1
|
Multisubunit DNA-Dependent RNA Polymerases from Vaccinia Virus and Other Nucleocytoplasmic Large-DNA Viruses: Impressions from the Age of Structure. Microbiol Mol Biol Rev 2017; 81:81/3/e00010-17. [PMID: 28701329 DOI: 10.1128/mmbr.00010-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The past 17 years have been marked by a revolution in our understanding of cellular multisubunit DNA-dependent RNA polymerases (MSDDRPs) at the structural level. A parallel development over the past 15 years has been the emerging story of the giant viruses, which encode MSDDRPs. Here we link the two in an attempt to understand the specialization of multisubunit RNA polymerases in the domain of life encompassing the large nucleocytoplasmic DNA viruses (NCLDV), a superclade that includes the giant viruses and the biochemically well-characterized poxvirus vaccinia virus. The first half of this review surveys the recently determined structural biology of cellular RNA polymerases for a microbiology readership. The second half discusses a reannotation of MSDDRP subunits from NCLDV families and the apparent specialization of these enzymes by virus family and by subunit with regard to subunit or domain loss, subunit dissociability, endogenous control of polymerase arrest, and the elimination/customization of regulatory interactions that would confer higher-order cellular control. Some themes are apparent in linking subunit function to structure in the viral world: as with cellular RNA polymerases I and III and unlike cellular RNA polymerase II, the viral enzymes seem to opt for speed and processivity and seem to have eliminated domains associated with higher-order regulation. The adoption/loss of viral RNA polymerase proofreading functions may have played a part in matching intrinsic mutability to genome size.
Collapse
|
2
|
Interaction of the vaccinia virus RNA polymerase-associated 94-kilodalton protein with the early transcription factor. J Virol 2009; 83:12018-26. [PMID: 19759131 DOI: 10.1128/jvi.01653-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A multisubunit RNA polymerase (RPO) encoded by vaccinia virus (VACV), in conjunction with specific factors, transcribes early, intermediate, and late viral genes. However, an additional virus-encoded polypeptide referred to as the RPO-associated protein of 94 kDa (RAP94) is tightly bound to the RPO for the transcription of early genes. Unlike the eight RPO core subunits, RAP94 is synthesized exclusively at late times after infection. Furthermore, RAP94 is necessary for the packaging of RPO and other components needed for early transcription in assembling virus particles. The direct association of RAP94 with NPH I, a DNA-dependent ATPase required for transcription termination, and the multifunctional poly(A) polymerase small subunit/2'-O-methyltransferase/elongation factor was previously demonstrated. That RAP94 provides a structural and functional link between the core RPO and the VACV early transcription factor (VETF) has been suspected but not previously demonstrated. Using VACV recombinants that constitutively or inducibly express VETF subunits and RAP94 with affinity tags, we showed that (i) VETF associates only with RPO containing RAP94 in vivo and in vitro, (ii) the association of RAP94 with VETF requires both subunits of the latter, (iii) neither viral DNA nor other virus-encoded late proteins are required for the interaction of RAP94 with VETF and core RPO subunits, (iv) different domains of RAP94 bind VETF and core subunits of RPO, and (v) NPH I and VETF bind independently and possibly simultaneously to the N-terminal region of RAP94. Thus, RAP94 provides the bridge between the RPO and proteins needed for transcription initiation, elongation, and termination.
Collapse
|
3
|
Piacente S, Christen L, Dickerman B, Mohamed MR, Niles EG. Determinants of vaccinia virus early gene transcription termination. Virology 2008; 376:211-24. [PMID: 18433825 PMCID: PMC2483243 DOI: 10.1016/j.virol.2008.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 03/06/2008] [Accepted: 03/13/2008] [Indexed: 02/07/2023]
Abstract
Vaccinia virus early gene transcription requires the vaccinia termination factor, VTF, nucleoside triphosphate phosphohydrolase I, NPH I, ATP, the virion RNA polymerase, and the motif, UUUUUNU, in the nascent RNA, found within 30 to 50 bases from the poly A addition site, in vivo. In this study, the relationships among the vaccinia early gene transcription termination efficiency, termination motif specificity, and the elongation rate were investigated. A low transcription elongation rate maximizes termination efficiency and minimizes specificity for the UUUUUNU motif. Positioning the termination motif over a 63 base area upstream from the RNA polymerase allowed efficient transcript release, demonstrating a remarkable plasticity in the transcription termination complex. Efficient transcript release was observed during ongoing transcription, independent of VTF or UUUUUNU, but requiring both NPH I and either ATP or dATP. This argues for a two step model: the specifying step, requiring both VTF and UUUUUNU, and the energy-dependent step employing NPH I and ATP. Evaluation of NPH I mutants for the ability to stimulate transcription elongation demonstrated that ATPase activity and a stable interaction between NPH I and the Rap94 subunit of the viral RNA polymerase are required. These observations demonstrate that NPH I is a component of the elongating RNA polymerase, which is catalytically active during transcription elongation.
