1
|
Vats A, Braga L, Kavcic N, Massimi P, Schneider E, Giacca M, Laimins LA, Banks L. Regulation of human papillomavirus E6 oncoprotein function via a novel ubiquitin ligase FBXO4. mBio 2025; 16:e0278324. [PMID: 39688415 PMCID: PMC11796345 DOI: 10.1128/mbio.02783-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/04/2024] [Indexed: 12/18/2024] Open
Abstract
Previous studies have shown that E6 interacts with the E6-associated protein (E6AP) ubiquitin-protein ligase and directs its ubiquitylation activity toward several specific cellular proteins, one of the most important of which is p53. Interestingly, E6AP not only aids in the E6-directed degradation of cellular substrates but also stabilizes the E6 protein by protecting it from proteasome-mediated degradation. However, there is no information available about the ubiquitin ligases that regulate the stability and activity of the human papillomavirus (HPV) E6 oncoprotein in the absence of E6AP. Therefore, to identify these novel ubiquitin ligases, we performed high-throughput human siRNA library screen against ubiquitin ligases in clustered regularly interspaced palindromic repeat (CRISPR)-edited E6AP-knockout human embryonic kidney (HEK) 293 cells, stably expressing green fluorescent protein (GFP)-tagged HPV-18E6. We found a number of ubiquitin ligases that increase the expression of GFP-tagged 18E6 upon their knockdown in the absence of E6AP. Upon validation of the interaction of 18E6 with these ubiquitin ligases in cervical cancer-derived cell lines, we found that the knockdown of ubiquitin ligase F-box protein 4 (FBXO4), together with E6AP knockdown, leads to a dramatic increase in the levels of endogenous HPV-18E6 oncoprotein. Furthermore, our data demonstrate that the combined knockdown of FBXO4 and E6AP not only rescues the protein levels of E6 but also induces high levels of cell death in a p53-dependent manner in the HPV-positive cervical cancer cell line, HeLa. These results indicate a close interplay between FBXO4, E6AP, and p53 in the regulation of cell survival in HPV-positive cervical tumor-derived cells. IMPORTANCE E6-associated protein (E6AP)-mediated stabilization of human papillomavirus (HPV) E6 plays a crucial role in the development and progression of cervical and other HPV-associated cancers. This study, for the first time, identifies a novel ubiquitin ligase, FBXO4 that targets the degradation of HPV E6 oncoprotein in the absence of E6AP in cervical cancer-derived cell lines. This may have significant implications for our understanding of HPV-associated cancers by providing deeper insights into the intricate interplay between viral proteins and host cellular machinery and the development of targeted therapies.
Collapse
Affiliation(s)
- Arushi Vats
- Tumour Virology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Luca Braga
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nezka Kavcic
- Tumour Virology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Paola Massimi
- Tumour Virology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Edoardo Schneider
- Functional Cell Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mauro Giacca
- School of Cardiovascular & Metabolic Medicine and Sciences, King's College London British Heart Foundation Centre, London, United Kingdom
| | - Laimonis A. Laimins
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lawrence Banks
- Tumour Virology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
2
|
Diverse fate of ubiquitin chain moieties: The proximal is degraded with the target, and the distal protects the proximal from removal and recycles. Proc Natl Acad Sci U S A 2019; 116:7805-7812. [PMID: 30867293 DOI: 10.1073/pnas.1822148116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the enigmas in the ubiquitin (Ub) field is the requirement for a poly-Ub chain as a proteasomal targeting signal. The canonical chain appears to be longer than the distance between the two Ub-binding proteasomal receptors. Furthermore, genetic manipulation has shown that one receptor subunit is sufficient, which suggests that a single Ub can serve as a degradation signal. To shed light on this mystery, we chemically synthesized tetra-Ub, di-Ub (K48-based), and mono-Ub adducts of HA-α-globin, where the distal or proximal Ub moieties were tagged differentially with either Myc or Flag. When incubated in a crude cell extract, the distal Ub moiety in the tetra-Ub adduct was mostly removed by deubiquitinating enzymes (DUBs) and reconjugated to other substrates in the extract. In contrast, the proximal moiety was most likely degraded with the substrate. The efficacy of degradation was proportionate to the chain length; while tetra-Ub globin was an efficient substrate, with mono-Ub globin, we observed rapid removal of the Ub moiety with almost no degradation of the free globin. Taken together, these findings suggest that the proximal moieties are necessary for securing the association of the substrate with the proteasome along the proteolytic process, whereas the distal moieties are important in protecting the proximal moieties from premature deubiquitination. Interestingly, when the same experiment was carried out using purified 26S proteasome, mono- and tetra-Ub globin were similarly degraded, highlighting the roles of the entire repertoire of cellular DUBs in regulating the degradation of proteasomal substrates.
Collapse
|
3
|
Role of RNF20 in cancer development and progression - a comprehensive review. Biosci Rep 2018; 38:BSR20171287. [PMID: 29934362 PMCID: PMC6043722 DOI: 10.1042/bsr20171287] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
Evolving strategies to counter cancer initiation and progression rely on the identification of novel therapeutic targets that exploit the aberrant genetic changes driving oncogenesis. Several chromatin associated enzymes have been shown to influence post-translational modification (PTM) in DNA, histones, and non-histone proteins. Any deregulation of this core group of enzymes often leads to cancer development. Ubiquitylation of histone H2B in mammalian cells was identified over three decades ago. An exciting really interesting new gene (RING) family of E3 ubiquitin ligases, known as RNF20 and RNF40, monoubiquitinates histone H2A at K119 or H2B at K120, is known to function in transcriptional elongation, DNA double-strand break (DSB) repair processes, maintenance of chromatin differentiation, and exerting tumor suppressor activity. RNF20 is somatically altered in breast, lung, prostate cancer, clear cell renal cell carcinoma (ccRCC), and mixed lineage leukemia, and its reduced expression is a key factor in initiating genome instability; and it also functions as one of the significant driving factors of oncogenesis. Loss of RNF20/40 and H2B monoubiquitination (H2Bub1) is found in several cancers and is linked to an aggressive phenotype, and is also an indicator of poor prognosis. In this review, we summarized the current knowledge of RNF20 in chronic inflammation-driven cancers, DNA DSBs, and apoptosis, and its impact on chromatin structure beyond the single nucleosome level.
Collapse
|
4
|
Shanmugam MK, Arfuso F, Arumugam S, Chinnathambi A, Jinsong B, Warrier S, Wang LZ, Kumar AP, Ahn KS, Sethi G, Lakshmanan M. Role of novel histone modifications in cancer. Oncotarget 2018; 9:11414-11426. [PMID: 29541423 PMCID: PMC5834259 DOI: 10.18632/oncotarget.23356] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/01/2017] [Indexed: 01/02/2023] Open
Abstract
Oncogenesis is a multistep process mediated by a variety of factors including epigenetic modifications. Global epigenetic post-translational modifications have been detected in almost all cancers types. Epigenetic changes appear briefly and do not involve permanent changes to the primary DNA sequence. These epigenetic modifications occur in key oncogenes, tumor suppressor genes, and transcription factors, leading to cancer initiation and progression. The most commonly observed epigenetic changes include DNA methylation, histone lysine methylation and demethylation, histone lysine acetylation and deacetylation. However, there are several other novel post-translational modifications that have been observed in recent times such as neddylation, sumoylation, glycosylation, phosphorylation, poly-ADP ribosylation, ubiquitination as well as transcriptional regulation and these have been briefly discussed in this article. We have also highlighted the diverse epigenetic changes that occur during the process of tumorigenesis and described the role of histone modifications that can occur on tumor suppressor genes as well as oncogenes, which regulate tumorigenesis and can thus form the basis of novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Muthu K. Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Surendar Arumugam
- Institute of Molecular and Cell Biology, A*STAR, Biopolis Drive, Proteos, Singapore, Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Bian Jinsong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, India
| | - Ling Zhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- National University Cancer Institute, National University Health System, Singapore, Singapore
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology, A*STAR, Biopolis Drive, Proteos, Singapore, Singapore
- Department of Pathology, National University Hospital Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Buneeva OA, Gnedenko OV, Kopylov AT, Medvedeva MV, Zgoda VG, Ivanov AS, Medvedev AE. Quantitative Affinity Interaction of Ubiquitinated and Non-ubiquitinated Proteins with Proteasome Subunit Rpn10. BIOCHEMISTRY (MOSCOW) 2017; 82:1042-1047. [PMID: 28988533 DOI: 10.1134/s0006297917090073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent proteomic profiling of mouse brain preparations using the ubiquitin receptor, Rpn10 proteasome subunit, as an affinity ligand revealed a representative group of proteins bound to this sorbent (Medvedev, A. E., et al. (2017) Biochemistry (Moscow), 82, 330-339). In the present study, we investigated interaction of the Rpn10 subunit of proteasomes with some of these identified proteins: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase, and histones H2A and H2B. The study revealed: (i) quantitative affinity interaction of the proteasome subunit immobilized on a Biacore-3000 optical biosensor cuvette with both the GAPDH (Kd = 2.4·10-6 M) and pyruvate kinase (Kd = 2.8·10-5 M); (ii) quantitative high-affinity interaction of immobilized histones H2A and H2B with the Rpn10 subunit (Kd values of 6.5·10-8 and 3.2·10-9 M, respectively). Mass spectrometric analysis revealed the presence of the ubiquitin signature (GG) only in a highly purified preparation of GAPDH. We suggest that binding (especially high-affinity binding) of non-ubiquitinated proteins to the Rpn10 proteasome subunit can both regulate the functioning of this proteasomal ubiquitin receptor (by competing with ubiquitinated substrates) and promote activation of other pathways for proteolytic degradation of proteins destined to the proteasome.
