1
|
The sweet tooth of bacteria: common themes in bacterial glycoconjugates. Microbiol Mol Biol Rev 2015; 78:372-417. [PMID: 25184559 DOI: 10.1128/mmbr.00007-14] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Humans have been increasingly recognized as being superorganisms, living in close contact with a microbiota on all their mucosal surfaces. However, most studies on the human microbiota have focused on gaining comprehensive insights into the composition of the microbiota under different health conditions (e.g., enterotypes), while there is also a need for detailed knowledge of the different molecules that mediate interactions with the host. Glycoconjugates are an interesting class of molecules for detailed studies, as they form a strain-specific barcode on the surface of bacteria, mediating specific interactions with the host. Strikingly, most glycoconjugates are synthesized by similar biosynthesis mechanisms. Bacteria can produce their major glycoconjugates by using a sequential or an en bloc mechanism, with both mechanistic options coexisting in many species for different macromolecules. In this review, these common themes are conceptualized and illustrated for all major classes of known bacterial glycoconjugates, with a special focus on the rather recently emergent field of glycosylated proteins. We describe the biosynthesis and importance of glycoconjugates in both pathogenic and beneficial bacteria and in both Gram-positive and -negative organisms. The focus lies on microorganisms important for human physiology. In addition, the potential for a better knowledge of bacterial glycoconjugates in the emerging field of glycoengineering and other perspectives is discussed.
Collapse
|
2
|
García-Cano I, Serrano-Maldonado CE, Olvera-García M, Delgado-Arciniega E, Peña-Montes C, Mendoza-Hernández G, Quirasco M. Antibacterial activity produced by Enterococcus spp. isolated from an artisanal Mexican dairy product, Cotija cheese. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.04.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
3
|
Anzengruber J, Courtin P, Claes IJJ, Debreczeny M, Hofbauer S, Obinger C, Chapot-Chartier MP, Vanderleyden J, Messner P, Schäffer C. Biochemical characterization of the major N-acetylmuramidase from Lactobacillus buchneri. Microbiology (Reading) 2014; 160:1807-1819. [DOI: 10.1099/mic.0.078162-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial cell wall hydrolases are essential for peptidoglycan remodelling in regard to bacterial cell growth and division. In this study, peptidoglycan hydrolases (PGHs) of different Lactobacillus buchneri strains were investigated. First, the genome sequence of L. buchneri CD034 and L. buchneri NRRL B-30929 was analysed in silico for the presence of PGHs. Of 23 putative PGHs with different predicted hydrolytic specificities, the glycosyl hydrolase family 25 domain-containing homologues LbGH25B and LbGH25N from L. buchneri CD034 and NRRL B-30929, respectively, were selected and characterized in detail. Zymogram analysis confirmed hydrolysing activity on bacterial cell walls for both enzymes. Subsequent reversed-phase HPLC and MALDI-TOF MS analysis of the peptidoglycan breakdown products from L. buchneri strains CD034 and NRRL B-30929, and from Lactobacillus rhamnosus GG, which served as a reference, revealed that LbGH25B and LbGH25N have N-acetylmuramidase activity. Both enzymes were identified as cell wall-associated proteins by means of immunofluorescence microscopy and cellular fractionation, as well as by the ability of purified recombinant LbGH25B and LbGH25N to bind to L. buchneri cell walls in vitro. Moreover, similar secondary structures mainly composed of β-sheets and nearly identical thermal stabilities with T
m values around 49 °C were found for the two N-acetylmuramidases by far-UV circular dichroism spectroscopy. The functional and structural data obtained are discussed and compared to related PGHs. In this study, a major N-acetylmuramidase from L. buchneri was characterized in detail for the first time.
Collapse
Affiliation(s)
- Julia Anzengruber
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Vienna, Austria
| | - Pascal Courtin
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
- INRA and AgroParisTech, UMR1319 Micalis, 78350 Jouy-en-Josas, France
| | - Ingmar J. J. Claes
- Center of Microbial and Plant Genetics, K.U. Leuven, 3001 Leuven, Belgium
| | - Monika Debreczeny
- VIBT Imaging Centre, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Vienna, Austria
| | - Stefan Hofbauer
- Department of Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, 1190 Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, 1190 Vienna, Austria
| | - Marie-Pierre Chapot-Chartier
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
- INRA and AgroParisTech, UMR1319 Micalis, 78350 Jouy-en-Josas, France
| | - Jos Vanderleyden
- Center of Microbial and Plant Genetics, K.U. Leuven, 3001 Leuven, Belgium
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Vienna, Austria
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
4
|
Abstract
Prokaryotic glycosylation fulfills an important role in maintaining and protecting the structural integrity and function of the bacterial cell wall, as well as serving as a flexible adaption mechanism to evade environmental and host-induced pressure. The scope of bacterial and archaeal protein glycosylation has considerably expanded over the past decade(s), with numerous examples covering the glycosylation of flagella, pili, glycosylated enzymes, as well as surface-layer proteins. This article addresses structure, analysis, function, genetic basis, biosynthesis, and biomedical and biotechnological applications of cell-envelope glycoconjugates, S-layer glycoprotein glycans, and "nonclassical" secondary-cell wall polysaccharides. The latter group of polymers mediates the important attachment and regular orientation of the S-layer to the cell wall. The structures of these glycopolymers reveal an enormous diversity, resembling the structural variability of bacterial lipopolysaccharides and capsular polysaccharides. While most examples are presented for Gram-positive bacteria, the S-layer glycan of the Gram-negative pathogen Tannerella forsythia is also discussed. In addition, archaeal S-layer glycoproteins are briefly summarized.
Collapse
Affiliation(s)
- Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | |
Collapse
|
5
|
Anzengruber J, Pabst M, Neumann L, Sekot G, Heinl S, Grabherr R, Altmann F, Messner P, Schäffer C. Protein O-glucosylation in Lactobacillus buchneri. Glycoconj J 2013; 31:117-31. [PMID: 24162649 DOI: 10.1007/s10719-013-9505-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 02/02/2023]
Abstract
Based on the previous demonstration of surface (S-) layer protein glycosylation in Lactobacillus buchneri 41021/251 and because of general advantages of lactic acid bacteria for applied research, protein glycosylation in this bacterial species was investigated in detail. The cell surface of L. buchneri CD034 is completely covered with an oblique 2D crystalline array (lattice parameters, a = 5.9 nm; b = 6.2 nm; γ ~ 77°) formed by self-assembly of the S-layer protein SlpB. Biochemical and mass spectrometric analyses revealed that SlpB is the most abundant protein and that it is O-glycosylated at four serine residues within the sequence S(152)-A-S(154)-S(155)-A-S(157) with, on average, seven Glc(α1-6) residues, each. Subcellular fractionation of strain CD034 indicated a sequential order of SlpB export and glucosylation as evidenced by lack of glucosylation of cytosolic SlpB. Protein glycosylation analysis was extended to strain L. buchneri NRRL B-30929 where an analogous glucosylation scenario could be detected, with the S-layer glycoprotein SlpN containing an O-glycosylation motif identical to that of SlpB. This corroborates previous data on S-layer protein glucosylation of strain 41021/251 and let us propose a species-wide S-layer protein O-glucosylation in L. buchneri targeted at the sequence motif S-A-S-S-A-S. Search of the L. buchneri genomes for the said glucosylation motif revealed one further ORF, encoding the putative glycosyl-hydrolase LbGH25B and LbGH25N in L. buchneri CD034 and NRRL B-30929, respectively, for which we have indications of a glycosylation comparable to that of the S-layer proteins. These findings demonstrate the presence of a distinct protein O-glucosylation system in Gram-positive and beneficial microbes.
