphogenesis of renal epithelial cells and ureteric bud. Proc Natl Acad Sci U S A 2001; 98:12509-14. [PMID: 11606725 PMCID: PMC60084 DOI: 10.1073/pnas.221205198] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endostatin (ES) inhibits endothelial cell migration and has been found to bind to glypicans (Gpcs) on both endothelial cells and renal epithelial cells. We examined the possibility that ES might regulate epithelial cell morphogenesis. The addition of ES to cultured epithelial cells causes an inhibition of both hepatocyte growth factor- and epidermal growth factor-dependent process formation and migration. In contrast, ES does not inhibit epidermal growth factor-dependent morphogenesis in renal epithelial cells derived from Gpc-3 -/mice, whereas expression of Gpc-1 in these cells reconstitutes ES responsiveness. Gpc-3 -/mice have been shown to display enhanced ureteric bud (UB) branching early in development, and cultured UB cells release ES into the media, suggesting that ES binding to Gpcs may regulate UB branching. The addition of ES inhibits branching of the explanted UB, whereas a neutralizing Ab to ES enhances UB outgrowth and branching. Thus, local expression of ES at the tips of the UB may play a role in the regulation of UB arborization.
Collapse
Affiliation(s)
- A Karihaloo
- Section of Nephrology, Yale University School of Medicine, 333 Cedar Street, LMP 2093, New Haven, CT 06520, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lin Y, Zhang S, Rehn M, Itäranta P, Tuukkanen J, Heljäsvaara R, Peltoketo H, Pihlajaniemi T, Vainio S. Induced repatterning of type XVIII collagen expression in ureter bud from kidney to lung type: association with sonic hedgehog and ectopic surfactant protein C. Development 2001; 128:1573-85. [PMID: 11290296 DOI: 10.1242/dev.128.9.1573] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epithelial-mesenchymal tissue interactions regulate the formation of signaling centers that play a role in the coordination of organogenesis, but it is not clear how their activity leads to differences in organogenesis. We report that type XVIII collagen, which contains both a frizzled and an endostatin domain, is expressed throughout the respective epithelial bud at the initiation of lung and kidney organogenesis. It becomes localized to the epithelial tips in the lung during the early stages of epithelial branching, while its expression in the kidney is confined to the epithelial stalk region and is lost from the nearly formed ureter tips, thus displaying the reverse pattern to that in the lung. In recombinants, between ureter bud and lung mesenchyme, type XVIII collagen expression pattern in the ureter bud shifts from the kidney to the lung type, accompanied by a shift in sonic hedgehog expression in the epithelium. The lung mesenchyme is also sufficient to induce ectopic lung surfactant protein C expression in the ureter bud. Moreover, the shift in type XVIII collagen expression is associated with changes in ureter development, thus resembling aspects of early lung type epigenesis in the recombinants. Respecification of collagen is necessary for the repatterning process, as type XVIII collagen antibody blocking had no effect on ureter development in the intact kidney, whereas it reduced the number of epithelial tips in the lung and completely blocked ureter development with lung mesenchyme. Type XVIII collagen antibody blocking also led to a notable reduction in the expression of Wnt2, which is expressed in the lung mesenchyme but not in that of the kidney, suggesting a regulatory interaction between this collagen and Wnt2. Respecification also occurred in a chimeric organ containing the ureter bud and both kidney and lung mesenchymes, indicating that the epithelial tips can integrate the morphogenetic signals independently. A glial cell line-derived neurotrophic factor signal induces loss of type XVIII collagen from the ureter tips and renders the ureter bud competent for repatterning by lung mesenchyme-derived signals. Our data suggest that differential organ morphogenesis is regulated by an intra-organ patterning process that involves coordination between inductive signals and matrix molecules, such as type XVIII collagen.