Collapse
Affiliation(s)
- O A Buneeva
- Orekhovich Institute of Biomedical Chemistry, Moscow, 119121, Russia.
| | | | | | | | | | | | | |
Collapse
|
6
|
McClurg UL, Robson CN. Deubiquitinating enzymes as oncotargets. Oncotarget 2016; 6:9657-68. [PMID: 25962961 PMCID: PMC4496387 DOI: 10.18632/oncotarget.3922] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/08/2015] [Indexed: 12/19/2022] Open
Abstract
Carcinogenesis is a complex process tightly regulated at multiple levels by post-translational modifications. Epigenetics plays a major role in cancer development, all stable changes to the gene expression process that are not a result of a direct change in the DNA code are described as epigenetics. Epigenetic processes are regulated by post-translational modifications including ubiquitination which can directly affect either histones or transcription factors or may target their co-factors and interacting partners exerting an indirect effect. Deubiquitination of these target proteins is equally important and alterations in this pathway can also lead to cancer development, progression and metastasis. Only the correct, unaltered balance between ubiquitination and deubiquitination ensures healthy cellular homeostasis. In this review we focus on the role of deubiquitinating (DUB) enzymes in various aspects of epigenetics including the regulation of transcription factors, histone modifications, DNA damage repair pathways and cell cycle regulation. We discuss the impact of those processes on tumourigenesis and potential therapeutic applications of DUBs for cancer treatment.
Collapse
Affiliation(s)
- Urszula L McClurg
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Craig N Robson
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
7
|
You J, Lee E, Bonilla L, Francis J, Koh J, Block J, Chen S, Hansen PJ. Treatment with the proteasome inhibitor MG132 during the end of oocyte maturation improves oocyte competence for development after fertilization in cattle. PLoS One 2012; 7:e48613. [PMID: 23144909 PMCID: PMC3492449 DOI: 10.1371/journal.pone.0048613] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/27/2012] [Indexed: 11/18/2022] Open
Abstract
Maturation of the oocyte involves nuclear and cytoplasmic changes that include post-translational processing of proteins. The objective was to investigate whether inhibition of proteasomes during maturation would alter competence of the bovine oocyte for fertilization and subsequent development. Cumulus-oocyte complexes were cultured in the presence or absence of the proteasomal inhibitor MG132 from either 0-6 h or 16-22 h after initiation of maturation. Treatment with MG132 early in maturation prevented progression to meiosis II and reduced fertilization rate and the proportion of oocytes and cleaved embryos that became blastocysts. Conversely, treatment with MG132 late in maturation improved the percentage of oocytes and cleaved embryos that became blastocysts without affecting nuclear maturation or fertilization rate. Optimal results with MG132 were achieved at a concentration of 10 µM - effects were generally not observed at lower or higher concentrations. Using proteomic analysis, it was found that MG132 at the end of maturation increased relative expression of 6 proteins and decreased relative expression of 23. Among those increased by MG132 that are potentially important for oocyte competence are GAPDH, involved in glycolysis, TUBA1C, needed for organellar movement, and two proteins involved in protein folding (P4HB and HYOU1). MG132 decreased amounts of several proteins that exert anti-apoptotic actions including ASNS, HSP90B1, PDIA3 and VCP. Another protein decreased by MG132, CDK5, can lead to apoptosis if aberrantly activated and one protein increased by MG132, P4HB, is anti-apoptotic. Finally, the pregnancy rate of cows receiving embryos produced from oocytes treated with MG132 from 16-22 h of maturation was similar to that for control embryos, suggesting that use of MG132 for production of embryos in vitro does not cause a substantial decrease in embryo quality.
Collapse
Affiliation(s)
- Jinyoung You
- College of Veterinary Medicine, Kangwon National University, Chunchon, Korea
| | - Eunsong Lee
- College of Veterinary Medicine, Kangwon National University, Chunchon, Korea
| | - Luciano Bonilla
- Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, Florida, United States of America
| | - Jasmine Francis
- Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, Florida, United States of America
| | - Jin Koh
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, United States of America
- Dept. of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Jeremy Block
- Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, Florida, United States of America
- Ovatech LLC, Gainesville, Florida, United States of America
| | - Sixue Chen
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, United States of America
- Dept. of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Peter J. Hansen
- Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
8
|
Toledo JS, Ferreira TR, Defina TPA, Dossin FDM, Beattie KA, Lamont DJ, Cloutier S, Papadopoulou B, Schenkman S, Cruz AK. Cell homeostasis in a Leishmania major mutant overexpressing the spliced leader RNA is maintained by an increased proteolytic activity. Int J Biochem Cell Biol 2010; 42:1661-71. [PMID: 20601086 DOI: 10.1016/j.biocel.2010.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 06/04/2010] [Accepted: 06/16/2010] [Indexed: 10/19/2022]
Abstract
Although several stage-specific genes have been identified in Leishmania, the molecular mechanisms governing developmental gene regulation in this organism are still not well understood. We have previously reported an attenuation of virulence in Leishmania major and L. braziliensis carrying extra-copies of the spliced leader RNA gene. Here, we surveyed the major differences in proteome and transcript expression profiles between the spliced leader RNA overexpressor and control lines using two-dimensional gel electrophoresis and differential display reverse transcription PCR, respectively. Thirty-nine genes related to stress response, cytoskeleton, proteolysis, cell cycle control and proliferation, energy generation, gene transcription, RNA processing and post-transcriptional regulation have abnormal patterns of expression in the spliced leader RNA overexpressor line. The evaluation of proteolytic pathways in the mutant revealed a selective increase of cysteine protease activity and an exacerbated ubiquitin-labeled protein population. Polysome profile analysis and measurement of cellular protein aggregates showed that protein translation in the spliced leader RNA overexpressor line is increased when compared to the control line. We found that L. major promastigotes maintain homeostasis in culture when challenged with a metabolic imbalance generated by spliced leader RNA surplus through modulation of intracellular proteolysis. However, this might interfere with a fine-tuned gene expression control necessary for the amastigote multiplication in the mammalian host.
Collapse
Affiliation(s)
- Juliano S Toledo
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Blanchette P, Branton PE. Manipulation of the ubiquitin-proteasome pathway by small DNA tumor viruses. Virology 2008; 384:317-23. [PMID: 19013629 DOI: 10.1016/j.virol.2008.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 10/03/2008] [Indexed: 10/21/2022]
Abstract
Viruses have evolved to use cellular pathways to their advantage, including the ubiquitin-proteasome pathway of protein degradation. In several cases, viruses produce proteins that highjack cellular E3 ligases to modify their substrate specificity in order to eliminate unwanted cellular proteins, in particular inhibitors of the cell cycle. They can also inhibit E3 ligase to prevent specific protein degradation or even use the system to control the level of expression of their own proteins. In this review we explore the specific ways that small DNA tumor viruses exploit the ubiquitin-proteasome pathway for their own benefit.
Collapse
|
10
|
Chuang DM, Hough C, Senatorov VV. Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu Rev Pharmacol Toxicol 2005; 45:269-90. [PMID: 15822178 DOI: 10.1146/annurev.pharmtox.45.120403.095902] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Increasing evidence supports the notion that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a protein with multiple functions, including its surprising role in apoptosis. GAPDH is overexpressed and accumulates in the nucleus during apoptosis induced by a variety of insults in diverse cell types. Knockdown of GAPDH using an antisense strategy demonstrates its involvement in the apoptotic cascade in which GAPDH nuclear translocation appears essential. Knowledge concerning the mechanisms underlying GAPDH nuclear translocation and subsequent cell death is growing. Additional evidence suggests that GAPDH may be an intracellular sensor of oxidative stress during early apoptosis. Abnormal expression, nuclear accumulation, changes in physical properties, and loss of glycolytic activity of GAPDH have been found in cellular and transgenic models as well as postmortem tissues of several neurodegenerative diseases. The interaction of GAPDH with disease-related proteins as well as drugs used to treat these diseases suggests that it is a potential molecular target for drug development.