Collapse
Affiliation(s)
- Julia Anzengruber
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, 1190, Vienna, Austria,
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Rolain T, Bernard E, Beaussart A, Degand H, Courtin P, Egge-Jacobsen W, Bron PA, Morsomme P, Kleerebezem M, Chapot-Chartier MP, Dufrêne YF, Hols P. O-glycosylation as a novel control mechanism of peptidoglycan hydrolase activity. J Biol Chem 2013; 288:22233-47. [PMID: 23760506 DOI: 10.1074/jbc.m113.470716] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acm2, the major autolysin of Lactobacillus plantarum, is a tripartite protein. Its catalytic domain is surrounded by an O-glycosylated N-terminal region rich in Ala, Ser, and Thr (AST domain), which is of low complexity and unknown function, and a C-terminal region composed of five SH3b peptidoglycan (PG) binding domains. Here, we investigate the contribution of these two accessory domains and of O-glycosylation to Acm2 functionality. We demonstrate that Acm2 is an N-acetylglucosaminidase and identify the pattern of O-glycosylation (21 mono-N-acetylglucosamines) of its AST domain. The O-glycosylation process is species-specific as Acm2 purified from Lactococcus lactis is not glycosylated. We therefore explored the functional role of O-glycosylation by purifying different truncated versions of Acm2 that were either glycosylated or non-glycosylated. We show that SH3b domains are able to bind PG and are responsible for Acm2 targeting to the septum of dividing cells, whereas the AST domain and its O-glycosylation are not involved in this process. Notably, our data reveal that the lack of O-glycosylation of the AST domain significantly increases Acm2 enzymatic activity, whereas removal of SH3b PG binding domains dramatically reduces this activity. Based on this antagonistic role, we propose a model in which access of the Acm2 catalytic domain to its substrate may be hindered by the AST domain where O-glycosylation changes its conformation and/or mediates interdomain interactions. To the best of our knowledge, this is the first time that O-glycosylation is shown to control the activity of a bacterial enzyme.
Collapse
Affiliation(s)
- Thomas Rolain
- Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mesnage S, Chau F, Dubost L, Arthur M. Role of N-acetylglucosaminidase and N-acetylmuramidase activities in Enterococcus faecalis peptidoglycan metabolism. J Biol Chem 2008; 283:19845-53. [PMID: 18490448 DOI: 10.1074/jbc.m802323200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Identification of the full complement of peptidoglycan hydrolases detected by zymogram in Enterococcus faecalis extracts led to the characterization of two novel hydrolases that we named AtlB and AtlC. Both enzymes have a similar modular organization comprising a central catalytic domain fused to two LysM peptidoglycan-binding modules. AtlB and AtlC displayed N-acetylmuramidase activity, as demonstrated by tandem mass spectrometry analyses of peptidoglycan fragments generated by the purified enzymes. The genes encoding AtlB and AtlC were deleted either alone or in combination with the gene encoding AtlA, a previously described N-acetylglucosaminidase. No autolytic activity was detected in the triple mutant indicating that AtlA, AtlB, and AtlC account for the major hydrolytic activities in E. faecalis. Analysis of cell size distribution by flow cytometry showed that deletion of atlA resulted in the formation of long chains. Thus, AtlA digests the septum and is required for cell separation after cell division. We found that AtlB could act as a surrogate for AtlA, although the enzyme was less efficient at septum digestion. Deletion of atlC had no impact on cell morphology. Labeling of the peptidoglycan with N-[14C]acetylglucosamine revealed an unusually slow turnover as compared with model organisms, almost completely dependent upon the combined activities of AtlA and AtlB. In contrast to atlA, the atlB and atlC genes are located in putative prophages. Because AtlB and AtlC were produced in the absence of cell lysis or production of phage progeny, these enzymes may have been hijacked by E. faecalis to contribute to peptidoglycan metabolism.
Collapse
Affiliation(s)
- Stéphane Mesnage
- Centre de Recherche des Cordeliers, LRMA, Equipe 12, Université Pierre et Marie Curie, UMR-S 872, Paris F-75006.
| | | | | | | |
Collapse
|
8
|
Vollmer W, Joris B, Charlier P, Foster S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 2008; 32:259-86. [PMID: 18266855 DOI: 10.1111/j.1574-6976.2007.00099.x] [Citation(s) in RCA: 643] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Most bacteria have multiple peptidoglycan hydrolases capable of cleaving covalent bonds in peptidoglycan sacculi or its fragments. An overview of the different classes of peptidoglycan hydrolases and their cleavage sites is provided. The physiological functions of these enzymes include the regulation of cell wall growth, the turnover of peptidoglycan during growth, the separation of daughter cells during cell division and autolysis. Specialized hydrolases enlarge the pores in the peptidoglycan for the assembly of large trans-envelope complexes (pili, flagella, secretion systems), or they specifically cleave peptidoglycan during sporulation or spore germination. Moreover, peptidoglycan hydrolases are involved in lysis phenomena such as fratricide or developmental lysis occurring in bacterial populations. We will also review the current view on the regulation of autolysins and on the role of cytoplasm hydrolases in peptidoglycan recycling and induction of beta-lactamase.
Collapse
Affiliation(s)
- Waldemar Vollmer
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle upon Tyne, UK.
| | | | | | | |
Collapse
|
9
|
Eckert C, Lecerf M, Dubost L, Arthur M, Mesnage S. Functional analysis of AtlA, the major N-acetylglucosaminidase of Enterococcus faecalis. J Bacteriol 2006; 188:8513-9. [PMID: 17041059 PMCID: PMC1698247 DOI: 10.1128/jb.01145-06] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major peptidoglycan hydrolase of Enterococcus faecalis, AtlA, has been identified, but its enzyme activity remains unknown. We have used tandem mass spectrometry analysis of peptidoglycan hydrolysis products obtained using the purified protein to show that AtlA is an N-acetylglucosaminidase. To gain insight into the regulation of its enzyme activity, the three domains of AtlA were purified alone or in combination following expression of truncated forms of the atlA gene in Escherichia coli or partial digestion of AtlA by proteinase K. The central domain of AtlA was catalytically active, but its activity was more than two orders of magnitude lower than that of the complete protein. Partial proteolysis of AtlA was detected in vivo: zymograms of E. faecalis extracts revealed two catalytically active protein bands of 62 and 72 kDa that were both absent in extracts from an atlA null mutant. Limited digestion of AtlA by proteinase K in vitro suggested that the proteolytic cleavage of AtlA in E. faecalis extracts corresponds to the truncation of the N-terminal domain, which is rich in threonine and glutamic acid residues. We show that the truncation of the N-terminal domain from recombinant AtlA has no impact on enzyme activity. The C-terminal domain of the protein, which contains six LysM modules bound to highly purified peptidoglycan, was required for optimal enzyme activity. These data indicate that AtlA is not produced as a proenzyme and that control of the AtlA glucosaminidase activity is likely to occur at the level of LysM-mediated binding to peptidoglycan.
