1
|
Maruyama H, Sakai S, Dewachter L, Dewachter C, Rondelet B, Naeije R, Ieda M. Prostacyclin receptor agonists induce DUSP1 to inhibit pulmonary artery smooth muscle cell proliferation. Life Sci 2023; 315:121372. [PMID: 36608870 DOI: 10.1016/j.lfs.2023.121372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/08/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
AIMS Upregulated p38MAPK signaling is implicated in the accelerated proliferation of pulmonary artery smooth muscle cells (PA-SMCs) and the pathogenesis of pulmonary artery remodeling observed in pulmonary arterial hypertension (PAH). Previously, we reported that after endothelin-1 (ET-1) pretreatment, bone morphogenetic protein 2 (BMP2) activates p38MAPK signaling and accelerates PA-SMC proliferation. The activity of p38MAPK signaling is tightly regulated by the inactivation of dual-specificity phosphatase 1 (DUSP1). Activated p38MAPK induces DUSP1 expression, forming a negative feedback loop. Prostacyclin IP receptor agonists (prostacyclin and selexipag) are used to treat PAH. In this study, we aimed to verify whether IP receptor agonists affect DUSP1 expression and accelerate the proliferation of PA-SMCs. MAIN METHODS PA-SMCs were treated with BMP2, ET-1, prostacyclin, and MRE-269, an active metabolite of selexipag, either alone or in combination. We quantified mRNA expressions using real-time quantitative polymerase chain reaction. Pulmonary artery specimens and PA-SMCs were obtained during lung transplantation in patients with PAH. KEY FINDINGS Both prostacyclin and MRE-269 increased DUSP1 expression. Combined treatment with BMP2 and ET-1 induced cyclin D1 and DUSP1 expression and increased PA-SMC proliferation. MRE-269 attenuated BMP2/ET-1-induced cell proliferation. ET-1 increased DUSP1 expression in PA-SMCs from control patients but not in PA-SMCs from patients with PAH. SIGNIFICANCE This study showed that the p38MAPK/DUSP1 negative feedback loop is impaired in PAH, contributing to unregulated p38MAPK activation and PA-SMC hyperplasia. IP receptor agonist MRE-269 increases DUSP1 expression and inhibit p38MAPK-mediated PA-SMC proliferation. Future elucidation of the detailed mechanism underlying reduced DUSP1 expression would be informative for PAH treatment.
Collapse
Affiliation(s)
- Hidekazu Maruyama
- Department of Cardiology, National Hospital Organization Kasumigaura Medical Center, 300-8585 Tsuchiura, Japan; Division of Cardiovascular Medicine, Faculty of Medicine, University of Tsukuba, 305-8577 Tsukuba, Japan; Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| | - Satoshi Sakai
- Faculty of Health Science, Tsukuba University of Technology, 305-8520 Tsukuba, Japan
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Céline Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium; Department of Cardiology, Erasme Academic Hospital, 1070 Brussels, Belgium
| | - Benoit Rondelet
- Department of Cardiac, Vascular and Thoracic Surgery, CHU UCL Namur, 5530 Yvoir, Belgium
| | - Robert Naeije
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Masaki Ieda
- Division of Cardiovascular Medicine, Faculty of Medicine, University of Tsukuba, 305-8577 Tsukuba, Japan
| |
Collapse
|
2
|
He F, Wu Z, Wang Y, Yin L, Lu S, Dai L. Downregulation of tripartite motif protein 11 attenuates cardiomyocyte apoptosis after ischemia/reperfusion injury via DUSP1-JNK1/2. Cell Biol Int 2021; 46:148-157. [PMID: 34694031 PMCID: PMC9299661 DOI: 10.1002/cbin.11716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/09/2021] [Accepted: 10/16/2021] [Indexed: 11/11/2022]
Abstract
Currently, the prevention of ischemic diseases such as myocardial infarction associated with ischemia/reperfusion (I/R) injury remains to be a challenge. Thus, this study was designed to explore the effects of tripartite motif protein 11 (TRIM11) on cardiomyocytes I/R injury and its underlying mechanism. Cardiomyocytes AC16 were used to establish an I/R injury cell model. After TRIM11 downregulation in I/R cells, cell proliferation (0, 12, 24, and 48 h) and apoptosis at 48 h as well as the related molecular changes in oxidative stress‐related pathways was detected. Further, after the treatment of TRIM11 overexpression, SP600125, or DUSP1 overexpression, cell proliferation, apoptosis, and related genes were detected again. As per our findings, it was determined that TRIM11 was highly expressed in the cardiomyocytes AC16 after I/R injury. Downregulation of TRIM11 was determined to have significantly reduced I/R‐induced proliferation suppression and apoptosis. Besides, I/R‐activated c‐Jun N‐terminal kinase (JNK) signaling and cleaved caspase 3 and Bax expression were significantly inhibited by TRIM11 downregulation. In addition, the overexpression of TRIM11 significantly promoted apoptosis in AC16 cells, and JNK1/2 inhibition and DUSP1 overexpression potently counteracted the induction of TRIM11 overexpression in AC16 cells. These suggested that the downregulation of TRIM11 attenuates apoptosis in AC16 cells after I/R injury probably through the DUSP1‐JNK1/2 pathways.
Collapse
Affiliation(s)
- Fang He
- Shanghai Changning Mental Health Center, Shanghai, China
| | - Zheqian Wu
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| | - Yong Wang
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| | - Lili Yin
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| | - Shijie Lu
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| | - Lihua Dai
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| |
Collapse
|
3
|
Ren L, Wang Q, Ma L, Wang D. MicroRNA-760-mediated low expression of DUSP1 impedes the protective effect of NaHS on myocardial ischemia-reperfusion injury. Biochem Cell Biol 2020; 98:378-385. [PMID: 32160475 DOI: 10.1139/bcb-2019-0310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is the leading cause of the poor prognosis for patients undergoing clinical cardiac surgery. Micro-RNAs are involved in MIRI; however, the effect of miR-760 on MIRI and the molecular mechanisms behind it have not yet been described. For our in-vivo experiments, 20 rats were randomly distributed between 2 groups (n = 10): the sham-treatment group and the ischemia-reperfusion (I/R) group. For our in-vitro experiments, H9C2 cells were subjected to hypoxia for 6 h, and then reoxygenated to establish an hypoxia-reoxygenation (H/R) model. High expression levels of of miR-760 were observed in the rats subjected to MIRI and the H9C2 cells subjected to H/R. Further, the levels of lactate dehydrogenase (LDH) and malonaldehyde (MDA) were increased, and the size of the myocardial infarct was notably greater in the rats subjected to MIRI, suggesting that miR-760 worsens the effects of MIRI. The inhibitory effects from NaHS on apoptosis were enhanced, as were the expression levels of cleaved caspase 3 and cleaved PARP in H9C2 cells exposed to H/R, and with low-expression levels of miR-760. TargetScan and dual luciferase reporter assays further confirmed the targeted relationship between dual-specificity protein phosphatase (DUSP1) and miR-760. Additionally, miR-760 overexpression and H/R treatment of H9C2 cells inhibited the expression of DUSP1, which further promoted apoptosis. Furthermore, DUSP1 enhanced the anti-apoptotic effects of NaHS in rats subjected to MIRI. Taken together, these findings suggest that miR-760 inhibits the protective effect of NaHS against MIRI.
Collapse
Affiliation(s)
- Lin Ren
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang City, Hebei Province 050011, China.,Department of Cardiology, First Hospital of Qinhuangdao, Qinhuangdao City, Hebei Province 066000, China
| | - Qian Wang
- Department of Geriatrics, First Hospital of Qinhuangdao, Qinhuangdao City, Hebei Province 066000, China
| | - Lixiang Ma
- Department of Cardiology, First Hospital of Qinhuangdao, Qinhuangdao City, Hebei Province 066000, China
| | - Dongmei Wang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang City, Hebei Province 050011, China
| |
Collapse
|
4
|
Avey S, Mohanty S, Chawla DG, Meng H, Bandaranayake T, Ueda I, Zapata HJ, Park K, Blevins TP, Tsang S, Belshe RB, Kaech SM, Shaw AC, Kleinstein SH. Seasonal Variability and Shared Molecular Signatures of Inactivated Influenza Vaccination in Young and Older Adults. THE JOURNAL OF IMMUNOLOGY 2020; 204:1661-1673. [PMID: 32060136 DOI: 10.4049/jimmunol.1900922] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/08/2020] [Indexed: 01/01/2023]
Abstract
The seasonal influenza vaccine is an important public health tool but is only effective in a subset of individuals. The identification of molecular signatures provides a mechanism to understand the drivers of vaccine-induced immunity. Most previously reported molecular signatures of human influenza vaccination were derived from a single age group or season, ignoring the effects of immunosenescence or vaccine composition. Thus, it remains unclear how immune signatures of vaccine response change with age across multiple seasons. In this study we profile the transcriptional landscape of young and older adults over five consecutive vaccination seasons to identify shared signatures of vaccine response as well as marked seasonal differences. Along with substantial variability in vaccine-induced signatures across seasons, we uncovered a common transcriptional signature 28 days postvaccination in both young and older adults. However, gene expression patterns associated with vaccine-induced Ab responses were distinct in young and older adults; for example, increased expression of killer cell lectin-like receptor B1 (KLRB1; CD161) 28 days postvaccination positively and negatively predicted vaccine-induced Ab responses in young and older adults, respectively. These findings contribute new insights for developing more effective influenza vaccines, particularly in older adults.
Collapse
Affiliation(s)
- Stefan Avey
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511
| | - Subhasis Mohanty
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520
| | - Daniel G Chawla
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511
| | - Hailong Meng
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520
| | - Thilinie Bandaranayake
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520
| | - Ikuyo Ueda
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520
| | - Heidi J Zapata
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520
| | - Koonam Park
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520; and
| | - Tamara P Blevins
- Division of Infectious Diseases, Department of Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Sui Tsang
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520
| | - Robert B Belshe
- Division of Infectious Diseases, Department of Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Susan M Kaech
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520; and
| | - Albert C Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520;
| | - Steven H Kleinstein
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511; .,Department of Pathology, Yale School of Medicine, New Haven, CT 06520.,Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520; and
| |
Collapse
|
5
|
Kirk SG, Samavati L, Liu Y. MAP kinase phosphatase-1, a gatekeeper of the acute innate immune response. Life Sci 2020; 241:117157. [PMID: 31837332 PMCID: PMC7480273 DOI: 10.1016/j.lfs.2019.117157] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023]
Abstract
Mitogen-activated protein kinase (MAPK)§ cascades are crucial signaling pathways in the regulation of the host immune response to infection. MAPK phosphatase (MKP)-1, an archetypal member of the MKP family, plays a pivotal role in the down-regulation of p38 and JNK. Studies using cultured macrophages have demonstrated a pivotal role of MKP-1 in the restraint of the biosynthesis of both pro-inflammatory and anti-inflammatory cytokines as well as chemokines. Using MKP-1 knockout mice, several groups have not only confirmed the critical importance of MKP-1 in the regulation of the cytokine synthesis in vivo during the acute host response to bacterial infections, but also revealed novel functions of MKP-1 in maintaining bactericidal functions and host metabolic activities. RNA-seq analyses on livers of septic mice infected with E. coli have revealed that MKP-1 deficiency caused substantial perturbation in the expression of over 5000 genes, an impressive >20% of the entire murine genome. Among the genes whose expression are dramatically affected by MKP-1 deficiency are those encoding metabolic regulators and acute phase response proteins. These studies demonstrate that MKP-1 is an essential gate-keeper of the acute innate immune response, facilitating pathogen killing and regulating the metabolic response during pathogenic infection. In this review article, we will summarize the studies on the function of MKP-1 during acute innate immune response in the regulation of inflammation, metabolism, and acute phase response. We will also discuss the role of MKP-1 in the actions of numerous immunomodulatory agents.