Collapse
Affiliation(s)
- Sarah Piacente
- Department of Microbiology and Immunology, SUNY School of Medicine and Biomedical Sciences, Buffalo, NY, USA 14214-3200
| | - Linda Christen
- Department of Microbiology and Immunology, SUNY School of Medicine and Biomedical Sciences, Buffalo, NY, USA 14214-3200
| | - Benjamin Dickerman
- Department of Microbiology and Immunology, SUNY School of Medicine and Biomedical Sciences, Buffalo, NY, USA 14214-3200
- Department of Biochemistry and the Witebsky Center for Microbial Pathogenesis and Immunology, SUNY School of Medicine and Biomedical Sciences, Buffalo, NY, USA 14214-3200
| | - Mohamed R. Mohamed
- Department of Biochemistry and the Witebsky Center for Microbial Pathogenesis and Immunology, SUNY School of Medicine and Biomedical Sciences, Buffalo, NY, USA 14214-3200
| | - Edward G. Niles
- Department of Microbiology and Immunology, SUNY School of Medicine and Biomedical Sciences, Buffalo, NY, USA 14214-3200
| |
Collapse
|
4
|
Christen LA, Piacente S, Mohamed MR, Niles EG. Vaccinia virus early gene transcription termination factors VTF and Rap94 interact with the U9 termination motif in the nascent RNA in a transcription ternary complex. Virology 2008; 376:225-35. [PMID: 18455214 PMCID: PMC2478747 DOI: 10.1016/j.virol.2008.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 03/06/2008] [Accepted: 03/26/2008] [Indexed: 10/22/2022]
Abstract
The vaccinia virus core contains a 195 kb double stranded DNA genome, a multi-subunit RNA polymerase, transcription initiation and termination factors and mRNA processing enzymes. Upon infection, vaccinia virus early gene transcription takes place in the virus core. Transcription initiates at early promoters and terminates in response to a termination motif, UUUUUNU, in the nascent mRNA. Early gene transcription termination requires the vaccinia virus termination factor, VTF, a single stranded DNA-dependent ATPase, and NPH I, the Rap94 subunit of the virion RNA polymerase, as well as the presence of the UUUUUNU motif in the nascent RNA. The position of UUUUUNU in the ternary complex suggests that it serves as a site of interaction with one or more components of the transcription termination complex. In order to identify the factor(s) that interact with UUUUUNU a series of direct UV photo crosslinking and ribonuclease A protection studies were undertaken. Through these analyses both VTF and Rap94 were shown to interact with UUUUUNU in the isolated ternary complex. Evidence indicates that the interaction is not mutually exclusive. VTF was shown to bind to UUUUUNU through the N-terminal domain of the large D1 subunit. Furthermore, VTF protects from RNAse A digestion both the 5' region of the nascent transcript as well as a large central component containing UUUUUNU. The addition of an oligonucleotide containing the (5Br)U9 sequence both directly inhibits transcription termination, in vitro and inhibits UV photo crosslinking of VTF to the nascent RNA in the ternary complex. These results support a model in which the availability of the UUUUUNU motif outside of the transcribing RNA polymerase permits binding of both transcription termination factors, VTF and Rap94, to UUUUUNU. The assembly of this termination complex initiates the transcription termination sequence.
Collapse
Affiliation(s)
- Linda A. Christen
- Department of Microbiology and Immunology, SUNY School of Medicine, Buffalo, NY 14214
| | | | | | - Edward G. Niles
- Department of Microbiology and Immunology, SUNY School of Medicine, Buffalo, NY 14214
| |
Collapse
|
5
|
Cresawn SG, Prins C, Latner DR, Condit RC. Mapping and phenotypic analysis of spontaneous isatin-beta-thiosemicarbazone resistant mutants of vaccinia virus. Virology 2007; 363:319-32. [PMID: 17336362 PMCID: PMC1950264 DOI: 10.1016/j.virol.2007.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 02/05/2007] [Accepted: 02/05/2007] [Indexed: 11/22/2022]
Abstract
Treatment of wild type vaccinia virus infected cells with the anti-poxviral drug isatin-beta-thiosemicarbazone (IBT) induces the viral postreplicative transcription apparatus to synthesize longer-than-normal mRNAs through an unknown mechanism. Previous studies have shown that virus mutants resistant to or dependent on IBT affect genes involved in control of viral postreplicative transcription elongation. This study was initiated in order to identify additional viral genes involved in control of vaccinia postreplicative transcription elongation. Eight independent, spontaneous IBT resistant mutants of vaccinia virus were isolated. Marker rescue experiments mapped two mutants to gene G2R, which encodes a previously characterized postreplicative gene positive transcription elongation factor. Three mutants mapped to the largest subunit of the viral RNA polymerase, rpo147, the product of gene J6R. One mutant contained missense mutations in both G2R and A24R (rpo132, the second largest subunit of the RNA polymerase). Two mutants could not be mapped, however sequence analysis demonstrated that neither of these mutants contained mutations in previously identified IBT resistance or dependence genes. Phenotypic and biochemical analysis of the mutants suggests that they possess defects in transcription elongation that compensate for the elongation enhancing effects of IBT. The results implicate the largest subunit of the RNA polymerase (rpo147) in the control of elongation, and suggest that there exist additional gene products which mediate intermediate and late transcription elongation in vaccinia virus.