Collapse
Affiliation(s)
- Y Lin
- Biocenter Oulu and Department of Biochemistry, University of Oulu, Linnanmaa, FIN-90570 Oulu, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ferrigno O, Virolle T, Djabari Z, Ortonne JP, White RJ, Aberdam D. Transposable B2 SINE elements can provide mobile RNA polymerase II promoters. Nat Genet 2001; 28:77-81. [PMID: 11326281 DOI: 10.1038/ng0501-77] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Short interspersed elements (SINEs) are highly abundant components of mammalian genomes that are propagated by retrotransposition. SINEs are recognized as a causal agent of human disease and must also have had a profound influence in shaping eukaryotic genomes. The B2 SINE family constitutes approximately 0.7% of total mouse genomic DNA (ref. 2) and is also found at low abundance in humans. It resembles the Alu family in several respects, such as its mechanism of propagation. B2 SINEs are derived from tRNA and are transcribed by RNA polymerase (pol) III to generate short transcripts that are not translated. We find here, however, that one B2 SINE also carries an active pol II promoter located outside the tRNA region. Indeed, a B2 element is responsible for the production of a mouse Lama3 transcript. The B2 pol II promoters can be bound and stimulated by the transcription factor USF (for upstream stimulatory factor), as shown by transient transfection experiments. Moreover, this pol II activity does not preclude the pol III transcription necessary for retrotransposition. Dispersal of B2 SINEs by retrotransposition may therefore have provided numerous opportunities for creating regulated pol II transcription at novel genomic sites. This mechanism may have allowed the evolution of new transcription units and new genes.
Collapse
Affiliation(s)
- O Ferrigno
- U385 INSERM, Faculté de Médecine, Nice, France
| | | | | | | | | | | |
Collapse
|
39
|
Ackley BD, Crew JR, Elamaa H, Pihlajaniemi T, Kuo CJ, Kramer JM. The NC1/endostatin domain of Caenorhabditis elegans type XVIII collagen affects cell migration and axon guidance. J Cell Biol 2001; 152:1219-32. [PMID: 11257122 PMCID: PMC2199198 DOI: 10.1083/jcb.152.6.1219] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2000] [Accepted: 01/19/2001] [Indexed: 01/13/2023] Open
Abstract
Type XVIII collagen is a homotrimeric basement membrane molecule of unknown function, whose COOH-terminal NC1 domain contains endostatin (ES), a potent antiangiogenic agent. The Caenorhabditis elegans collagen XVIII homologue, cle-1, encodes three developmentally regulated protein isoforms expressed predominantly in neurons. The CLE-1 protein is found in low amounts in all basement membranes but accumulates at high levels in the nervous system. Deletion of the cle-1 NC1 domain results in viable fertile animals that display multiple cell migration and axon guidance defects. Particular defects can be rescued by ectopic expression of the NC1 domain, which is shown to be capable of forming trimers. In contrast, expression of monomeric ES does not rescue but dominantly causes cell and axon migration defects that phenocopy the NC1 deletion, suggesting that ES inhibits the promigratory activity of the NC1 domain. These results indicate that the cle-1 NC1/ES domain regulates cell and axon migrations in C. elegans.