Collapse
Affiliation(s)
- Sean G. Kirk
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Lobelia Samavati
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yusen Liu
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA,Corresponding author at: Center for Perinatal Research The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 575 Children’s Cross Road, Columbus, OH 43215, USA. (Y. Liu)
| |
Collapse
|
6
|
Ding T, Zhou Y, Long R, Chen C, Zhao J, Cui P, Guo M, Liang G, Xu L. DUSP8 phosphatase: structure, functions, expression regulation and the role in human diseases. Cell Biosci 2019; 9:70. [PMID: 31467668 PMCID: PMC6712826 DOI: 10.1186/s13578-019-0329-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/12/2019] [Indexed: 12/28/2022] Open
Abstract
Dual-specificity phosphatases (DUSPs) are a subset of protein tyrosine phosphatases (PTPs), many of which dephosphorylate the residues of phosphor-serine/threonine and phosphor-tyrosine on mitogen-activated protein kinases (MAPKs), and hence are also referred to as MAPK phosphatases (MKPs). Homologue of Vaccinia virus H1 phosphatase gene clone 5 (HVH-5), also known as DUSP8, is a unique member of the DUSPs family of phosphatases. Accumulating evidence has shown that DUSP8 plays an important role in phosphorylation-mediated signal transduction of MAPK signaling ranging from cell oxidative stress response, cell apoptosis and various human diseases. It is generally believed that DUSP8 exhibits significant dephosphorylation activity against JNK, however, with the deepening of research, plenty of new literature reports that DUSP8 also has effective dephosphorylation activity on p38 MAPK and ERKs, successfully affects the transduction of MAPKs pathway, indicating that DUSP8 presents a unknown diversity of DUSPs family on distinct corresponding dephosphorylated substrates in different biological events. Therefore, the in-depth study of DUSP8 not only throws a new light on the multi-biological function of DUSPs, but also is much valuable for the reveal of complex pathobiology of clinical diseases. In this review, we provide a detail overview of DUSP8 phosphatase structure, biological function and expression regulation, as well as its role in related clinical human diseases, which might be help for the understanding of biological function of DUSP8 and the development of prevention, diagnosis and therapeutics in related human diseases.
Collapse
Affiliation(s)
- Tao Ding
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China.,2Department of Immunology, Zunyi Medical University, Zunyi, 563000 Guizhou China
| | - Ya Zhou
- 3Department of Medical Physics, Zunyi Medical University, Zunyi, 563000 Guizhou China
| | - Runying Long
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China.,2Department of Immunology, Zunyi Medical University, Zunyi, 563000 Guizhou China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China
| | - Panpan Cui
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China
| | - Guiyou Liang
- 4Department of Cardiovascular Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou China.,5Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China.,2Department of Immunology, Zunyi Medical University, Zunyi, 563000 Guizhou China
| |
Collapse
|
7
|
Hoppstädter J, Ammit AJ. Role of Dual-Specificity Phosphatase 1 in Glucocorticoid-Driven Anti-inflammatory Responses. Front Immunol 2019; 10:1446. [PMID: 31316508 PMCID: PMC6611420 DOI: 10.3389/fimmu.2019.01446] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoids (GCs) potently inhibit pro-inflammatory responses and are widely used for the treatment of inflammatory diseases, such as allergies, autoimmune disorders, and asthma. Dual-specificity phosphatase 1 (DUSP1), also known as mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1), exerts its effects by dephosphorylation of MAPKs, i.e., extracellular-signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). Endogenous DUSP1 expression is tightly regulated at multiple levels, involving both transcriptional and post-transcriptional mechanisms. DUSP1 has emerged as a central mediator in the resolution of inflammation, and upregulation of DUSP1 by GCs has been suggested to be a key mechanism of GC actions. In this review, we discuss the impact of DUSP1 on the efficacy of GC-mediated suppression of inflammation and address the underlying mechanisms.
Collapse
Affiliation(s)
- Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Alaina J Ammit
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia.,Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
GP78 Cooperates with Dual-Specificity Phosphatase 1 To Stimulate Epidermal Growth Factor Receptor-Mediated Extracellular Signal-Regulated Kinase Signaling. Mol Cell Biol 2019; 39:MCB.00485-18. [PMID: 31061093 DOI: 10.1128/mcb.00485-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/20/2019] [Indexed: 12/15/2022] Open
Abstract
GP78 is an autocrine motility factor (AMF) receptor (AMFR) with E3 ubiquitin ligase activity that plays a significant role in tumor cell proliferation, motility, and metastasis. Aberrant extracellular signal-regulated kinase (ERK) activation via receptor tyrosine kinases promotes tumor proliferation and invasion. The activation of GP78 leads to ERK activation, but its underlying mechanism is not fully understood. Here, we show that GP78 is required for epidermal growth factor receptor (EGFR)-mediated ERK activation. On one hand, GP78 interacts with and promotes the ubiquitination and subsequent degradation of dual-specificity phosphatase 1 (DUSP1), an endogenous negative regulator of mitogen-activated protein kinases (MAPKs), resulting in ERK activation. On the other hand, GP78 maintains the activation status of EGFR, as evidenced by the fact that EGF fails to induce EGFR phosphorylation in GP78-deficient cells. By the regulation of both EGFR and ERK activation, GP78 promotes cell proliferation, motility, and invasion. Therefore, this study identifies a previously unknown signaling pathway by which GP78 stimulates ERK activation via DUSP1 degradation to mediate EGFR-dependent cancer cell proliferation and invasion.
Collapse
|
9
|
Prostaglandin E 2, but not cAMP nor β 2-agonists, induce tristetraprolin (TTP) in human airway smooth muscle cells. Inflamm Res 2019; 68:369-377. [PMID: 30852628 DOI: 10.1007/s00011-019-01224-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 01/05/2023] Open
Abstract
Tristetraprolin (TTP) is an anti-inflammatory molecule known to post-transcriptionally regulate cytokine production and is, therefore, an attractive drug target for chronic respiratory diseases driven by inflammation, such as asthma and chronic obstructive pulmonary disease. Our recent in vitro studies in primary human airway smooth (ASM) cells have confirmed the essential anti-inflammatory role played by TTP as a critical partner in a cytokine regulatory network. However, several unanswered questions remain. While prior in vitro studies have suggested that TTP is regulated in a cAMP-mediated manner, raising the possibility that this may be one of the ways in which β2-agonists achieve beneficial effects beyond bronchodilation, the impact of β2-agonists on ASM cells is unknown. Furthermore, the effect of prostaglandin E2 (PGE2) on TTP expression in ASM cells has not been reported. We address this herein and reveal, for the first time, that TTP is not regulated by cAMP-activating agents nor following treatment with long-acting β2-agonists. However, PGE2 does induce TTP mRNA expression and protein upregulation in ASM cells. Although the underlying mechanism of action remains undefined, we can confirm that PGE2-induced TTP upregulation is not mediated via cAMP, or EP2/EP4 receptor activation, and occurred in a manner independent of the p38 MAPK-mediated pathway. Taken together, these data confirm that β2-agonists do not upregulate TTP in human ASM cells and indicate that another way in which PGE2 may achieve beneficial effects in asthma and COPD may be via upregulation of the master controller of inflammation-TTP.
Collapse
|
10
|
Manley GCA, Parker LC, Zhang Y. Emerging Regulatory Roles of Dual-Specificity Phosphatases in Inflammatory Airway Disease. Int J Mol Sci 2019; 20:E678. [PMID: 30764493 PMCID: PMC6387402 DOI: 10.3390/ijms20030678] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammatory airway disease, such as asthma and chronic obstructive pulmonary disease (COPD), is a major health burden worldwide. These diseases cause large numbers of deaths each year due to airway obstruction, which is exacerbated by respiratory viral infection. The inflammatory response in the airway is mediated in part through the MAPK pathways: p38, JNK and ERK. These pathways also have roles in interferon production, viral replication, mucus production, and T cell responses, all of which are important processes in inflammatory airway disease. Dual-specificity phosphatases (DUSPs) are known to regulate the MAPKs, and roles for this family of proteins in the pathogenesis of airway disease are emerging. This review summarizes the function of DUSPs in regulation of cytokine expression, mucin production, and viral replication in the airway. The central role of DUSPs in T cell responses, including T cell activation, differentiation, and proliferation, will also be highlighted. In addition, the importance of this protein family in the lung, and the necessity of further investigation into their roles in airway disease, will be discussed.
Collapse
Affiliation(s)
- Grace C A Manley
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore 117597, Singapore.
| | - Lisa C Parker
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
11
|
Seternes OM, Kidger AM, Keyse SM. Dual-specificity MAP kinase phosphatases in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:124-143. [PMID: 30401534 PMCID: PMC6227380 DOI: 10.1016/j.bbamcr.2018.09.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/15/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023]
Abstract
It is well established that a family of dual-specificity MAP kinase phosphatases (MKPs) play key roles in the regulated dephosphorylation and inactivation of MAP kinase isoforms in mammalian cells and tissues. MKPs provide a mechanism of spatiotemporal feedback control of these key signalling pathways, but can also mediate crosstalk between distinct MAP kinase cascades and facilitate interactions between MAP kinase pathways and other key signalling modules. As our knowledge of the regulation, substrate specificity and catalytic mechanisms of MKPs has matured, more recent work using genetic models has revealed key physiological functions for MKPs and also uncovered potentially important roles in regulating the pathophysiological outcome of signalling with relevance to human diseases. These include cancer, diabetes, inflammatory and neurodegenerative disorders. It is hoped that this understanding will reveal novel therapeutic targets and biomarkers for disease, thus contributing to more effective diagnosis and treatment for these debilitating and often fatal conditions. A comprehensive review of the dual-specificity MAP kinase Phosphatases (MKPs) Focus is on MKPs in the regulation of MAPK signalling in health and disease. Covers roles of MKPs in inflammation, obesity/diabetes, cancer and neurodegeneration
Collapse
Affiliation(s)
- Ole-Morten Seternes
- Department of Pharmacy, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Andrew M Kidger
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, UK.
| | - Stephen M Keyse
- Stress Response Laboratory, Jacqui Wood Cancer Centre, James Arrot Drive, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK.
| |
Collapse
|
12
|
Tuure L, Hämäläinen M, Moilanen E. PDE4 inhibitor rolipram inhibits the expression of microsomal prostaglandin E synthase-1 by a mechanism dependent on MAP kinase phosphatase-1. Pharmacol Res Perspect 2018; 5. [PMID: 29226622 PMCID: PMC5723697 DOI: 10.1002/prp2.363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 12/27/2022] Open
Abstract
Phosphodiesterase‐4 (PDE4) inhibitors have recently been introduced to the treatment of COPD and psoriatic arthritis. Microsomal prostaglandin E synthase‐1 (mPGES‐1) is an inducible enzyme synthesizing PGE2, the most abundant prostanoid related to inflammation and inflammatory pain. mPGES‐1 is a potential drug target for novel anti‐inflammatory treatments aiming at an improved safety profile as compared to NSAIDs. Here we investigated the effect of the PDE4 inhibitor rolipram on the expression of mPGES‐1 in macrophages; and a potential mediator role in the process for MAP kinase phosphatase‐1 (MKP‐1) which is an endogenous factor limiting the activity of the proinflammatory MAP kinases p38 and JNK. The expression of mPGES‐1 was decreased, whereas that of MKP‐1 was enhanced by rolipram in wild‐type murine macrophages. Interestingly, rolipram did not reduce mPGES‐1 expression in peritoneal macrophages from MKP‐1‐deficient mice. A reduced phosphorylation of JNK, but not p38 MAP kinase, was specifically associated with the decreased expression of mPGES‐1. Accordingly, mPGES‐1 expression was suppressed by JNK but not p38 inhibitor. These findings underline the significance of the increased MKP‐1 expression and decreased JNK phosphorylation associated with the downregulated expression of mPGES‐1 by PDE4 inhibitors in inflammation.