Collapse
Affiliation(s)
| | | | | | - Richard C. Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610
| |
Collapse
|
6
|
Katsafanas GC, Moss B. Vaccinia virus intermediate stage transcription is complemented by Ras-GTPase-activating protein SH3 domain-binding protein (G3BP) and cytoplasmic activation/proliferation-associated protein (p137) individually or as a heterodimer. J Biol Chem 2004; 279:52210-7. [PMID: 15471883 DOI: 10.1074/jbc.m411033200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of the DNA genome of vaccinia virus occurs in the cytoplasm and is temporally programmed by early, intermediate, and late stage-specific transcription factors in conjunction with a viral multisubunit RNA polymerase. The RNA polymerase, capping enzyme, and three factors (VITF-1, VITF-2, and VITF-3) are sufficient for in vitro transcription of a DNA template containing an intermediate stage promoter. Vaccinia virus intermediate transcription factor (VITF)-1 and -3 are virus-encoded, whereas VITF-2 was partially purified from extracts of uninfected HeLa cells. Using purified and recombinant viral proteins, we showed that the HeLa cell factor was required for transcription of linear or nicked circular templates but not of super coiled DNA. HeLa cell polypeptides of approximately 110 and 66 kDa copurified with VITF-2 activity through multiple chromatographic steps. The polypeptides were separated by SDS-polyacrylamide gel electrophoresis and identified by mass spectrometry as Ras-GTPase-activating protein SH3 domain-binding protein (G3BP) and p137, recently named cytoplasmic activation/proliferation-associated protein-1. The co-purification of the two polypeptides with transcription-complementing activity was confirmed with specific antibodies, and their association with each other was demonstrated by affinity chromatography of tagged recombinant forms. Furthermore, recombinant G3BP and p137 expressed individually or together in mammalian or bacterial cells complemented the activity of the viral RNA polymerase and transcription factors. The involvement of cellular proteins in transcription of intermediate stage genes may regulate the transition between early and late phases of vaccinia virus replication.
Collapse
Affiliation(s)
- George C Katsafanas
- Laboratory of Viral Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
7
|
Prins C, Cresawn SG, Condit RC. An isatin-beta-thiosemicarbazone-resistant vaccinia virus containing a mutation in the second largest subunit of the viral RNA polymerase is defective in transcription elongation. J Biol Chem 2004; 279:44858-71. [PMID: 15294890 DOI: 10.1074/jbc.m408167200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The vaccinia virus RNA polymerase is a multi-subunit enzyme that contains eight subunits in the postreplicative form. A prior study of a virus called IBT(r90), which contains a mutation in the A24 gene encoding the RPO132 subunit of the RNA polymerase, demonstrated that the mutation results in resistance to the anti-poxvirus drug isatin-beta-thiosemicarbazone (IBT). In this study, we utilized an in vitro transcription elongation assay to determine the effect of this mutation on transcription elongation. Both wild type and IBT(r90) polymerase complexes were studied with regard to their ability to pause during elongation, their stability in a paused state, their ability to release transcripts, and their elongation rate. We have determined that the IBT(r90) complex is specifically defective in elongation compared with the WT complex, pausing longer and more frequently than the WT complex. We have built a homology model of the RPO132 subunit with the yeast pol II rpb2 subunit to propose a structural mechanism for this elongation defect.
Collapse
Affiliation(s)
- Cindy Prins
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610-0266, USA
| | | | | |
Collapse
|
8
|
Abstract
Vaccinia virus replication takes place in the cytoplasm of the host cell. The nearly 200 kbp genome owes part of its complexity to encoding most of the proteins involved in genome and mRNA synthesis. The multisubunit vaccinia virus RNA polymerase requires a separate set of virus-encoded proteins for the transcription of the early, intermediate and late classes of genes. Cell fractionation studies have provided evidence for a role for host cell proteins in the initiation and termination of vaccinia virus intermediate and late gene transcription. Vaccinia virus resembles nuclear DNA viruses in the integration of viral and host proteins for viral mRNA synthesis, yet is markedly less reliant on host proteins than its nuclear counterparts.
Collapse
Affiliation(s)
- Steven S Broyles
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1153, USA
| |
Collapse
|
9
|
Piacente SC, Christen LA, Mohamed MR, Niles EG. Effect of selected mutations in the C-terminal region of the vaccinia virus nucleoside triphosphate phosphohydrolase I on binding to the H4L subunit of the viral RNA polymerase and early gene transcription termination in vitro. Virology 2003; 310:109-17. [PMID: 12788635 DOI: 10.1016/s0042-6822(03)00092-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vaccinia virus nucleoside triphosphate phosphohydrolase I (NPH I) is an essential early gene transcription termination factor. The C-terminal end of NPH I binds to the N-terminal end of the H4L subunit (RAP94) of the virion RNA polymerase. This interaction is required for transcription termination and transcript release. To refine our understanding of the specific amino acids in the C-terminal end of NPH I involved in binding to H4L, and to develop a collection of mutations exhibiting various degrees of activity to be employed in in vivo studies, we prepared a set of short deletions, and clustered substitutions of charged amino acids to alanine, or bulky hydrophobic amino acids to alanine mutations. These NPH I mutant proteins were expressed, purified, and tested for ATPase activity, binding to H4L, and transcription termination activity. Most mutations in amino acids 609 to 631 exhibited reduced activity. Deletion of the terminal five amino acids (627-631), or substitution of Y(629) with alanine or glutamic acid, dramatically reduced NPH I mediated transcription termination. Deletion of the terminal F(631), or substitution of F(631) with alanine, reduced binding to H4L and eliminated termination activity. These observations demonstrate that the terminal five amino acids directly participate in binding to RNA polymerase and in early gene transcription termination.
