1
|
Burgess HM, Mohr I. Cellular 5'-3' mRNA exonuclease Xrn1 controls double-stranded RNA accumulation and anti-viral responses. Cell Host Microbe 2015; 17:332-344. [PMID: 25766294 PMCID: PMC4826345 DOI: 10.1016/j.chom.2015.02.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/23/2014] [Accepted: 01/28/2015] [Indexed: 12/30/2022]
Abstract
By accelerating global mRNA decay, many viruses impair host protein synthesis, limiting host defenses and stimulating virus mRNA translation. Vaccinia virus (VacV) encodes two decapping enzymes (D9, D10) that remove protective 5′ caps on mRNAs, presumably generating substrates for degradation by the host exonuclease Xrn1. Surprisingly, we find VacV infection of Xrn1-depleted cells inhibits protein synthesis, compromising virus growth. These effects are aggravated by D9 deficiency and dependent upon a virus transcription factor required for intermediate and late mRNA biogenesis. Considerable double-stranded RNA (dsRNA) accumulation in Xrn1-depleted cells is accompanied by activation of host dsRNA-responsive defenses controlled by PKR and 2′-5′ oligoadenylate synthetase (OAS), which respectively inactivate the translation initiation factor eIF2 and stimulate RNA cleavage by RNase L. This proceeds despite VacV-encoded PKR and RNase L antagonists being present. Moreover, Xrn1 depletion sensitizes uninfected cells to dsRNA treatment. Thus, Xrn1 is a cellular factor regulating dsRNA accumulation and dsRNA-responsive innate immune effectors. Vaccinia virus (VacV) replication requires the host Xrn1 mRNA decay enzyme The 5′-3′ mRNA exonuclease Xrn1 limits dsRNA accumulation In the absence of Xrn1, host dsRNA-responsive innate immune defenses are activated VacV antagonists of dsRNA-responsive host defenses are Xrn1 dependent
Collapse
Affiliation(s)
- Hannah M Burgess
- Department of Microbiology and NYU Cancer Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Ian Mohr
- Department of Microbiology and NYU Cancer Institute, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
2
|
Edmonds M. A history of poly A sequences: from formation to factors to function. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:285-389. [PMID: 12102557 DOI: 10.1016/s0079-6603(02)71046-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biological polyadenylation, first recognized as an enzymatic activity, remained an orphan enzyme until poly A sequences were found on the 3' ends of eukarvotic mRNAs. Their presence in bacteria viruses and later in archeae (ref. 338) established their universality. The lack of compelling evidence for a specific function limited attention to their cellular formation. Eventually the newer techniques of molecular biology and development of accurate nuclear processing extracts showed 3' end formation to be a two-step process. Pre-mRNA was first cleaved endonucleolytically at a specific site that was followed by sequential addition of AMPs from ATP to the 3' hydroxyl group at the end of mRNA. The site of cleavage was specified by a conserved hexanucleotide, AAUAAA, from 10 to 30 nt upstream of this 3' end. Extensive purification of these two activities showed that more than 10 polypeptides were needed for mRNA 3' end formation. Most of these were in complexes involved in the cleavage step. Two of the best characterized are CstF and CPSF, while two other remain partially purified but essential. Oddly, the specific proteins involved in phosphodiester bond hydrolysis have yet to be identified. The polyadenylation step occurs within the complex of poly A polymerase and poly A-binding protein, PABII, that controls poly A length. That the cleavage complex, CPSF, is also required for this step attests to a tight coupling of the two steps of 3' and formation. The reaction reconstituted from these RNA-free purified factors correctly processes pre-mRNAs. Meaningful analysis of the role of poly A in mRNA metabolism or function was possible once quantities of these proteins most often over-expressed from cDNA clones became available. The large number needed for two simple reactions of an endonuclease, a polymerase and a sequence recognition factor, pointed to 3' end formation as a regulated process. Polyadenylation itself had appeared to require regulation in cases where two poly A sites were alternatively processed to produce mRNA coding for two different proteins. The 64-KDa subunit of CstF is now known to be a regulator of poly A site choice between two sites in the immunoglobulin heavy chain of B cells. In resting cells the site used favors the mRNA for a membrane-bound protein. Upon differentiation to plasma cells, an upstream site is used the produce a secreted form of the heavy chain. Poly A site choice in the calcitonin pre-mRNA involves splicing factors at a pseudo splice site in an intron downstream of the active poly site that interacts with cleavage factors for most tissues. The molecular basis for choice of the alternate site in neuronal tissue is unknown. Proteins needed for mRNA 3' end formation also participate in other RNA-processing reactions: cleavage factors bind to the C-terminal domain of RNA polymerase during transcription; splicing of 3' terminal exons is stimulated port of by cleavage factors that bind to splicing factors at 3' splice sites. nuclear ex mRNAs is linked to cleavage factors and requires the poly A II-binding protein. Most striking is the long-sought evidence for a role for poly A in translation in yeast where it provides the surface on which the poly A-binding protein assembles the factors needed for the initiation of translation. This adaptability of eukaryotic cells to use a sequence of low information content extends to bacteria where poly A serves as a site for assembly of an mRNA degradation complex in E. coli. Vaccinia virus creates mRNA poly A tails by a streamlined mechanism independent of cleavage that requires only two proteins that recognize unique poly A signals. Thus, in spite of 40 years of study of poly A sequences, this growing multiplicity of uses and even mechanisms of formation seem destined to continue.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- History, 20th Century