Collapse
Affiliation(s)
- Brian D. Ackley
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | - Jennifer R. Crew
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | - Harri Elamaa
- Collagen Research Unit, Biocenter, and Department of Medical Biochemistry, University of Oulu, FIN-90014 Oulu, Finland
| | - Tania Pihlajaniemi
- Collagen Research Unit, Biocenter, and Department of Medical Biochemistry, University of Oulu, FIN-90014 Oulu, Finland
| | - Calvin J. Kuo
- Department of Surgery, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - James M. Kramer
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| |
Collapse
|
40
|
Eklund L, Piuhola J, Komulainen J, Sormunen R, Ongvarrasopone C, Fássler R, Muona A, Ilves M, Ruskoaho H, Takala TE, Pihlajaniemi T. Lack of type XV collagen causes a skeletal myopathy and cardiovascular defects in mice. Proc Natl Acad Sci U S A 2001; 98:1194-9. [PMID: 11158616 PMCID: PMC14731 DOI: 10.1073/pnas.98.3.1194] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Type XV collagen occurs widely in the basement membrane zones of tissues, but its function is unknown. To understand the biological role of this protein, a null mutation in the Col15a1 gene was introduced into the germ line of mice. Despite the complete lack of type XV collagen, the mutant mice developed and reproduced normally, and they were indistinguishable from their wild-type littermates. However, Col15a1-deficient mice showed progressive histological changes characteristic for muscular diseases after 3 months of age, and they were more vulnerable than controls to exercise-induced muscle injury. Despite the antiangiogenic role of type XV collagen-derived endostatin, the development of the vasculature appeared normal in the null mice. Nevertheless, ultrastructural analyses revealed collapsed capillaries and endothelial cell degeneration in the heart and skeletal muscle. Furthermore, perfused hearts showed a diminished inotropic response, and exercise resulted in cardiac injury, changes that mimic early or mild heart disease. Thus, type XV collagen appears to function as a structural component needed to stabilize skeletal muscle cells and microvessels.
Collapse
Affiliation(s)
- L Eklund
- Collagen Research Unit, Biocenter Oulu and Departments of Medical Biochemistry, Pharmacology and Toxicology, Pathology, and Physiology, University of Oulu, 90014 Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ferreras M, Felbor U, Lenhard T, Olsen BR, Delaissé J. Generation and degradation of human endostatin proteins by various proteinases. FEBS Lett 2000; 486:247-51. [PMID: 11119712 DOI: 10.1016/s0014-5793(00)02249-3] [Citation(s) in RCA: 265] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The angiogenesis inhibitor endostatin is a fragment of the NC1 domain of collagen XVIII. The generation of endostatin has been investigated only in murine hemangioendothelioma cell cultures and was ascribed to cathepsin L. Distinct endostatin-like fragments were detected in human tissues and serum. To identify proteinases able to generate such fragments, we incubated human NC1 with proteinases of all classes, including cathepsin L. Eleven out of 12 generate fragments with an N-terminus within the same 15 residue stretch as those occurring physiologically, indicating that this region is sensitive to many proteinases. None correspond to mouse endostatin. However, the efficiencies of these proteinases differed markedly. Some proteinases also proved to degrade endostatin, pointing to another regulatory loop of angiogenesis.
Collapse
Affiliation(s)
- M Ferreras
- OSTEOPRO and Center for Clinical and Basic Research Herlev/Ballerup, Herlev, Denmark.
| | | | | | | | | |
Collapse
|
42
|
Eklund L, Muona A, Liétard J, Pihlajaniemi T. Structure of the mouse type XV collagen gene, Col15a1, comparison with the human COL15A1 gene and functional analysis of the promoters of both genes. Matrix Biol 2000; 19:489-500. [PMID: 11068203 DOI: 10.1016/s0945-053x(00)00090-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Isolation and characterization of the mouse gene for the alpha1 chain of type XV collagen (Col15a1) revealed it to be approximately 110 kb in length and contain 40 exons. Analysis of the proximal 5'-flanking region showed properties characteristic of a housekeeping gene promoter, such as an absence of TATA and CAAT boxes, the presence of several transcriptional start sites and a high G+C content. The general organization of the mouse Col15a1 gene was found to be highly similar to that of its human homologue, but the genomic area encoding the end of the N-terminal non-collagenous domain showed marked divergence from the human form. Furthermore, two exons coding for the N-terminal collagenous domain of the human alpha1(XV) chain are lacking in the mouse Col15a1 gene. Due to the lack of two exons and a codon divergence in one exon, the mouse alpha1(XV) chain contains seven collagenous domains, whereas the human equivalent contains nine. Comparison of 5'-flanking sequences indicated four domains that were conserved between the mouse and human genes. Functional analysis of the mouse promoter identified cis-acting elements for both positive and negative regulation of Col15a1 gene expression in mouse NIH/3T3 cells.