Collapse
Affiliation(s)
- Sarah C Piacente
- Department of Microbiology, The Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
10
|
Condit RC, Niles EG. Regulation of viral transcription elongation and termination during vaccinia virus infection. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:325-36. [PMID: 12213661 DOI: 10.1016/s0167-4781(02)00461-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vaccinia virus provides a useful genetic and biochemical tool for studies of the basic mechanisms of eukaryotic transcription. Vaccinia genes are transcribed in three successive gene classes during infection, early, intermediate, and late. Vaccinia transcription is regulated primarily by virus gene products not only during initiation, but also during elongation and termination. The factors and mechanisms regulating early elongation and termination differ from those regulating intermediate and late gene expression. Control of transcription elongation and termination in vaccinia virus bears some similarity to the same process in other prokaryotic and eukaryotic systems, yet features some novel mechanisms as well.
Collapse
Affiliation(s)
- Richard C Condit
- Department of Molecular Genetics and Microbiology, P.O. Box 100266, University of Florida, Gainesville, FL 32610, USA.
| | | |
Collapse
|
11
|
Mohamed MR, Christen LA, Niles EG. Antibodies directed against an epitope in the N-terminal region of the H4L subunit of the vaccinia virus RNA polymerase inhibit both transcription initiation and transcription termination, in vitro. Virology 2002; 299:142-53. [PMID: 12167349 DOI: 10.1006/viro.2002.1498] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The vaccinia virus virion RNA polymerase that is active in early gene transcription contains a unique subunit encoded by the H4L gene. Prior studies demonstrated that this protein is required both for early gene transcription initiation and for transcription termination. Polyclonal antibodies raised against H4L amino acids 1 to 256 prevent both initiation and termination of transcription, in vitro. Pretreatment of the anti-H4L antibody with a H4L fragment containing amino acids 1 to 99 prevents antibody inhibition of both steps, mapping the inhibitory antibody-binding site to this region. A combination of immunoprecipitation and competition studies of antibody binding to wild-type and site-specific mutations of H4L(1-195) mapped the strong epitope to a site that includes Y18. H4L fragments containing an Y18A mutation exhibit diminished ability to block antibody inhibition of transcription initiation and termination. Antibodies inhibit preinitiation complex (PIC) formation but not the activity of preformed PICs, indicating that this region of H4L interacts with one or more factors during active PIC formation. Furthermore, isolated H4L(1-195) directly inhibits PIC activity, supporting this model. Anti-H4L antibody inhibition of transcription termination is only observed in the absence of the essential termination cofactor NPH I. In contrast, antibody inhibition of PIC formation is unaffected by NPH I, demonstrating that the inhibitory antibody and NPH I can bind to H4L at the same time.
Collapse
Affiliation(s)
- Mohamed R Mohamed
- Department of Biochemistry, The Witebsky Center for Microbial Pathogenesis, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 14214-3000, USA
| | | | | |
Collapse
|
12
|
Mohamed MR, Niles EG. The viral RNA polymerase H4L subunit is required for Vaccinia virus early gene transcription termination. J Biol Chem 2001; 276:20758-65. [PMID: 11279216 DOI: 10.1074/jbc.m101641200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vaccinia virus early gene transcription is catalyzed by a multisubunit virion form of RNA polymerase that possesses a unique subunit, H4L. Prior studies from this laboratory showed that the NH(2)-terminal domain of H4L, containing amino acids 1-195, interacts with the COOH-terminal end of nucleoside triphosphate phosphohydrolase I (NPH I), an ATPase that is employed in early gene transcription termination. Carboxyl-terminal deletion mutations of NPH I lose both the ability to mediate transcription termination and binding to H4L, providing evidence that the interaction between NPH I and H4L is required for termination. In order to test this model further, antibodies raised against segments of H4L were tested for their ability to inhibit transcription termination in vitro. A bead-bound template was employed in these studies, which permitted us to separate transcription initiation from elongation and termination. Antibodies raised against H4L amino acids 1-256 inhibited termination in an in vitro assay using virus-infected cell extracts lacking NPH I, but antibodies raised against H4L amino acids 568-795 did not. Preincubation of anti-H4L(1-256) antibodies with H4L fragments 1-256 or 1-195 prevented antibody inhibition of termination, demonstrating that inhibition was mediated by antibody binding to one or more epitopes in the NH(2)-terminal end of H4L. Antibody inhibition of termination is reduced in wild type virus-infected cell extracts containing NPH I. Furthermore, preincubation of a NPH I minus cell extract with NPH I prior to antibody addition, or readdition of NPH I to isolated ternary complexes prepared in the absence of NPH I, prevented antibody inhibition of transcription termination. These data show that NPH I and the inhibitory antibodies compete for a binding site(s) on H4L, providing further evidence that the H4L subunit of the vaccinia virus RNA polymerase plays a direct role in transcription termination.