Collapse
Affiliation(s)
- Lauri Tuure
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
13
|
Jin Q, Li R, Hu N, Xin T, Zhu P, Hu S, Ma S, Zhu H, Ren J, Zhou H. DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the Mff-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways. Redox Biol 2017; 14:576-587. [PMID: 29149759 PMCID: PMC5691221 DOI: 10.1016/j.redox.2017.11.004] [Citation(s) in RCA: 372] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/31/2017] [Accepted: 11/04/2017] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial fission and selective mitochondrial autophagy (mitophagy) form an essential axis of mitochondrial quality control that plays a critical role in the development of cardiac ischemia-reperfusion (IR) injury. However, the precise upstream molecular mechanism of fission/mitophagy remains unclear. Dual-specificity protein phosphatase1 (DUSP1) regulates cardiac metabolism, but its physiological contribution in the reperfused heart, particularly its influence on mitochondrial homeostasis, is unknown. Here, we demonstrated that cardiac DUSP1 was downregulated following acute cardiac IR injury. In vivo, compared to wild-type mice, DUSP1 transgenic mice (DUSP1TG mice) demonstrated a smaller infarcted area and the improved myocardial function. In vitro, the IR-induced DUSP1 deficiency promoted the activation of JNK which upregulated the expression of the mitochondrial fission factor (Mff). A higher expression level of Mff was associated with elevated mitochondrial fission and mitochondrial apoptosis. Additionally, the loss of DUSP1 also amplified the Bnip3 phosphorylated activation via JNK, leading to the activation of mitophagy. Increased mitophagy overtly consumed mitochondrial mass resulting into the mitochondrial metabolism disorder. However, the reintroduction of DUSP1 blunted Mff/Bnip3 activation and therefore alleviated the fatal mitochondrial fission/mitophagy by inactivating the JNK pathway, providing a survival advantage to myocardial tissue following IR stress. The results of our study suggest that DUSP1 and its downstream JNK pathway are therapeutic targets for conferring protection against IR injury by repressing Mff-mediated mitochondrial fission and Bnip3-required mitophagy.
Collapse
Affiliation(s)
- Qinhua Jin
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Ruibing Li
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China; Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Nan Hu
- Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, WY 82071, USA
| | - Ting Xin
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China; Department of Cardiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Pingjun Zhu
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Shunying Hu
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Sai Ma
- Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, WY 82071, USA
| | - Hong Zhu
- Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, WY 82071, USA
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, WY 82071, USA
| | - Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China; Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, WY 82071, USA.
| |
Collapse
|
14
|
Li S, Hao G, Li J, Peng W, Geng X, Sun J. Comparative analysis of dual specificity protein phosphatase genes 1, 2 and 5 in response to immune challenges in Japanese flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2017; 68:368-376. [PMID: 28743632 DOI: 10.1016/j.fsi.2017.07.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/14/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Dual-specificity MAP kinase (MAPK) phosphatases (DUSPs) are well-established negative modulators in regulating MAPK signaling in mammalian cells and tissues. Our previous studies have shown the involvement of DUSP6 in regulating innate immunity in Japanese flounder Paralichthys olivaceus. In order to gain a better understanding of the role of DUSPs in fish innate immunity, in the present study we identified and characterized three additional DUSP genes including DUSP1, 2 and 5 in P. olivaceus. The three Japanese flounder DUSP proteins share common domain structures composed of a conserved N-terminal Rhodanase/CDC25 domain and a C-terminal catalytic phosphatase domain, while they show only less than 26% sequence identities, indicating that they may have different substrate selectivity. In addition, mRNA transcripts of all the three DUSP genes are detected in all examined Japanese flounder tissues; however, DUSP1 is dominantly expressed in spleen while DUSP2 and 5 are primarily expressed in skin. Furthermore, all the three DUSP genes are constitutively expressed in the Japanese flounder head kidney macrophages (HKMs) and peripheral blood leucocytes (PBLs) with unequal distribution patterns. Moreover, all the three DUSPs gene expression was induced differently in response to the LPS and double-stranded RNA mimic poly(I:C) stimulations both in the Japanese flounder HKMs and PBLs, suggesting an association of DUSPs with TLR signaling in fish. Taken together, the co-expression of various DUSPs members together with their different responses to the immune challenges indicate that the DUSP members may operate coordinately in regulating the MAPK-dependent immune responses in the Japanese flounder.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| | - Gaixiang Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Weijiao Peng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, 442 South Jiefang Road, Hexi District, Tianjin 300221, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
15
|
Moosavi SM, Prabhala P, Ammit AJ. Role and regulation of MKP-1 in airway inflammation. Respir Res 2017; 18:154. [PMID: 28797290 PMCID: PMC5554001 DOI: 10.1186/s12931-017-0637-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) is a protein with anti-inflammatory properties and the archetypal member of the dual-specificity phosphatases (DUSPs) family that have emerged over the past decade as playing an instrumental role in the regulation of airway inflammation. Not only does MKP-1 serve a critical role as a negative feedback effector, controlling the extent and duration of pro-inflammatory MAPK signalling in airway cells, upregulation of this endogenous phosphatase has also emerged as being one of the key cellular mechanism responsible for the beneficial actions of clinically-used respiratory medicines, including β2-agonists, phosphodiesterase inhibitors and corticosteroids. Herein, we review the role and regulation of MKP-1 in the context of airway inflammation. We initially outline the structure and biochemistry of MKP-1 and summarise the multi-layered molecular mechanisms responsible for MKP-1 production more generally. We then focus in on some of the key in vitro studies in cell types relevant to airway disease that explain how MKP-1 can be regulated in airway inflammation at the transcriptional, post-translation and post-translational level. And finally, we address some of the potential challenges with MKP-1 upregulation that need to be explored further to fully exploit the potential of MKP-1 to repress airway inflammation in chronic respiratory disease.
Collapse
Affiliation(s)
- Seyed M Moosavi
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia.,Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Pavan Prabhala
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Alaina J Ammit
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia. .,Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Patel BS, Rahman MM, Baehring G, Xenaki D, Tang FSM, Oliver BG, Ammit AJ. Roflumilast N-Oxide in Combination with Formoterol Enhances the Antiinflammatory Effect of Dexamethasone in Airway Smooth Muscle Cells. Am J Respir Cell Mol Biol 2017; 56:532-538. [PMID: 27997807 DOI: 10.1165/rcmb.2016-0191oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Roflumilast is an orally active phosphodiesterase 4 inhibitor approved for use in chronic obstructive pulmonary disease. Roflumilast N-oxide (RNO) is the active metabolite of roflumilast and has a demonstrated antiinflammatory impact in vivo and in vitro. To date, the effect of RNO on the synthetic function of airway smooth muscle (ASM) cells is unknown. We address this herein and investigate the effect of RNO on β2-adrenoceptor-mediated, cAMP-dependent responses in ASM cells in vitro, and whether RNO enhances steroid-induced repression of inflammation. RNO (0.001-1,000 nM) alone had no effect on AMP production from ASM cells, and significant potentiation of the long-acting β2-agonist formoterol-induced cAMP could only be achieved at the highest concentration of RNO tested (1,000 nM). At this concentration, RNO exerted a small, but not significantly different, potentiation of formoterol-induced expression of antiinflammatory mitogen-activated protein kinase phosphatase 1. Consequently, tumor necrosis factor-induced IL-8 secretion was unaffected by RNO in combination with formoterol. However, because there was the potential for phosphodiesterase 4 inhibitors and long-acting β2-agonists to interact with corticosteroids to achieve superior antiinflammatory efficacy, we examined whether RNO, alone or in combination with formoterol, enhanced the antiinflammatory effect of dexamethasone by measuring the impact on IL-8 secretion. Although RNO alone did not significantly enhance the cytokine repression achieved with steroids, RNO in combination with formoterol significantly enhanced the antiinflammatory effect of dexamethasone in ASM cells. This was linked to increased mitogen-activated protein kinase phosphatase 1 expression in ASM cells, suggesting that a molecular mechanism is responsible for augmented antiinflammatory actions of combination therapeutic approaches that include RNO.
Collapse
Affiliation(s)
| | | | | | - Dikaia Xenaki
- 3 Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia; and
| | | | - Brian G Oliver
- 2 Woolcock Emphysema Centre and.,3 Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia; and.,4 Centre for Health Technologies and Molecular Biosciences, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Alaina J Ammit
- 2 Woolcock Emphysema Centre and.,4 Centre for Health Technologies and Molecular Biosciences, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Shen J, Zhang Y, Yu H, Shen B, Liang Y, Jin R, Liu X, Shi L, Cai X. Role of DUSP1/MKP1 in tumorigenesis, tumor progression and therapy. Cancer Med 2016; 5:2061-8. [PMID: 27227569 PMCID: PMC4884638 DOI: 10.1002/cam4.772] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/06/2016] [Accepted: 04/21/2016] [Indexed: 12/15/2022] Open
Abstract
Dual‐specificity phosphatase‐1 (DUSP1/MKP1), as a member of the threonine‐tyrosine dual‐specificity phosphatase family, was first found in cultured murine cells. The molecular mechanisms of DUSP1‐mediated extracellular signal‐regulated protein kinases (ERKs) dephosphorylation have been subsequently identified by studies using gene knockout mice and gene silencing technology. As a protein phosphatase, DUSP1 also downregulates p38 MAPKs and JNKs signaling through directly dephosphorylating threonine and tyrosine. It has been detected that DUSP1 is involved in various functions, including proliferation, differentiation, and apoptosis in normal cells. In various human cancers, abnormal expression of DUSP1 was observed which was associated with prognosis of tumor patients. Further studies have revealed its role in tumorigenesis and tumor progression. Besides, DUSP1 has been found to play a role in tumor chemotherapy, immunotherapy, and biotherapy. In this review, we will focus on the function and mechanism of DUSP1 in tumor cells and tumor treatment.