Collapse
Affiliation(s)
- L Eklund
- Collagen Research Unit, Biocenter and Department of Medical Biochemistry, University of Oulu, Aapistie 7, P.O. Box 5000, 90014, Oulu, Finland
| | | | | | | |
Collapse
|
43
|
Abstract
At the epithelial/mesenchymal interface of most tissues lies the basement membrane (BM). These thin sheets of highly specialized extracellular matrix vary in composition in a tissue-specific manner, and during development and repair. For about two decades it has been apparent that all BMs contain laminins, entactin-1/nidogen-1, Type IV collagen, and proteoglycans. However, within the past few years this complexity has increased as new components are described. The entactin/nidogen (E/N) family has expanded with the recent description of a new isoform, E/N-2/osteonidogen. Agrin and Type XVIII collagen have been reclassified as heparan sulfate proteoglycans (HSPGs), expanding the repertoire of HSPGs in the BM. The laminin family has become more diverse as new alpha-chains have been characterized, increasing the number of laminin isoforms. Interactions between BM components are now appreciated to be regulated through multiple, mostly domain-specific mechanisms. Understanding the functions of individual BM components and their assembly into macromolecular complexes is a considerable challenge that may increase as further BM and cell surface ligands are discovered for these proteins.
Collapse
Affiliation(s)
- A C Erickson
- Department of Cell Biology and Cell Adhesion and Matrix Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA
| | | |
Collapse
|
44
|
Li D, Clark CC, Myers JC. Basement membrane zone type XV collagen is a disulfide-bonded chondroitin sulfate proteoglycan in human tissues and cultured cells. J Biol Chem 2000; 275:22339-47. [PMID: 10791950 DOI: 10.1074/jbc.m000519200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type XV collagen has a widespread distribution in human tissues, but a nearly restricted localization in basement membrane zones. The alpha1(XV) chain contains a highly interrupted collagenous region of 577 residues, and noncollagenous amino- and carboxyl-terminal domains of 530 and 256 residues, respectively. Cysteines are present in each domain and consensus sequences for O-linked glycosaminoglycans are situated in the amino terminus and in two large, noncollagenous interruptions. We now report that type XV collagen is a chondroitin sulfate proteoglycan in human tissues and cultured cells, and that the alpha chains are covalently linked by interchain disulfide bonds only between the two cysteines in the collagenous region. Western blotting of tissue extracts revealed a diffuse smear with a mean size >/=400 kDa, which after chondroitinase digestion resolved into a 250-kDa band in umbilical cord, and 250- and 225-kDa bands in placenta, lung, colon, and skeletal muscle. The latter two bands were also directly visualized by alcian blue/silver staining of a purified placenta extract. In a human rhabdomyosarcoma cell line, almost all of the newly synthesized type XV collagen was secreted into the medium and upon chondroitinase digestion just the 250-kDa alpha chain was generated. Chondroitinase plus collagenase digestion of tissue and medium proteins followed by Western blotting using domain-specific antibodies revealed a 135-kDa amino-terminal fragment containing glycosaminoglycan chains and a 27-kDa fragment representing the intact carboxyl terminus. However, a truncated carboxyl peptide of approximately 8-kDa was also evident in tissue extracts containing the 225-kDa form. Our data suggest that the 225-kDa form arises from differential carboxyl cleavage of the 250-kDa form, and could explain the approximately 19-kDa endostatin-related fragments (John, H., Preissner, K. T., Forssmann, W.-G., and Ständker, L. (1999) Biochemistry 38, 10217-10224), which may be liberated from the alpha1(XV) chain.