Collapse
Affiliation(s)
- M R Mohamed
- Department of Microbiology, Witebsky Center for Microbial Pathogenesis, State University of New York School of Medicine and Biomedical Science, Buffalo, New York 14214, USA
| | | |
Collapse
|
13
|
Mohamed MR, Latner DR, Condit RC, Niles EG. Interaction between the J3R subunit of vaccinia virus poly(A) polymerase and the H4L subunit of the viral RNA polymerase. Virology 2001; 280:143-52. [PMID: 11162828 DOI: 10.1006/viro.2000.0749] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
J3R, the 39-kDa subunit of vaccinia virus poly(A) polymerase, is a multifunctional protein that catalyzes (nucleoside-2'-O-)-methyltransferase activity, serves as a poly(A) polymerase stimulatory factor, and acts as a postreplicative positive transcription elongation factor. Prior results support an association between poly(A) polymerase and the virion RNA polymerase. A possible direct interaction between J3R and H4L subunit of virion RNA polymerase was evaluated. J3R was shown to specifically bind to H4L amino acids 235-256, C terminal to NPH I binding site on H4L. H4L binds to the C-terminal region of J3R between amino acids 169 and 333. The presence of a J3R binding site near to the NPH I binding region on H4L led us to evaluate a physical interaction between NPH I and J3R. The NPH I binding site was located on J3R between amino acids 169 and 249, and J3R was shown to bind to NPH I between amino acids 457 and 524. To evaluate a role for J3R in early gene mRNA synthesis, transcription termination, and/or release, a transcription-competent extract prepared from cells infected with mutant virus lacking J3R, J3-7. Analysis of transcription activity demonstrated that J3R is not required for early mRNA synthesis and is not an essential factor in early gene transcription termination or transcript release in vitro. J3R interaction with NPH I and H4L may serve as a docking site for J3R on the virion RNA polymerase, linking transcription to mRNA cap formation and poly(A) addition.
Collapse
Affiliation(s)
- M R Mohamed
- Department of Biochemistry, SUNY School of Medicine and Biomedical Science at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
14
|
Mohamed MR, Niles EG. Interaction between nucleoside triphosphate phosphohydrolase I and the H4L subunit of the viral RNA polymerase is required for vaccinia virus early gene transcript release. J Biol Chem 2000; 275:25798-804. [PMID: 10833518 DOI: 10.1074/jbc.m002250200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal-dependent termination is restricted to early poxvirus genes whose transcription is catalyzed by the virion form of RNA polymerase. Two termination factors have been identified. Vaccinia termination factor/capping enzyme is a multifunctional heterodimer that also catalyzes the first three steps of mRNA cap formation and is an essential intermediate gene transcription initiation factor. Nucleoside triphosphate phosphohydrolase I (NPH I) is a single-stranded DNA-dependent ATPase. COOH-terminal deletion mutations of NPH I retain both ATPase and DNA binding activities but are unable either to terminate transcription or to act as dominant negative mutants in vitro. One appealing model posits that the COOH-terminal region of NPH I binds to one or more components in the termination complex. In an attempt to identify NPH I-related protein/protein interactions involved in transcription termination, a series of pull-down experiments were done. Among several vaccinia virus proteins tested, the H4L subunit, unique to the virion form of RNA polymerase, was shown to bind glutathione S-transferase (GST)-NPH I. To further confirm this interaction in virus-infected cells, we constructed recombinant vaccinia virus, vNPHINGST, that expresses GST-tagged NPH I. The H4L subunit of virion RNA polymerase specifically co-purified with GST-NPH I, consistent with a physical interaction. Through the analysis of a series of NH(2)- and COOH-terminal truncation mutations of H4L, the NPH I interaction site was localized to the NH(2)-terminal 195 amino acids of the H4L protein. The H4L binding site on NPH I was mapped to the COOH-terminal region between 457 and 631. Furthermore, COOH-terminal deletion mutations of NPH I failed to bind the NH(2)-terminal region of H4L, explaining their inability to support transcription termination. The COOH-terminal end of NPH I was also shown to be required for transcript release activity and for dominant negative inhibition of release. The requirement for an essential interaction between NPH I and H4L provides an explanation for the observed restriction of transcription termination to early viral genes.
Collapse
Affiliation(s)
- M R Mohamed
- Department of Microbiology, the Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York School of Medicine and Biomedical Science at Buffalo, New York 14214, USA
| | | |
Collapse
|
15
|
Xiang Y, Latner DR, Niles EG, Condit RC. Transcription elongation activity of the vaccinia virus J3 protein in vivo is independent of poly(A) polymerase stimulation. Virology 2000; 269:356-69. [PMID: 10753714 DOI: 10.1006/viro.2000.0242] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prior genetic analysis suggests that the vaccinia virus J3 gene product, previously characterized as a bifunctional (nucleoside-2'-O-)-methyltransferase and poly(A) polymerase stimulatory factor, is a postreplicative positive transcription elongation factor. To test this hypothesis, viruses bearing mutations in the J3 gene were characterized with respect to viral protein and RNA synthesis in infected cells. The analysis reveals that compared to wt virus infections, J3 mutants synthesize reduced amounts of large late viral proteins and shorter-than-normal intermediate and late mRNAs. Structural analysis of one late mRNA shows that it is specifically truncated from the 3' end, thus accounting for its shorter than normal chain length. Thus J3 mutant viruses are defective in elongation of transcription of postreplicative viral genes, strongly suggesting that the J3 gene product normally acts as a positive transcription elongation factor. Biochemical analysis of one J3 missense mutant demonstrates that it retains poly(A) stimulatory activity but is defective in (nucleoside-2'-O-)-methyltransferase activity. Thus the elongation factor activity of the J3 gene product is independent of the poly(A) stimulatory activity. It remains to be determined whether the (nucleoside-2'-O-)-methyltransferase and elongation factor activities of the J3 protein are linked or can be uncoupled by mutation.