Collapse
Affiliation(s)
- Catherine Eckert
- Centre de Recherches Biomédicales des Cordeliers, INSERM U655-LRMA, Université paris 6, 15 rue de l'Ecole de Médecine, 75254 Paris Cédex 06, France
| | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Paul Messner
- Zentrum für NanoBiotechnologie, Universität für Bodenkultur Wien, A-1180 Vienna, Austria.
| |
Collapse
|
11
|
Merle C, Faure D, Urdaci MC, Le Hénaff M. Purification and characterization of a membrane glycoprotein from the fish pathogen Flavobacterium psychrophilum. J Appl Microbiol 2003; 94:1120-7. [PMID: 12752822 DOI: 10.1046/j.1365-2672.2003.01946.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The cell envelope of the fish pathogen Flavobacterium psychrophilum contains more than 50 polypeptides resolved by sodium dodecyl sulphate-polyacrylaminde gel electrophoresis analysis including a major component named P60. Here, we have developed a simple and efficient procedure for the purification of P60 and therefore permitting its biochemical characterization. METHODS AND RESULTS Membrane proteins were selectively extracted from isolated cell envelopes with the mild non-ionic detergent Triton X-100. About 10 polypeptides were identified from the detergent fraction, including P60. The P60-enriched fraction was thereafter subjected to an anion exchange chromatographic step in the presence of Triton X-100. The molecule was purified at the milligram level (yield, about 75%; purification factor, 6.2). Analyses performed by charge shift electrophoresis, Triton X-114 phase separation and by detection of sugar-modified components showed that P60 is a true amphiphilic membrane-associated glycoprotein. CONCLUSIONS The method described in this paper provides pure and non-denaturated P60 and should prove to be easily scaled-up. As sugar-modified protein, P60 should be included in the growing list of glycosylated prokaryotic proteins. SIGNIFICANCE AND IMPACT OF THE STUDY It offers the possibility of obtaining P60 in amounts allowing the testing of the potential of P60 as a candidate for anti-flavobacteria subunit vaccines, as P60 is one of the major antigens.
Collapse
Affiliation(s)
- C Merle
- Laboratoire de Microbiologie et de Biochimie Appliquées, Ecole Nationale d'Ingénieurs des Travaux Agricoles de Bordeaux, Gradignan Cedex, France
| | | | | | | |
Collapse
|
12
|
Waters CM, Antiporta MH, Murray BE, Dunny GM. Role of the Enterococcus faecalis GelE protease in determination of cellular chain length, supernatant pheromone levels, and degradation of fibrin and misfolded surface proteins. J Bacteriol 2003; 185:3613-23. [PMID: 12775699 PMCID: PMC156229 DOI: 10.1128/jb.185.12.3613-3623.2003] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gelatinase (GelE), a secreted Zn-metalloprotease of Enterococcus faecalis, has been implicated as a virulence factor by both epidemiological data and animal model studies. Expression of gelE is induced at a high cell density by the fsr quorum-sensing system. In the present study, GelE was shown to be responsible for the instability of a number of Asc10 (aggregation substance) mutant proteins, implying that GelE functions to clear the bacterial cell surface of misfolded proteins. Disruption of GelE production led to increased cell chain length of E. faecalis, from a typical diplococcus morphology to chains of 5 to 10 cells. This function of GelE was also exhibited when the protein was expressed in Streptococcus pyogenes. GelE-expressing E. faecalis strains were more autolytic, suggesting that GelE affects chain length through activation of an autolysin. GelE was also essential for degradation of polymerized fibrin. GelE expression reduced the titer of cCF10, the peptide pheromone that induces conjugation of pCF10, and pCF10 had increased conjugation into non-GelE-expressing strains. These new functions attributed to GelE suggest that it acts to increase the dissemination of E. faecalis in high-density environments.
Collapse
Affiliation(s)
- Christopher M Waters
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
13
|
Messner P, Schäffer C. Prokaryotic glycoproteins. FORTSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE = PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS. PROGRES DANS LA CHIMIE DES SUBSTANCES ORGANIQUES NATURELLES 2003; 85:51-124. [PMID: 12602037 DOI: 10.1007/978-3-7091-6051-0_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- P Messner
- Zentrum für Ultrastrukturforschung, Ludwig-Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur Wien, Austria
| | | |
Collapse
|
14
|
Bédouet L, Arnold F, Robreau G, Batina P, Talbot F, Malcoste R. Partial analysis of the flagellar antigenic determinant recognized by a monoclonal antibody to Clostridium tyrobutyricum. Microbiol Immunol 1998; 42:87-95. [PMID: 9572040 DOI: 10.1111/j.1348-0421.1998.tb02256.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to count Clostridium tyrobutyricum spores in milk after membrane filtration, murine 21E7-B12 monoclonal antibody was produced. Elution of the monoclonal antibody from this antigen, the flagellar filament protein, by carbohydrate ligands was used to study the epitope structure. A competitive elution of an anti-dextran monoclonal antibody by carbohydrate ligands served as a control in order to validate the immunological tool applied to flagellin epitope study. The carbohydrate moiety of flagellin contained D-glucose and N-acetyl-glucosamine in a molar ration of 11:1 as determined by gas-liquid chromatography and 2 low-abundancy unidentified compounds. In ELISA, D-glucose and N-acetyl-glucosamine did not dissociate the antibody-flagellin complex contrary to maltose, maltotriose, maltotetraose and maltopentaose. The efficiency of elution increased from the dimer to the pentamer and became nil for maltohexaose and maltoheptaose. The fact that the hexamer and heptamer could not react with the 21E7-B12 monoclonal antibody could be explained by a drastic conformational change. The over-all stretched maltopentaose switch to a helical-shaped maltoheptaose which could not fit the 21E7-B12 monoclonal antibody antigen-combining site. Thus, flagellin epitope may contain alpha (1-->4) linked glucose residues plus either N-actyl-glucosamine or an unidentified compound that maintain it in an extended shape.
Collapse
Affiliation(s)
- L Bédouet
- Université de Bretagne Occidentale, Institut Universitaire de Technologie de Quimper, Laboratoire Universitaire de Microbiologie Appliquée de Quimper, France
| | | | | | | | | | | |
Collapse
|
15
|
Watt SR, Clarke AJ. Isolation, purification, and characterization of the major autolysin from Pseudomonas aeruginosa. Can J Microbiol 1997; 43:1054-62. [PMID: 9436306 DOI: 10.1139/m97-150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The major (26 kDa) autolysin from Pseudomonas aeruginosa was purified to apparent homogeneity by a combination of preparative electrophoresis, ion-exchange, and dye-ligand chromatographies. This purification was facilitated by the development of a spot-assay that involved the spotting and subsequent incubation of autolysin samples on polyacrylamide gels containing peptidoglycan. The pl of the 26-kDa autolysin was determined to be between 3.5 and 4 and disulfide bonds within the enzyme were essential for activity. The autolysin catalyzed the release of reducing sugars from the peptidoglycans of Pseudomonas aeruginosa and Escherichia coli indicating it to be a beta-glycosidase. It was ineffective at hydrolysing the peptidoglycan from Gram-positive bacteria and the O-acetylated peptidoglycans from either Proteus mirabilis or Staphylococcus aureus. The N-terminal sequence of the purified autolysin was determined to be His-Glu-Pro-Pro-Gly. The 26-kDa autolysin together with a 29-kDa autolysin was determined to be secreted into the medium by a mechanism that involves the production and release of surface membrane vesicles during normal growth, but the enzymes were not found free and active in culture broth supernatants.