Collapse
Affiliation(s)
- De-Maw Chuang
- Molecular Neurobiology Section, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1363, USA.
| | | | | |
Collapse
|
11
|
Oh KJ, Kalinina A, Wang J, Nakayama K, Nakayama KI, Bagchi S. The papillomavirus E7 oncoprotein is ubiquitinated by UbcH7 and Cullin 1- and Skp2-containing E3 ligase. J Virol 2004; 78:5338-46. [PMID: 15113913 PMCID: PMC400333 DOI: 10.1128/jvi.78.10.5338-5346.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recurrent infections with high-risk human papillomaviruses (HPVs) are associated with human cervical cancers. All HPV-associated cancer tissues express the viral oncoproteins E6 and E7, which stimulate cell growth. The expression of E7 is crucial for both the initiation and the maintenance of HPV-associated cancer. Recent studies showed that the level of E7 in cancer cells is regulated by ubiquitin-dependent proteolysis through the 26S proteasome. In this study, we characterized the enzymes involved in the ubiquitin-dependent proteolysis of E7. We show that UbcH7, an E2 ubiquitin-conjugating enzyme, is specifically involved in the ubiquitination of E7. Furthermore, we show that E7 interacts with the SCF (Skp-Cullin-F box) ubiquitin ligase complex containing Cullin 1 (Cul1) and Skp2 and can be ubiquitinated by the Cul1-containing ubiquitin ligase in vitro. Coimmunoprecipitation analyses revealed that E7 interacts with Skp2 and Cul1 in vivo. Finally, the half-life of E7 was found to be significantly longer in Skp2(-/-) mouse embryo fibroblasts (MEFs) than in wild-type MEFs. Taken together, these results suggest that the Cul1- and Skp2-containing ubiquitin ligase plays a role in the ubiquitination and proteolysis of E7. In HPV type 16-containing cervical carcinoma cell line Caski, E7 localizes to both the cytoplasm and the nucleus. Brief treatment of Caski cells with MG132 (a proteasome inhibitor) causes the accumulation of E7 in discrete nuclear bodies. These nuclear bodies are detergent insoluble and contain polyubiquitinated E7. We suggest that E7 relocates to specific nuclear bodies for proteolysis in HPV-containing epithelial cells.
Collapse
Affiliation(s)
- Kwang-Jin Oh
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
OBJECTIVE To review present knowledge of intracellular mechanisms and molecular regulation of muscle cachexia. SUMMARY BACKGROUND DATA Muscle cachexia, mainly reflecting degradation of myofibrillar proteins, is an important clinical feature in patients with severe injury, sepsis, and cancer. The catabolic response in skeletal muscle may result in muscle wasting and weakness, delaying or preventing ambulation and rehabilitation in these patients and increasing the risk for pulmonary complications. RESULTS Muscle cachexia, induced by severe injury, sepsis, and cancer, is associated with increased gene expression and activity of the calcium/calpain- and ubiquitin/proteasome-proteolytic pathways. Calcium/calpain-regulated release of myofilaments from the sarcomere is an early, and perhaps rate-limiting, component of the catabolic response in muscle. Released myofilaments are ubiquitinated in the N-end rule pathway, regulated by the ubiquitin-conjugating enzyme E2(14k) and the ubiquitin ligase E3 alpha, and degraded by the 26S proteasome. CONCLUSIONS An understanding of the mechanisms regulating muscle protein breakdown is important for the development of therapeutic strategies aimed at treating or preventing muscle cachexia in patients with severe injury, sepsis, cancer, and perhaps other catabolic conditions as well.
Collapse
Affiliation(s)
- P O Hasselgren
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio 45267-0558, USA.
| | | |
Collapse
|
13
|
Reinstein E, Scheffner M, Oren M, Ciechanover A, Schwartz A. Degradation of the E7 human papillomavirus oncoprotein by the ubiquitin-proteasome system: targeting via ubiquitination of the N-terminal residue. Oncogene 2000; 19:5944-50. [PMID: 11127826 DOI: 10.1038/sj.onc.1203989] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The E7 oncoprotein of the high risk human papillomavirus type 16 (HPV-16), which is etiologically associated with uterine cervical cancer, is a potent immortalizing and transforming agent. It probably exerts its oncogenic functions by interacting and altering the normal activity of cell cycle control proteins such as p21WAF1, p27KIP1 and pRb, transcriptional activators such as TBP and AP-1, and metabolic regulators such as M2-pyruvate kinase (M2-PK). Here we show that E7 is a short-lived protein and its degradation both in vitro and in vivo is mediated by the ubiquitin-proteasome pathway. Interestingly, ubiquitin does not attach to any of the two internal Lysine residues of E7. Substitution of these residues with Arg does not affect the ability of the protein to be conjugated and degraded; in contrast, addition of a Myc tag to the N-terminal but not to the C-terminal residue, stabilizes the protein. Also, deletion of the first 11 amino acid residues stabilizes the protein in cells. Taken together, these findings strongly suggest that, like MyoD and the Epstein Barr Virus (EBV) transforming Latent Membrane Protein 1 (LMPI), the first ubiquitin moiety is attached linearly to the free N-terminal residue of E7. Additional ubiquitin moieties are then attached to an internal Lys residue of the previously conjugated molecule. The involvement of E7 in many diverse and apparently unrelated processes requires tight regulation of its function and cellular level, which is controlled in this case by ubiquitin-mediated proteolysis.
Collapse
Affiliation(s)
- E Reinstein
- Department of Biochemistry and the Rappaport Family Institute for Research in the Medical Sciences, The Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | | | | | | | | |
Collapse
|
14
|
Pringa E, Meier I, Müller U, Martinez-Noel G, Harbers K. Disruption of the gene encoding the ubiquitin-conjugating enzyme UbcM4 has no effect on proliferation and in vitro differentiation of mouse embryonic stem cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1494:75-82. [PMID: 11072070 DOI: 10.1016/s0167-4781(00)00221-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The ubiquitin-conjugating enzyme UbcM4, which is identical to the human enzyme UbcH7, was previously shown to be essential for normal mouse development. In order to study the possible role of UbcM4 for cell proliferation and in vitro differentiation, we here describe the establishment and characterization of fibroblast and embryonic stem cell lines with partial or complete inactivation of the UbcM4 gene. ES cell lines in which both alleles of the gene were inactivated by targeted mutagenesis showed no differences in growth rates, cell cycle progression and in vitro differentiation when compared to wild-type ES cells. Fibroblast cell lines with a partially inactivated UbcM4 gene were derived from embryos of the previously described A6 mouse mutant, where retrovirus integration has resulted in a recessive lethal mutation. As in the mutant embryos, steady levels of RNA and protein in the cell lines were reduced by about 70%. The mutant cell lines showed no differences in immortalization kinetics, growth rates and cell cycle progression when compared to wild-type fibroblasts. Taken together, our results strongly suggest that UbcM4-mediated ubiquitination and degradation are not necessary for proteins involved in the maintenance and growth of cells.
Collapse
Affiliation(s)
- E Pringa
- Heinrich-Pette-Institut für experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistr. 52, D-20251, Hamburg, Germany
| | | | | | | | | |
Collapse
|
15
|
Cuervo AM, Gomes AV, Barnes JA, Dice JF. Selective degradation of annexins by chaperone-mediated autophagy. J Biol Chem 2000; 275:33329-35. [PMID: 10938088 DOI: 10.1074/jbc.m005655200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Annexins are a family of proteins that bind phospholipids in a calcium-dependent manner. Analysis of the sequences of the different members of the annexin family revealed the presence of a pentapeptide biochemically related to KFERQ in some annexins but not in others. Such sequences have been proposed to be a targeting sequence for chaperone-mediated autophagy, a lysosomal pathway of protein degradation that is activated in confluent cells in response to removal of serum growth factors. We demonstrate that annexins II and VI, which contain KFERQ-like sequences, are degraded more rapidly in response to serum withdrawal, while annexins V and XI, without such sequences, are degraded at the same rate in the presence and absence of serum. Using isolated lysosomes, only the annexins containing KFERQ-like sequences are degraded by chaperone mediated-autophagy. Annexins V and XI could associate with lysosomes but did not enter the lysosomes and were not proteolytic substrates. Furthermore, four annexins containing KFERQ-like sequences, annexins I, II, IV, and VI, are enriched in lysosomes with high chaperone-mediated autophagy activity as expected for substrate proteins. These results provide striking evidence for the importance of KFERQ motifs in substrates of chaperone-mediated autophagy.