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/history
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Vaccinia virus/genetics
- Vaccinia virus/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Mary Edmonds
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
3
|
Sharma N, Dey M, Satpathy M, Sachar RC. Evidence of two forms of poly(A) polymerase in germinated wheat embryos and their regulation by a novel protein kinase. Biochem Biophys Res Commun 2002; 293:403-11. [PMID: 12054614 DOI: 10.1016/s0006-291x(02)00231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Two forms of poly(A) polymerase (PAPI and PAPII) from germinated wheat embryos have been resolved on DEAE-cellulose ion-exchange chromatography by a linear gradient of 0-500 mM (NH(4))(2)SO(4). Further purification shows that both forms are monomeric in nature with an identical molecular weight, approximately 65 kDa. The phosphoprotein nature of PAPI and PAPII has been established by in vivo labelling with (32)P-orthophosphate. Acid hydrolysis of both (32)P-labelled purified PAPI and PAPII has revealed that phosphorylations generally take place in serine and threonine residues. PAPI and PAPII have also been characterised with respect to V(max) and K(m) for poly(A). The V(max) and K(m) values of PAPI are 28.57 and 11.37 microg, respectively, whereas 34.48 and 7.04 microg of PAPII. In vitro dephosphorylation of the purified enzyme by alkaline phosphatase leads to a significant loss of the enzyme activity, which is regained upon phosphorylation by a 65 kDa protein kinase (PK) purified from wheat embryos. The extent of phosphorylation by protein kinase shows that PK has similar affinity towards both PAPI and PAPII, whereas the phosphate incorporation in PAPII is twofold higher than PAPI suggesting their distinct chemical nature.
Collapse
Affiliation(s)
- Neelam Sharma
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | |
Collapse
|
4
|
Xiang Y, Latner DR, Niles EG, Condit RC. Transcription elongation activity of the vaccinia virus J3 protein in vivo is independent of poly(A) polymerase stimulation. Virology 2000; 269:356-69. [PMID: 10753714 DOI: 10.1006/viro.2000.0242] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prior genetic analysis suggests that the vaccinia virus J3 gene product, previously characterized as a bifunctional (nucleoside-2'-O-)-methyltransferase and poly(A) polymerase stimulatory factor, is a postreplicative positive transcription elongation factor. To test this hypothesis, viruses bearing mutations in the J3 gene were characterized with respect to viral protein and RNA synthesis in infected cells. The analysis reveals that compared to wt virus infections, J3 mutants synthesize reduced amounts of large late viral proteins and shorter-than-normal intermediate and late mRNAs. Structural analysis of one late mRNA shows that it is specifically truncated from the 3' end, thus accounting for its shorter than normal chain length. Thus J3 mutant viruses are defective in elongation of transcription of postreplicative viral genes, strongly suggesting that the J3 gene product normally acts as a positive transcription elongation factor. Biochemical analysis of one J3 missense mutant demonstrates that it retains poly(A) stimulatory activity but is defective in (nucleoside-2'-O-)-methyltransferase activity. Thus the elongation factor activity of the J3 gene product is independent of the poly(A) stimulatory activity. It remains to be determined whether the (nucleoside-2'-O-)-methyltransferase and elongation factor activities of the J3 protein are linked or can be uncoupled by mutation.
Collapse
Affiliation(s)
- Y Xiang
- Department of Molecular Genetics, Center for Mammalian Genetics, University of Florida, Gainesville, Florida, 32610-0266, USA
| | | | | | | |
Collapse
|
5
|
Luo G, Hamatake RK, Mathis DM, Racela J, Rigat KL, Lemm J, Colonno RJ. De novo initiation of RNA synthesis by the RNA-dependent RNA polymerase (NS5B) of hepatitis C virus. J Virol 2000; 74:851-63. [PMID: 10623748 PMCID: PMC111606 DOI: 10.1128/jvi.74.2.851-863.2000] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis C virus (HCV) NS5B protein possesses an RNA-dependent RNA polymerase (RdRp) activity, a major function responsible for replication of the viral RNA genome. To further characterize the RdRp activity, NS5B proteins were expressed from recombinant baculoviruses, purified to near homogeneity, and examined for their ability to synthesize RNA in vitro. As a result, a highly active NS5B RdRp (1b-42), which contains an 18-amino acid C-terminal truncation resulting from a newly created stop codon, was identified among a number of independent isolates. The RdRp activity of the truncated NS5B is comparable to the activity of the full-length protein and is 20 times higher in the presence of Mn(2+) than in the presence of Mg(2+). When a 384-nucleotide RNA was used as the template, two major RNA products were synthesized by 1b-42. One is a complementary RNA identical in size to the input RNA template (monomer), while the other is a hairpin dimer RNA synthesized by a "copy-back" mechanism. Substantial evidence derived from several experiments demonstrated that the RNA monomer was synthesized through de novo initiation by NS5B rather than by a terminal transferase activity. Synthesis of the RNA monomer requires all four ribonucleotides. The RNA monomer product was verified to be the result of de novo RNA synthesis, as two expected RNA products were generated from monomer RNA by RNase H digestion. In addition, modification of the RNA template by the addition of the chain terminator cordycepin at the 3' end did not affect synthesis of the RNA monomer but eliminated synthesis of the self-priming hairpin dimer RNA. Moreover, synthesis of RNA on poly(C) and poly(U) homopolymer templates by 1b-42 NS5B did not require the oligonucleotide primer at high concentrations (>/=50 microM) of GTP and ATP, further supporting a de novo initiation mechanism. These findings suggest that HCV NS5B is able to initiate RNA synthesis de novo.
