1
|
Mora-Montes HM, Ponce-Noyola P, Villagómez-Castro JC, Gow NA, Flores-Carreón A, López-Romero E. Protein glycosylation in Candida. Future Microbiol 2010; 4:1167-83. [PMID: 19895219 DOI: 10.2217/fmb.09.88] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Candidiasis is a significant cause of invasive human mycosis with associated mortality rates that are equivalent to, or worse than, those cited for most cases of bacterial septicemia. As a result, considerable efforts are being made to understand how the fungus invades host cells and to identify new targets for fungal chemotherapy. This has led to an increasing interest in Candida glycobiology, with an emphasis on the identification of enzymes essential for glycoprotein and adhesion metabolism, and the role of N- and O-linked glycans in host recognition and virulence. Here, we refer to studies dealing with the identification and characterization of enzymes such as dolichol phosphate mannose synthase, dolichol phosphate glucose synthase and processing glycosidases and synthesis, structure and recognition of mannans and discuss recent findings in the context of Candida albicans pathogenesis.
Collapse
|
2
|
Arroyo-Flores BL, Rodríguez-Bonilla J, Villagómez-Castro JC, Calvo-Méndez C, Flores-Carreón A, López-Romero E. Biosynthesis of glycoproteins in Candida albicans: activity of mannosyl and glucosyl transferases. Fungal Genet Biol 2000; 30:127-33. [PMID: 11017768 DOI: 10.1006/fgbi.2000.1208] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enzymes dolichol phosphate glucose synthase and dolichol phosphate mannose synthase (DPMS), which catalyze essential steps in glycoprotein biosynthesis, were solubilized and partially characterized in Candida albicans. Sequential incubation of a mixed membrane fraction with increasing concentrations of Nonidet P-40 released a soluble fraction that transferred glucose from UDP-Glc to dolichol phosphate glucose and minor amounts of glucoproteins in the absence of exogenous dolichol phosphate. Studies with the soluble fraction revealed that some properties were different from those previously determined for the membrane-bound enzyme. Accordingly, the soluble enzyme exhibited a twofold higher affinity for UDP-Glc and a sixfold higher affinity over the competitive inhibitor UMP, and the transfer reaction was fourfold more sensitive to inhibition by amphomycin. On the other hand, a previously described protocol for the solubilization of mannosyl transferases that rendered a fraction exhibiting both DPMS and protein mannosyl transferase (PMT) activities operating in a functionally coupled reaction was modified by increasing the concentration of Nonidet P-40. This resulted in a solubilized preparation enriched with DPMS and nearly free of PMT activity which remained membrane bound. DPMS solubilized in this manner exhibited an absolute dependence on exogenous Dol-P. Uncoupling of these enzyme activities was a fundamental prerequisite for future individual analysis of these transferases.
Collapse
Affiliation(s)
- B L Arroyo-Flores
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, Guanajuato, Gto 36000, México
| | | | | | | | | | | |
Collapse
|
3
|
Vargas-Rodríguez L, Villagómez-Castro JC, Flores-Carreón A, López-Romero E. Identification and characterisation of early reactions of asparagine-linked oligosaccharide assembly in Entamoeba histolytica. Int J Parasitol 1998; 28:1333-40. [PMID: 9770617 DOI: 10.1016/s0020-7519(98)00124-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sequential incubation of a mixed membrane fraction isolated from Entamoeba histolytica trophozoites with the nonionic detergents Brij 35 and Igepal CA-630 rendered a soluble fraction with the ability to transfer N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to dolichol phosphate to form a lipid saccharide that was identified as a mixture of dolichol-P-P-GlcNAc and dolichol-P-P-(GlcNAc)2 as follows. (a) The reaction occurred only in the presence of exogenously added dolichol phosphate and was strongly inhibited by tunicamycin and amphomycin; (b) Over 90% of the aminosugar moiety of the lipid saccharide was released by mild acid hydrolysis and was identified as a mixture of GlcNAc and diacetylchitobiose [(GlcNAc)2]; (c) Time course experiments revealed that dolichol-P-P-(GlcNAc)2 accumulated at the expense of a parallel decrease in dolichol-P-P-GlcNAc revealing the tandem operation of UDPGlcNAc:dolichol-P GlcNAc-1-P transferase and UDPGlcNAc:dolichol-P GlcNAc transferase. Mg2+ and to a lower extent Mn2+ were required for catalytic activity and were optimal at 2.5 mM and 1.25 mM, respectively. Common phospholipids with different head groups failed to increase catalytic activity and phosphatidylglycerol was inhibitory. At low concentration, nucleotides such as ATP, GMP and GTP brought about stimulations of 24-54% but higher concentrations were inhibitory. Others were inhibitory at all concentrations the strongest being those containing a uridine base.