Collapse
Affiliation(s)
- S R Watt
- Canadian Bacterial Diseases Network, Department of Microbiology, University of Guelph, Canada
| | | |
Collapse
|
16
|
McLaughlan AM, Foster SJ. Characterisation of the peptidoglycan hydrolases of Listeria monocytogenes EGD. FEMS Microbiol Lett 1997; 152:149-54. [PMID: 9228781 DOI: 10.1111/j.1574-6968.1997.tb10421.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The peptidoglycan hydrolase profile of Listeria monocytogenes EGD has been characterised under a variety of environmental and physiological conditions, using renaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The profiles show activities ranging from 29 to 186 kDa. The 186-kDa enzyme was only observable under specific medium and aeration conditions. The enzyme activities show differential substrate specificity and sensitivity to incubation conditions. The peptidoglycan hydrolase profile of several different Listeria strains was also compared.
Collapse
Affiliation(s)
- A M McLaughlan
- Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | | |
Collapse
|
17
|
Linder LE, Lönnies H, Sund ML. Analysis of sodium dodecyl sulfate-stable cell wall aminopeptidases in strains of viridans streptococci. FEMS Microbiol Lett 1996; 143:19-23. [PMID: 8807796 DOI: 10.1111/j.1574-6968.1996.tb08455.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cell wall extracts from nine strains of viridans streptococci representing five species were analyzed for aminopeptidases. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis in combination with zymogram procedures revealed a common pattern of aminopeptidases in six strains, all having enzyme bands at 89 and 45 kDa. Three strains had an additional band at 200 kDa. Crossreactivity between aminopeptidases of all active strains was shown with crossed immunoelectrophoresis. Strains of Streptococcus mutans and S. sobrinus were without detectable cell wall aminopeptidases.
Collapse
Affiliation(s)
- L E Linder
- Department of Immunology, Microbiology, Pathology and Infectious Diseases, Karolinska Institute, Huddinge Hospital, Sweden
| | | | | |
Collapse
|
18
|
Massidda O, Kariyama R, Daneo-Moore L, Shockman GD. Evidence that the PBP 5 synthesis repressor (psr) of Enterococcus hirae is also involved in the regulation of cell wall composition and other cell wall-related properties. J Bacteriol 1996; 178:5272-8. [PMID: 8752348 PMCID: PMC178327 DOI: 10.1128/jb.178.17.5272-5278.1996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
psr has been reported by M. Ligozzi, F. Pittaluga, and R. Fontana, (J. Bacteriol. 175:2046-2051, 1993) to be a genetic element located just upstream of the structural gene for the low-affinity penicillin-binding protein 5 (PBP 5) in the chromosome of Enterococcus hirae ATCC 9790 and to be involved in the repression of PBP 5 synthesis. By comparing properties of strains of E. hirae that contain a full-length, functional psr with those of strains that possess a truncated form of the gene, we have obtained data that indicate that psr is involved in the regulation of several additional surface-related properties. We observed that cells of strains that possessed a truncated psr were more sensitive to lysozyme-catalyzed protoplast formation, autolyzed more rapidly in 10 mM sodium phosphate (pH 6.8), and, in contrast to strains that possess a functional psr, retained these characteristics after the cultures entered the stationary growth phase. Cellular lytic properties did not correlate with differences in the cellular contents of muramidase-1 or muramidase-2, with the levels of PBP 5 produced, or with the penicillin susceptibilities of the strains. However, a strong correlation was observed with the amounts of rhamnose present in the cell walls of the various strains. All of the strains examined that possessed a truncated form of psr also possessed approximately one-half of the rhamnose content present in the walls of strains that possessed a functional psr. These data suggest that psr is also involved in the regulation of the synthesis of, or covalent linkage to the cell wall peptidoglycan of, a rhamnose-rich polysaccharide. These differences in cell wall composition could be responsible for the observed phenotypic differences. However, the multiple effects of psr suggest that it is part of a global regulatory system that, perhaps independently, affects several cell surface-related properties.
Collapse
Affiliation(s)
- O Massidda
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Lysozymes are found in many bacteria that are surrounded by a murein-(peptidoglycan) containing cell wall. Their physiological function for the bacteria is still a matter of debate. On the one hand they can autolyse the cell, on the other hand they may have an essential role during enlargement and division of the cell wall by the controlled splitting of bonds in the murein sacculus. Both beta-1.4-N,6-O-diacetylmuramidase and beta-1.4-N-acetylmuramidases have been described in bacteria. In some cases a modular design of the enzyme has been demonstrated with a catalytic domain and a substrate (murein)-binding and recognition domain consisting of repeated motifs.
Collapse
Affiliation(s)
- J V Höltje
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Biochemie, Tübingen, Germany
| |
Collapse
|
20
|
Lleò MM, Fontana R, Solioz M. Identification of a gene (arpU) controlling muramidase-2 export in Enterococcus hirae. J Bacteriol 1995; 177:5912-7. [PMID: 7592343 PMCID: PMC177418 DOI: 10.1128/jb.177.20.5912-5917.1995] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Muramidase-2 of Enterococcus hirae is a 74-kDa peptidoglycan hydrolase that plays a role in cell wall growth and division. To study its regulation, we isolated a mutant defective in muramidase-2 release under certain growth conditions. This mutant had cell walls which apparently lacked 74-kDa muramidase-2 but which accumulated two proteolytic fragments of 32 and 43 kDa, which exhibited muramidase-2 activity in the membrane fraction. By complementation cloning, we identified a 2.6-kb fragment of the E. hirae chromosome containing a gene cluster coding for proteins of 58 to 137 amino acids. One of these genes (arpU), which encoded a 15.9-kDa protein, was shown to complement the defect of the A9 mutant in trans. We propose that this gene may be involved in the regulation of muramidase-2 export.