Collapse
Affiliation(s)
- Y Xiang
- Department of Molecular Genetics, Center for Mammalian Genetics, University of Florida, Gainesville, Florida, 32610-0266, USA
| | | | | | | |
Collapse
|
16
|
Katsafanas GC, Moss B. Histidine codons appended to the gene encoding the RPO22 subunit of vaccinia virus RNA polymerase facilitate the isolation and purification of functional enzyme and associated proteins from virus-infected cells. Virology 1999; 258:469-79. [PMID: 10366585 DOI: 10.1006/viro.1999.9744] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vaccinia virus encodes a eukaryotic-like RNA polymerase composed of two large and six small subunit protein species. A replication-competent virus with 10 histidine codons added to the single endogenous J4R open reading frame was constructed. The altered migration of the 22-kDa subunit of RNA polymerase on SDS-polyacrylamide gel electrophoresis confirmed that J4R encoded the RPO22 subunit and that the mutant virus was genetically stable. The histidine-tagged RNA polymerase bound quantitatively to metal-affinity resins and was eluted in an active form upon addition of imidazole. Glycerol gradient sedimentation of the eluted fraction indicated that most of the RPO22 in infected cells is associated with RNA polymerase. Using stringent washing conditions, metal-affinity chromatography resulted in a several hundred-fold increase in RNA-polymerase-specific activity, and substantially pure enzyme was obtained with an additional conventional chromatography step. When mild conditions were used for washing the metal-affinity resin, the vaccinia virus-encoded capping enzyme, early transcription factor, and nucleoside triphosphate phosphohydrolase I specifically co-eluted with the tagged RNA polymerase, consistent with their physical association. The ability to selectively bind RNA polymerase to an affinity column provided a simple and rapid method of concentrating and purifying active enzyme and protein complexes.
Collapse
Affiliation(s)
- G C Katsafanas
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892-0445, USA
| | | |
Collapse
|
17
|
Xiang Y, Simpson DA, Spiegel J, Zhou A, Silverman RH, Condit RC. The vaccinia virus A18R DNA helicase is a postreplicative negative transcription elongation factor. J Virol 1998; 72:7012-23. [PMID: 9696793 PMCID: PMC109921 DOI: 10.1128/jvi.72.9.7012-7023.1998] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Loss of vaccinia virus A18R gene function results in an aberrant transcription profile termed promiscuous transcription, defined as transcription within regions of the genome which are normally transcriptionally silent late during infection. Promiscuous transcription results in an increase in the intracellular concentration of double-stranded RNA, which in turn results in activation of the cellular 2-5A pathway and subsequent RNase L-catalyzed degradation of viral and cellular RNAs. One of three hypotheses could account for promiscuous transcription: (i) reactivation of early promoters late during infection, (ii) random transcription initiation, (iii) readthrough transcription from upstream promoters. Transcriptional analysis of several viral genes, presented here, argues strongly against the first two hypotheses. We have tested the readthrough hypothesis by conducting a detailed transcriptional analysis of a region of the vaccinia virus genome which contains three early genes (M1L, M2L, and K1L) positioned directly downstream of the intermediate gene, K2L. The results show that mutation of the A18R gene results in increased readthrough transcription of the M1L gene originating from the K2L intermediate promoter. A18R mutant infection of RNase L knockout mouse fibroblast (KO3) cells does not result in 2-5A pathway activation, yet the virus mutant is defective in late viral gene expression and remains temperature sensitive. These results demonstrate that the A18R gene product is a negative transcription elongation factor for postreplicative viral genes.
Collapse
Affiliation(s)
- Y Xiang
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610-0266, USA
| | | | | | | | | | | |
Collapse
|
18
|
Hu X, Wolffe EJ, Weisberg AS, Carroll LJ, Moss B. Repression of the A8L gene, encoding the early transcription factor 82-kilodalton subunit, inhibits morphogenesis of vaccinia virions. J Virol 1998; 72:104-12. [PMID: 9420205 PMCID: PMC109354 DOI: 10.1128/jvi.72.1.104-112.1998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The vaccinia virus early transcription factor (VETF) is a DNA binding protein comprised of 70- and 82-kDa subunits encoded by the D6R and A8L genes, respectively. A previous investigation suggested a novel role for the 70-kDa subunit in the morphogenesis of vaccinia virus particles. The principal objectives of the present study were to determine if the 82-kDa subunit of VETF is also required for morphogenesis and, if so, whether the block occurs before or after the incorporation of the genome into the assembling virus particle. To address these and other questions, we constructed and characterized a conditionally lethal recombinant vaccinia virus in which the A8L gene is stringently repressed by the Escherichia coli lac operator system. The amount of 82-kDa protein synthesized could be regulated by the amount of inducer: from undetectable to higher than normal levels. Virus replication, as determined by plaque formation or virus yield upon synchronous infection, was dependent on inducer. Nevertheless, de novo synthesis of the 82-kDa subunit was not required for viral early, intermediate, and late gene expression or DNA replication. Overexpression of the A8L gene alone, produced by high concentrations of inducer, inhibited viral late protein synthesis, whereas overexpression of the D6R gene alone or both VETF genes simultaneously had little inhibitory effect. Laser confocal fluorescence and quantitative electron microscopic analyses revealed that immature and DNA-containing intermediate stage particles accumulated in the absence of inducer, indicating that the A8L protein has a role in morphogenesis of the core and subsequent events.