Collapse
Affiliation(s)
- A M Cuervo
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | | | |
Collapse
|
16
|
Voges D, Zwickl P, Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 2000; 68:1015-68. [PMID: 10872471 DOI: 10.1146/annurev.biochem.68.1.1015] [Citation(s) in RCA: 1394] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In eukaryotic cells, most proteins in the cytosol and nucleus are degraded via the ubiquitin-proteasome pathway. The 26S proteasome is a 2.5-MDa molecular machine built from approximately 31 different subunits, which catalyzes protein degradation. It contains a barrel-shaped proteolytic core complex (the 20S proteasome), capped at one or both ends by 19S regulatory complexes, which recognize ubiquitinated proteins. The regulatory complexes are also implicated in unfolding and translocation of ubiquitinated targets into the interior of the 20S complex, where they are degraded to oligopeptides. Structure, assembly and enzymatic mechanism of the 20S complex have been elucidated, but the functional organization of the 19S complex is less well understood. Most subunits of the 19S complex have been identified, however, specific functions have been assigned to only a few. A low-resolution structure of the 26S proteasome has been obtained by electron microscopy, but the precise arrangement of subunits in the 19S complex is unclear.
Collapse
Affiliation(s)
- D Voges
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | |
Collapse
|
17
|
Teckman JH, Gilmore R, Perlmutter DH. Role of ubiquitin in proteasomal degradation of mutant alpha(1)-antitrypsin Z in the endoplasmic reticulum. Am J Physiol Gastrointest Liver Physiol 2000; 278:G39-48. [PMID: 10644560 DOI: 10.1152/ajpgi.2000.278.1.g39] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A delay in intracellular degradation of the mutant alpha(1)-antitrypsin (alpha(1)AT)Z molecule is associated with greater retention within the endoplasmic reticulum (ER) and susceptibility to liver disease in a subgroup of patients with alpha(1)AT deficiency. Recent studies have shown that alpha(1)ATZ is ordinarily degraded in the ER by a mechanism that involves the proteasome, as demonstrated in intact cells using human fibroblast cell lines engineered for expression of alpha(1)ATZ and in a cell-free microsomal translocation assay system programmed with purified alpha(1)ATZ mRNA. To determine whether the ubiquitin system is required for proteasomal degradation of alpha(1)ATZ and whether specific components of the ubiquitin system can be implicated, we have now used two approaches. First, we overexpressed a dominant-negative ubiquitin mutant (UbK48R-G76A) by transient transfection in the human fibroblast cell lines expressing alpha(1)ATZ. The results showed that there was marked, specific, and selective inhibition of alpha(1)ATZ degradation mediated by UbK48R-G76A, indicating that the ubiquitin system is at least in part involved in ER degradation of alpha(1)ATZ. Second, we subjected reticulocyte lysate to DE52 chromatography and tested the resulting well-characterized fractions in the cell-free system. The results showed that there were both ubiquitin-dependent and -independent proteasomal mechanisms for degradation of alpha(1)ATZ and that the ubiquitin-conjugating enzyme E2-F1 may play a role in the ubiquitin-dependent proteasomal mechanism.
Collapse
Affiliation(s)
- J H Teckman
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
18
|
Moynihan TP, Ardley HC, Nuber U, Rose SA, Jones PF, Markham AF, Scheffner M, Robinson PA. The ubiquitin-conjugating enzymes UbcH7 and UbcH8 interact with RING finger/IBR motif-containing domains of HHARI and H7-AP1. J Biol Chem 1999; 274:30963-8. [PMID: 10521492 DOI: 10.1074/jbc.274.43.30963] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitinylation of proteins appears to be mediated by the specific interplay between ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s). However, cognate E3s and/or substrate proteins have been identified for only a few E2s. To identify proteins that can interact with the human E2 UbcH7, a yeast two-hybrid screen was performed. Two proteins were identified and termed human homologue of Drosophila ariadne (HHARI) and UbcH7-associated protein (H7-AP1). Both proteins, which are widely expressed, are characterized by the presence of RING finger and in between RING fingers (IBR) domains. No other overt structural similarity was observed between the two proteins. In vitro binding studies revealed that an N-terminal RING finger motif (HHARI) and the IBR domain (HHARI and H7-AP1) are involved in the interaction of these proteins with UbcH7. Furthermore, binding of these two proteins to UbcH7 is specific insofar that both HHARI and H7-AP1 can bind to the closely related E2, UbcH8, but not to the unrelated E2s UbcH5 and UbcH1. Although it is not clear at present whether HHARI and H7-AP1 serve, for instance, as substrates for UbcH7 or represent proteins with E3 activity, our data suggests that a subset of RING finger/IBR proteins are functionally linked to the ubiquitin/proteasome pathway.
Collapse
Affiliation(s)
- T P Moynihan
- Molecular Medicine Unit, University of Leeds, Clinical Sciences Building, St. James's University Hospital, Leeds LS9 7TF, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Gonen H, Bercovich B, Orian A, Carrano A, Takizawa C, Yamanaka K, Pagano M, Iwai K, Ciechanover A. Identification of the ubiquitin carrier proteins, E2s, involved in signal-induced conjugation and subsequent degradation of IkappaBalpha. J Biol Chem 1999; 274:14823-30. [PMID: 10329681 DOI: 10.1074/jbc.274.21.14823] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The last step in the activation of the transcription factor NF-kappaB is signal-induced, ubiquitin- and proteasome-mediated degradation of the inhibitor IkappaBalpha. Although most of the components involved in the activation and degradation pathways have been identified, the ubiquitin carrier proteins (E2) have remained elusive. Here we show that the two highly homologous members of the UBCH5 family, UBCH5b and UBCH5c, and CDC34/UBC3, the mammalian homolog of yeast Cdc34/Ubc3, are the E2 enzymes involved in the process. The conjugation reaction they catalyze in vitro is specific, as they do not recognize the S32A,S36A mutant species of IkappaBalpha that cannot be phosphorylated and conjugated following an extracellular signal. Furthermore, the reaction is specifically inhibited by a doubly phosphorylated peptide that spans the ubiquitin ligase recognition domain of the inhibitor. Cys-to-Ala mutant species of the enzymes that cannot bind ubiquitin inhibit tumor necrosis factor alpha-induced degradation of the inhibitor in vivo. Not surprisingly, they have a similar effect in a cell-free system as well. Although it is clear that the E2 enzymes are not entirely specific to IkappaBalpha, they are also not involved in the conjugation and degradation of the bulk of cellular proteins, thus exhibiting some degree of specificity that is mediated probably via their association with a defined subset of ubiquitin-protein ligases. The mechanisms that underlie the involvement of two different E2 species in IkappaBalpha conjugation are not clear at present. It is possible that different conjugating machineries operate under different physiological conditions or in different cells.
Collapse
Affiliation(s)
- H Gonen
- Department of Biochemistry and the Rappaport Family Institute for Research in the Medical Sciences, Bruce Rappaport Faculty of Medicine, Haifa 31096, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Müller U, Grams A, Martinez-Noel G, Copeland NG, Gilbert DJ, Jenkins NA, Harbers K. Structure of the gene encoding the ubiquitin-conjugating enzyme Ubcm4, characterization of its promoter, and chromosomal location. Gene X 1998; 224:109-16. [PMID: 9931461 DOI: 10.1016/s0378-1119(98)00515-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Ubiquitin-conjugating enzymes (E2 or Ubc) play a key role in the post-translational modification of proteins by ubiquitylation. They are encoded by a large family of genes that are closely related to each other. In this paper we present the first complete structural analysis, including the promoter and the chromosomal location, of a member of this family, the mouse Ubcm4 gene. At the genomic level the Ubcm4 gene spans approx. 50kb and is composed of four exons. Only about 1% of the total gene codes for amino acids. The four different Ubcm4 specific RNAs encode the same protein and differ only in the length of the 3' untranslated region. The polyadenylation signals used by the four different RNAs are all within the 3' terminal exon. At the 5' end of the gene, multiple transcriptional start sites were mapped within a region of 25bp. The region proximal to the initiation sites does not contain a TATA box and is not GC-rich. Transient chloramphenicol acetyltransferase assays, however, showed that this region can promote the expression of a reporter gene and that 15bp upstream of the first initiation site were sufficient for basal expression. The Ubcm4 gene was mapped by interspecific backcross analysis to the proximal region of mouse chromosome 16.
Collapse
Affiliation(s)
- U Müller
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistr. 52, D-20251, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The selective degradation of many short-lived proteins in eukaryotic cells is carried out by the ubiquitin system. In this pathway, proteins are targeted for degradation by covalent ligation to ubiquitin, a highly conserved small protein. Ubiquitin-mediated degradation of regulatory proteins plays important roles in the control of numerous processes, including cell-cycle progression, signal transduction, transcriptional regulation, receptor down-regulation, and endocytosis. The ubiquitin system has been implicated in the immune response, development, and programmed cell death. Abnormalities in ubiquitin-mediated processes have been shown to cause pathological conditions, including malignant transformation. In this review we discuss recent information on functions and mechanisms of the ubiquitin system. Since the selectivity of protein degradation is determined mainly at the stage of ligation to ubiquitin, special attention is focused on what we know, and would like to know, about the mode of action of ubiquitin-protein ligation systems and about signals in proteins recognized by these systems.