Collapse
Affiliation(s)
- G Luo
- Department of Virology, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut 06492-7660, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Deng L, Johnson L, Neveu JM, Hardin S, Wang SM, Lane WS, Gershon PD. A polyadenylylation-specific RNA-contact site on the surface of the bifunctional vaccinia virus RNA modifying protein VP39 that is distinct from the mRNA 5' end-binding "cleft". J Mol Biol 1999; 285:1417-27. [PMID: 9917386 DOI: 10.1006/jmbi.1998.2417] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
VP39 is a bifunctional mRNA-modifying protein that acts as both an mRNA cap-specific 2'-O-methyltransferase and a processivity factor for VP55, the vaccinia poly(A) polymerase catalytic subunit. Although regions of the protein surface required for methyltransferase function are well defined, it has been unclear whether the protein polyadenylylation function requires direct RNA contact and, if so, where the contact site(s) might be located on the protein surface. Here, we show that the VP55-VP39 heterodimer forms a stable complex with a 50mer oligonucleotide bearing a U2-N25-U motif, as opposed to the U2-N15-U motif that is optimal for stable complex formation with VP55 alone. An oligonucleotide bearing a U2-N25-U motif in which the downstream U residue is replaced with 4thioU can be efficiently photocrosslinked to VP39, but only in the context of the VP55-VP39 heterodimer. By partial proteolysis of end-labeled VP39, the site of oligonucleotide photocrosslinking was localized to the region of VP39 between residues Lys90 and Arg122. Peptide microsequencing and confirmatory mutagenesis identified the side-chain of Arg107 as the photocrosslinking site. Substitution of this residue with lysine abolished photocrosslinking entirely, consistent with the established RNA binding role of arginine in other RNA-binding proteins. This study provides clear evidence for a polyadenylylation-specific RNA-contact site on the surface of VP39, which is distinct from the RNA-binding methyltransferase "cleft" characterized in recent crystallographic and biochemical studies.
Collapse
Affiliation(s)
- L Deng
- Department of Biochemistry and Biophysics/Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Deng L, Beigelman L, Matulic-Adamic J, Karpeisky A, Gershon PD. Specific recognition of an rU2-N15-rU motif by VP55, the vaccinia virus poly(A) polymerase catalytic subunit. J Biol Chem 1997; 272:31542-52. [PMID: 9395491 DOI: 10.1074/jbc.272.50.31542] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
VP55, the vaccinia poly(A) polymerase catalytic subunit, interacts with oligonucleotide primers via two uridylate recognition sites (Deng, L., and Gershon, P. D. (1997) EMBO J. 16, 1103-1113). Here, we show that the cognate RNA sequence comprises a 5'-rU2-N15-rU-3' motif (where N = any deoxyribo or ribonucleotide), embedded within oligonucleotide primers 29-30 nucleotides (nt), or greater, in length. Nine residues separate the 3'-most ribouridylate of the optimally positioned motif from the primer 3'-OH. A ribose sugar at the extreme 3'-terminal nucleotide of the primer is absolutely required for VP55's adenylyltransferase activity, but not for stable VP55-RNA interaction. A ribose at position -3 markedly stimulates both adenylyltransferase activity and stable binding. The use of uridine analogs indicated (i) those functional groups of the uracil base which contribute to stable VP55-primer interaction, and (ii) that VP55's ability to discriminate uracil from cytosine stems largely from the requirement for a protonated N3 nitrogen within the pyrimidine ring. The rU2-N15-rU motif was identified within the uridylate-rich 3' end of a naturally occurring vaccinia mRNA. However, oligonucleotides whose only internal uridylates comprised the motif supported only a 3-5-nt processive burst of oligo(A) tail addition, as opposed to the approximately 30-35-nt burst observed with the naturally occurring 3' end.