Collapse
Affiliation(s)
- D Li
- Departments of Biochemistry and Biophysics and Orthopaedic Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
45
|
Miosge N, Sasaki T, Timpl R. Angiogenesis inhibitor endostatin is a distinct component of elastic fibers in vessel walls. FASEB J 1999; 13:1743-50. [PMID: 10506577 DOI: 10.1096/fasebj.13.13.1743] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Theendothelial cell inhibitor endostatin (22 kDa) is part of the carboxyl-terminal globular domain of collagen XVIII and shows a widespread tissue distribution. Immunohistology of adult mouse tissues demonstrated a preferred localization in many vessel walls and some other basement membrane zones. A strong immunogold staining was observed across elastic fibers in the multiple elastic membranes of aorta and other large arteries. Staining was less strong along sparse elastic fibers of veins and almost none was observed in the walls of arterioles and capillaries. Strong evidence was also obtained for some intracellular and basement membrane associations. Immunogold double staining of elastic fibers showed a close colocalization of endostatin with fibulin-2, fibulin-1, and nidogen-2, but not with perlecan. Reasonable amounts of endostatin could be extracted from aorta and skin by EDTA, followed by detergents, with aorta being the richest source of the inhibitor identified so far. Solubilizations with collagenase and elastase were approximately fivefold less efficient. Immunoblots of aortic extracts detected major endostatin components of 22-25 kDa whereas skin extracts also contained some larger components. Solid-phase assays demonstrated distinct binding of recombinant mouse endostatin to the fibulins and nidogen-2, consistent with their tissue colocalization. Together, the data indicate several different ways for endostatin to be associated with the extracellular matrix, and its release may determine biological activation. This also defines a novel function for some elastic tissues.
Collapse
Affiliation(s)
- N Miosge
- Zentrum Anatomie, Abteilung Histologie, Universität, Göttingen, D-37075 Göttingen, Germany
| | | | | |
Collapse
|
46
|
John H, Preissner KT, Forssmann WG, Ständker L. Novel glycosylated forms of human plasma endostatin and circulating endostatin-related fragments of collagen XV. Biochemistry 1999; 38:10217-24. [PMID: 10441114 DOI: 10.1021/bi990787+] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Circulating elongated forms of the angiogenesis inhibitor and potential anti-cancer drug endostatin were isolated from human blood filtrate. Immunoreactive endostatin was identified by a polyclonal rabbit antiserum raised against an N-terminal epitope of the polypeptide and purified by consecutive chromatographic steps and immunoblotting. N- and C-terminal sequence analyses of the isolated molecules revealed different forms of endostatin starting with V(117)HLRPAR. lacking the last and final three residues of the noncollagenous domain 1 (NC-1) of collagen XVIII, respectively. These polypetides are found to be O-glycosylated at T(125) (residue 9) with a glycan structure of the mucin type consisting of galactose N-acetylgalactosamine and N-acetylneuraminic acid residues. Carbohydrate analyses were performed via the semiquantitative HPLC-electrospray ionization mass spectrometry (ESMS) technique after exoglycosidase hydrolysis. Circulating endostatins are present as sialoglycoprotein (22 000 and 21 841 Da +/- 0.02%) and asialoglycoprotein structures (21 710 and 21 549 Da +/- 0.02%), while the two completely deglycosylated forms are obtained only after enzymatic incubation. The described glycosylated endostatins may represent intermediates in the proteolytic pathway of the NC-1 domain of collagen XVIII resulting in bioactive endostatins. Furthermore, immunoreactive endostatin-related C-terminal fragments of human collagen XV are found in the hemofiltrate. These polypeptides exhibit the N-terminal sequences P(66)HLLPPP. and Y(81)EKPALH. of the collagen XV NC-1 domain. ESMS and immunoblotting analyses reveal three glycosylated polypeptides with a molecular mass ranging from 16 to 21 kDa. Due to the high degree of homology between collagen XV and collagen XVIII as well as their analoqous proteolytic processing, functional similarities of collagen XVIII- and XV-related fragments should be revealed in future experiments.