Collapse
Affiliation(s)
- A Hershko
- Unit of Biochemistry, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
22
|
Abu Hatoum O, Gross-Mesilaty S, Breitschopf K, Hoffman A, Gonen H, Ciechanover A, Bengal E. Degradation of myogenic transcription factor MyoD by the ubiquitin pathway in vivo and in vitro: regulation by specific DNA binding. Mol Cell Biol 1998; 18:5670-7. [PMID: 9742084 PMCID: PMC109153 DOI: 10.1128/mcb.18.10.5670] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MyoD is a tissue-specific transcriptional activator that acts as a master switch for skeletal muscle differentiation. Its activity is induced during the transition from proliferating, nondifferentiated myoblasts to resting, well-differentiated myotubes. Like many other transcriptional regulators, it is a short-lived protein; however, the targeting proteolytic pathway and the underlying regulatory mechanisms involved in the process have remained obscure. It has recently been shown that many short-lived regulatory proteins are degraded by the ubiquitin system. Degradation of a protein by the ubiquitin system proceeds via two distinct and successive steps, conjugation of multiple molecules of ubiquitin to the target protein and degradation of the tagged substrate by the 26S proteasome. Here we show that MyoD is degraded by the ubiquitin system both in vivo and in vitro. In intact cells, the degradation is inhibited by lactacystin, a specific inhibitor of the 26S proteasome. Inhibition is accompanied by accumulation of high-molecular-mass MyoD-ubiquitin conjugates. In a cell-free system, the proteolytic process requires both ATP and ubiquitin and, like the in vivo process, is preceded by formation of ubiquitin conjugates of the transcription factor. Interestingly, the process is inhibited by the specific DNA sequence to which MyoD binds: conjugation and degradation of a MyoD mutant protein which lacks the DNA-binding domain are not inhibited. The inhibitory effect of the DNA requires the formation of a complex between the DNA and the MyoD protein. Id1, which inhibits the binding of MyoD complexes to DNA, abrogates the effect of DNA on stabilization of the protein.
Collapse
Affiliation(s)
- O Abu Hatoum
- Department of Biochemistry, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | | | | | | | |
Collapse
|
23
|
Solomon V, Lecker SH, Goldberg AL. The N-end rule pathway catalyzes a major fraction of the protein degradation in skeletal muscle. J Biol Chem 1998; 273:25216-22. [PMID: 9737984 DOI: 10.1074/jbc.273.39.25216] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In skeletal muscle, overall protein degradation involves the ubiquitin-proteasome system. One property of a protein that leads to rapid ubiquitin-dependent degradation is the presence of a basic, acidic, or bulky hydrophobic residue at its N terminus. However, in normal cells, substrates for this N-end rule pathway, which involves ubiquitin carrier protein (E2) E214k and ubiquitin-protein ligase (E3) E3alpha, have remained unclear. Surprisingly, in soluble extracts of rabbit muscle, we found that competitive inhibitors of E3alpha markedly inhibited the 125I-ubiquitin conjugation and ATP-dependent degradation of endogenous proteins. These inhibitors appear to selectively inhibit E3alpha, since they blocked degradation of 125I-lysozyme, a model N-end rule substrate, but did not affect the degradation of proteins whose ubiquitination involved other E3s. The addition of several E2s or E3alpha to the muscle extracts stimulated overall proteolysis and ubiquitination, but only the stimulation by E3alpha or E214k was sensitive to these inhibitors. A similar general inhibition of ubiquitin conjugation to endogenous proteins was observed with a dominant negative inhibitor of E214k. Certain substrates of the N-end rule pathway are degraded after their tRNA-dependent arginylation. We found that adding RNase A to muscle extracts reduced the ATP-dependent proteolysis of endogenous proteins, and supplying tRNA partially restored this process. Finally, although in muscle extracts the N-end rule pathway catalyzes most ubiquitin conjugation, it makes only a minor contribution to overall protein ubiquitination in HeLa cell extracts.
Collapse
Affiliation(s)
- V Solomon
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
24
|
Gross-Mesilaty S, Reinstein E, Bercovich B, Tobias KE, Schwartz AL, Kahana C, Ciechanover A. Basal and human papillomavirus E6 oncoprotein-induced degradation of Myc proteins by the ubiquitin pathway. Proc Natl Acad Sci U S A 1998; 95:8058-63. [PMID: 9653139 PMCID: PMC20928 DOI: 10.1073/pnas.95.14.8058] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We have previously shown that the degradation of c-myc and N-myc in vitro is mediated by the ubiquitin system. However, the role of the system in targeting the myc proteins in vivo and the identity of the conjugating enzymes and possible ancillary proteins involved has remained obscure. Here we report that the degradation of the myc proteins in cells is inhibited by lactacystin and MG132, two inhibitors of the 20S proteasome. Inhibition is accompanied by accumulation of myc-ubiquitin conjugates. Dissection of the ancillary proteins involved revealed that the high-risk human papillomavirus oncoprotein E6-16 stimulates conjugation and subsequent degradation of the myc proteins in vitro. Expression of E6-16 in cells results in significant shortening of the t1/2 of the myc proteins with subsequent decrease in their cellular level. Analysis of the conjugating enzymes revealed that under basal conditions the proteins can be conjugated by two pairs of E2s and E3s-E2-14 kDa and E3alpha involved in the "N-end rule" pathway, and E2-F1 (UbcH7) and E3-Fos involved also in conjugation of c-Fos. In the presence of E6-16, a third pair, E2-F1 and E6-AP mediate conjugation of myc by means of a mechanism that appears to be similar to that involved in the targeting of p53, formation of a myc. E6.E6-AP targeting complex. It is possible that in certain cells E6-mediated targeting of myc prevents myc-induced apoptosis and thus ensures maintenance of viral infection.
Collapse
Affiliation(s)
- S Gross-Mesilaty
- Department of Biochemistry and the Rappaport Family Institute for Research in the Medical Sciences, The Bruce Rappaport Faculty of Medicine, Haifa 31096, Israel
| | | | | | | | | | | | | |
Collapse
|
25
|
Schwarz SE, Rosa JL, Scheffner M. Characterization of human hect domain family members and their interaction with UbcH5 and UbcH7. J Biol Chem 1998; 273:12148-54. [PMID: 9575161 DOI: 10.1074/jbc.273.20.12148] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hect domain protein family was originally identified by sequence similarity of its members to the C-terminal region of E6-AP, an E3 ubiquitin-protein ligase. Since the C terminus of E6-AP mediates thioester complex formation with ubiquitin, a necessary intermediate step in E6-AP-dependent ubiquitination, it was proposed that members of the hect domain family in general have E3 activity. The hect domain is approximately 350 amino acids in length, and we show here that the hect domain of E6-AP is necessary and sufficient for ubiquitin thioester adduct formation. Furthermore, the human genome encodes at least 20 different hect domain proteins, and in further support of the hypothesis that hect domain proteins represent a family of E3s, several of these are shown to form thioester complexes with ubiquitin. In addition, some hect domain proteins interact preferentially with UbcH5, whereas others interact with UbcH7, indicating that human hect domain proteins can be grouped into at least two classes based on their E2 specificity. Since E3s are thought to play a major role in substrate recognition, the presence of a large family of E3s should contribute to ensure the specificity and selectivity of ubiquitin-dependent proteolytic pathways.
Collapse
Affiliation(s)
- S E Schwarz
- Deutsches Krebsforschungszentrum, Angewandte Tumorvirologie, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
26
|
Mori S, Tanaka K, Kanaki H, Nakao M, Anan T, Yokote K, Tamura K, Saito Y. Identification of an ubiquitin-ligation system for the epidermal-growth-factor receptor--herbimycin A induces in vitro ubiquitination in rabbit-reticulocyte lysate. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:1190-6. [PMID: 9288947 DOI: 10.1111/j.1432-1033.1997.01190.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Some receptor tyrosine kinases such as the receptors for epidermal-growth factor (EGF) and platelet-derived growth factor undergo polyubiquitination as a consequence of ligand binding. The EGF receptor is also ubiquitinated by treatment with herbimycin A, an ansamycin antibiotic widely used as a tyrosine kinase inhibitor. To investigate the mechanism of the receptor ubiquitination, we have established an assay system in which herbimycin-A-induced ubiquitination processes can be analyzed in vitro. We now show that herbimycin A treatment of the purified EGF receptor induces polyubiquitination of the receptor in rabbit-reticulocyte lysate. Both DEAE unadsorbed material (fraction I) and high salt eluate (fraction II) of the reticulocyte lysate are involved cooperatively in the ubiquitination process, where the ubiquitin-conjugating enzyme UBC4 can functionally substitute for fraction I. A ubiquitin-protein ligase-like activity, partially purified from fraction II by DEAE anion-exchange chromatography, also functions in concert with UBC4. The precise mechanism of herbimycin A-induced ubiquitination of the EGF receptor is not fully understood, however, our present findings suggest that direct interaction with herbimycin A results in some modification of the receptor which is recognized by the ubiquitin-conjugating system in rabbit-reticulocyte lysate.