Collapse
Affiliation(s)
- L Deng
- Institute of Biosciences and Technology/Department of Biochemistry and Biophysics, Texas A&M University, Houston, Texas 77030-3303, USA
| | | | | | | | | |
Collapse
|
8
|
Shi X, Bernhardt TG, Wang SM, Gershon PD. The surface region of the bifunctional vaccinia RNA modifying protein VP39 that interfaces with Poly(A) polymerase is remote from the RNA binding cleft used for its mRNA 5' cap methylation function. J Biol Chem 1997; 272:23292-302. [PMID: 9287339 DOI: 10.1074/jbc.272.37.23292] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
VP39 is a single-domain, bifunctional viral protein, which acts at both ends of nascent mRNA. At the 5' end, it acts as a cap-specific 2'-O-methyltransferase. At the 3' end, it acts as a poly(A) polymerase processivity factor, requiring its direct association with poly(A) polymerase. Although crystallographic and biochemical data show the catalytic center and associated binding sites for VP39's methyltransferase function to be juxtaposed around a superficial cleft on the protein surface, surface regions required for VP39's mRNA 3' end modifying functions are not known. Here, we identify a surface region that interfaces directly with poly(A) polymerase, taking three independent approaches: (i) development of a direct in vitro dimerization assay, which is applied to numerous VP39 point mutants; (ii) identification of sites within VP39 that become protected from protease cleavage upon dimerization and further mutagenesis based upon these data; (iii) site-specific photo-cross-linking of VP39 to VP55. We find that the dimerization interface lies on a surface region remote from the methyltransferase cleft and contains a 3-5-residue "hot-spot," which is very sensitive to amino acid substitutions. Various other sites within VP39 consistently became hypersensitive to protease cleavage upon interaction with VP55, indicating the occurrence of extensive conformational changes.
Collapse
Affiliation(s)
- X Shi
- Institute of Biosciences and Technology/Department of Biochemistry and Biophysics, Texas A&M University, Houston, Texas 77030-3303, USA
| | | | | | | |
Collapse
|
9
|
Gershon P, Moss B. Expression, purification, and characterization of vaccinia virus-encoded RNA and poly(A) polymerases. Methods Enzymol 1996; 275:208-27. [PMID: 9026640 DOI: 10.1016/s0076-6879(96)75014-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- P Gershon
- Department of Biochemistry and Biophysics, Institute of Biosciences and Technology, Texas A&M University, College Station 77843, USA
| | | |
Collapse
|
10
|
Zhelkovsky AM, Kessler MM, Moore CL. Structure-function relationships in the Saccharomyces cerevisiae poly(A) polymerase. Identification of a novel RNA binding site and a domain that interacts with specificity factor(s). J Biol Chem 1995; 270:26715-20. [PMID: 7592899 DOI: 10.1074/jbc.270.44.26715] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have constructed deletions in the nonconserved regions at the amino and carboxyl ends of the poly(A) polymerase (PAP) of Saccharomyces cerevisiae and examined the effects of these truncations on function of the enzyme. PAP synthesizes a poly(A) tail onto the 3'-end of RNA without any primer specificity but, in the presence of cellular factors, is directed specifically to the cleaved ends of mRNA precursors. The last 31 amino acids of PAP are dispensable for both nonspecific and specific activities. Removal of the next 36 amino acids affects an RNA binding domain, which is essential for the activity of the enzyme and for cell viability. This novel RNA binding site was further localized using additional deletions, cyanogen bromide cleavage of PAP cross-linked with RNA or 8-azido-ATP, and a monoclonal antibody against a COOH-terminal PAP epitope. A deletion that partially disrupts this domain has reduced nonspecific activity but functions in specific polyadenylation. In contrast, deletion of the first 18 amino acids of PAP has no effect on nonspecific polyadenylation but completely eliminates specific activity. This region is essential for enzyme function in vivo and is probably involved in the interaction of PAP with other protein(s) of the polyadenylation machinery.
Collapse
Affiliation(s)
- A M Zhelkovsky
- Department of Molecular Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111-1800, USA
| | | | | |
Collapse
|
11
|
Gershon P, Moss B. Stimulation of poly(A) tail elongation by the VP39 subunit of the vaccinia virus-encoded poly(A) polymerase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53982-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Gershon PD, Moss B. Transition from rapid processive to slow nonprocessive polyadenylation by vaccinia virus poly(A) polymerase catalytic subunit is regulated by the net length of the poly(A) tail. Genes Dev 1992; 6:1575-86. [PMID: 1353739 DOI: 10.1101/gad.6.8.1575] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The mRNA of vaccinia virus, like that of eukaryotes, possesses a poly(A) tail. VP55, the catalytic subunit of the heterodimeric vaccinia virus poly(A) polymerase, was overexpressed and purified to near homogeneity. VP55 polyadenylated a 30-mer primer representing the 3' end of a vaccinia virus mRNA bimodally: 30-35 adenylates were added in a rapid, processive, initial burst, after which polyadenylation decelerated dramatically and became nonprocessive. Polyadenylation of variants of the 30-mer primer, which contained preformed 3'-oligo(A) extensions, showed that the transition between the two modes of polyadenylation was regulated by the net length of the 3'-oligo(A) tail rather than the number of adenylate additions catalyzed by VP55. Primers comprising oligo(A) alone were polyadenylated only if they were greater than 34 nucleotides in length and, then, only in the slow nonprocessive mode. These data support a dynamic model whereby the mode of polyadenylation by VP55 is regulated by sequences within the 3' 30-35 nucleotides of the mRNA: Polyadenylation is rapid and processive until a net 3'-oligo(A) length of 30-35 nucleotides is achieved. Consistent with this, excess oligo(A) did not compete with the 30-mer primer for rapid processive polyadenylation. The primer specificity of VP55 may contribute to the selective polyadenylation of newly formed mRNA.