Collapse
Affiliation(s)
- M M Lleò
- Institute of Microbiology, University of Verona, Italy
| | | | | |
Collapse
|
21
|
Dobos KM, Swiderek K, Khoo KH, Brennan PJ, Belisle JT. Evidence for glycosylation sites on the 45-kilodalton glycoprotein of Mycobacterium tuberculosis. Infect Immun 1995; 63:2846-53. [PMID: 7622204 PMCID: PMC173386 DOI: 10.1128/iai.63.8.2846-2853.1995] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The occurrence of glycosylated proteins in Mycobacterium tuberculosis has been widely reported. However, unequivocal proof for the presence of true glycosylated amino acids within these proteins has not been demonstrated, and such evidence is essential because of the predominance of soluble lipoglycans and glycolipids in all mycobacterial extracts. We have confirmed the presence of several putative glycoproteins in subcellular fractions of M. tuberculosis by reaction with the lectin concanavalin A. One such product, with a molecular mass of 45 kDa, was purified from the culture filtrate. Compositional analysis demonstrated that the protein was rich in proline and that mannose, galactose, glucose, and arabinose together represented about 4% of the total mass. The 45-kDa glycoprotein was subjected to proteolytic digestion with either the Asp-N or the Glu-C endopeptidase or subtilisin, peptides were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and glycopeptides were identified by reaction with concanavalin A. Peptides were further separated, and when they were analyzed by liquid chromatography-electrospray mass spectrometry for neutral losses of hexoses (162 mass units), four peptides were identified, indicating that these were glycosylated with hexose residues. One peptide, with an average molecular mass of 1,516 atomic mass units (AMU), exhibited a loss of two hexose units. The N-terminal sequence of the 1,516-AMU glycopeptide was determined to be DPEPAPPVP, which was identical to the sequence of the amino terminus of the mature protein, DPEPAP PVPXTA. Furthermore, analysis of the glycopeptide by secondary ion mass spectrometry demonstrated that the complete sequence of the glycopeptide was DPEPAPPVPTTA. From this, it was determined that the 10th amino acid, threonine, was O-glycosidically linked to a disaccharide composed of two hexose residues, probably mannose. This report establishes that true, O-glycosylated proteins exist in mycobacteria.
Collapse
Affiliation(s)
- K M Dobos
- Department of Microbiology, Colorado State University, Fort Collins 80523, USA
| | | | | | | | | |
Collapse
|
22
|
Autolysis of lactic acid bacteria: Impact on flavour development in cheese. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0167-4501(06)80283-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
23
|
Chapter 6 Bacterial glycoproteins. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0167-7306(08)60600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
24
|
Ong E, Kilburn DG, Miller RC, Warren RA. Streptomyces lividans glycosylates the linker region of a beta-1,4-glycanase from Cellulomonas fimi. J Bacteriol 1994; 176:999-1008. [PMID: 8106343 PMCID: PMC205150 DOI: 10.1128/jb.176.4.999-1008.1994] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The beta-1,4-glycanase Cex of the gram-positive bacterium Cellulomonas fimi is a glycoprotein comprising a C-terminal cellulose-binding domain connected to an N-terminal catalytic domain by a linker containing only prolyl and threonyl (PT) residues. Cex is also glycosylated by Streptomyces lividans. The glycosylation of Cex produced in both C. fimi and S. lividans protects the enzyme from proteolysis. When the gene fragments encoding the cellulose-binding domain of Cex (CBDCex), the PT linker plus CBDCex (PT-CBDCex), and the catalytic domain plus CBDCex of Cex were expressed in S. lividans, only PT-CBDCex was glycosylated. Therefore, all the glycans must be O linked because only the PT linker was glycosylated. A glycosylated form and a nonglycosylated form of PT-CBDCex were produced by S. lividans. The glycosylated form of PT-CBDCex was heterogeneous; its average carbohydrate content was approximately 10 mol of D-mannose equivalents per mol of protein, but the glycans contained from 4 to 12 alpha-D-mannosyl and alpha-D-galactosyl residues. Glycosylated Cex from S. lividans was also heterogeneous. The presence of glycans on PT-CBDCex increased its affinity for bacterial microcrystalline cellulose. The location of glycosylation only on the linker region of Cex correlates with the properties conferred on the enzyme by the glycans.
Collapse
Affiliation(s)
- E Ong
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
25
|
|
26
|
Kärcher U, Schröder H, Haslinger E, Allmaier G, Schreiner R, Wieland F, Haselbeck A, König H. Primary structure of the heterosaccharide of the surface glycoprotein of Methanothermus fervidus. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74185-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
27
|
Erickson P, Herzberg M. Evidence for the covalent linkage of carbohydrate polymers to a glycoprotein from Streptococcus sanguis. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80451-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Foster SJ. Molecular analysis of three major wall-associated proteins of Bacillus subtilis 168: evidence for processing of the product of a gene encoding a 258 kDa precursor two-domain ligand-binding protein. Mol Microbiol 1993; 8:299-310. [PMID: 8316082 DOI: 10.1111/j.1365-2958.1993.tb01574.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Antisera raised to a 109 kDa wall-associated protein (WAP) of Bacillus subtilis 168 cross-reacts with two other WAPs of 220 and 58 kDa. The structural gene for the 109 kDa WAP (designated wapA) was cloned, sequenced, mapped at around 340 degrees on the B. subtilis 168 chromosome and found to encode a precursor of all three wall-bound forms (2334 amino acids and 258,329 Da). The protein has two ligand-binding domains; the N-terminal domain has three direct repeats of 102 residues with 40% identity, which are responsible for wall binding. The C-terminal domain consists of two blocks of residues with a conserved motif repeated a total of 31 times. The motif consensus sequence GXXXX(Y,F)XYDXXG is almost identical to that of the Escherichia coli rearrangement hot spot family and shows similarity to a carbohydrate-binding motif of a number of Gram-positive secreted proteins. A mutant insertionally inactivated in the wapA gene had no distinguishable phenotype apart from lacking the three WAPs. The possible role of WAPA and its two-domain relationship with other ligand-binding proteins is discussed.
Collapse
Affiliation(s)
- S J Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, UK
| |
Collapse
|
29
|
Shockman GD. The autolytic ('suicidase') system of Enterococcus hirae: from lysine depletion autolysis to biochemical and molecular studies of the two muramidases of Enterococcus hirae ATCC 9790. FEMS Microbiol Lett 1993; 100:261-7. [PMID: 1362171 DOI: 10.1111/j.1574-6968.1992.tb14050.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Autolysis of Enterococcus hirae ATCC 9790 is the result of the action of endogenous enzymes that hydrolyze bonds in the protective and shape-maintaining cell wall peptidoglycan. It is thought that these potentially suicidal enzymes play a positive role(s) in wall growth and division and are expressed as autolysins when cell wall assembly and/or repair are inhibited. E. hirae possesses two potentially autolytic enzymes, both of which are muramidases. Although they hydrolyze the same bond as hen egg-white lysozyme, both are high-molecular-mass, complex enzymes. Muramidase-1 is synthesized as a zymogen, requiring protease activation. It is a glucoenzyme that is also multiply nucleotidylated with an unusual nucleotide, 5-mercaptouridine monophosphate. Muramidase-2 is almost certainly a product of a separate gene. The deduced amino acid sequence of a cloned gene for extracellular muramidase-2 showed several unusual features. It appears to be a two-, or perhaps three-domain protein with a putative glycosidase-active site near the N-terminal end and six 45-amino-acid-long repeats at the C-terminal end which are presumed to be involved with high-affinity binding to the insoluble peptidoglycan substrate. Muramidase-2 binds penicillin with low affinity. The presence of several amino acid groupings characteristic of serine-active site beta-lactam-interactive proteins is consistent with the possible presence of a penicillin-binding, third domain. Indirect evidence consistent with a role(s) for these enzymes in cell wall growth and division has been obtained. However, proof of such role(s) awaits modern genetic, molecular, and biochemical analyses.