Collapse
Affiliation(s)
- Jiliang Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, 310016, China
| | - Yaping Zhang
- Department of Anesthesiology, Sir Run-Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, 310016, China
| | - Hong Yu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, 310016, China
| | - Bo Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, 310016, China
| | - Yuelong Liang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, 310016, China
| | - Renan Jin
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, 310016, China
| | - Xiaolong Liu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, 310016, China
| | - Liang Shi
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, 310016, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, 310016, China
| |
Collapse
|
18
|
Rumzhum NN, Ammit AJ. Prostaglandin E2 induces expression of MAPK phosphatase 1 (MKP-1) in airway smooth muscle cells. Eur J Pharmacol 2016; 782:1-5. [PMID: 27108790 DOI: 10.1016/j.ejphar.2016.04.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 11/17/2022]
Abstract
Prostaglandin E2 (PGE2) is a prostanoid with diverse actions in health and disease. In chronic respiratory diseases driven by inflammation, PGE2 has both positive and negative effects. An enhanced understanding of the receptor-mediated cellular signalling pathways induced by PGE2 may help us separate the beneficial properties from unwanted actions of this important prostaglandin. PGE2 is known to exert anti-inflammatory and bronchoprotective actions in human airways. To date however, whether PGE2 increases production of the anti-inflammatory protein MAPK phosphatase 1 (MKP-1) was unknown. We address this herein and use primary cultures of human airway smooth muscle (ASM) cells to show that PGE2 increases MKP-1 mRNA and protein upregulation in a concentration-dependent manner. We explore the signalling pathways responsible and show that PGE2-induces CREB phosphorylation, not p38 MAPK activation, in ASM cells. Moreover, we utilize selective antagonists of EP2 (PF-04418948) and EP4 receptors (GW 627368X) to begin to identify EP-mediated functional outcomes in ASM cells in vitro. Taken together with earlier studies, our data suggest that PGE2 increases production of the anti-inflammatory protein MKP-1 via cAMP/CREB-mediated cellular signalling in ASM cells and demonstrates that EP2 may, in part, be involved.
Collapse
Affiliation(s)
| | - Alaina J Ammit
- Woolcock Institute of Medical Research, University of Sydney, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia.
| |
Collapse
|
19
|
Anti-Inflammatory Effects of β2-Receptor Agonists Salbutamol and Terbutaline Are Mediated by MKP-1. PLoS One 2016; 11:e0148144. [PMID: 26849227 PMCID: PMC4743993 DOI: 10.1371/journal.pone.0148144] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/13/2016] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein kinase phosphatase 1 (MKP-1) expression is induced by inflammatory factors, and it is an endogenous suppressor of inflammatory response. MKP-1 expression is increased by PDE4 inhibitor rolipram suggesting that it is regulated by cAMP-enhancing compounds. Therefore, we investigated the effect of β2-receptor agonists on MKP-1 expression and inflammatory response. We found that β2-receptor agonists salbutamol and terbutaline, as well as 8-Br-cAMP, increased MKP-1 expression. Salbutamol and terbutaline also inhibited p38 MAPK phosphorylation and TNF production in J774 mouse macrophages. Interestingly, salbutamol suppressed carrageenan-induced paw inflammation in wild-type mice, but the effect was attenuated in MKP-1(-/-) mice. In conclusion, these data show that β2-receptor agonists increase MKP-1 expression, which seems to mediate, at least partly, the observed anti-inflammatory effects of β2-receptor agonists.
Collapse
|
20
|
Feng H, Gerilechaogetu F, Golden HB, Nizamutdinov D, Foster DM, Glaser SS, Dostal DE. p38α MAPK inhibits stretch-induced JNK activation in cardiac myocytes through MKP-1. Int J Cardiol 2016; 203:145-55. [DOI: 10.1016/j.ijcard.2015.10.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/20/2015] [Accepted: 10/12/2015] [Indexed: 01/18/2023]
|
21
|
Patel BS, Prabhala P, Oliver BG, Ammit AJ. Inhibitors of Phosphodiesterase 4, but Not Phosphodiesterase 3, Increase β2-Agonist-Induced Expression of Antiinflammatory Mitogen-Activated Protein Kinase Phosphatase 1 in Airway Smooth Muscle Cells. Am J Respir Cell Mol Biol 2015; 52:634-40. [PMID: 25296132 DOI: 10.1165/rcmb.2014-0344oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
β2-agonists are principally used in asthma to provide bronchodilation; however, they also have antiinflammatory properties, due, in part, to their ability to up-regulate mitogen-activated protein kinase phosphatase (MKP) 1 in a cAMP-dependent manner. Phosphodiesterases (PDEs) are attractive targets for potentiating the antiinflammatory response. There are 11 subfamilies of PDE enzymes; among these, inhibition of PDE3 and PDE4 are the main targets for airway smooth muscle (ASM). PDE enzymes are important intracellular regulators that catalyze the breakdown of cyclic adenosine monophosphate (cAMP) and/or 3',5'-cyclic guanosine monophosphate to their inactive forms. Given that MKP-1 is cAMP dependent, and inhibition of PDE acts to increase β2-agonist-induced cAMP, it is possible that the presence of PDE inhibitors may enhance β2-adrenoceptor-mediated responses. We address this herein by comparing the ability of a panel of inhibitors against PDE3 (cilostamide, cilostazol, milrinone) or PDE4 (cilomilast, piclamilast, rolipram) to increase cAMP, MKP-1 mRNA expression, and protein up-regulation in ASM cells induced in response to the β2-agonist formoterol. Our data show that inhibitors of PDE4, but not PDE3, increase β2-agonist-induced cAMP and induce MKP-1 mRNA expression and protein up-regulation. When cAMP was increased, there was a concomitant increase in MKP-1 levels and significant inhibition of TNF-α-induced CXCL8 (IL-8). This result was consistent with all PDE4 inhibitors examined but not for the PDE3 inhibitors. These findings reinforce cAMP-dependent control of MKP-1 expression, and suggest that PDE4 is the predominant PDE isoform responsible for formoterol-induced cAMP breakdown in ASM cells. Our study is the first to demonstrate that PDE4 inhibitors augment antiinflammatory effects of β2-agonists via increased MKP-1 expression in ASM cells.
Collapse
|
22
|
Giovannini MG, Lana D, Pepeu G. The integrated role of ACh, ERK and mTOR in the mechanisms of hippocampal inhibitory avoidance memory. Neurobiol Learn Mem 2015; 119:18-33. [PMID: 25595880 DOI: 10.1016/j.nlm.2014.12.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 11/28/2022]
Abstract
The purpose of this review is to summarize the present knowledge on the interplay among the cholinergic system, Extracellular signal-Regulated Kinase (ERK) and Mammalian Target of Rapamycin (mTOR) pathways in the development of short and long term memories during the acquisition and recall of the step-down inhibitory avoidance in the hippocampus. The step-down inhibitory avoidance is a form of associative learning that is acquired in a relatively simple one-trial test through several sensorial inputs. Inhibitory avoidance depends on the integrated activity of hippocampal CA1 and other brain areas. Recall can be performed at different times after acquisition, thus allowing for the study of both short and long term memory. Among the many neurotransmitter systems involved, the cholinergic neurons that originate in the basal forebrain and project to the hippocampus are of crucial importance in inhibitory avoidance processes. Acetylcholine released from cholinergic fibers during acquisition and/or recall of behavioural tasks activates muscarinic and nicotinic acetylcholine receptors and brings about a long-lasting potentiation of the postsynaptic membrane followed by downstream activation of intracellular pathway (ERK, among others) that create conditions favourable for neuronal plasticity. ERK appears to be salient not only in long term memory, but also in the molecular mechanisms underlying short term memory formation in the hippocampus. Since ERK can function as a biochemical coincidence detector in response to extracellular signals in neurons, the activation of ERK-dependent downstream effectors is determined, in part, by the duration of ERK phosphorylation itself. Long term memories require protein synthesis, that in the synapto-dendritic compartment represents a direct mechanism that can produce rapid changes in protein content in response to synaptic activity. mTOR in the brain regulates protein translation in response to neuronal activity, thereby modulating synaptic plasticity and long term memory formation. Some studies demonstrate a complex interplay among the cholinergic system, ERK and mTOR. It has been shown that co-activation of muscarinic acetylcholine receptors and β-adrenergic receptors facilitates the conversion of short term to long term synaptic plasticity through an ERK- and mTOR-dependent mechanism which requires translation initiation. It seems therefore that the complex interplay among the cholinergic system, ERK and mTOR is crucial in the development of new inhibitory avoidance memories in the hippocampus.
Collapse
Affiliation(s)
- Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Giancarlo Pepeu
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| |
Collapse
|
23
|
Korhonen R, Hömmö T, Keränen T, Laavola M, Hämäläinen M, Vuolteenaho K, Lehtimäki L, Kankaanranta H, Moilanen E. Attenuation of TNF production and experimentally induced inflammation by PDE4 inhibitor rolipram is mediated by MAPK phosphatase-1. Br J Pharmacol 2014; 169:1525-36. [PMID: 23849041 DOI: 10.1111/bph.12189] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 03/10/2013] [Accepted: 03/13/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE 3',5'-Cyclic nucleotide PDE4 is expressed in several inflammatory and immune cells, and PDE4 catalyses the hydrolysis of cAMP to 5'AMP, down-regulating cAMP signalling in cells. MAPK phosphatase-1 (MKP-1) is an endogenous p38 MAPK signalling suppressor and limits inflammatory gene expression and inflammation. In the present study, we investigated the effect of a PDE4 inhibitor rolipram on MKP-1 expression and whether MKP-1 is involved in the anti-inflammatory effects of rolipram. EXPERIMENTAL APPROACH The effect of rolipram on TNF production was investigated in J774 mouse macrophage cell line and in primary mouse peritoneal macrophages (PM) from wild-type (WT) and MKP-1(-/-) mice. We also investigated the effect of rolipram on carrageenan-induced paw inflammation in WT and MKP-1(-/-) mice. KEY RESULTS MKP-1 expression was enhanced by rolipram, by a non-selective PDE inhibitor IBMX and by a cAMP analogue 8-Br-cAMP in J774 cells and in PM. Enhanced MKP-1 mRNA expression by rolipram was reversed by a PKA inhibitor. Rolipram, IBMX and 8-Br-cAMP also inhibited TNF production in activated macrophages. Accordingly, rolipram inhibited TNF production in PMs from WT mice but, interestingly, not in PMs from MKP-1(-/-) mice. Furthermore, rolipram attenuated carrageenan-induced paw inflammation in WT but not in MKP-1(-/-) mice. CONCLUSIONS AND IMPLICATIONS PDE4 inhibitor rolipram was found to enhance the expression of MKP-1, and MKP-1 mediated, at least partly, the anti-inflammatory effects of PDE4 inhibition. The results suggest that compounds that enhance MKP-1 expression and/or MKP-1 activity hold potential as novel anti-inflammatory drugs.
Collapse
Affiliation(s)
- Riku Korhonen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
CaMKII protects MKP-1 from proteasome degradation in endothelial cells. Cell Signal 2014; 26:2167-74. [PMID: 25007998 DOI: 10.1016/j.cellsig.2014.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/25/2022]
Abstract
CaMKs are a widely distributed family of kinases with multiple and often cell specific effects on intracellular signal transduction pathway. In endothelial cells, it has been recognized a role for CamKII in several pathways such as eNOS activation and nitric oxide production. It is not clear though, whether CaMKII interfere with other endothelial cell functions such as ERK activation and cell proliferation. We explored this issue in primary cultured rat endothelial cells and we evaluated the effect on endothelial cell proliferation and DNA synthesis. CaMKII inhibition through Cantide, conducted into the cell through Antoennapedia (ANT-CN), showed positive effects on proliferation and H(3)-thimdine incorporation similar to insulin stimulation. Accordingly, both CaMKII pharmacological inhibition and silencing through shRNA produced activation of the p44/42 MAPK. These observations leaded to the hypothesis that CamKII could regulate p44/p42 by interfering with specific ERK phosphatases. Indeed, we found that CaMKII interacts and protect the dual specific phosphatase MKP-1 from proteasome mediated degradation while this complex is disrupted by CaMKII inhibitors. This study reveals that CaMKII, besides phosphorylation through the known ras-raf-mek pathway, can regulate also dephosphorylation of p44/p42 by modulation of MKP-1 level. This novel finding opens to a novel scenario in regulation of endothelial cell functions.