Collapse
Affiliation(s)
- P D Gershon
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
13
|
Aström A, Aström J, Virtanen A. A simple procedure for isolation of eukaryotic mRNA polyadenylation factors. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 202:765-73. [PMID: 1684936 DOI: 10.1111/j.1432-1033.1991.tb16431.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have devised a simple chromatographic procedure which isolates five polyadenylation factors that are required for polyadenylation of eukaryotic mRNA. The factors were separated from each other by fractionation of HeLa cell nuclear extract in two consecutive chromatographic steps. RNA cleavage at the L3 polyadenylation site of human adenovirus 2 required at least four factors. Addition of adenosine residues required only two of these factors. The fractionation procedure separates two components that are both likely to be poly(A) polymerases. The candidate poly(A) polymerases were interchangeable and participated during both RNA cleavage and adenosine addition. They were discriminated from each other by chromatographic properties, heat sensitivity and divalent cation requirement. We have compared our data with published information and have been able to correlate the activities that we have isolated to previously identified polyadenylation factors. However, we have not been able to assign one of the candidate poly(A) polymerases to a previously identified poly(A) polymerase. This simple fractionation procedure can be used for generating an in vitro reconstituted system for polyadenylation within a short period of time.
Collapse
Affiliation(s)
- A Aström
- Department of Medical Genetics, Uppsala University, Sweden
| | | | | |
Collapse
|
14
|
Gershon PD, Ahn BY, Garfield M, Moss B. Poly(A) polymerase and a dissociable polyadenylation stimulatory factor encoded by vaccinia virus. Cell 1991; 66:1269-78. [PMID: 1670500 DOI: 10.1016/0092-8674(91)90048-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
mRNA made in eukaryotic cells typically has a 3' poly(A) tail that is added posttranscriptionally. To investigate mechanisms by which 3' poly(A) is formed, we identified the genes for the two vaccina virus-encoded polypeptides, VP55 and VP39. Primer-dependent polyadenylation activity was associated exclusively with purified VP55-VP39 heterodimer, which, although stable to column chromatography and glycerol gradient sedimentation, was readily dissociated by antibody to an N-terminal peptide of VP55. Poly(A) polymerase activity was associated with immunopurified VP55, but not with immunopurified or chromatographically purified VP39. VP39 was, however, required for the formation of long poly(A) molecules, in conjunction with either purified VP55 or low concentrations of the heterodimer, and was shown to bind free poly(A). Thus, a catalytic polypeptide and a dissociable poly(A)-binding stimulatory factor each contribute to poly(A) tail formation. No prokaryotic or eukaryotic homologs of either polypeptide were detected in sequence data bases, consistent with the absence of previously reported poly(A) polymerase genes from any source.
Collapse
Affiliation(s)
- P D Gershon
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
15
|
Lakota J, Nelson BD. ADP is a substrate for the AAUAAA-directed poly(A) addition reaction catalyzed by HeLa cell nuclear extracts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 195:685-9. [PMID: 1999190 DOI: 10.1111/j.1432-1033.1991.tb15754.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The specific poly(A) addition reaction catalyzed by crude nuclear extracts from HeLa cells can use ADP as efficiently as ATP as the donor of AMP residues. Both the ADP- and ATP-supported reactions require an intact upstream polyadenylation signal sequence element (AAUAAA). The mutated signal sequence (AACAAA) supports neither reaction. The ADP-supported poly(A) addition reaction can be resolved by glycerol gradient centrifugation of the crude nuclear extract into two components which are active when recombined but are inactive individually. The ATP-supported poly(A) addition is reconstituted by recombining the same gradient fractions, but the activity is lower than that supported by ADP, suggesting that an ATP-specific factor has been removed. A 150 mM KCl fraction DEAE-Sepharose of the nuclear extract, also devoid of the ATP-supported poly(A) addition reaction, retains a normal ADP-supported reaction. Together, these data show that ADP is a substrate for polyadenylation, and suggest that different factors might be required to induce ADP- or ATP-specificity in the poly(A) addition reaction.