Collapse
Affiliation(s)
- L Vargas-Rodríguez
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, México
| | | | | | | |
Collapse
|
4
|
Villagómez-Castro JC, Calvo-Méndez C, Vargas-Rodríguez L, Flores-Carreón A, López-Romero E. Entamoeba histolytica: solubilization and biochemical characterization of dolichol phosphate mannose synthase, an essential enzyme in glycoprotein biosynthesis. Exp Parasitol 1998; 88:111-20. [PMID: 9538865 DOI: 10.1006/expr.1998.4233] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sequential treatment of trophozoite membranes with the nonionic detergents Brij 35 and Igepal CA-630 released a soluble fraction that efficiently catalyzed the transfer of mannose from GDP-Man into a mannolipid that was identified as dolichol phosphate mannose (Dol-P-Man) by several criteria. The transfer reaction occurred only in the presence of exogenously added dolichol monophosphate (Dol-P). Plots of enzyme velocity versus Dol-P and GDP-Man concentrations revealed sigmoidal and hyperbolic kinetics, respectively. Values of S0.5 for Dol-P and K(m) for GDP-Man were 15 micrograms/ml and 4.1 microM, respectively. The solubilized fraction failed to transfer the label into other products such as lipid-linked oligosaccharides and glycoproteins. The optimum pH was 7.5-8.0 in potassium phosphate or Tris/HCl buffers and the enzyme required either Mg2+ or Mn2+. The latter was more effective but in a narrower range of concentrations. The transferase was inhibited by a number of nucleotides the strongest being GMP, GDP, and GTP. When assayed in the reverse direction, however, the enzyme catalyzed the transfer of mannose from Dol-P-Man back into GDP-Man as a function of increasing concentrations of GDP. Mg2+ was a better activator of the reverse reaction than Mn2+, which reached up to 60% at 2 mM GDP. These results suggest that some of the enzyme catalytic properties may change depending on the direction of the transfer reaction.
Collapse
Affiliation(s)
- J C Villagómez-Castro
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, México
| | | | | | | | | |
Collapse
|
5
|
Paul P, Kamisaka Y, Marks DL, Pagano RE. Purification and characterization of UDP-glucose:ceramide glucosyltransferase from rat liver Golgi membranes. J Biol Chem 1996; 271:2287-93. [PMID: 8567691 DOI: 10.1074/jbc.271.4.2287] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We present a method for solubilizing and purifying UDP-Glc:ceramide glucosyltransferase (EC 2.4.1.80; glucosylceramide synthase (GCS) from a rat liver and present data on its substrate specificity. A Golgi membrane fraction was isolated, washed with N-lauroylsarcosine, and subsequently treated with 3[3-cholamidopropyl)-dimethylammonio]-2-hydroxy-1-propanesulfonate to solubilize the enzyme. GCS activity was monitored throughout purification using UDP-Glc and a fluorescent ceramide analog as substrates. Purification of GCS was achieved via a two-step dye-agarose chromatography procedure using UDP-Glc to elute the enzyme. This resulted in an enrichment > 10,000-fold relative to the starting homogenate. The enzyme was further characterized by sedimentation on a glycerol gradient, I labeling, and SDS-polyacrylamide gel electrophoresis. which demonstrated that two polypeptides (60-70 kDa) corresponded closely with GCS activity. Purified GCS was found to require exogenous phospholipids for activity, and optimal results were obtained using dioleoyl phosphatidylcholine. Studies of the substrate specificity of the purified enzyme demonstrated that it was stereospecific and dependent on the nature and chain length of the N-acyl-spingosine or -sphinganine substrate. UDP-Glc was the preferred hexose donor, but TDP-glucose and CDP-glucose were also efficiently used. This study provides a basis for molecular characterization of this key enzyme in glycosphingolipid biosynthesis.