Collapse
|
25
|
Giembycz MA, Newton R. How Phosphodiesterase 4 Inhibitors Work in Patients with Chronic Obstructive Pulmonary Disease of the Severe, Bronchitic, Frequent Exacerbator Phenotype. Clin Chest Med 2014; 35:203-17. [DOI: 10.1016/j.ccm.2013.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Korhonen R, Moilanen E. Mitogen-activated protein kinase phosphatase 1 as an inflammatory factor and drug target. Basic Clin Pharmacol Toxicol 2013; 114:24-36. [PMID: 24112275 DOI: 10.1111/bcpt.12141] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/17/2013] [Indexed: 12/28/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are signaling proteins that are activated through phosphorylation, and they regulate many physiological and pathophysiological processes in cells. Mitogen-activated protein kinase phosphatase 1 (MKP-1) is an inducible nuclear phosphatase that dephosphorylates MAPKs, and thus, it is a negative feedback regulator of MAPK activity. MKP-1 has been found as a key endogenous suppressor of innate immune responses, as well as a regulator of the onset and course of adaptive immune responses. Altered MKP-1 signaling is implicated in chronic inflammatory diseases in man. Interestingly, MKP-1 expression and protein function have been found to be regulated by certain anti-inflammatory drugs, namely by glucocorticoids, antirheumatic gold compounds and PDE4 inhibitors, and MKP-1 has been shown to mediate many of their anti-inflammatory effects. In this Mini Review, we summarize the effect of MKP-1 in the regulation of innate and adaptive immune responses and its role as a potential anti-inflammatory drug target and review recent findings concerning the role of MKP-1 in certain anti-inflammatory drug effects.
Collapse
Affiliation(s)
- Riku Korhonen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland; Department of Clinical Pharmacology &Toxicology, University of Tampere School of Medicine, Tampere, Finland
| | | |
Collapse
|
27
|
Long-acting β2-agonists increase fluticasone propionate-induced mitogen-activated protein kinase phosphatase 1 (MKP-1) in airway smooth muscle cells. PLoS One 2013; 8:e59635. [PMID: 23533638 PMCID: PMC3606114 DOI: 10.1371/journal.pone.0059635] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/16/2013] [Indexed: 11/19/2022] Open
Abstract
Mitogen-activated protein kinase phosphatase 1 (MKP-1) represses MAPK-driven signalling and plays an important anti-inflammatory role in asthma and airway remodelling. Although MKP-1 is corticosteroid-responsive and increased by cAMP-mediated signalling, the upregulation of this critical anti-inflammatory protein by long-acting β2-agonists and clinically-used corticosteroids has been incompletely examined to date. To address this, we investigated MKP-1 gene expression and protein upregulation induced by two long-acting β2-agonists (salmeterol and formoterol), alone or in combination with the corticosteroid fluticasone propionate (abbreviated as fluticasone) in primary human airway smooth muscle (ASM) cells in vitro. β2-agonists increased MKP-1 protein in a rapid but transient manner, while fluticasone induced sustained upregulation. Together, long-acting β2-agonists increased fluticasone-induced MKP-1 and modulated ASM synthetic function (measured by interleukin 6 (IL-6) and interleukin 8 (IL-8) secretion). As IL-6 expression (like MKP-1) is cAMP/adenylate cyclase-mediated, the long-acting β2-agonist formoterol increased IL-6 mRNA expression and secretion. Nevertheless, when added in combination with fluticasone, β2-agonists significantly repressed IL-6 secretion induced by tumour necrosis factor α (TNFα). Conversely, as IL-8 is not cAMP-responsive, β2-agonists significantly inhibited TNFα-induced IL-8 in combination with fluticasone, where fluticasone alone was without repressive effect. In summary, long-acting β2-agonists increase fluticasone-induced MKP-1 in ASM cells and repress synthetic function of this immunomodulatory airway cell type.
Collapse
|
28
|
Lee JW, Ryu HC, Ng YC, Kim C, Wei JD, Sabaratnam V, Kim JH. 12(S)-Hydroxyheptadeca-5Z,8E,10E-trienoic acid suppresses UV-induced IL-6 synthesis in keratinocytes, exerting an anti-inflammatory activity. Exp Mol Med 2012; 44:378-86. [PMID: 22391335 PMCID: PMC3389076 DOI: 10.3858/emm.2012.44.6.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
12(S)-Hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT) is an enzymatic product of prostaglandin H2 (PGH2) derived from cyclooxygenase (COX)-mediated arachidonic acid metabolism. Despite the high level of 12-HHT present in tissues and bodily fluids, its precise function remains largely unknown. In this study, we found that 12-HHT treatment in HaCaT cells remarkably down-regulated the ultraviolet B (UVB) irradiation-induced synthesis of interleukin-6 (IL-6), a pro-inflammatory cytokine associated with cutaneous inflammation. In an approach to identify the down-stream signaling mechanism by which 12-HHT down-regulates UVB-induced IL-6 synthesis in keratinocytes, we observed that 12-HHT inhibits the UVB-stimulated activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB). In addition, we found that 12-HHT markedly up-regulates MAPK phosphatase-1 (MKP-1), a critical negative regulator of p38 MAPK. When MKP-1 was suppressed by siRNA knock-down, the 12-HHT-mediated inhibitory effects on the UVB-stimulated activation of p38 MAPK and NF-κB, as well as the production of IL-6, were attenuated in HaCaT cells. Taken together, our results suggest that 12-HHT exerts anti-inflammatory effect via up-regulation of MKP-1, which negatively regulates p38 MAPK and NF-κB, thus attenuating IL-6 production in UVB-irradiated HaCaT cells. Considering the critical role of IL-6 in cutaneous inflammation, our findings provide the basis for the application of 12-HHT as a potential anti-inflammatory therapeutic agent in UV-induced skin diseases.
Collapse
Affiliation(s)
- Jin-Wook Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Manetsch M, Ramsay EE, King EM, Seidel P, Che W, Ge Q, Hibbs DE, Newton R, Ammit AJ. Corticosteroids and β₂-agonists upregulate mitogen-activated protein kinase phosphatase 1: in vitro mechanisms. Br J Pharmacol 2012; 166:2049-59. [PMID: 22372570 DOI: 10.1111/j.1476-5381.2012.01923.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Airway remodelling is a consequence of long-term inflammation and MAPKs are key signalling molecules that drive pro-inflammatory pathways. The endogenous MAPK deactivator--MAPK phosphatase 1 (MKP-1)--is a critical negative regulator of the myriad pro-inflammatory pathways activated by MAPKs in the airway. EXPERIMENTAL APPROACH Herein we investigated the molecular mechanisms responsible for the upregulation of MKP-1 in airway smooth muscle (ASM) by the corticosteroid dexamethasone and the β₂-agonist formoterol, added alone and in combination. KEY RESULTS MKP-1 is a corticosteroid-inducible gene whose expression is enhanced by long-acting β₂-agonists in an additive manner. Formoterol induced MKP-1 expression via the β₂-adrenoceptor and we provide the first direct evidence (utilizing overexpression of PKIα, a highly selective PKA inhibitor) to show that PKA mediates β₂-agonist-induced MKP-1 upregulation. Dexamethasone activated MKP-1 transcription in ASM cells via a cis-acting corticosteroid-responsive region located between -1380 and -1266 bp of the MKP-1 promoter. While the 3'-untranslated region of MKP-1 contains adenylate + uridylate elements responsible for regulation at the post-transcriptional level, actinomycin D chase experiments revealed that there was no increase in MKP-1 mRNA stability in the presence of dexamethasone, formoterol, alone or in combination. Rather, there was an additive effect of the asthma therapeutics on MKP-1 transcription. CONCLUSIONS AND IMPLICATIONS Taken together, these studies allow us a greater understanding of the molecular basis of MKP-1 regulation by corticosteroids and β₂-agonists and this new knowledge may lead to elucidation of optimized corticosteroid-sparing therapies in the future.
Collapse
Affiliation(s)
- M Manetsch
- Respiratory Research Group, Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Che W, Manetsch M, Quante T, Rahman MM, Patel BS, Ge Q, Ammit AJ. Sphingosine 1-phosphate induces MKP-1 expression via p38 MAPK- and CREB-mediated pathways in airway smooth muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1658-65. [PMID: 22743041 DOI: 10.1016/j.bbamcr.2012.06.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/17/2012] [Accepted: 06/12/2012] [Indexed: 12/27/2022]
Abstract
Sphingosine 1-phosphate (S1P), a bioactive sphingolipid elevated in asthmatic airways, is increasingly recognized as playing an important role in respiratory disease. S1P activates receptor-mediated signaling to modulate diverse cellular functions and promote airway inflammation. Although many of the stimulatory pathways activated by S1P have been delineated, especially mitogen-activated protein kinases (MAPK), the question of whether S1P exerts negative feedback control on its own signaling cascade via upregulation of phosphatases remains unexplored. We show that S1P rapidly and robustly upregulates mRNA and protein expression of the MAPK deactivator-MAPK phosphatase 1 (MKP-1). Utilizing the pivotal airway structural cell, airway smooth muscle (ASM), we confirm that S1P activates all members of the MAPK family and, in part, S1P upregulates MKP-1 expression in a p38 MAPK-dependent manner. MKP-1 is a cAMP response element binding (CREB) protein-responsive gene and here, we reveal for the first time that an adenylate cyclase/PKA/CREB-mediated pathway also contributes to S1P-induced MKP-1. Thus, by increasing MKP-1 expression via parallel p38 MAPK- and CREB-mediated pathways, S1P temporally regulates MAPK signaling pathways by upregulating the negative feedback controller MKP-1. This limits the extent and duration of pro-inflammatory MAPK signaling and represses cytokine secretion in ASM cells. Taken together, our results demonstrate that S1P stimulates both kinases and the phosphatase MKP-1 to control inflammation in ASM cells and may provide a greater understanding of the molecular mechanisms responsible for the pro-asthmatic functions induced by the potent bioactive sphingolipid S1P in the lung.
Collapse
Affiliation(s)
- Wenchi Che
- Respiratory Research Group, University of Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
31
|
Wancket LM, Frazier WJ, Liu Y. Mitogen-activated protein kinase phosphatase (MKP)-1 in immunology, physiology, and disease. Life Sci 2012; 90:237-48. [PMID: 22197448 PMCID: PMC3465723 DOI: 10.1016/j.lfs.2011.11.017] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 11/18/2011] [Accepted: 11/30/2011] [Indexed: 11/16/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are key regulators of cellular physiology and immune responses, and abnormalities in MAPKs are implicated in many diseases. MAPKs are activated by MAPK kinases through phosphorylation of the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr domain, where Xaa represents amino acid residues characteristic of distinct MAPK subfamilies. Since MAPKs play a crucial role in a variety of cellular processes, a delicate regulatory network has evolved to control their activities. Over the past two decades, a group of dual specificity MAPK phosphatases (MKPs) has been identified that deactivates MAPKs. Since MAPKs can enhance MKP activities, MKPs are considered as an important feedback control mechanism that limits the MAPK cascades. This review outlines the role of MKP-1, a prototypical MKP family member, in physiology and disease. We will first discuss the basic biochemistry and regulation of MKP-1. Next, we will present the current consensus on the immunological and physiological functions of MKP-1 in infectious, inflammatory, metabolic, and nervous system diseases as revealed by studies using animal models. We will also discuss the emerging evidence implicating MKP-1 in human disorders. Finally, we will conclude with a discussion of the potential for pharmacomodulation of MKP-1 expression.