Collapse
Affiliation(s)
- H John
- Lower Saxony Institute for Peptide Research (IPF), Hannover, Germany
| | | | | | | |
Collapse
|
47
|
Saarela J, Rehn M, Oikarinen A, Autio-Harmainen H, Pihlajaniemi T. The short and long forms of type XVIII collagen show clear tissue specificities in their expression and location in basement membrane zones in humans. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:611-26. [PMID: 9708820 PMCID: PMC1852992 DOI: 10.1016/s0002-9440(10)65603-9] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Two N-terminal ends of human type XVIII collagen chains have recently been identified. The two chains have different signal peptides and variant N-terminal noncollagenous NC1 domains of 493 (NC1-493) and 303 (NC1-303) amino acid residues, respectively, but share 301 residues of their NC1 domains as well as the collagenous and C-terminal noncollagenous portions of the molecule. Antibodies were produced against the NC1 region common to both human alpha1(XVIII) chain variants and against NC1 sequences specific to the long variant and were used in combination with in situ hybridization to localize this collagen in a number of human tissues. They were also used for Western blotting, which resulted in detection of overlapping high-molecular weight bands above the 200-kd standard in a kidney extract. Heparin lyase II and heparin lyase III digestions of kidney and placenta extracts indicated that at least in these tissues, type XVIII collagen contains heparin sulfate glycosaminoglycan side chains. Type XVIII collagen was found to be a ubiquitous basement membrane component, occurring prominently at vascular and epithelial basement membranes throughout the body. Comparison of the expression of the NC1-493 and NC1-303 variants revealed marked differences. The short variant was found in most conventional basement membranes, including blood vessels and the various epithelial structures, and around muscular structures. The long variant was expressed very strongly in liver, where it was virtually the only variant in the liver sinusoids, and it occurred only in minor amounts elsewhere. Thus, the 192 N-terminal residues specific to the long variant apparently confer some functional property needed above all in the liver sinusoids, but also at certain other locations.
Collapse
Affiliation(s)
- J Saarela
- Department of Medical Biochemistry, University of Oulu, Finland
| | | | | | | | | |
Collapse
|
48
|
Hägg PM, Muona A, Liétard J, Kivirikko S, Pihlajaniemi T. Complete exon-intron organization of the human gene for the alpha1 chain of type XV collagen (COL15A1) and comparison with the homologous COL18A1 gene. J Biol Chem 1998; 273:17824-31. [PMID: 9651385 DOI: 10.1074/jbc.273.28.17824] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human gene for the alpha1 chain of type XV collagen (COL15A1) is about 145 kilobases in size and contains 42 exons. The promoter is characterized by the lack of a TATAA motif and the presence of several Sp1 binding sites, some of which appeared to be functional in transfected HeLa cells. Comparison with Col18a1, which encodes the alpha1(XVIII) collagen chain homologous with alpha1(XV), indicates marked structural homology spread throughout the two genes. The mouse Col18a1 contains one exon more than COL15A1, due to the fact that COL15A1 lacks sequences corresponding to exon 3 of Col18a1, which encodes a cysteine-rich sequence motif. Twenty-five of the exons of the two genes are almost identical in size, six of them contain conserved split codons, and the locations of the respective exon-intron junctions are identical or almost identical in the two genes. The homologous exons include the closely adjacent first pair of exons and the exons encoding a thrombospondin-1 homology found in the N-terminal noncollagenous domain 1, which are followed by the most variable part of the two genes, covering the C-terminal half of their noncollagenous domain 1 and the beginning of the collagenous portion, after which most of the exons are homologous. The lengths of the introns are not similar in these genes, with two exceptions, namely the first intron, which is very short, less than 100 base pairs, and the second intron, which is very large, about 50 kilobases, in both genes. It can be concluded that COL15A1 and Col18a1 are derived from a common ancestor.