Collapse
Affiliation(s)
- G D Shockman
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Shockman GD. The autolytic ('suicidase') system of Enterococcus hirae: From lysine depletion autolysis to biochemical and molecular studies of the two muramidases of Enterococcus hirae ATCC 9790. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05713.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
31
|
Abstract
Formation of the asymmetrically located septum divides sporulating bacilli into two distinct cells: the mother cell and the prespore. The rigidifying wall material in the septum is subsequently removed by autolysis. Examination of published electron micrographs indicates that the two septal membranes then fuse to form a single membrane. Membrane fusion would be expected to have profound consequences for subsequent development. For example, it is suggested that fusion activates processing of pro-sigma E to sigma E in the cytoplasm by exposing it to a membrane-bound processing enzyme. Asymmetry of the fused membrane could restrict processing to one face of the membrane and hence explain why sigma E is associated with transcription in the mother cell but not in the prespore. Asymmetry of the fused membrane might also provide a mechanism for restricting the activity of another factor, sigma F, to the prespore. Attachment of the flexible fused septal membrane to the condensing prespore nucleoid could help drive the engulfment of the prespore by the mother cell.
Collapse
Affiliation(s)
- M L Higgins
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | | |
Collapse
|
32
|
Kariyama R, Shockman GD. Extracellular and cellular distribution of muramidase-2 and muramidase-1 of Enterococcus hirae ATCC 9790. J Bacteriol 1992; 174:3236-41. [PMID: 1577692 PMCID: PMC205991 DOI: 10.1128/jb.174.10.3236-3241.1992] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A substantial portion of the second peptidoglycan hydrolase (muramidase-2) activity of Enterococcus hirae ATCC 9790 (formerly Streptococcus faecium) is present in the supernatant culture medium. In contrast, nearly all muramidase-1 activity is associated with cells in the latent, proteinase-activatable form. Muramidase-2 activity is produced and secreted throughout growth, with maximal levels attained at or near the end of exponential growth in a rich organic medium. Muramidase-2 activity in the culture medium remained high even during overnight incubations in the absence of proteinase inhibitors. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of supernatant culture medium concentrated by 60% saturated ammonium sulfate precipitation showed the presence of several Coomassie blue-staining bands. One intensely staining protein band, at about 71 kDa, selectively adsorbed to the insoluble peptidoglycan fraction of cell walls of E. hirae, retained muramidase-2 activity, and reacted in Western immunoblots with monoclonal antibodies to muramidase-2. The mobility of extracellular muramidase-2 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis was indistinguishable from that of muramidase-2 extracted with 6 M guanidine hydrochloride from intact bacteria. Muramidase-2 appears to have only a limited number of binding sites on the peptidoglycan of E. hirae cell walls but binds with high affinity. Although high levels of muramidase-2 activity were present in supernatants of stationary-phase cultures, the bacteria were resistant to autolysis. Thus it appears that the peptidoglycan in walls of intact cells of E. hirae is somehow protected from the hydrolytic action of extracellular muramidase-2.
Collapse
Affiliation(s)
- R Kariyama
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | | |
Collapse
|
33
|
Chu CP, Kariyama R, Daneo-Moore L, Shockman GD. Cloning and sequence analysis of the muramidase-2 gene from Enterococcus hirae. J Bacteriol 1992; 174:1619-25. [PMID: 1347040 PMCID: PMC206558 DOI: 10.1128/jb.174.5.1619-1625.1992] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extracellular muramidase-2 of Enterococcus hirae ATCC 9790 was purified to homogeneity by substrate binding, guanidine-HCl extraction, and reversed-phase chromatography. A monoclonal antibody, 2F8, which specifically recognizes muramidase-2, was used to screen a genomic library of E. hirae ATCC 9790 DNA in bacteriophage lambda gt11. A positive phage clone containing a 4.5-kb DNA insert was isolated and analyzed. The EcoRI-digested 4.5-kb fragment was cut into 2.3-, 1.0-, and 1.5-kb pieces by using restriction enzymes KpnI, Sau3AI, and PstI, and each fragment was subcloned into plasmid pJDC9 or pUC19. The nucleotide sequence of each subclone was determined. The sequence data indicated an open reading frame encoding a polypeptide of 666 amino acid residues, with a calculated molecular mass of 70,678 Da. The first 24 N-terminal amino acids of purified extracellular muramidase-2 were in very good agreement with the deduced amino acid sequence after a 49-amino-acid putative signal sequence. Analysis of the deduced amino acid sequence showed the presence at the C-terminal region of the protein of six highly homologous repeat units separated by nonhomologous intervening sequences that are highly enriched in serine and threonine. The overall sequence showed a high degree of homology with a recently cloned Streptococcus faecalis autolysin.
Collapse
Affiliation(s)
- C P Chu
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | | | | | | |
Collapse
|
34
|
Foster SJ. Analysis of the autolysins of Bacillus subtilis 168 during vegetative growth and differentiation by using renaturing polyacrylamide gel electrophoresis. J Bacteriol 1992; 174:464-70. [PMID: 1345911 PMCID: PMC205738 DOI: 10.1128/jb.174.2.464-470.1992] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The autolysins of Bacillus subtilis 168 were analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis with substrate-containing gels. Four bands of vegetative autolytic activity of 90, 50, 34, and 30 kDa (bands A1 to A4) were detected in SDS and LiCl extracts and in native cell walls by using B. subtilis 168 vegetative cell walls as the substrate incorporated in the gel. The four enzyme activities showed different substrate specificities and sensitivities to various chemical treatments. The autolysin profile was not medium dependent and remained constant during vegetative growth. During sporulation, band A4 greatly increased in activity just prior to mother-cell lysis. No germination-associated changes in the profile were observed, although a soluble 41-kDa endospore-associated cortex-lytic enzyme was found. By using insertionally inactivated mutants, bands A1 and A2 were positively identified as the previously characterized 90-kDa glucosaminidase and 50-kDa amidase, respectively. The common filamentous phenotype of various regulatory mutants could not be correlated to specific changes in the autolysin profile.
Collapse
Affiliation(s)
- S J Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, United Kingdom
| |
Collapse
|
35
|
Kariyama R, Massidda O, Daneo-Moore L, Shockman GD. Properties of cell wall-associated DD-carboxypeptidase of Enterococcus hirae (Streptococcus faecium) ATCC 9790 extracted with alkali. J Bacteriol 1990; 172:3718-24. [PMID: 2361945 PMCID: PMC213349 DOI: 10.1128/jb.172.7.3718-3724.1990] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DD-Carboxypeptidase (DD-CPase) activity of Enterococcus hirae (Streptococcus faecium) ATCC 9790 was extracted from intact bacteria and from the insoluble residue (crude cell wall fraction) of mechanically disrupted bacteria by a brief treatment at pH 10.0 (10 mM glycine-NaOH) at 0 degrees C or by extraction with any of several detergents. Extractions with high salt concentrations failed to remove DD-CPase activity from the crude wall fraction. In contrast to N-acetylmuramoylhydrolase (both muramidase 2 and muramidase 1) activities, DD-CPase activity failed to bind to insoluble cell walls or peptidoglycan matrices. Thus, whereas muramidase 1 and muramidase 2 activities can be considered to be cell wall proteins, the bulk of the data are consistent with the interpretation that the DD-CPase of this species is a membrane protein that is sometimes found in the cell wall fraction, presumably because of hydrophobic interactions with other proteins and cell wall polymers. The binding of [14C]penicillin to penicillin-binding protein 6 (43 kilodaltons) was proportional to DD-CPase activity. Kinetic parameters were also consistent with the presence of only one DD-CPase (penicillin-binding protein 6) in E. hirae.