Collapse
Affiliation(s)
- J Lakota
- Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Czechoslovakia
| | | |
Collapse
|
16
|
Wahle E. Purification and characterization of a mammalian polyadenylate polymerase involved in the 3' end processing of messenger RNA precursors. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)49964-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Moss B, Ahn BY, Amegadzie B, Gershon PD, Keck JG. Cytoplasmic transcription system encoded by vaccinia virus. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52298-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
18
|
Hengst-Zhang JA, Jacob ST. Tissue and species distribution of liver type and tumor type nuclear poly(A) polymerases. Biochem Biophys Res Commun 1990; 169:325-31. [PMID: 2162661 DOI: 10.1016/0006-291x(90)90335-k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Previous studies in this laboratory have identified two distinct nuclear poly(A) polymerases, a 48 kDA tumor type enzyme and a 36-38 kDA liver type enzyme. To investigate the tissue and species specificity of these enzymes, nuclear extracts were prepared from various rat tissues, pig brain and two human cell lines. These as well as whole cell extract from yeast were probed for the two enzymes by immunoblot analysis using polyclonal anti-tumor poly(A) polymerase antibodies or autoimmune sera which contain antibodies specific for the liver type enzyme. Results indicate that both tumor and liver type enzymes are conserved across species ranging from rat to human. The yeast enzyme does not appear to be immunologically related to the liver or the tumor type poly(A) polymerase. The liver type enzyme appears to be specific for normal tissues whereas the tumor type enzyme is detected only in tissues in a "tumorigenic" state or cell lines originating from tumor tissues.
Collapse
Affiliation(s)
- J A Hengst-Zhang
- Department of Pharmacology and Molecular Biology, Chicago Medical School, IL 60064
| | | |
Collapse
|
19
|
|
20
|
Affiliation(s)
- B Moss
- Laboratory of Viral Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
21
|
Abstract
We reported previously that authentic polyadenylation of pre-mRNAs in vitro requires at least two factors: a cleavage/specificity factor (CSF) and a fraction containing nonspecific poly(A) polymerase activity. To study the molecular mechanisms underlying 3' cleavage of pre-mRNAs, we fractionated CSF further and show that it consists of four separable subunits. One of these, called specificity factor (SF; Mr, approximately 290,000), is required for both specific cleavage and for specific polyadenylation and thus appears responsible for the specificity of the reaction. Although SF has not been purified to homogeneity, several lines of evidence suggest that it may not contain an essential RNA component. Two other factors, designated cleavage factors I (CFI; Mr, approximately 130,000) and II (CFII; Mr, approximately 110,000), are sufficient to reconstitute accurate cleavage when mixed with SF. A fourth factor, termed cleavage stimulation factor (CstF; Mr, approximately 200,000), enhances cleavage efficiency significantly when added to a mixture of the three other factors. CFI, CFII, and CstF do not contain RNA components, nor do they affect specific polyadenylation in the absence of cleavage. Although these four factors are necessary and sufficient to reconstitute efficient cleavage of one pre-RNA tested, poly(A) polymerase is also required to cleave several others. A model suggesting how these factors interact with the pre-mRNA and with each other is discussed.
Collapse
Affiliation(s)
- Y Takagaki
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | | | |
Collapse
|
22
|
Christofori G, Keller W. 3' cleavage and polyadenylation of mRNA precursors in vitro requires a poly(A) polymerase, a cleavage factor, and a snRNP. Cell 1988; 54:875-89. [PMID: 2842067 DOI: 10.1016/s0092-8674(88)91263-9] [Citation(s) in RCA: 168] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have separated and purified three factors from HeLa cell nuclear extracts that together can accurately cleave and polyadenylate pre-mRNAs containing the adenovirus L3 polyadenylation site. One of the factors is a poly(A) polymerase with a molecular weight of approximately 50-60 kd. The second activity is a cleavage factor with a native molecular weight in the range of 70-120 kd. The third component is a factor (cleavage and polyadenylation factor, CPF) that is needed for the cleavage reaction and, in addition, confers specificity to the poly(A) polymerase activity; the native molecular weight of CPF is approximately 200 kd. Poly(A) polymerase together with CPF is sufficient to specifically polyadenylate pre-mRNA substrates that have been precleaved at the poly(A) addition site. In contrast, all three components are required for accurate cleavage and polyadenylation of pre-mRNA substrates. Further purification of CPF by buoyant density centrifugation, ion exchange, and affinity column chromatography or by gel filtration demonstrates that CPF activity resides in a ribonucleoprotein and copurifies with U11 snRNP.
Collapse
Affiliation(s)
- G Christofori
- Department of Cell Biology, Biocenter of the University of Basel, Switzerland
| | | |
Collapse
|
23
|
|
24
|
McDevitt MA, Gilmartin GM, Reeves WH, Nevins JR. Multiple factors are required for poly(A) addition to a mRNA 3' end. Genes Dev 1988; 2:588-97. [PMID: 3384332 DOI: 10.1101/gad.2.5.588] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polyadenylation of pre-mRNAs in the nucleus involves a specific endonucleolytic cleavage, followed by the addition of approximately 200 adenylic acid residues. We have assayed HeLa nuclear extracts for the activity that catalyzes the poly(A) addition reaction. The authenticity of the in vitro assay was indicated by the observation that the poly(A) tract added in vitro is approximately 200 nucleotides in length. We have fractionated nuclear extracts in order to define components involved in specific poly(A) addition. No single fraction from DEAE-Sephacel chromatography of a HeLa nuclear extract possessed the specific poly(A) addition activity. However, if the various fractions were recombined, activity was restored, indicating the presence of multiple components. Further fractionation revealed the presence of at least two factors necessary for the poly(A) addition reaction. The reconstituted system retains the characteristics and specificity seen in the crude extract. Additional purification of one of the factors strongly suggests it to be a previously characterized poly(A) polymerase which, when assayed in the absence of the other factor, can add AMP to an RNA terminus but without specificity. Thus, the other component of the reaction may provide specificity to the process. In contrast to the 3' cleavage reaction, the poly(A) addition machinery does not possess an essential RNA component, as assayed by micrococcal nuclease digestion, nor do anti-Sm sera inhibit the reaction. Thus, the total process of formation of a polyadenylated mRNA 3' end is complex and requires the concerted action of distinct nuclear components.