Collapse
Affiliation(s)
- X Hu
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-0445, USA
| | | | | | | | | |
Collapse
|
19
|
Deng L, Shuman S. An ATPase component of the transcription elongation complex is required for factor-dependent transcription termination by vaccinia RNA polymerase. J Biol Chem 1996; 271:29386-92. [PMID: 8910603 DOI: 10.1074/jbc.271.46.29386] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Vaccinia virus RNA polymerase terminates transcription in response to a specific signal UUUUUNU in the nascent transcript. Transduction of this signal to the elongating polymerase requires a virus-encoded termination factor, VTF. The existence of a second termination factor was suggested by the finding that transient exposure of purified elongation complexes to heparin rendered them refractory to VTF-induced termination. Loss of termination competence correlated with the removal of several polypeptide components of the elongation complex. We present the identification of factor X, an activity that restored VTF responsiveness to heparin-stripped ternary complexes. We propose that factor X, which has an associated DNA-dependent ATPase activity, mediates the requirement for ATP hydrolysis during transcription termination.
Collapse
Affiliation(s)
- L Deng
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA.
| | | |
Collapse
|
20
|
Hu X, Carroll LJ, Wolffe EJ, Moss B. De novo synthesis of the early transcription factor 70-kilodalton subunit is required for morphogenesis of vaccinia virions. J Virol 1996; 70:7669-77. [PMID: 8892887 PMCID: PMC190836 DOI: 10.1128/jvi.70.11.7669-7677.1996] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Vaccinia virus early transcription factor (VETF) is a heterodimeric protein that is packaged in virus particles for expression of early genes during the next round of infection. To investigate additional roles of VETF, we constructed a conditionally lethal recombinant vaccinia virus in which the D6R gene, encoding the 70-kDa subunit of VETF, is under stringent Escherichia coli lac operator control. When cells were infected with the recombinant virus in the absence of an inducer, synthesis of the 70-kDa protein was undetectable and the yield of infectious virus was severely reduced. Under these nonpermissive conditions, DNA replication and synthesis of viral proteins other than the one encoded by D6R occurred, suggesting that de novo synthesis of VETF is not required for expression of early or late genes during the virus growth cycle. Electron microscopy, however, revealed that immature virus particles and masses of electron-dense material accumulated in the absence of an inducer. We concluded that VETF has a direct role in virion morphogenesis or is required for expression of a novel subset of genes that have such a role.
Collapse
Affiliation(s)
- X Hu
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-0445, USA
| | | | | | | |
Collapse
|
21
|
Kovacs GR, Moss B. The vaccinia virus H5R gene encodes late gene transcription factor 4: purification, cloning, and overexpression. J Virol 1996; 70:6796-802. [PMID: 8794318 PMCID: PMC190724 DOI: 10.1128/jvi.70.10.6796-6802.1996] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The vaccinia virus late stage-specific transcription factor P3 was purified to homogeneity from HeLa cells that were infected in the presence of an inhibitor of viral DNA replication. The purified 36-kDa protein was digested with trypsin, and the peptides were analyzed by mass spectroscopy and amino-terminal sequencing. The purified factor was identified as the product of the vaccinia virus H5R open reading frame by both methods. A recombinant baculovirus was engineered to express the H5R open reading frame. The partially purified recombinant protein could replace the vaccinia virus P3 factor in transcription assays. On the basis of these findings, we assigned the H5R gene product the name viral late gene transcription factor 4 (VLTF-4). Unlike VLTF-1, -2, and -3, which are synthesized exclusively after viral DNA replication, VLTF-4 is synthesized before and after viral DNA synthesis. Indirect immunofluorescence of infected cells with anti-H5R protein antiserum demonstrated that VLTF-4 is diffusely distributed in the cytoplasm when DNA replication is blocked but is localized to discrete viral DNA-containing factories during a productive infection. Its expression pattern and subcellular distribution suggest that the H5R gene product may have multiple roles in the viral life cycle.
Collapse
Affiliation(s)
- G R Kovacs
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
22
|
Deng L, Hagler J, Shuman S. Factor-dependent release of nascent RNA by ternary complexes of vaccinia RNA polymerase. J Biol Chem 1996; 271:19556-62. [PMID: 8702649 DOI: 10.1074/jbc.271.32.19556] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Factor-dependent transcription termination during synthesis of vaccinia early mRNAs occurs at heterogeneous sites downstream of a UUUUUNU signal in the nascent transcript. The choice of termination site is flexible and is determined by a kinetic balance between nascent chain elongation and the transmission of the RNA signal to the polymerase. To eliminate ongoing elongation as a variable, we have established a system to study transcript release by purified ternary complexes halted at a defined template position 50-nucleotides 3' of the first U residue of the termination signal. Release of the nascent RNA depends on the vaccinia termination factor (VTF) and an ATP cofactor. Transcript release is blocked by BrUMP substitution within the termination signal of the nascent RNA. In these respects, the release reaction faithfully mimics the properties of the termination event. We demonstrate that ternary complexes are refractory to VTF-mediated transcript release when the first U of the UUUUUNU signal is situated 20 nucleotides from the growing point of the nascent chain. Ribonuclease footprinting of the arrested ternary complexes defines a nascent RNA binding site on the polymerase elongation complex that encompasses a 16-21 nucleotide RNA segment extending proximally from the 3' end of the chain. We surmise that access of VTF to the signal sequence is prevented when UUUUUNU is bound within the nascent RNA binding site. Hence, physical not kinetic constraints determine the minimal distance between the signal and potential sites of 3' end formation.