Collapse
Affiliation(s)
- Lyn M. Wancket
- Department of Veterinary Bioscience, The Ohio State University College of Veterinary Medicine, Columbus, OH 43221
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205
| | - W. Joshua Frazier
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205
| | - Yusen Liu
- Department of Veterinary Bioscience, The Ohio State University College of Veterinary Medicine, Columbus, OH 43221
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205
| |
Collapse
|
32
|
Manetsch M, Che W, Seidel P, Chen Y, Ammit AJ. MKP-1: a negative feedback effector that represses MAPK-mediated pro-inflammatory signaling pathways and cytokine secretion in human airway smooth muscle cells. Cell Signal 2011; 24:907-13. [PMID: 22200679 DOI: 10.1016/j.cellsig.2011.12.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/01/2011] [Accepted: 12/12/2011] [Indexed: 11/26/2022]
Abstract
Airway smooth muscle (ASM) plays an important immunomodulatory role in airway inflammation in asthma. In our previous in vitro studies in ASM cells delineating the pro-inflammatory mitogen-activated protein kinase (MAPK) signaling pathways activated by tumor necrosis factor α (TNFα), we observed that TNFα concomitantly induces the rapid, but transient, upregulation of the anti-inflammatory protein-mitogen-activated protein kinase phosphatase 1 (MKP-1). As this was suggestive of a negative feedback loop, the aim of this study was to investigate the molecular mechanisms of MKP-1 upregulation by TNFα and to determine whether MKP-1 is a negative feedback effector that represses MAPK-mediated pro-inflammatory signaling pathways and cytokine secretion in ASM cells. Herein, we show that TNFα increases MKP-1 mRNA expression and protein upregulation in a p38 MAPK-dependent manner. TNFα does not increase MKP-1 transcription (measured by MKP-1 promoter activity); rather, we found that TNFα-induced MKP-1 mRNA stability is regulated by the p38 MAPK pathway. Inhibiting MKP-1 upregulation (with triptolide) demonstrated the precise temporal control exerted on MAPK signaling by MKP-1. In the absence of MKP-1, downstream phosphoprotein targets of MAPKs (such as MSK-1 and histone H3) are not turned off at the right time, allowing pro-inflammatory pathways to continue in an unrestrained manner. This is confirmed by knocking-down MKP-1 by siRNA where enhanced secretion of the neutrophil chemoattractant cytokine-interleukin 8 was detected in the absence of MKP-1. Thus, by activating p38 MAP kinase, TNFα concomitantly upregulates the MAPK deactivator MKP-1 to serve as an important negative feedback effector, limiting the extent and duration of pro-inflammatory MAPK signaling and cytokine secretion in ASM cells.
Collapse
Affiliation(s)
- Melanie Manetsch
- Respiratory Research Group, Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
33
|
Wang J, Ford HR, Grishin AV. NF-kappaB-mediated expression of MAPK phosphatase-1 is an early step in desensitization to TLR ligands in enterocytes. Mucosal Immunol 2010; 3:523-34. [PMID: 20555314 DOI: 10.1038/mi.2010.35] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Toll-like receptor (TLR) signaling in naive enterocytes is rapidly inhibited, leading to the establishment of tolerance. To gain insight into tolerance at the level of the proinflammatory mitogen-activated protein kinase (MAPK) p38, we characterized TLR-mediated induction of the p38-specific phosphatase MKP-1. In cultured enterocytes, ligands of TLR3, TLR4, TLR5, and TLR9, but not TLR2, induce MKP-1 at 30-60 min, coincident with dephosphorylation of p38 following the peak of TLR ligand-induced phosphorylation. Induction of MKP-1 is blocked by inhibitors of nuclear factor (NF)-kappaB, but not of MAPK. Small interfering RNA knockdown of IkBalpha prolongs the expression of MKP-1. Rat MKP-1 promoter contains two NF-kappaB-binding sites, mutations in which additively impair lipopolysaccharide-induced transcription from the MKP-1 promoter. In the intestine, MKP-1 is expressed in the crypts, the epithelial compartment that also displays bacteria-dependent activating phosphorylation of p38. Thus, NF-kappaB-dependent expression of MKP-1 may contribute, by desensitization of p38, to the rapid establishment of unresponsiveness to several TLR ligands in enterocytes.
Collapse
Affiliation(s)
- J Wang
- Division of Pediatric Surgery, Childrens Hospital Los Angeles, Los Angeles, California, USA
| | | | | |
Collapse
|
34
|
Takeuchi K, Ito F. EGF receptor in relation to tumor development: molecular basis of responsiveness of cancer cells to EGFR-targeting tyrosine kinase inhibitors. FEBS J 2009; 277:316-26. [PMID: 19922467 DOI: 10.1111/j.1742-4658.2009.07450.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The function of the epidermal growth factor receptor (EGFR) is dysregulated in various types of malignancy as a result of gene amplification, mutations, or abnormally increased ligand production. Therefore, the tyrosine kinase activity of the EGFR is a promising therapeutic target. EGFR tyrosine kinase inhibitors, such as gefitinib (Iressa), show evident anticancer effects in patients with non-small cell lung cancer. The induction of apoptosis has been considered to be the major mechanism for these gefitinib-mediated anticancer effects. Lung cancer cells harboring mutant EGFRs become dependent on them for their survival and, consequently, undergo apoptosis following the inhibition of EGFR tyrosine kinase by gefitinib. Gefitinib has been shown to inhibit cell survival and growth signaling pathways such as the extracellular signal-regulated kinase 1/2 pathway and the Akt pathway, as a consequence of the inactivation of EGFR. However, the precise downstream signaling molecules of extracellular signal-regulated kinase 1/2 and Akt have not yet been elucidated. In this minireview we have highlighted the effect of tyrosine kinase inhibitors on members of the Bcl-2 family of proteins, which are downstream signaling molecules and serve as the determinants that control apoptosis. We also discuss tyrosine kinase inhibitor-induced apoptosis via c-Jun NH(2)-terminal kinase and p38 mitogen-activated protein kinase.
Collapse
Affiliation(s)
- Kenji Takeuchi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan.
| | | |
Collapse
|
35
|
Roth RJ, Le AM, Zhang L, Kahn M, Samuel VT, Shulman GI, Bennett AM. MAPK phosphatase-1 facilitates the loss of oxidative myofibers associated with obesity in mice. J Clin Invest 2009; 119:3817-29. [PMID: 19920356 DOI: 10.1172/jci39054] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 09/23/2009] [Indexed: 02/06/2023] Open
Abstract
Oxidative myofibers, also known as slow-twitch myofibers, help maintain the metabolic health of mammals, and it has been proposed that decreased numbers correlate with increased risk of obesity. The transcriptional coactivator PPARgamma coactivator 1alpha (PGC-1alpha) plays a central role in maintaining levels of oxidative myofibers in skeletal muscle. Indeed, loss of PGC-1alpha expression has been linked to a reduction in the proportion of oxidative myofibers in the skeletal muscle of obese mice. MAPK phosphatase-1 (MKP-1) is encoded by mkp-1, a stress-responsive immediate-early gene that dephosphorylates MAPKs in the nucleus. Previously we showed that mice deficient in MKP-1 have enhanced energy expenditure and are resistant to diet-induced obesity. Here we show in mice that excess dietary fat induced MKP-1 overexpression in skeletal muscle, and that this resulted in reduced p38 MAPK-mediated phosphorylation of PGC-1alpha on sites that promoted its stability. Consistent with this, MKP-1-deficient mice expressed higher levels of PGC-1alpha in skeletal muscle than did wild-type mice and were refractory to the loss of oxidative myofibers when fed a high-fat diet. Collectively, these data demonstrate an essential role for MKP-1 as a regulator of the myofiber composition of skeletal muscle and suggest a potential role for MKP-1 in metabolic syndrome.
Collapse
Affiliation(s)
- Rachel J Roth
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 2008; 60:261-310. [PMID: 18922965 DOI: 10.1124/pr.107.00106] [Citation(s) in RCA: 450] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mitogen-activated protein kinase dual-specificity phosphatase-1 (also called MKP-1, DUSP1, ERP, CL100, HVH1, PTPN10, and 3CH134) is a member of the threonine-tyrosine dual-specificity phosphatases, one of more than 100 protein tyrosine phosphatases. It was first identified approximately 20 years ago, and since that time extensive investigations into both mkp-1 mRNA and protein regulation and function in different cells, tissues, and organs have been conducted. However, no general review on the topic of MKP-1 exists. As the subject matter pertaining to MKP-1 encompasses many branches of the biomedical field, we focus on the role of this protein in cancer development and progression, highlighting the potential role of the mitogen-activated protein kinase (MAPK) family. Section II of this article elucidates the MAPK family cross-talk. Section III reviews the structure of the mkp-1 encoding gene, and the known mechanisms regulating the expression and activity of the protein. Section IV is an overview of the MAPK-specific dual-specificity phosphatases and their role in cancer. In sections V and VI, mkp-1 mRNA and protein are examined in relation to cancer biology, therapeutics, and clinical studies, including a discussion of the potential role of the MAPK family. We conclude by proposing an integrated scheme for MKP-1 and MAPK in cancer.
Collapse
Affiliation(s)
- Tarek Boutros
- Department of Surgery, Royal Victoria Hospital, McGill University, 687 Pine Ave. W., Montreal, QC H3A1A1, Canada.
| | | | | |
Collapse
|
37
|
Retinoic acid utilizes CREB and USF1 in a transcriptional feed-forward loop in order to stimulate MKP1 expression in human immunodeficiency virus-infected podocytes. Mol Cell Biol 2008; 28:5785-94. [PMID: 18625721 DOI: 10.1128/mcb.00245-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nef-induced podocyte proliferation and dedifferentiation via mitogen-activated protein kinase 1,2 (MAPK1,2) activation plays a role in human immunodeficiency virus (HIV) nephropathy pathogenesis. All-trans retinoic acid (atRA) reverses the HIV-induced podocyte phenotype by activating cyclic AMP (cAMP)/protein kinase A (PKA) and inhibiting MAPK1,2. Here we show that atRA, through cAMP and PKA, triggers a feed-forward loop involving CREB and USF1 to induce biphasic stimulation of MKP1. atRA stimulated CREB and USF1 binding to the MKP1 gene promoter, as shown by gel shifting and chromatin immunoprecipitation assays. CREB directly mediated the early phase of atRA-induced MKP1 stimulation; whereas the later phase was mediated by CREB indirectly through induction of USF1. These findings were confirmed by a reporter gene assay using the MKP1 promoter with mutation of CRE or Ebox binding sites. Consistent with these findings, the biological effects of atRA on podocytes were inhibited by silencing either MKP1, CREB, or USF1 with small interfering RNA. atRA also induced CREB phosphorylation and MKP1 expression and reduced MAPK1,2 phosphorylation in kidneys of HIV type 1-infected transgenic mice. We conclude that atRA induces sustained activation of MKP1 to suppress Nef-induced activation of the Src-MAPK1,2 pathway, thus returning the podocyte to a more differentiated state. The mechanism involves a feed-forward loop where activation of one transcription factor (TF) (CREB) leads to induction of a second TF (USF1).