Collapse
Affiliation(s)
- M A McDevitt
- Howard Hughes Medical Institute, Laboratory of Molecular Cell Biology, Rockefeller University, New York, New York 10021
| | | | | | | |
Collapse
|
25
|
Abstract
A 64 kd protein was shown to bind to RNAs that contain functional polyadenylation signals by a UV cross-linking procedure in which label was transferred from RNA substrate to protein in cell-free polyadenylation extracts. The 64 kd nuclear protein bound specifically to three different substrates (adenovirus type 5 L3, SV40 early, and SV40 late polyadenylation domains), as determined by competition experiments and partial protease analysis. Deleted derivatives of the SV40 late substrate that retained the sequence 5'-CUGCAAUAAACAAGUU-3' were able to bind the 64 kd polypeptide. This sequence contains the canonical AAUAAA element that has been shown to be indispensable for polyadenylation. A single nucleotide change, converting AAUAAA to AAGAAA, prevented binding of the 64 kd moiety. The 64 kd protein was shown to be distinct from poly(A) polymerase by biochemical fractionation.
Collapse
Affiliation(s)
- J Wilusz
- Department of Molecular Biology, Princeton University, New Jersey 08544
| | | |
Collapse
|
26
|
Abstract
Recent progress in molecular biological techniques revealed that genomes of animal viruses are complex in structure, for example, with respect to the chemical nature (DNA or RNA), strandedness (double or single), genetic sense (positive or negative), circularity (circle or linear), and so on. In agreement with this complexity in the genome structure, the modes of transcription and replication are various among virus families. The purpose of this article is to review and bring up to date the literature on viral RNA polymerases involved in transcription of animal DNA viruses and in both transcription and replication of RNA viruses. This review shows that the viral RNA polymerases are complex in both structure and function, being composed of multiple subunits and carrying multiple functions. The functions exposed seem to be controlled through structural interconversion.
Collapse
Affiliation(s)
- A Ishihama
- Department of Molecular Genetics, National Institute of Genetics, Shizuoka, Japan
| | | |
Collapse
|
27
|
Courtis NC, Trangas TT, Tsiapalis CM. Increase in the levels of activity of polyadenylic acid-metabolizing enzymes following phytohaemagglutinin stimulation of human lymphocytes. Mol Cell Biochem 1987; 75:33-42. [PMID: 3041199 DOI: 10.1007/bf00231606] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Increased levels of soluble activity of all three enzymes involved in polyadenylic acid metabolism were measured in PHA-stimulated versus normal lymphocytes. Poly(A)-polymerase and poly(A)-exonuclease values increased significantly (from 25.7 +/- 4.2 (S.E.M.) to 53.5 +/- 10.6 (S.E.M.), and from 334.6 +/- 33.2 (S.E.M.) to 653.2 +/- 53.4 (S.E.M.) respectively), while a moderate increase was observed in poly(A)-endonuclease (from 299.2 +/- 33.8 (S.E.M.) to 403.0 +/- 77.1 (S.E.M.). The above differences persisted after two fractionations of the crude cell extracts by ion exchange chromatography and molecular sieving, and could not be attributed to the competitive action of all three enzymes in the untreated extracts. Fractionation of the extracts of resting and stimulated cells on Sephadex G-75 revealed two molecular forms of poly(A)-polymerase activity.
Collapse
|
28
|
Affiliation(s)
- C M Tsiapalis
- Department of Biochemistry, Papanicoloau Research Center of Oncology, Athens, Greece
| |
Collapse
|
29
|
Hart RP, McDevitt MA, Nevins JR. Poly(A) site cleavage in a HeLa nuclear extract is dependent on downstream sequences. Cell 1985; 43:677-83. [PMID: 2866847 DOI: 10.1016/0092-8674(85)90240-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Efficient utilization of the early SV40 poly(A) site in vivo requires sequences between 5 bp and 18 bp downstream of the cleavage site. We have used a HeLa nuclear extract to examine the sequence requirements for in vitro cleavage. DNA segments containing the SV40 poly(A) site were cloned into an SP6 vector. SP6 RNAs, accurately cleaved and polyadenylated, were detected by primer extension. Cleavage was enhanced by the presence of a cap on the primary transcript, and was inhibited by the addition of 10 microM 7meGpppG. In close agreement with the in vivo results, efficient processing at the poly(A) site in vitro required the specific downstream sequences in the SP6 RNA transcript. These experiments indicate that the sequence in the RNA precursor downstream of the cleavage site, shown to be important for efficient processing in vivo, is recognized in vitro.