Collapse
Affiliation(s)
- P M Hägg
- Collagen Research Unit, Biocenter, and Department of Medical Biochemistry, University of Oulu, Kajaanintie 52 A, FIN-90220 Oulu, Finland
| | | | | | | | | |
Collapse
|
49
|
Saarela J, Ylikärppä R, Rehn M, Purmonen S, Pihlajaniemi T. Complete primary structure of two variant forms of human type XVIII collagen and tissue-specific differences in the expression of the corresponding transcripts. Matrix Biol 1998; 16:319-28. [PMID: 9503365 DOI: 10.1016/s0945-053x(98)90003-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report on full-length human type XVIII collagen cDNAs that encode 1516- or 1336-residue alpha 1 (XVIII) chains. The two chains have different signal peptides and variant N-terminal non-collagenous NC1 domains of 493 (NC1-493) and 303 (NC1-303) amino acid residues, respectively, but share 301 residues of their NC1 domains, a 688-residue highly interrupted collagenous portion, and a 312-residue C-terminal non-collagenous portion. Alternative splicing affecting a 43-residue stretch at the junction of the NC1 domain and the beginning of the collagenous portion was identified. The amino acid sequences of the human and previously characterized mouse alpha 1 (XVIII) chains exhibit an overall identity of 79%. The highest homology between these chains was observed in their last 184 residues, corresponding to the proteolytic fragment endostatin, which is capable of inhibiting endothelial cell proliferation, angiogenesis and tumor growth (O'Reilly, et al., Cell 88: 277-285, 1997). Northern analysis of several adult and fetal tissues with a probe for the NC1-493 variant revealed marked amounts of the corresponding 6.2 and 5.0 kb mRNAs in liver, while other tissues contained only faint or undetectable signals. Hybridizations with a probe specific for the NC1-303 variant virtually lacked the liver signal but revealed clear 5.6 and 4.5 kb bands in heart, kidney, placenta, prostate, ovaries, skeletal muscle and small intestine, and faint signals in several other tissues. Thus mRNAs for the long variant occur prominently in liver, while those for the short variant appear to be the major ones in the other tissues analyzed.
Collapse
Affiliation(s)
- J Saarela
- Collagen Research Unit, University of Oulu, Finland
| | | | | | | | | |
Collapse
|
50
|
Hägg PM, Horelli-Kuitunen N, Eklund L, Palotie A, Pihlajaniemi T. Cloning of mouse type XV collagen sequences and mapping of the corresponding gene to 4B1-3. Comparison of mouse and human alpha 1 (XV) collagen sequences indicates divergence in the number of small collagenous domains. Genomics 1997; 45:31-41. [PMID: 9339358 DOI: 10.1006/geno.1997.4884] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report on full-length mouse type XV collagen cDNAs that encode a 1367-residue alpha 1(XV) chain. The amino acid sequences of the mouse and previously characterized human alpha 1(XV) chains exhibit an overall identity of 72%. The highest homology between these chains and to the structurally related type XVIII collagen is observed in their C-terminal noncollagenous domains. Although the mouse and human alpha 1(XV) chains are highly homologous and similar in their overall domain structure, the mouse chain contains only seven collagenous domains, whereas the human chain contains nine. Northern analysis of several mouse tissues indicated strong hybridization in the case of heart and skeletal muscle RNAs and moderate signals with kidney, lung, and testis RNAs. Analysis of type XV collagen mRNA levels at different stages of mouse embryonic development indicated a marked increase in the level between 11 and 15 days of development, which coincides with pronounced development of the muscles, heart, and vascular system in the mouse embryo. The mouse gene for type XV collagen was mapped by fluorescence in situ hybridization to chromosome 4, band B1-3. This result indicates that the mouse type XV collagen gene and its human counterpart are located in the chromosomal segments with conserved syntenies.
Collapse
Affiliation(s)
- P M Hägg
- Collagen Research Unit, University of Oulu, Finland
| | | | | | | | | |
Collapse
|