Collapse
Affiliation(s)
- S Mori
- Second Department of Internal Medicine, Chiba University School of Medicine, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hatakeyama S, Jensen JP, Weissman AM. Subcellular localization and ubiquitin-conjugating enzyme (E2) interactions of mammalian HECT family ubiquitin protein ligases. J Biol Chem 1997; 272:15085-92. [PMID: 9182527 DOI: 10.1074/jbc.272.24.15085] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In most instances, the transfer of ubiquitin to target proteins is catalyzed by the action of ubiquitin protein ligases (E3s). Full-length cDNAs encoding murine E6-associated protein (mE6-AP) as well as Nedd-4, a protein that is homologous to E6-AP in its C terminus, were cloned. Nedd-4 and mouse E6-AP are both enzymatically active E3s and function with members of the UbcH5 family of E2s. Mouse E6-AP, like its human counterpart, ubiquitinates p53 in the presence of human papilloma virus E6 protein, while Nedd-4 does not. Consistent with its role in p53 ubiquitination, mE6-AP was found both in the nucleus and cytosol, while Nedd-4 was found only in the cytosol. Binding studies implicate a 150-amino acid region that is 40% identical between mE6-AP and Nedd-4 as a binding site for the C-terminal portion of an E2 enzyme (UbcH5B). Nedd-4 was determined to have a second nonoverlapping E2 binding site that recognizes the first 67 amino acids of UbcH5B but not the more C-terminal portion of this E2. These findings provide the first demonstration of physical interactions between mammalian E2s and E3s and establish that these interactions occur independently of ubiquitin and an intact E3 catalytic domain. Furthermore, the presence of two E2 binding sites within Nedd-4 suggests models for ubiquitination involving multiple E2 enzymes associated with E3s.
Collapse
Affiliation(s)
- S Hatakeyama
- Laboratory of Immune Cell Biology, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892-1152, USA
| | | | | |
Collapse
|
28
|
Mitton KP, Tumminia SJ, Arora J, Zelenka P, Epstein DL, Russell P. Transient loss of alphaB-crystallin: an early cellular response to mechanical stretch. Biochem Biophys Res Commun 1997; 235:69-73. [PMID: 9196037 DOI: 10.1006/bbrc.1997.6737] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human trabecular meshwork (HTM) is distended and stretched with increases in intraocular pressure. During this stretching, there is a rearrangement of actin filaments. The HTM cells express alpha B-crystallin, a small heat shock protein that may have a role in the stabilization and regulation of the cytoskeleton in mammalian cells. The levels of alpha B-crystallin were examined in trabecular meshwork cells after mechanical stretch. Human TM primary cell cultures, plated onto silicone sheets, were subjected to a single 10% linear stretch and samples were prepared at various times after stretch for immunoblotting or Northern blotting. Immunoblots of total protein extracts with antibody specific for alpha B-crystallin detected a 26% decrease of cellular alpha B-crystallin levels within 2 minutes. After 1 hour alpha B-crystallin levels had decreased 90% compared to control cells. The levels of alpha B-crystallin began to recover in cells stretched for 2 hours and returned to initial levels by 24 hours. Northern blots probed with alpha B-crystallin exon III cDNA detected a transcript of 0.65 kb in human TM cells and the levels of the alpha B mRNA remained constant during alpha B-crystallin protein decrease. Later, levels of the 0.65 kb transcript of alpha B-crystallin increased during the cellular recovery. These results suggest that decreased levels of alpha B-crystallin after mechanical stretch were probably not due to transcriptional changes but rather to increased degradation of alpha B-crystallin protein. An increase in mRNA levels may play a role in the recovery of alpha B-crystallin during reorganization of the cytoskeleton and attachment to the substratum. These data raise the possibility of a specific proteolysis of alpha B-crystallin protein in cells after a physiological challenge.
Collapse
Affiliation(s)
- K P Mitton
- Laboratory for Mechanisms of Ocular Diseases, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
29
|
Kumar S, Kao WH, Howley PM. Physical interaction between specific E2 and Hect E3 enzymes determines functional cooperativity. J Biol Chem 1997; 272:13548-54. [PMID: 9153201 DOI: 10.1074/jbc.272.21.13548] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cellular protein E6AP functions as an E3 ubiquitin protein ligase in the E6-dependent ubiquitination of p53. E6AP is a member of a family of functionally related E3 proteins that share a conserved carboxyl-terminal region called the Hect domain. Although several different E2 ubiquitin-conjugating enzymes have been shown to function with E6AP in the E6-dependent ubiquitination of p53 in vitro, the E2s that cooperate with E6AP in the ubiquitination of its normal substrates are presently unknown. Moreover, the basis of functional cooperativity between specific E2 and Hect E3 proteins has not yet been determined. Here we report the cloning of a new human E2, designated UbcH8, that was identified in a two-hybrid screen through specific interaction with E6AP. We demonstrate that UbcH7, an E2 closely related to UbcH8, can also bind to E6AP. The region of E6AP involved in complex formation with UbcH8 and UbcH7 was mapped to its Hect domain. Furthermore, we show that UbcH5 and UbcH6, two highly homologous E2s that were deficient for interaction with E6AP, could associate efficiently with another Hect-E3 protein, RSP5. Finally, only the E6AP-interacting E2s could function in conjunction with E6AP in the ubiquitination of an E6 independent substrate of E6AP, whereas the noninteracting E2s could not. Taken together, these studies demonstrate for the first time complex formation between specific human E2s and the Hect domain family of E3 proteins and suggest that selective physical interaction between E2 and E3 enzymes forms the basis of specificity for functionally distinct E2:E3 combinations.
Collapse
Affiliation(s)
- S Kumar
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
30
|
Bercovich B, Stancovski I, Mayer A, Blumenfeld N, Laszlo A, Schwartz AL, Ciechanover A. Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J Biol Chem 1997; 272:9002-10. [PMID: 9083024 DOI: 10.1074/jbc.272.14.9002] [Citation(s) in RCA: 215] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Degradation of a protein via the ubiquitin system involves two discrete steps, signaling by covalent conjugation of multiple moieties of ubiquitin and degradation of the tagged substrate. Conjugation is catalyzed via a three-step mechanism that involves three distinct enzymes that act successively: E1, E2, and E3. The first two enzymes catalyze activation of ubiquitin and transfer of the activated moiety to E3, respectively. E3, to which the substrate is specifically bound, catalyzes formation of a polyubiquitin chain that is anchored to the targeted protein. The polyubiquitin-tagged protein is degraded by the 26 S proteasome, and free and reutilizable ubiquitin is released. In addition to the three conjugating enzymes, targeting of certain proteins requires association with ancillary proteins and/or post-translational modification(s). Using a specific antibody to deplete cell extract from the molecular chaperone Hsc70, we demonstrate that this protein is required for the degradation of actin, alpha-crystallin, glyceraldehyde-3-phosphate dehydrogenase, alpha-lactalbumin, and histone H2A. In contrast, the degradation of bovine serum albumin, lysozyme, and oxidized RNase A is Hsc70-independent. Mechanistic analysis revealed that the chaperone is required for the conjugation reaction; however, it does not substitute for E3. Involvement of the chaperone in the proteolytic process requires complex formation with the substrate. Formation of this complex appears to be essential in the proteolytic process. In addition, the proper function of the chaperone in the proteolytic process requires the presence of K+, which allows rapid cycles of dissociation and association of the complex. The chaperone may act by binding to the substrate and unfolding it to expose a ubiquitin ligase-binding site. In addition, it can also act directly on the ubiquitination machinery.