Collapse
Affiliation(s)
- P Paul
- Mayo Clinic and foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
6
|
Mudgapalli A, Roy S, Holmes E, Vijay I. Photoidentification of mannosyltransferases of dolichol cycle in the mammary gland. Purification and characterization of GDP-Man:Man beta 1–>4GlcNAc beta 1–>4GlcNAc-P-P-dolichol mannosyltransferase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)78129-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Gasnier F, Rousson R, Lerme F, Vaganay E, Louisot P, Gateau-Roesch O. Mitochondrial dolichyl-phosphate mannose synthase. Purification and immunogold localization by electron microscopy. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 206:853-8. [PMID: 1606967 DOI: 10.1111/j.1432-1033.1992.tb16993.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mitochondrial dolichyl-phosphate mannose synthase has been purified to homogeneity using an original procedure, reconstitution into specific phospholipid vesicles and sedimentation on a sucrose gradient as final step. The enzyme has an apparent molecular mass of 30 kDa on an SDS/polyacrylamide gel. Increased enzyme activity could be correlated with this polypeptide band. A specific antibody was raised in rabbits against this transferase. Specific IgG obtained from the immune serum removed enzymatic activity from a detergent extract of mitochondrial outer membrane and reacted specifically with the 30-kDa band on immunoblots. Furthermore, an immunocytochemical experiment proved the localization of dolichyl-phosphate mannose synthase on the cytosolic face of the outer membrane of mitochondria.
Collapse
Affiliation(s)
- F Gasnier
- University of Lyon, Lyon-Sud Medical School, Department of Biochemistry, France
| | | | | | | | | | | |
Collapse
|
8
|
Sharma CB, Kaushal GP, Pan YT, Elbein AD. Purification and characterization of dolichyl-P-mannose:Man5(GlcNAc)2-PP-dolichol mannosyltransferase. Biochemistry 1990; 29:8901-7. [PMID: 2125471 DOI: 10.1021/bi00490a004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The dolichyl-P-mannose:dolichyl-PP-heptasaccharide alpha-mannosyltransferase (2.4.1.130), which catalyzes the transfer of mannose from dolichyl-P-mannose to the Man5(GlcNAc)2-PP-dolichol acceptor glycolipid, was solubilized from pig aorta microsomes with 0.5% NP-40 and purified 985-fold by a variety of conventional methods. The partially purified enzyme had a pH optimum of 6.5 and required Ca2+, at an optimum concentration of 8-10 mM, for activity. Mn2+ was only 20% as effective as Ca2+, and Mg2+ was inhibitory. The mannosyltransferase activity was also inhibited by the addition of EDTA to the enzyme, but this inhibition was fully reversible by the addition of Ca2+. The enzyme was quite specific for dolichyl-P-mannose as the mannosyl donor and Man5(GlcNAc)2-PP-dolichol as the mannosyl acceptor. The Km values for dolichyl-P-mannose and the acceptor lipid Man5(GlcNAc)2-PP-dolichol were 1.8 and 1.6 microM. On Bio-Gel P-4 columns and by HPLC, the radiolabeled oligosaccharide formed during incubation of dolichyl-P-[14C]mannose and unlabeled Man5(GlcNAc)2-PP-dolichol with the purified enzyme behaved like Man6(GlcNAc)2. This octasaccharide was susceptible to digestion by endoglucosaminidase H, indicating that the newly added mannose was attached to the 6-linked mannose in an alpha 1,3-linkage. This linkage was further confirmed by acetolysis of the oligosaccharide product [i.e., Man6(GlcNAc)2], which gave a labeled disaccharide as the major product (greater than 90%).
Collapse
Affiliation(s)
- C B Sharma
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284
| | | | | | | |
Collapse
|
9
|
Shailubhai K, Illeperuma C, Tayal M, Vijay I. Photoaffinity labeling of glucosyltransferase of the dolichol cycle from rat mammary gland. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77274-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
10
|
Matern H, Bolz R, Matern S. Isolation and characterization of UDP-glucose dolichyl-phosphate glucosyltransferase from human liver. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 190:99-105. [PMID: 2163838 DOI: 10.1111/j.1432-1033.1990.tb15551.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The enzyme UDP-glucose dolichyl-phosphate glucosyltransferase has been purified to near homogeneity from human liver microsomes. A 1100-fold enrichment over starting microsomal membranes was achieved by selective solubilization followed by anion- and cation-exchange chromatography, 5-HgUDP-thiopropyl-Sepharose affinity chromatography, butylagarose chromatography and hydroxyapatite chromatography. The glucosyltransferase was shown to be separated from other dolichyl-phosphate-dependent glycosyltransferases catalyzing the formation of dolichyl diphospho-N-acetylglucosamine and dolichyl phosphomannose. Sodium dodecyl sulfate/polyacrylamide gradient gel electrophoresis of the purified enzyme under reducing conditions revealed a protein band of Mr 36,000. Protection of the solubilized enzyme against rapid inactivation was achieved by its competitive inhibitor uridine. The purified glucosyltransferase activity exhibited a specific requirement for the presence of phospholipids. Phosphatidylethanolamine was the most effective activator of enzyme activity.