Collapse
|
38
|
Ligeza A, Wawrzczak-Bargiela A, Kaminska D, Korostynski M, Przewlocki R. Regulation of ERK1/2 phosphorylation by acute and chronic morphine - implications for the role of cAMP-responsive element binding factor (CREB)-dependent and Ets-like protein-1 (Elk-1)-dependent transcription; small interfering RNA-based strategy. FEBS J 2008; 275:3836-49. [PMID: 18616461 DOI: 10.1111/j.1742-4658.2008.06531.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Extracellular signal-regulated kinases (ERKs) have been shown to be activated by opioids and functionally linked to addiction. Morphine-associated changes in ERK activity seem to be the characteristic features of opioid action. In this study, we observed a rapid and severe increase in ERK1/2 activity after a 5 min morphine treatment of HEK-MOR cells (transfected with the rat mu-opioid receptor MOR1) expressing mu-opioid receptor. Cellular adaptations to chronic (72 h) morphine treatment were manifested by a slight and sustained increase in ERK1/2 activity. Withdrawal caused by an opioid receptor antagonist - naloxone - attenuated phosphorylation of ERK1/2. Little information is available on the precise mechanism of ERK activity regulation. Using RNA interference technology, we generated stably transfected cells with silenced expression of cAMP-responsive element binding factor (CREB) and Ets-like protein-1 (Elk-1) transcription factors, which are known targets for activated ERK1/2. In these cells, ERK1/2 activity regulation was altered. Silencing of CREB or Elk-1 significantly increased ERK activation observed after 5 min of morphine stimulation. The initial level of activated ERKs in these cells was also augmented. Moreover, the cellular response to withdrawal signals and chronic opioid treatment was diminished. These differences suggest that both CREB-dependent and Elk-1-dependent transcription contribute to the expression of proteins regulating morphine-induced ERK activity (particular phosphatases, upstream kinases or their activatory proteins).
Collapse
Affiliation(s)
- Agnieszka Ligeza
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | | | | | | | | |
Collapse
|
39
|
Fürst R, Zahler S, Vollmar AM. Dexamethasone-induced expression of endothelial mitogen-activated protein kinase phosphatase-1 involves activation of the transcription factors activator protein-1 and 3',5'-cyclic adenosine 5'-monophosphate response element-binding protein and the generation of reactive oxygen species. Endocrinology 2008; 149:3635-42. [PMID: 18403484 DOI: 10.1210/en.2007-1524] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently identified the MAPK phosphatase (MKP)-1 as a novel mediator of the antiinflammatory properties of glucocorticoids (dexamethasone) in the human endothelium. However, nothing is as yet known about the signaling pathways responsible for the up-regulation of MKP-1 by dexamethasone in endothelial cells. Knowledge of the molecular basis of this new alternative way of glucocorticoid action could facilitate the identification of new antiinflammatory drug targets. Thus, the aim of our study was to elucidate the underlying molecular mechanisms. Using Western blot analysis, we found that dexamethasone rapidly activates ERK, c-jun N-terminal kinase (JNK), and p38 MAPK in human umbilical vein endothelial cells. By applying the kinase inhibitors PD98059 (MAPK kinase-1) and SP600125 (JNK), ERK and JNK were shown to be crucial for the induction of MKP-1. Using EMSA and a decoy oligonucleotide approach, the transcription factors activator protein-1 (activated by ERK and JNK) and cAMP response element-binding protein (activated by ERK) were found to be involved in the up-regulation of MKP-1 by dexamethasone. Interestingly, dexamethasone induces the generation of reactive oxygen species (measured by dihydrofluorescein assay), which participate in the signaling process by triggering JNK activation. Our work elucidates a novel alternative mechanism for transducing antiinflammatory effects of glucocorticoids in the human endothelium. Thus, our study adds valuable information to the efforts made to find new antiinflammatory principles utilized by glucocorticoids. This might help to gain new therapeutic options to limit glucocorticoid side effects and to overcome resistance.
Collapse
Affiliation(s)
- Robert Fürst
- Department of Pharmacy, Pharmaceutical Biology, University of Munich, Butenandtstrasse 5-13, Munich, Germany.
| | | | | |
Collapse
|
40
|
Abstract
Retinoic acid (RA), the active derivative of vitamin A, by acting through retinoid receptors, is involved in signal transduction pathways regulating embryonic development, tissue homeostasis, and cellular differentiation and proliferation. RA is important for the development of the heart. The requirement of RA during early cardiovascular morphogenesis has been studied in targeted gene deletion of retinoic acid receptors and in the vitamin A-deficient avian embryo. The teratogenic effects of high doses of RA on cardiovascular morphogenesis have also been demonstrated in different animal models. Specific cardiovascular targets of retinoid action include effects on the specification of cardiovascular tissues during early development, anteroposterior patterning of the early heart, left/right decisions and cardiac situs, endocardial cushion formation, and in particular, the neural crest. In the postdevelopment period, RA has antigrowth activity in fully differentiated neonatal cardiomyocytes and cardiac fibroblasts. Recent studies have shown that RA has an important role in the cardiac remodeling process in rats with hypertension and following myocardial infarction. This chapter will focus on the role of RA in regulating cardiomyocyte growth and differentiation during embryonic and the postdevelopment period.
Collapse
Affiliation(s)
- Jing Pan
- Division of Molecular Cardiology, The Texas A&M University System Health Science Center, Cardiovascular Research Institute, College of Medicine Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | | |
Collapse
|
41
|
Wang Z, Xu J, Zhou JY, Liu Y, Wu GS. Mitogen-activated protein kinase phosphatase-1 is required for cisplatin resistance. Cancer Res 2007; 66:8870-7. [PMID: 16951204 DOI: 10.1158/0008-5472.can-06-1280] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mitogen-activated protein kinase (MAPK) phosphatase (MKP)-1 is a member of the MKP family that negatively regulates MAPK signaling. MKP-1 has been implicated in cell survival in response to stressful stimuli, including anticancer treatment, but its role in cisplatin resistance is not fully understood. Here, we show that cisplatin induces MKP-1 in several human cancer cell lines. Induction of MKP-1 by cisplatin was through the transcriptional mechanism regulated by extracellular signal-regulated kinase (ERK). Overexpression of MKP-1 rendered human lung cancer cells resistant to cisplatin. Conversely, down-regulation of MKP-1 by small interfering RNA silencing sensitized human lung cancer cells to cisplatin-induced cell death. Using primary mouse embryonic fibroblasts (MEF) from MKP-1 knockout mice, we show that induction of MKP-1 by cisplatin correlates with inactivation of c-Jun NH(2)-terminal kinase (JNK) but not ERK and p38. Furthermore, apoptosis induced by cisplatin was significant in MKP-1(-/-) MEFs, whereas such change was minimal in MKP-1(+/+) MEFs. More importantly, cisplatin-induced cell death is inhibited by blocking JNK but not ERK and p38 activities. Collectively, our results establish a critical role of JNK in cisplatin-induced apoptosis and suggest that MKP-1 is required for cisplatin resistance.
Collapse
Affiliation(s)
- Zhaoqing Wang
- Program in Molecular Biology and Human Genetics, Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
42
|
Teng CH, Huang WN, Meng TC. Several dual specificity phosphatases coordinate to control the magnitude and duration of JNK activation in signaling response to oxidative stress. J Biol Chem 2007; 282:28395-28407. [PMID: 17681939 DOI: 10.1074/jbc.m705142200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are important mediators that integrate signaling from upstream pathways in response to various environmental cues. In order to control appropriate gene expression through phosphorylation of transcription factors, the activity of MAPKs must be tightly regulated by the actions coordinated between protein kinases and phosphatases. In this study, we explore the underlying mechanism through which the oxidative stress-activated c-Jun N-terminal kinases (JNKs), members of MAPKs, are regulated by dual specificity phosphatases (DUSPs). DUSPs are a group of enzymes that belong to the superfamily of protein-tyrosine phosphatases. They are able to recognize phospho-Ser/Thr and phospho-Tyr residues in substrates. Using quantitative real time PCR, we found that stimulation of human embryonic kidney 293T cells with H(2)O(2) or xanthine/xanthine oxidase led to inducible expression of multiple DUSPs. We used RNA interference to characterize the functional role of these DUSPs and found rapid and transient induction of DUSP1 and DUSP10 to be essential for determining the appropriate magnitude of JNK activation in response to oxidative stress. The transcription factor ATF2, which is phosphorylated and activated by JNK, is a critical mediator for inducible expression of DUSP1 and DUSP10 in this signaling pathway. We further demonstrated that DUSP4 and DUSP16, both showing significant late phase induction, dephosphorylate JNK effectively, causing the down-regulation of the signaling cascade. Thus, this study provides new insights into the role of several DUSPs that coordinate with each other to control the magnitude and duration of JNK activity in response to oxidative stress.
Collapse
Affiliation(s)
- Chun-Hung Teng
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd., Section 2, Taipei 11529, Taiwan
| | - Wen-Nin Huang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd., Section 2, Taipei 11529, Taiwan
| | - Tzu-Ching Meng
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd., Section 2, Taipei 11529, Taiwan.
| |
Collapse
|
43
|
Abstract
Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) are protein phosphatases that dephosphorylate both the phosphothreonine and phosphotyrosine residues on activated MAPKs. Removal of the phosphates renders MAPKs inactive, effectively halting their cellular function. In recent years, evidence has emerged that, similar to MAPKs, MKPs are pivotal in the regulation of immune responses. By deactivating MAPKs, MKPs can modulate both innate and adaptive immunity. A number of immunomodulatory agents have been found to influence the expression of MKP1 in particular, highlighting the central role of this phosphatase in immune regulation. This Review discusses the properties, function and regulation of MKPs during immune responses.
Collapse
Affiliation(s)
- Yusen Liu
- Center for Perinatal Research, Columbus Children's Research Institute, Columbus Children's Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio 43205, USA.
| | | | | |
Collapse
|
44
|
Doi M, Cho S, Yujnovsky I, Hirayama J, Cermakian N, Cato ACB, Sassone-Corsi P. Light-inducible and clock-controlled expression of MAP kinase phosphatase 1 in mouse central pacemaker neurons. J Biol Rhythms 2007; 22:127-39. [PMID: 17440214 DOI: 10.1177/0748730406298332] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MAP kinase phosphatase 1 (MKP1) is a negative regulator for the mitogen-activated protein kinase (MAPK)-mediated signal transduction, a key pathway that leads to the regulated expression of circadian clock genes. Here the authors analyzed mkp1 expression by in situ hybridization and found that mkp1 is a light-inducible and clock-controlled gene expressed in the central pacemaker neurons of the hypothalamic SCN. Interestingly, mkp1 presents a marked similarity to the clock core gene per1 in terms of the gene expression profiles as well as the gene promoter organization. Both mkp1 and per1 are subject to bimodal regulation in the SCN: the external light-dependent acute up-regulation and the functional clock-dependent circadian oscillation. Consistent with this, the authors show that mkp1 gene has a per1-like promoter that contains 2 functionally distinct elements: cAMP-responsive element (CRE) and E-box. CRE sites present in the mkp1 promoter constitute the functional binding sites for the CRE binding protein (CREB), which serves as an important regulator that mediates the light-induced signaling cascades in the SCN neurons. Furthermore, the authors show that the E-box present in the mkp1 promoter is necessary and sufficient for transcriptional control exerted by circadian clock core regulators that include a positive complex CLOCK/BMAL1 and a negative factor CRY1. The authors' studies on mkp1 have identified for the first time a gene encoding a phosphatase that functions in light-dependent and time-of-day-dependent manners in the mammalian central clock structure SCN.