Collapse
Affiliation(s)
- B Bercovich
- Department of Biochemistry and the Rappaport Institute for Research in the Medical Sciences, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | | | | | | | |
Collapse
|
31
|
Moynihan TP, Ardley HC, Leek JP, Thompson J, Brindle NS, Markham AF, Robinson PA. Characterization of a human ubiquitin-conjugating enzyme gene UBE2L3. Mamm Genome 1996; 7:520-5. [PMID: 8672131 DOI: 10.1007/s003359900155] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ubiquitin-conjugating enzymes (E2s) are essential components of the post-translational protein ubiquitination pathway, mediating the transfer of activated ubiquitin to substrate proteins. We have identified a human gene, UBE2L3, localized on Chromosome (Chr) 22q11. 2-13.1, encoding an E2 almost identical to that encoded by the recently described human L-UBC (UBE2L1) gene present on Chr 14q24.3. Using chromosome-specific vectorette PCR, we have determined the intron/exon structure of UBE2L3. In contrast to the intronless UBE2L1 gene, the coding sequence of UBE2L3 is interrupted by three large introns. UBE2L3-derived mRNA appears to be the predominant species in most tissues rather than the transcript from UBE2L1 or another homologous gene UBE2L2, which maps to Chr 12q12. We also present additional evidence that these genes are members of a larger multigene family. The primary sequence of the protein encoded by UBE2L3 is identical to partial peptide sequence derived from the rabbit E2 'E2-F1,' suggesting that we have identified the human homolog of this protein. This latter E2 has been demonstrated to participate in transcription factor NF-kappaB maturation, c-fos degradation, and human papilloma virus-mediated p53 degradation in vitro.
Collapse
Affiliation(s)
- T P Moynihan
- Molecular Medicine Unit, University of Leeds, Clinical Sciences Building, St. James's University Hospital, Leeds LS9 7TF, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Degradation provides one means for controlling the cellular level of the p53 tumor suppressor. Here we have determined a structural element of p53 required for degradation. To create a substrate amenable to in vitro analysis of proteolysis, we appended to p53 the N terminus of antizyme, a protein that binds to and induces degradation of mammalian ornithine decarboxylase (ODC). We found using deletion analysis that an element within amino acids 100-150 is required for degradation of the fusion protein. A monoclonal antibody (PAb246) that binds close to this region prevents the degradation induced by human papillomavirus 16 E6 protein. Furthermore, we found that amino acids 100-150 of p53 can function as an independent domain to induce Trypanosoma brucei ODC, a stable protein, to be degraded in vivo or, by cooperating with an antizyme binding domain of ODC, to confer polyamine-dependent regulation.
Collapse
Affiliation(s)
- X Li
- Department of Microbiology and Immunology, University of California, San Francisco, 94143, USA
| | | |
Collapse
|
33
|
Baboshina OV, Haas AL. Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2EPF and RAD6 are recognized by 26 S proteasome subunit 5. J Biol Chem 1996; 271:2823-31. [PMID: 8576261 DOI: 10.1074/jbc.271.5.2823] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Targeting of substrates for degradation by the ATP, ubiquitin-dependent pathway requires formation of multiubiquitin chains in which the 8.6-kDa polypeptide is linked by isopeptide bonds between carboxyl termini and Lys-48 residues of successive monomers. Binding of Lys-48-linked chains by subunit 5 of the 26 S proteasome regulatory complex commits the attached target protein to degradation with concomitant release of free ubiquitin monomers following disassembly of the chains. Point mutants of ubiquitin (Lys-->Arg) were used to map the linkage specificity for ubiquitin-conjugating enzymes previously demonstrated to form novel multiubiquitin chains not attached through Lys-48. Recombinant human E2EPF catalyzed multiubiquitin chain formation exclusively through Lys-11 of ubiquitin while recombinant yeast RAD6 formed chains linked only through Lys-6. Multiubiquitin chains linked through Lys-6, Lys-11, or Lys-48 each bound to subunit 5 of partially purified human 26 S proteasome with comparable affinities. Since chains bearing different linkages are expected to pack into distinct structures, competition between Lys-11 and Lys-48 chains for binding to subunit 5 demonstrates that the latter possesses determinants for recognizing alternatively linked chains and precludes the existence of subunit 5 isoforms recognizing distinct structures. In addition, competition studies provided an estimate of Kd < or = 18 nM for the intrinsic binding of Lys-48-linked chains of linkage number n > 4. This result suggests that the principal mechanistic advantage of multiubiquitin chain formation is to enhance the affinity of the associated substrate for the 26 S complex relative to that of unconjugated target protein. Complementation studies with E1/E2-depleted rabbit reticulocyte extract demonstrated RAD6 supported isopeptide ligase-dependent degradation only through Lys-48-linked chains, while E2EPF retained the ability to target a model radiolabeled substrate through Lys-11-linked chains. Therefore, the linkage specificity exhibited by these E2 isozymes depends on their catalytic context with respect to isopeptide ligase.
Collapse
Affiliation(s)
- O V Baboshina
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226, USA
| | | |
Collapse
|
34
|
Nuber U, Schwarz S, Kaiser P, Schneider R, Scheffner M. Cloning of human ubiquitin-conjugating enzymes UbcH6 and UbcH7 (E2-F1) and characterization of their interaction with E6-AP and RSP5. J Biol Chem 1996; 271:2795-800. [PMID: 8576257 DOI: 10.1074/jbc.271.5.2795] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
E6-AP, a 100-kDa cellular protein, was originally identified through its interaction with the E6 protein of the oncogenic human papillomavirus types 16 and 18. The complex of E6-AP and E6 specifically interacts with p53 and mediates ubiquitination of p53 in concert with the E1 ubiquitin-activating enzyme and the E2 ubiquitin-conjugating enzyme UbcH5. Recent results suggest that E6-AP is representative of a family of putative ubiquitin-protein ligases. Members of this family are characterized by a conserved C-terminal region, termed hect domain. In this paper, we describe the isolation of two human E2s, designated as UbcH6 and UbcH7, that in addition to UbcH5 can interact with E6-AP. UbcH6 is a novel member of an evolutionally conserved subfamily of E2s that includes UbcH5 and Saccharomyces cerevisiae UBC4. Although UbcH7 does not appear to be a member of this subfamily, UbcH7 efficiently substitutes for UbcH5 in E6-AP-dependent ubiquitination. Surprisingly, UbcH6 was only weakly active in this particular assay. In addition, UbcH5 but not UbcH6 or UbcH7 efficiently interacts with the heet protein RSP5. These results indicate that E6-AP can interact with at least two species of E2 and that different hect proteins may interact with different E2s.
Collapse
Affiliation(s)
- U Nuber
- Deutsches Krabsforschungszentrum, Angewandte Tumorvirologie, Heidelberg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
35
|
Gonen H, Stancovski I, Shkedy D, Hadari T, Bercovich B, Bengal E, Mesilati S, Abu-Hatoum O, Schwartz AL, Ciechanover A. Isolation, characterization, and partial purification of a novel ubiquitin-protein ligase, E3. Targeting of protein substrates via multiple and distinct recognition signals and conjugating enzymes. J Biol Chem 1996; 271:302-10. [PMID: 8550577 DOI: 10.1074/jbc.271.1.302] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Degradation of a protein via the ubiquitin system involves two discrete steps, conjugation of ubiquitin to the substrate and degradation of the adduct. Conjugation follows a three-step mechanism. First, ubiquitin is activated by the ubiquitin-activating enzyme, E1. Following activation, one of several E2 enzymes (ubiquitin-carrier proteins or ubiquitin-conjugating enzymes, UBCs) transfers ubiquitin from E1 to the protein substrate that is bound to one of several ubiquitin-protein ligases, E3s. These enzymes catalyze the last step in the process, covalent attachment of ubiquitin to the protein substrate. The binding of the substrate to E3 is specific and implies that E3s play a major role in recognition and selection of proteins for conjugation and subsequent degradation. So far, only a few ligases have been identified, and it is clear that many more have not been discovered yet. Here, we describe a novel ligase that is involved in the conjugation and degradation of non "N-end rule" protein substrates such as actin, troponin T, and MyoD. This substrate specificity suggests that the enzyme may be involved in degradation of muscle proteins. The ligase acts in concert with E2-F1, a previously described non N-end rule UBC. Interestingly, it is also involved in targeting lysozyme, a bona fide N-end substrate that is recognized by E3 alpha and E2-14 kDa. The novel ligase recognizes lysozyme via a signal(s) that is distinct from the N-terminal residue of the protein. Thus, it appears that certain proteins can be targeted via multiple recognition motifs and distinct pairs of conjugating enzymes. We have purified the ligase approximately 200-fold and demonstrated that it is different from other known E3s, including E3 alpha/UBR1, E3 beta, and E6-AP. The native enzyme has an apparent molecular mass of approximately 550 kDa and appears to be a homodimer. Because of its unusual size, we designated this novel ligase E3L (large). E3L contains an -SH group that is essential for its activity. Like several recently described E3 enzymes, including E6-AP and the ligase involved in the processing of p105, the NF-kappa B precursor, the novel ligase is found in mammalian tissues but not in wheat germ.