Collapse
Affiliation(s)
- L Deng
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
23
|
Passarelli AL, Kovacs GR, Moss B. Transcription of a vaccinia virus late promoter template: requirement for the product of the A2L intermediate-stage gene. J Virol 1996; 70:4444-50. [PMID: 8676468 PMCID: PMC190378 DOI: 10.1128/jvi.70.7.4444-4450.1996] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Evidence is presented that a 26-kDa protein encoded by the vaccinia virus A2L open reading frame, originally shown to be one of three intermediate-stage genes that together can transactivate late-stage gene expression in transfection assays (J. G. Keck, C. J. Baldick, and B. Moss, Cell 61:801-809, 1990), is required for in vitro transcription of a template with a late promoter. The critical step in this analysis was the preparation of an extract containing all the required factors except for the A2L protein. This extract was prepared from cells infected with a recombinant vaccinia virus expressing the bacteriophage T7 RNA polymerase in the presence of the DNA synthesis inhibitor cytosine arabinoside and transfected with plasmids containing the two other known transactivator genes, A1L and G8R, under T7 promoter control. Reaction mixtures made with extracts of these cells had background levels of late transcription activity, unless they were supplemented with extracts of cells transfected with the A2L gene. Active transcription mixtures were also made by mixing extracts from three sets of cells, each transfected with a gene (A1L, A2L, or G8R) encoding a separate factor, indicating the absence of any requirement for their coexpression. To minimize the possibility that the A2L protein functions indirectly by activating another viral or cellular protein, this gene was expressed in insect cells by using a baculovirus vector. The partially purified recombinant protein complemented the activity of A2L-deficient cell extracts. Recombinant A1L, A2L, and G8R proteins, all produced in insect cells, together complemented extracts from mammalian cells containing only viral early proteins, concordant with previous in vivo transfection data.
Collapse
Affiliation(s)
- A L Passarelli
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
24
|
Gershon P, Moss B. Expression, purification, and characterization of vaccinia virus-encoded RNA and poly(A) polymerases. Methods Enzymol 1996; 275:208-27. [PMID: 9026640 DOI: 10.1016/s0076-6879(96)75014-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- P Gershon
- Department of Biochemistry and Biophysics, Institute of Biosciences and Technology, Texas A&M University, College Station 77843, USA
| | | |
Collapse
|
25
|
Luo Y, Mao X, Deng L, Cong P, Shuman S. The D1 and D12 subunits are both essential for the transcription termination factor activity of vaccinia virus capping enzyme. J Virol 1995; 69:3852-6. [PMID: 7745734 PMCID: PMC189104 DOI: 10.1128/jvi.69.6.3852-3856.1995] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transcription termination by vaccinia virus RNA polymerase during synthesis of early mRNAs requires a virus-encoded termination factor (VTF). VTF is but one of many activities associated with the vaccinia virus mRNA capping enzyme, a heterodimer of 95- and 33-kDa subunits encoded by the D1 and D12 genes, respectively. Although the three catalytic domains involved in cap formation have been assigned to individual subunits or portions thereof, the structural requirements for VTF activity are unknown. We now report that both full-length subunits are required for transcription termination. The 844-amino acid D1 subunit by itself, which is fully active in triphosphatase and guanylyltransferase functions, has no demonstrable VTF activity in vitro. Neither does the D12 subunit by itself. The heterodimeric methyltransferase domain of D1 (residues 498 to 844) and D12 subunits also has no VTF activity. VTF is not affected by a K-to-M mutation of the guanylyltransferase active site at position 260 (K260M) that abolishes enzyme-GMP complex formation or by a H682A/Y683A double mutation of the D1 subunit, which abrogates methyltransferase activity. Thus, the structural requirements for termination are distinct from those for nucleotidyl transfer and methyl transfer.
Collapse
Affiliation(s)
- Y Luo
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
The predicted amino acid sequence of the vaccinia virus gene A18R shows significant homology to the human ERCC3 gene product, which is a member of the DEXH subfamily of the DNA and RNA helicase superfamily II and which plays a role in both RNA polymerase II transcription and nucleotide excision repair of DNA. The vaccinia virus A18R gene product is expressed throughout infection and is encapsidated in virions. Vaccinia virions containing mutant A18R gene product are defective in early viral transcription in vitro, and infection with A18R mutant virus results in aberrant viral transcription late during infection. Thus we hypothesize that the vaccinia virus A18R gene product is a helicase that plays a role in viral transcription and possibly DNA repair. As a first test of this hypothesis, we have affinity purified an amino-terminal polyhistidine-tagged A18R protein and shown that it has DNA-dependent ATPase activity. The A18R ATPase activity is stimulated by both single-stranded and double-stranded DNA and by RNA.DNA hybrids, but not by either single-stranded or double-stranded RNA.
Collapse
Affiliation(s)
- C D Bayliss
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville 32610
| | | |
Collapse
|