Collapse
Affiliation(s)
- H Matern
- Department of Internal Medicine III, Aachen University of Technology, Federal Republic of Germany
| | | | | |
Collapse
|
11
|
Lipid-linked Saccharides in Plants: Intermediates in the Synthesis of N-linked Glycoproteins. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/b978-0-12-461012-5.50009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
12
|
Pan YT, Elbein AD. Oligosaccharide chains of glycoproteins. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1990; 34:163-207. [PMID: 2236566 DOI: 10.1007/978-3-0348-7128-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Y T Pan
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284
| | | |
Collapse
|
13
|
Matern H, Matern S. Control of dolichyl phosphoglucose formation in human liver microsomes. Kinetic and inhibition studies of nucleosides, nucleotides and analogues of UDPglucose. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1004:67-72. [PMID: 2525927 DOI: 10.1016/0005-2760(89)90214-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A bisubstrate kinetic analysis of UDPglucose:dolichylphosphate glucosyltransferase from human liver microsomes has been carried out which indicated that the kinetics follow a sequential mechanism. Inhibition studies with nucleosides, nucleotides and analogues of the substrate UDPglucose revealed that the nucleoside moiety of UDPglucose, uridine, appears to be the smallest substrate analogue that is capable of specific interaction with the enzyme at the binding site for UDPglucose. The Ki values for uridine with respect to UDPglucose were 0.17 mM or 0.1 mM for enzyme reactions at pH 5.3 or pH 7.2, respectively. Modification of the uracil moiety especially at the 6 position or lack of the 2'-hydroxyl group in the ribose moiety lessened the inhibitory potency as compared to uridine. The phosphorylated derivatives of uridine, UMP and UTP, were similar in their inhibitory properties to uridine, whereas UDP was about 10-fold more potent as an inhibitor of glucosyltransferase as compared to uridine due to product inhibition. The inhibitory properties of sugar nucleotides as substrate analogues of UDPglucose were not only dependent on the presence of the uracil moiety but were also influenced by the nature of the sugar residue. Furthermore, enzyme activity was dependent on the presence of divalent metal ions and was maximally stimulated in the presence of Ca2+.
Collapse
Affiliation(s)
- H Matern
- Department of Internal Medicine III, Aachen University of Technology, F.R.G
| | | |
Collapse
|
14
|
Shailubhai K, Dong-Yu B, Saxena ES, Vijay IK. Purification and characterization of UDP-N-acetyl-D-glucosamine:dolichol phosphate N-acetyl-D-glucosamine-1-phosphate transferase involved in the biosynthesis of asparagine-linked glycoproteins in the mammary gland. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37543-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Chalifour RJ, Spiro RG. Effect of phospholipids on thyroid oligosaccharyltransferase activity and orientation. Evaluation of structural determinants for stimulation of N-glycosylation. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)37640-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
16
|
Biosynthesis and Sorting of Proteins of the Endoplasmic Reticulum. PROTEIN TRANSFER AND ORGANELLE BIOGENESIS 1988. [PMCID: PMC7155527 DOI: 10.1016/b978-0-12-203460-2.50010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Kaplan HA, Welply JK, Lennarz WJ. Oligosaccharyl transferase: the central enzyme in the pathway of glycoprotein assembly. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 906:161-73. [PMID: 3297152 DOI: 10.1016/0304-4157(87)90010-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Control of N-linked carbohydrate unit synthesis in thyroid endoplasmic reticulum by membrane organization and dolichyl phosphate availability. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)66931-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Welply JK, Kaplan HA, Shenbagamurthi P, Naider F, Lennarz WJ. Studies on properties of membrane-associated oligosaccharyltransferase using an active site-directed photoaffinity probe. Arch Biochem Biophys 1986; 246:808-19. [PMID: 3707133 DOI: 10.1016/0003-9861(86)90337-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Previous attempts in several laboratories, including ours, to purify oligosaccharyl-transferase have met with limited success because of the lability of the membrane-associated enzyme after solubilization with detergents. In an effort to identify the enzyme in face of this lability, we recently developed a photoaffinity reagent to label the active site [J. K. Welply, P. Shenbagamurthi, F. Naider, H. R. Park, and W. J. Lennarz (1985) J. Biol. Chem. 260, 6459-6465]. In this report, the preparations of a more sensitive selective labeling probe, 125I-labeled N alpha-3-(4-hydroxyphenylpropionyl)-Asn-Lys-(N epsilon-p-azidobenzoyl)-Thr-NH2, is described. Using this new probe, we have confirmed, independently of catalytic activity, that hen oviduct oligosaccharyltransferase is tightly associated with the endoplasmic reticulum membrane. The 125I-labeled oligosaccharyltransferase was released from the membrane by detergent and strong alkali treatments but not by sonication, high salt, or hypotonic shock. However, all procedures that released the enzyme from the membrane resulted in a dramatic loss of enzyme activity. Treatment of sealed microsomal membrane vesicles with phospholipase A resulted in nearly complete enzyme inactivation; in contrast, phospholipase C or D had moderate or little effect, respectively. Taken together, these results suggest that the hydrophobic environment of the membrane is required for oligosaccharyltransferase activity. Trypsin treatment of intact vesicles diminished enzyme activity by nearly 70%, but it had no effect on the binding affinity of the enzyme for the 125I-labeled photoaffinity probe. This result suggests that the polypeptide acceptor portion of oligosaccharyltransferase is lumenally disposed, and that a trypsin-sensitive, cytoplasmically oriented domain or another subunit binds the carbohydrate donor, dolichol-PP-oligosaccharide.
Collapse
|
20
|
Lewis MJ, Mazzarella RA, Green M. Structure and assembly of the endoplasmic reticulum: biosynthesis and intracellular sorting of ERp61, ERp59, and ERp49, three protein components of murine endoplasmic reticulum. Arch Biochem Biophys 1986; 245:389-403. [PMID: 3954360 DOI: 10.1016/0003-9861(86)90230-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rabbit antibodies have been prepared against ERp61, ERp59, and ERp49, three protein components of rough endoplasmic reticulum (RER) purified from mineral oil-induced plasmacytoma 315 (MOPC-315) tissue. Analysis of subcellular fractions of MOPC-315 tissue by an immunoprecipitation procedure demonstrated that all three endoplasmic reticulum proteins (ERps) were most enriched in the RER. Immunologically cross-reacting proteins of similar molecular weight have been detected in other eucaryotic cell lines. We have used these antibodies to study the post-translational processing and biosynthetic sorting of the three ERps in pulse-labeled MOPC-315 cells. No larger precursor forms of the ERps were detected and none of the ERps were found to possess asparagine-linked oligosaccharide moieties. We have used a sucrose gradient analysis of pulse-labeled MOPC-315 cells to study the biosynthetic sorting of ERp61, ERp59 and ERp49 and have found no evidence to suggest that these proteins ever leave the endoplasmic reticulum. In addition, all three ERps appeared to have luminally exposed domains. ERp61 and ERp59 were entirely protected by the ER membrane in the absence of detergent, while ERp49 was a transmembrane protein that also possesses a cytoplasmically exposed domain. We have used the anti-ERp antibodies to quantitate the synthesis and accumulation of the three ERps during lipopolysaccharide (LPS)-induced lymphocyte differentiation. After 48 h of culture in the presence of LPS, the synthesis of ERp49 increased sixfold relative to that in control cells. The synthesis and membrane accumulation of ERp61 and ERp59 were less affected by the LPS treatment. Thus, membranes isolated from LPS-treated cells were enriched in ERp49 relative to those isolated from control cells.
Collapse
|
21
|
Lewis MJ, Mazzarella RA, Green M. Structure and assembly of the endoplasmic reticulum. The synthesis of three major endoplasmic reticulum proteins during lipopolysaccharide-induced differentiation of murine lymphocytes. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)89471-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|