Collapse
Affiliation(s)
- H Gonen
- Department of Biochemistry, Carmel Medical Center, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Shean BS, Mykles DL. Polyubiquitin in crustacean striated muscle: increased expression and conjugation during molt-induced claw muscle atrophy. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1264:312-22. [PMID: 8547319 DOI: 10.1016/0167-4781(95)00167-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The claw muscles of decapod crustaceans undergo a molt-induced atrophy to facilitate withdrawal of the claws at ecdysis. Polyubiquitin expression, as well as the levels of ubiquitin conjugates, a ubiquitin-conjugating enzyme involved in the ATP/ubiquitin-dependent proteolytic pathway (crustacean E2(16 kDa) homolog of Drosophila UbcD1), and proteasome, were examined to determine the role of ATP/ubiquitin-dependent proteolysis in the enhanced degradation of myofibrillar proteins during muscle atrophy. A partial-length clone (1.7 kb) of polyubiquitin was isolated from a lobster muscle cDNA library; the 5' end lacked the 5' untranslated region (UTR) and the beginning of the first ubiquitin monomer, while the 3' end contained the terminal ubiquitin monomer and 3' UTR. The deduced amino acid sequence was 100% identical with that from Manduca, Drosophila, and human. In land crab claw muscle, the polyubiquitin mRNA (2.7 kb) increased about 5-fold and ubiquitin-protein conjugates (> 200 kDa) increased about 8-fold during atrophy. In contrast, the level of a ubiquitin-conjugating enzyme (E2(16 kDa)) remained unchanged. The proteasome, which constitutes the catalytic core of the ATP/ubiquitin-dependent proteinase complex, increased about 2-fold during proecdysis, reaching its highest level immediately before ecdysis. These results suggest that the ATP/ubiquitin-dependent proteolytic pathway contributes to the changes in protein metabolism that occur during molt-induced muscle atrophy.
Collapse
Affiliation(s)
- B S Shean
- Department of Biology, Colorado State University, Fort Collins 80523, USA
| | | |
Collapse
|
37
|
Robinson PA, Leek JP, Thompson J, Carr IM, Bailey A, Moynihan TP, Coletta PL, Lench NJ, Markham AF. A human ubiquitin conjugating enzyme, L-UBC, maps in the Alzheimer's disease locus on chromosome 14q24.3. Mamm Genome 1995; 6:725-31. [PMID: 8563171 DOI: 10.1007/bf00354295] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have identified a novel ubiquitin conjugating enzyme gene, L-UBC, which maps to human Chromosome (Chr) 14q24.3. This is also the location of the major early onset familial Alzheimer's disease gene (FAD3). L-UBC encodes a protein that demonstrates homology to the yeast ubiquitin conjugating enzyme, UBC-4, and human UbcH5. Their functions are to ubiquitinate specific proteins targeted for degradation. The protein also exhibits very strong homology to a rabbit protein, E2-F1, which mediates p53 degradation driven by papilloma virus E6 protein in vitro. The accumulation of specific proteins that have undergone aberrant processing in neurofibrillary tangles and amyloid plaques is the classic pathological feature in brains of Alzheimer's disease patients. Abnormal ubiquitination has previously been suggested to play a role in the etiology of Alzheimer's disease. This gene therefore represents a plausible candidate gene for FAD3.
Collapse
Affiliation(s)
- P A Robinson
- Molecular Medicine Unit, St. James's University Hospital, University of Leeds, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Orian A, Whiteside S, Israël A, Stancovski I, Schwartz AL, Ciechanover A. Ubiquitin-mediated processing of NF-kappa B transcriptional activator precursor p105. Reconstitution of a cell-free system and identification of the ubiquitin-carrier protein, E2, and a novel ubiquitin-protein ligase, E3, involved in conjugation. J Biol Chem 1995; 270:21707-14. [PMID: 7665588 DOI: 10.1074/jbc.270.37.21707] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In most cases, the transcriptional factor NF-kappa B is a heterodimer consisting of two subunits, p50 and p65, which are encoded by two distinct genes of the Rel family. p50 is translated as a precursor of 105 kDa. The C-terminal domain of the precursor is rapidly degraded, forming the mature p50 subunit consisted of the N-terminal region of the molecule. The mechanism of generation of p50 is not known. It has been suggested that the ubiquitin-proteasome system is involved in the process; however, the specific enzymes involved and the mechanism of limited proteolysis, in which half of the molecule is spared, have been obscure. Palombella and colleagues (Palombella, V. J., Rando, O. J., Goldberg, A. L., and Maniatis, T. (1994) Cell 78, 773-785) have shown that ubiquitin is required for the processing in a cell-free system of a truncated, artificially constructed, 60-kDa precursor. They have also shown that proteasome inhibitors block the processing both in vitro and in vivo. In this study, we demonstrate reconstitution of a cell-free processing system and demonstrate directly that: (a) the ubiquitin-proteasome system is involved in processing of the intact p105 precursor, (b) conjugation of ubiquitin to the precursor is an essential intermediate step in the processing, (c) the recently discovered novel species of the ubiquitin-carrier protein, E2-F1, that is involved in the conjugation and degradation of p53, is also required for the limited processing of the p105 precursor, and (d) a novel, approximately 320-kDa species of ubiquitin-protein ligase, is involved in the process. This novel enzyme is distinct from E6-AP, the p53-conjugating ligase, and from E3 alpha, the "N-end rule" ligase.
Collapse
Affiliation(s)
- A Orian
- Department of Biochemistry, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Contrary to widespread belief, the regulation and mechanism of degradation for the mass of intracellular proteins (i.e. differential, selective protein turnover) in vertebrate tissues is still a major biological enigma. There is no evidence for the conclusion that ubiquitin plays any role in these processes. The primary function of the ubiquitin-dependent protein degradation pathway appears to lie in the removal of abnormal, misfolded, denatured or foreign proteins in some eukaryotic cells. ATP/ubiquitin-dependent proteolysis probably also plays a role in the degradation of some so-called 'short-lived' proteins. Evidence obtained from the covalent modification of such natural substrates as calmodulin, histones (H2A, H2B) and some cell membrane receptors with ubiquitin indicates that the reversible interconversion of proteins with ubiquitin followed by concomitant functional changes may be of prime importance.
Collapse
Affiliation(s)
- H P Jennissen
- Institut für Physiologische Chemie, Universität-GHS-Essen, Germany
| |
Collapse
|
40
|
Lawson TG, Gronros DL, Werner JA, Wey AC, DiGeorge AM, Lockhart JL, Wilson JW, Wintrode PL. The encephalomyocarditis virus 3C protease is a substrate for the ubiquitin-mediated proteolytic system. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46945-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
|
42
|
Affiliation(s)
- A Ciechanover
- Department of Biochemistry, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa
| |
Collapse
|
43
|
Shkedy D, Gonen H, Bercovich B, Ciechanover A. Complete reconstitution of conjugation and subsequent degradation of the tumor suppressor protein p53 by purified components of the ubiquitin proteolytic system. FEBS Lett 1994; 348:126-30. [PMID: 8034027 DOI: 10.1016/0014-5793(94)00582-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The wild-type tumor suppressor protein p53 is a short-lived protein that plays important roles in regulation of cell cycle, differentiation, and survival. Mutations that inactivate or alter the tumor suppressor activity of the protein seem to be the most common genetic change in human cancer and are frequently associated with changes in its stability. The ubiquitin system has been implicated in the degradation of p53 both in vivo and in vitro. A mutant cell line that harbors a thermolabile ubiquitin-activating enzyme, E1, fails to degrade p53 at the nonpermissive temperature. Studies in cell-free extracts have shown that covalent attachment of ubiquitin to the protein requires the three conjugating enzymes: E1, a novel species of ubiquitin-carrier protein (ubiquitin-conjugating enzyme; UBC),E2-F1, and an ubiquitin-protein ligase, E3. Recognition of p53 by the ligase is facilitated by formation of a complex between the protein and the human papillomavirus (HPV) oncoprotein E6. Therefore, the ligase has been designated E6-associated protein (E6-AP). However, these in vitro studies have not demonstrated that the conjugates serve as essential intermediates in the proteolytic process. In fact, in many cases, conjugation of ubiquitin to the target protein does not signal its degradation. Thus, it is essential to demonstrate that p53-ubiquitin adducts serve as essential proteolytic intermediates and are recognized and degraded by the 26S protease complex, the proteolytic arm of the ubiquitin pathway. In this study, we demonstrate that conjugates of p53 generated in the presence of purified, E1, E2, E6-AP, E6, ubiquitin and ATP, are specifically recognized by the 26S protease complex and degraded. In contrast, unconjugated p53 remains stable. The ability to reconstitute the system from purified components will enable detailed analysis of the recognition process and the structural motifs involved in targeting the protein for degradation.
Collapse
Affiliation(s)
- D Shkedy
- Department of Biochemistry, Technion-Israel Institute of Technology, Haifa
| | | | | | | |
Collapse
|
44
|
Degradation of the tumor suppressor protein p53 by the ubiquitin-mediated proteolytic system requires a novel species of ubiquitin-carrier protein, E2. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36921-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|