Collapse
Affiliation(s)
- R Kariyama
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140
| | | | | | | |
Collapse
|
36
|
Dolinger DL, Daneo-Moore L, Shockman GD. The second peptidoglycan hydrolase of Streptococcus faecium ATCC 9790 covalently binds penicillin. J Bacteriol 1989; 171:4355-61. [PMID: 2753858 PMCID: PMC210212 DOI: 10.1128/jb.171.8.4355-4361.1989] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A second peptidoglycan hydrolase (muramidase-2) of Streptococcus faecium ATCC 9790 (Enterococcus hirae) has been purified to apparent homogeneity. The enzyme has been shown to be a beta-1,4-N-acetylmuramoylhydrolase (muramidase; EC 3.2.1.17) and to differ in substrate specificity from a previously isolated muramidase. Purified enzyme appears as two protein staining bands with molecular masses of 125 and 75 kilodaltons (kDa) on polyacrylamide gels after sodium dodecyl sulfate electrophoresis. Elution and renaturation of protein bands from sodium dodecyl sulfate-polyacrylamide gels showed that both proteins have muramidase-2 activity. Both proteins have been shown to bind radioactive benzylpenicillin and have the same electrophoretic mobilities as penicillin-binding proteins 1 and 5 present in membrane preparations of this organism, respectively. Incubation of a [14C]penicillin G-labeled 125-kDa form of the enzyme with crude alkaline extracts from S. faecium (which did not contain added proteinase inhibitors) showed the endogenous conversion of the radiolabeled 125-kDa form to the radiolabeled 75-kDa form of the enzyme.
Collapse
Affiliation(s)
- D L Dolinger
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140
| | | | | |
Collapse
|
37
|
Gustafson JE, Wilkinson BJ. Lower autolytic activity in a homogeneous methicillin-resistant Staphylococcus aureus strain compared to derived heterogeneous-resistant and susceptible strains. FEMS Microbiol Lett 1989. [DOI: 10.1111/j.1574-6968.1989.tb03092.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
38
|
Gálvez A, Maqueda M, Martínez-Bueno M, Valdivia E. Bactericidal and bacteriolytic action of peptide antibiotic AS-48 against gram-positive and gram-negative bacteria and other organisms. Res Microbiol 1989; 140:57-68. [PMID: 2501837 DOI: 10.1016/0923-2508(89)90060-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A purified peptide antibiotic AS-48 from Streptococcus faecalis spp liquiefaciens S-48 exerted a bactericidal mode of action against most Gram-positive and many Gram-negative bacteria tested. In many Gram-positive bacteria and the two Myxococcus species assayed, a bacteriolytic effect, as a consequence of primary lesions, was also observed. In general, the Gram-negative bacteria were more resistant to AS-48. Escherichia coli protoplasts showed increased sensitivity and those of a resistant yeast. Saccharomyces cerevisiae 3.2, became sensitive. These data suggest that resistance is related to the cell wall structure. AS-48 adsorbed rapidly to cell walls and cytoplasmic membranes of sensitive and resistant cells. Adsorption to cytoplasmic membranes involved complete neutralization of AS-48.
Collapse
Affiliation(s)
- A Gálvez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Spain
| | | | | | | |
Collapse
|
39
|
Abstract
Glycoproteins as components of cell surfaces are not restricted to eukaryotes. The prokaryotic glycoprotein studied in greatest detail so far is the cell surface glycoprotein of the archaebacterium Halobacterium halobium. This bacterial glycoprotein contains 3 different types of glycoconjugates, and each type of glycoconjugate involves a different carbohydrate-protein linkage unit: 1) One glycosaminoglycan chain, constructed from a repeating sulfated pentasaccharide block, is linked to one protein molecule via the novel N-glycosyl linkage unit asparaginyl-N-acetylgalactosamine. 2) Ten sulfated oligosaccharides that contain glucose, glucuronic acid and iduronic acid are bound to the protein via the hitherto unknown N-glycosyl linkage unit asparaginylglucose. 3) About 15 disaccharides, glucosylgalactose, are O-glycosyl-linked to a cluster of threonine residues close to the C-terminus of the core protein. The overall structure of the cell surface glycoprotein of halobacteria is thus reminiscent of animal proteoglycans and a functional role of the glycosaminoglycan chain in maintaining the rod shape of halobacteria is discussed. Biosynthesis of the two N-glycosyl linkage units involves dolichol monophosphate and dolicholdiphosphate-linked saccharide precursors. Sulfation and epimerization of the glycoconjugates occur at the lipid-linked level and the mature saccharides are transferred to the protein core on the cell surface. The sulfated oligosaccharides that finally become bound to asparagine via glucose are transiently methylated at their lipid-linked stage and this transient chemical modification seems to be required for the biosynthesis of the corresponding N-glycosyl bond.
Collapse
Affiliation(s)
- F Wieland
- Institut für Biochemie I, Heidelberg, F.R.G
| |
Collapse
|
40
|
Messner P, Sleytr UB. Asparaginyl-rhamnose: a novel type of protein-carbohydrate linkage in a eubacterial surface-layer glycoprotein. FEBS Lett 1988; 228:317-20. [PMID: 3342887 DOI: 10.1016/0014-5793(88)80023-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The subunits of the crystalline surface layer of Bacillus stearothermophilus, strain NRS 2004/3a contain carbohydrates covalently linked to protein. Hydrolysis of a glycopeptide obtained by pronase digestion of the glycoprotein and analysis of the fragments revealed that rhamnose is N-glycosidically linked to the amide nitrogen of an asparaginyl residue.
Collapse
Affiliation(s)
- P Messner
- Zentrum für Ultrastrukturforschung, Universität für Bodenkultur, Wien, Austria
| | | |
Collapse
|
41
|
Barrett JF, Barrett TA, Curtiss R. Purification and partial characterization of the multicomponent dextranase complex of Streptococcus sobrinus and cloning of the dextranase gene. Infect Immun 1987; 55:792-802. [PMID: 3546141 PMCID: PMC260412 DOI: 10.1128/iai.55.3.792-802.1987] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The presence of proteases in culture supernatant fluids and on the cell surface of Streptococcus sobrinus and the aggregation of multicomponent enzyme complexes make the isolation and characterization of cell surface proteins difficult. We report a simple purification procedure for dextranase and the cloning of the dextranase structural gene. S. sobrinus culture supernatant fluids were precipitated with 70% ammonium sulfate, and the precipitate was dialyzed against sodium acetate buffer and loaded onto a hemoglobin-Sepharose 4B column connected to a blue dextran-agarose column at 4 degrees C. After being washed with low concentrations of salt, the dextranase and the dextran-binding proteins were eluted with 5 M KI and further purified by gel filtration. Two dextranases (molecular weights, 175,000 and 160,000) were purified and partially characterized. The structural gene for the dextranase of S. sobrinus 6715 strain UAB66, serotype g, was cloned into the cosmid vector, pHC79. Clones were selected for expression of dextranase activity by detection of zones of enzyme-mediated hydrolysis of a blue dextran substrate incorporated into minimal medium agar plates. Release of dextranase was achieved by induction of thermoinducible, excision-defective Escherichia coli K-12 lysogens containing recombinant cosmid molecules of S. sobrinus DNA. Recombinant cosmid molecules were repackaged simultaneously into infectious lambdoid particles. Recombinant clones expressing dextranase activity which varied in size from the high-molecular-weight protein produced by S. sobrinus (i.e., 175,000) to lower-molecular-weight forms expressed by S. sobrinus have been identified and partially characterized.