Collapse
Affiliation(s)
- Masao Doi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Fujita T, Ryser S, Tortola S, Piuz I, Schlegel W. Gene-specific recruitment of positive and negative elongation factors during stimulated transcription of the MKP-1 gene in neuroendocrine cells. Nucleic Acids Res 2007; 35:1007-17. [PMID: 17259211 PMCID: PMC1807974 DOI: 10.1093/nar/gkl1138] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
MAP kinase phosphatase-1 (MKP-1) controls nuclear MAP kinase activity with important consequences on cell growth or apoptosis. MKP-1 transcription is initiated constitutively but elongation is blocked within exon 1. It is unclear how induction of MKP-1 is controlled. Here, we report that the transcriptional elongation factors P-TEFb, DSIF and NELF regulate MKP-1 transcription in the pituitary GH4C1 cell line. Prior to stimulation, DSIF, NELF and RNA polymerase II (pol II) associate with the promoter-proximal region of the MKP-1 gene upstream of the elongation block site. Thyrotropin-releasing hormone (TRH) leads to recruitment of P-TEFb along the whole gene and a marked increase of DSIF and pol II downstream of the elongation block site, whereas NELF remains confined to the promoter-proximal region. 5,6-Dichloro-1-β-d-ribofuranosylbenzimidazole (DRB) an inhibitor of P-TEFb eliminated TRH stimulation of MKP-1 transcription. DRB specifically inhibited TRH-induced recruitment of DSIF and P-TEFb to the MKP-1 gene. Furthermore, DRB treatment eliminated TRH-induced progression along the MKP-1 gene of pol II phosphorylated on Ser-2 of its CTD. These results indicate that P-TEFb is essential for gene-specific stimulated transcriptional elongation in mammalian cells via mechanisms which involve the activation of the DSIF–NELF complex and Ser-2 phosphorylation of pol II.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Fondation pour Recherches Médicales, University of Geneva, 64 av. de la Roseraie, 1211 Geneva, Switzerland
| | - Stephan Ryser
- Fondation pour Recherches Médicales, University of Geneva, 64 av. de la Roseraie, 1211 Geneva, Switzerland
| | | | - Isabelle Piuz
- Fondation pour Recherches Médicales, University of Geneva, 64 av. de la Roseraie, 1211 Geneva, Switzerland
| | - Werner Schlegel
- Fondation pour Recherches Médicales, University of Geneva, 64 av. de la Roseraie, 1211 Geneva, Switzerland
- *To whom correspondence should be addressed. Tel: +41 22 3823811; Fax: +41 22 3475979;
| |
Collapse
|
46
|
Dickinson RJ, Keyse SM. Diverse physiological functions for dual-specificity MAP kinase phosphatases. J Cell Sci 2006; 119:4607-15. [PMID: 17093265 DOI: 10.1242/jcs.03266] [Citation(s) in RCA: 275] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A structurally distinct subfamily of ten dual-specificity (Thr/Tyr) protein phosphatases is responsible for the regulated dephosphorylation and inactivation of mitogen-activated protein kinase (MAPK) family members in mammals. These MAPK phosphatases (MKPs) interact specifically with their substrates through a modular kinase-interaction motif (KIM) located within the N-terminal non-catalytic domain of the protein. In addition, MAPK binding is often accompanied by enzymatic activation of the C-terminal catalytic domain, thus ensuring specificity of action. Despite our knowledge of the biochemical and structural basis for the catalytic mechanism of the MKPs, we know much less about their regulation and physiological functions in mammalian cells and tissues. However, recent studies employing a range of model systems have begun to reveal essential non-redundant roles for the MKPs in determining the outcome of MAPK signalling in a variety of physiological contexts. These include development, immune system function, metabolic homeostasis and the regulation of cellular stress responses. Interestingly, these functions may reflect both restricted subcellular MKP activity and changes in the levels of signalling through multiple MAPK pathways.
Collapse
Affiliation(s)
- Robin J Dickinson
- Cancer Research UK Stress Response Laboratory, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | | |
Collapse
|
47
|
Rauhala HE, Porkka KP, Tolonen TT, Martikainen PM, Tammela TLJ, Visakorpi T. Dual-specificity phosphatase 1 and serum/glucocorticoid-regulated kinase are downregulated in prostate cancer. Int J Cancer 2006; 117:738-45. [PMID: 15981206 DOI: 10.1002/ijc.21270] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inactivation of tumor suppressor genes through deletion, mutation and epigenetic silencing has been shown to occur in cancer. In our study, we combined DNA demethylation and histone deacetylation inhibition treatments with suppression subtraction hybridization (SSH) and cDNA microarrays to identify potentially epigenetically downregulated genes in PC-3 prostate cancer cell line. We found 11 genes whose expression was upregulated after relieving epigenetic regulation. Expression of 3 genes [dual-specificity phosphatase 1 (DUSP1), serum/glucocorticoid regulated kinase (SGK) and spermidine/spermine N1-acetyltransferase (SAT)] was subsequently studied in clinical sample material using real-time quantitative RT-PCR and immunohistochemistry. The DUSP1 and SGK mRNA expression was lower in hormone-refractory prostate carcinomas compared to benign prostate hyperplasia (BPH) or untreated prostate carcinomas. BPH, normal prostate and high-grade prostate intraepithelial neoplasia (PIN) expressed high levels of DUSP1 and SGK proteins. Ninety-two percent and 48% of the prostate carcinomas showed almost complete lack of DUSP1 and SGK proteins, respectively, indicating common downregulation of these genes. The genomic bisulphite sequencing did not reveal dense hypermethylation in the promoter regions of either DUSP1 or SGK. In conclusion, the data suggest that downregulation of DUSP1 and SGK is an early event and could be important in the tumorigenesis of prostate cancer.
Collapse
Affiliation(s)
- Hanna E Rauhala
- Laboratory of Cancer Genetics, Institute of Medical Technology, University of Tampere and Tampere University Hospital, University of Tampere, Tampere, Finland
| | | | | | | | | | | |
Collapse
|
48
|
Tsujita E, Taketomi A, Gion T, Kuroda Y, Endo K, Watanabe A, Nakashima H, Aishima SI, Kohnoe S, Maehara Y. Suppressed MKP-1 is an independent predictor of outcome in patients with hepatocellular carcinoma. Oncology 2005; 69:342-7. [PMID: 16293973 DOI: 10.1159/000089766] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 06/15/2005] [Indexed: 01/17/2023]
Abstract
OBJECTIVE An increase in the activity of mitogen-activated protein kinases (MAPKs) has been correlated with a more malignant phenotype in several tumor models in vivo. This study was designed to clarify the expression of MKP-1 in surgically resected hepatocellular carcinoma (HCC). METHODS We reviewed the cases of 77 patients who had undergone initial liver resection for HCC without preoperative treatment. Immunohistochemical analysis of MKP-1 was performed on paraffin-embedded tissues. The correlation between MKP-1 expression and clinical outcome was investigated. RESULTS Tumor cells were immunohistochemically stained for MKP-1 expression, and the same levels as in normal hepatocytes were detected in 66 (85%) of 77 HCC patients, being decreased in 11 (15%) HCCs. Decreased MKP-1 expression significantly correlated with serum alpha-fetoprotein levels and tumor size (p<0.05). The disease-free survival rates in MKP-1-negative and -positive patients were 0 and 31.0% at 5 years, respectively (p<0.01). The survival rates after a surgical resection in MKP-1-negative and -positive patients were 18.2 and 65.5% at 5 years, respectively (p<0.01). CONCLUSIONS The MKP-1 expression in HCC was an independent prognostic factor for outcome in HCC patients. In the future, it will be useful to explore whether the phosphatase expression might account for the response to HCC treatments targeting at MAPK activation.
Collapse
Affiliation(s)
- Eiji Tsujita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lornejad-Schafer M, Schafer C, Richter L, Grune T, Haussinger D, Schliess F. Osmotic Regulation of MG-132-induced MAP-kinase Phosphatase MKP-1 Expression in H4IIE Rat Hepatoma Cells. Cell Physiol Biochem 2005; 16:193-206. [PMID: 16301819 DOI: 10.1159/000089845] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2005] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND/AIMS Proteasome inhibitors such as MG-132 are considered as potential therapeutical tools in different clinical settings. The dual specificity MAP-kinase phosphatase MKP-1 plays a role in balancing signals mediating cell death or survival. Here the effect of cell hydration on MG-132-induced MKP-1 expression was investigated in H4IIE rat hepatoma cells. RESULTS Hyperosmolarity (405mosmol/l) increased MKP-1 expression by MG-132, which was accompanied by an induction of c-Fos, c-Jun, cJun Ser73 phosphorylation, and AP-1 DNA binding. MKP-1 induction by MG-132 plus hyperosmolarity was sensitive to inhibition of p38(MAPK) and c-Jun-N-terminal kinases (JNKs) but not extracellular signal-regulated kinases Erk-1/Erk-2, and was accompanied by a decline of MAP-kinase activities. Although hyperosmolarity increased overall protein ubiquitination in presence of MG-132, ubiquitination of MKP-1 was found under normo-, but not hyperosmotic conditions. Hyperosmolarity also enabled MG-132 to induce poly-ADP-ribose polymerase (PARP) cleavage which was sensitive to inhibition of p38(MAPK) and JNKs but not Erk-1/Erk-2. PARP cleavage and caspase-3 activation in H4IIE cells treated with hyperosmolarity plus MG-132 was further increased by vanadate, consistent with a contribution of MKP-1 to counterbalance proapoptotic MAP-kinase signals. CONCLUSION The findings suggest that among other factors cell hydration critically determines the cellular response to proteasome inhibitors.
Collapse
|
50
|
Vasudevan SA, Skoko J, Wang K, Burlingame SM, Patel PN, Lazo JS, Nuchtern JG, Yang J. MKP-8, a novel MAPK phosphatase that inhibits p38 kinase. Biochem Biophys Res Commun 2005; 330:511-8. [PMID: 15796912 DOI: 10.1016/j.bbrc.2005.03.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Indexed: 11/22/2022]
Abstract
Intracellular signaling pathways and their relationship to malignant progression have become a major focus of cancer biology. The dual-specificity phosphatase (DSP) family is a more recently identified family of intracellular signaling modulators. We have identified a novel protein phosphatase with a well-conserved DSP catalytic domain containing the DSP catalytic motif, xHCxxGxSRS, and mitogen-activated protein kinase phosphatase (MKP) motif, AYLM. Because of these unique characteristics, the protein was named mitogen-activated protein kinase phosphatase-8 (MKP-8). This protein is approximately 20kDa in size and mainly localizes to the nuclear compartment of the cell. MKP-8 is expressed in embryonal cancers (retinoblastoma, neuroepithelioma, and neuroblastoma) and has limited expression in normal tissues. MKP-8 displays significant phosphatase activity that is inhibited by a cysteine to serine substitution in the catalytic domain. When co-expressed with activated MAPKs, MKP-8 is able to inhibit p38 kinase phosphorylation and downstream activity.
Collapse
Affiliation(s)
- Sanjeev A Vasudevan
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|