Collapse
|
30
|
Lakhani S, Sachar R. Regulation of poly(A) polymerase activity and poly(A)+ RNA in germinated wheat embryos under conditions of pathogenesis. ACTA ACUST UNITED AC 1985. [DOI: 10.1016/0167-4781(85)90018-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
The primer specificity of cytoplasmic poly(A) polymerase from cryptobiotic gastrulae of Artemia salina. ACTA ACUST UNITED AC 1985. [DOI: 10.1016/0167-4781(85)90075-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Structurally and immunologically distinct poly(A) polymerases in rat liver. Occurrence of a tumor-type enzyme in normal liver. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)39863-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
33
|
Knowler JT. An assessment of the evidence for the role of ribonucleoprotein particles in the maturation of eukaryote mRNA. INTERNATIONAL REVIEW OF CYTOLOGY 1983; 84:103-53. [PMID: 6196313 DOI: 10.1016/s0074-7696(08)61016-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This article has sought to draw together, on the one hand, what is known of mRNA processing and its control and, on the other hand, what is known of the structure and validity of hnRNP and snRNP particles. At the same time, it has attempted to synthesize these two themes into a critical assessment of the evidence which suggests that the particles are intimately involved in processing. It cannot be said that the case is proven. The evidence is compelling but circumstantial. The last few years have seen the development of the first in vitro splicing systems (Weingartner and Keller, 1981; Goldenberg and Raskus, 1981; Kole and Weissman, 1982), the isolation of monoclonal antibodies to defined snRNP (Lerner et al., 1981a; Billings et al., 1982) and hnRNP proteins (Hugle et al., 1982), and the ability to use artificial lipid vesicles to transfer antisera (Lenk et al., 1982) and radioactive snRNA (Gross and Cetron, 1982) into cells. It is to be hoped that further refinements of these and other techniques will allow us to solve this, one of the major outstanding problems of molecular biology.
Collapse
|
34
|
Dolapchiev LB, Bakalova A. Simple purification and some properties of beef spleen exonuclease. PREPARATIVE BIOCHEMISTRY 1982; 12:121-36. [PMID: 6289292 DOI: 10.1080/00327488208065557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A method for purification of beef spleen exonuclease is described, leading to electrophoretically homogeneous enzyme preparation. The method consists of three step fractionation of crude enzyme (after ammonium sulfate precipitation) as follows - ion exchange chromatography on ECTEOLA-cellulose, affinity chromatography on Concanavalin A-Sepharose and molecular sieving. The enzyme thus obtained is practically free of any contaminating activities - endonuclease or phosphomonoesterase. The molecular weight of the exonuclease was determined (98 000 +/- 3 000 daltons) and some other parameters of the enzyme were calculated. The investigation of the pH and thermo-stabilities showed significantly narrow limits of the exonuclease activity. The effect of the urea on the enzyme activity has also been evaluated.
Collapse
|
35
|
|
36
|
Purification and properties of a polyadenylate polymerase from Artemia dormant embryos. ACTA ACUST UNITED AC 1981. [DOI: 10.1016/0005-2744(81)90083-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Avramova ZV, Milchev GI, Hadjiolov AA. Two distinct poly(A) polymerases isolated from the cytoplasm of Ehrlich ascites tumour cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1980; 103:99-107. [PMID: 6244156 DOI: 10.1111/j.1432-1033.1980.tb04293.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The poly(A) polymerases from the cytosol and ribosomal fractions of Ehrlich ascites tumour cells are isolated and partially purified by DEAE-cellulose and phosphocellulose column chromatography. Two distinct enzymes are identified: (a) a cytosol Mn2+-dependent poly(A) polymerase (ATP:RNA adenylyltransferase) and (b) a ribosome-associated enzyme defined tentatively as ATP(UTP): RNA nucleotidyltransferase. The cytosol poly(A) polymerase is strictly Mn2+-dependent (optimum at 1 mM Mn2+) and uses only ATP as substrate, poly(A) is a better primer than ribosomal RNA. The purified enzyme is free of poly(A) hydrolase activity, but degradation of [3H]poly(A) takes place in the presence of inorganic pyrophosphate. Most likely this enzyme is of nuclear origin. The ribosomal enzyme is associated with the ribosomes but it is found also in free state in the cytosol. The purified enzyme uses both ATP and UTP as substrates. The substrate specificity varies depending on ionic conditions: the optimal enzyme activity with ATP as substrate is at 1 mM Mn2+, while that with UTP as substrate is at 10--20 mM Mg2+. The enzymes uses both ribosomal RNA and poly(A) [but not poly(U)] as primers. The purified enzyme is free of poly(A) hydrolase activity.
Collapse
|
38
|
Rose K, Jacob S. Phosphorylation of nuclear poly(A) polymerase. Comparison of liver and hepatoma enzymes. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(19)86702-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Rose KM, Jacob ST, Kumar A. Poly(A) polymerase and poly(A)-specific mRNA binding protein are antigenically related. Nature 1979; 279:260-2. [PMID: 86957 DOI: 10.1038/279260a0] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
|
41
|
|