Collapse
|
42
|
Doyle RJ, Koch AL. The functions of autolysins in the growth and division of Bacillus subtilis. Crit Rev Microbiol 1987; 15:169-222. [PMID: 3123142 DOI: 10.3109/10408418709104457] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Some bacteria, such as streptococci, exhibit growth from discrete and well-defined zones. In Streptococcus faecalis, growth zones can be observed in the electron microscope, and the position of the zone can be used as a marker for cell cycle events. Growth of the cell surface of Bacillus subtilis appears to be by a much different mechanism from that of streptococci. Cell elongation takes place by the insertion at many sites in the cell cylinder of peptidoglycan components. The insertion occurs on the inner face of the wall, and upon cross linking, the new wall material becomes stress bearing and older wall is pushed to the surface. When old wall reaches the surface, it becomes susceptible to excision by autolysins, resulting in wall turnover; cell elongation, due to the stretching of the cross-linked peptidoglycan, therefore, accompanies turnover and does not require a specialized growth zone.
Collapse
Affiliation(s)
- R J Doyle
- Department of Microbiology and Immunology, University of Louisville Health Sciences Center, Kentucky
| | | |
Collapse
|
43
|
Mason C, Hamer G, Bryers J. The death and lysis of microorganisms in environmental processes. FEMS Microbiol Lett 1986. [DOI: 10.1111/j.1574-6968.1986.tb01867.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
44
|
Brissette JL, Cabacungan EA, Pieringer RA. Studies on the antibacterial activity of dodecylglycerol. Its limited metabolism and inhibition of glycerolipid and lipoteichoic acid biosynthesis in Streptococcus mutans BHT. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)84568-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
45
|
Shockman GD, Kawamura T, Barrett JF, Dolinger DL. The autolytic peptidoglycan hydrolases of Streptococcus faecium. ANNALES DE L'INSTITUT PASTEUR. MICROBIOLOGIE 1985; 136A:63-6. [PMID: 2860842 DOI: 10.1016/s0769-2609(85)80023-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Streptococcus faecium ATCC 9790 possesses two peptidoglycan hydrolase activities. The first enzyme, an N-acetylmuramoylhydrolase, has been purified and has been shown to be a glucoenzyme. Studies of hydrolysis of soluble, linear uncross-linked peptidoglycan chains showed that the enzyme bound strongly to the non-reducing ends of the chains and then sequentially (processively) hydrolysed susceptible bonds in that chain. The second peptidoglycan hydrolase does not appear to be a glycoprotein and differs from the first enzyme in substrate specificity and mechanism of hydrolysis. The presence of two partially redundant activities which may play different roles in surface growth and division could, at least in part, explain previous difficulties in obtaining mutants which completely lack autolytic activity.
Collapse
|
46
|
Nakagawa J, Tamaki S, Tomioka S, Matsuhashi M. Functional biosynthesis of cell wall peptidoglycan by polymorphic bifunctional polypeptides. Penicillin-binding protein 1Bs of Escherichia coli with activities of transglycosylase and transpeptidase. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)89835-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Barrett JF, Dolinger DL, Schramm VL, Shockman GD. The mechanism of soluble peptidoglycan hydrolysis by an autolytic muramidase. A processive exodisaccharidase. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(20)71285-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
48
|
Barrett JF, Shockman GD. Isolation and characterization of soluble peptidoglycan from several strains of Streptococcus faecium. J Bacteriol 1984; 159:511-9. [PMID: 6746571 PMCID: PMC215674 DOI: 10.1128/jb.159.2.511-519.1984] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Two phenotypically autolysis-deficient strains of Streptococcus faecium ATCC 9790 were shown to produce high-molecular-weight, soluble, linear, uncross-linked peptidoglycan when incubated with benzylpenicillin in a wall medium which permits cell wall synthesis (wall thickening) but not balanced growth. This high-molecular-weight s-peptidoglycan was shown to have a molecular weight of 46,000 to 54,000, lack peptide cross-links, and be virtually devoid of accessory wall polymers. It was hydrolyzed by hen egg white lysozyme and the endogenous, autolytic N-acetylmuramidase of S. faecium, but was not attacked by proteinases. Chemical analyses of the polymer are consistent with the following structure, where n is the number of repeating disaccharide units: (formula; see text).
Collapse
|
49
|
Barrett JF, Schramm VL, Shockman GD. Hydrolysis of soluble, linear, un-cross-linked peptidoglycans by endogenous bacterial N-acetylmuramoylhydrolases. J Bacteriol 1984; 159:520-6. [PMID: 6746572 PMCID: PMC215675 DOI: 10.1128/jb.159.2.520-526.1984] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Soluble, linear, uncross-linked peptidoglycans, prepared from two autolysis-defective mutants of Streptococcus faecium ATCC 9790 and from Micrococcus leuteus, were used as substrates for studies of hydrolysis by an N-acetylmuramoylhydrolase (muramidase). The kinetics of hydrolysis of these substrates and the ability of the muramidases isolated from S. faecium ATCC 9790 and from two autolysis-defective mutants, Lyt-14 and Aut-3, to carry out transglycosylation reactions were compared with the action of hen egg white lysozyme (EC 3.2.1.17). Hydrolysis of these substrates by the endogenous streptococcal muramidases resulted in the production of disaccharide-peptide monomers with the structure (formula; see text) as nearly the sole product. As estimated from increases in reducing groups, hydrolysis proceeded at a linear rate for extended intervals, with consumption of up to 75% of the substrate, even at substrate concentrations well below the Km value. Apparent Km and relative Vmax values for the three streptococcal enzymes were indistinguishable from each other or from those for hen egg white lysozyme. These results indicate that the autolysis-defective phenotype of these mutants cannot be attributed to differences in their muramidases. In contrast to the action of hen egg white lysozyme, the streptococcal muramidase failed to catalyze transglycosylations. The extended periods of hydrolysis at constant rates are consistent with the occurrence of multiple catalytic events after the formation of the enzyme-substrate complex.
Collapse
|
50
|
Ved HS, Gustow E, Mahadevan V, Pieringer RA. Dodecylglycerol. A new type of antibacterial agent which stimulates autolysin activity in Streptococcus faecium ATCC 9790. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)39701-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|