1
|
de Los Ángeles Juricic Urzúa M, Gallardo Rojas J, Couve Correa A, Cerda M, Härtel Gründler S, González-Silva C. The Dendritic Ergic: Microtubule And Actin Cytoskeletons Participate In Stop-And-Go Movement Of Mobile Carriers Between Stable Structures. Traffic 2022; 23:174-187. [PMID: 35075729 DOI: 10.1111/tra.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 11/29/2022]
Abstract
The ER-to-Golgi intermediate compartment (ERGIC) is a membranous organelle that mediates protein transport between the endoplasmic reticulum (ER) and the Golgi apparatus. In neurons, clusters of these vesiculotubular structures are situated throughout the cell in proximity to the ER, passing cargo to the cis-Golgi cisternae, located mainly in the perinuclear region. Although ERGIC markers have been identified in neurons, the distribution and dynamics of neuronal ERGIC structures have not been characterized yet. Here, we show that long-distance ERGIC transport occurs via an intermittent mechanism in dendrites, with mobile elements moving between stationary structures. Slow and fast live-cell imaging have captured stable ERGIC structures remaining in place over long periods of time, as well as mobile ERGIC structures advancing very short distances along dendrites. These short distances have been consistent with the lengths between the stationary ERGIC structures. Kymography revealed ERGIC elements that moved intermittently, emerging from and fusing with stationary ERGIC structures. Interestingly, this movement apparently depends not only on the integrity of the microtubule cytoskeleton, as previously reported, but on the actin cytoskeleton as well. Our results indicate that the dendritic ERGIC has a dual nature, with both stationary and mobile structures. The neural ERGIC network transports proteins via a stop-and-go movement in which both the microtubule and the actin cytoskeletons participate. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- María de Los Ángeles Juricic Urzúa
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute (BNI), Santiago, Chile
| | - Javiera Gallardo Rojas
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute (BNI), Santiago, Chile
| | - Andrés Couve Correa
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute (BNI), Santiago, Chile
| | - Mauricio Cerda
- Biomedical Neuroscience Institute (BNI), Santiago, Chile.,Integrative Biology Program, Institute of Biomedical Sciences (ICBM), Center for Medical Informatics and Telemedicine (CIMT), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Steffen Härtel Gründler
- Biomedical Neuroscience Institute (BNI), Santiago, Chile.,Integrative Biology Program, Institute of Biomedical Sciences (ICBM), Center for Medical Informatics and Telemedicine (CIMT), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carolina González-Silva
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute (BNI), Santiago, Chile
| |
Collapse
|
2
|
Shibata H, Kanadome T, Sugiura H, Yokoyama T, Yamamuro M, Moss SE, Maki M. A new role for annexin A11 in the early secretory pathway via stabilizing Sec31A protein at the endoplasmic reticulum exit sites (ERES). J Biol Chem 2014; 290:4981-4993. [PMID: 25540196 DOI: 10.1074/jbc.m114.592089] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exit of cargo molecules from the endoplasmic reticulum (ER) for transport to the Golgi is the initial step in intracellular vesicular trafficking. The coat protein complex II (COPII) machinery is recruited to specialized regions of the ER, called ER exit sites (ERES), where it plays a central role in the early secretory pathway. It has been known for more than two decades that calcium is an essential factor in vesicle trafficking from the ER to Golgi apparatus. However, the role of calcium in the early secretory pathway is complicated and poorly understood. We and others previously identified Sec31A, an outer cage component of COPII, as an interacting protein for the penta-EF-hand calcium-binding protein ALG-2. In this study, we show that another calcium-binding protein, annexin A11 (AnxA11), physically associates with Sec31A by the adaptor function of ALG-2. Depletion of AnxA11 or ALG-2 decreases the population of Sec31A that is stably associated with the ERES and causes scattering of juxtanuclear ERES to the cell periphery. The synchronous ER-to-Golgi transport of transmembrane cargoes is accelerated in AnxA11- or ALG-2-knockdown cells. These findings suggest that AnxA11 maintains architectural and functional features of the ERES by coordinating with ALG-2 to stabilize Sec31A at the ERES.
Collapse
Affiliation(s)
- Hideki Shibata
- From the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan and.
| | - Takashi Kanadome
- From the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan and
| | - Hirofumi Sugiura
- From the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan and
| | - Takeru Yokoyama
- From the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan and
| | - Minami Yamamuro
- From the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan and
| | - Stephen E Moss
- the Department of Cell Biology, UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, United Kingdom
| | - Masatoshi Maki
- From the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan and
| |
Collapse
|
3
|
Milstein ML, Houle TD, Cala SE. Calsequestrin isoforms localize to different ER subcompartments: Evidence for polymer and heteropolymer-dependent localization. Exp Cell Res 2009; 315:523-34. [DOI: 10.1016/j.yexcr.2008.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 11/11/2008] [Accepted: 11/11/2008] [Indexed: 11/25/2022]
|
4
|
Fromme JC, Orci L, Schekman R. Coordination of COPII vesicle trafficking by Sec23. Trends Cell Biol 2008; 18:330-6. [DOI: 10.1016/j.tcb.2008.04.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/18/2008] [Accepted: 04/21/2008] [Indexed: 10/22/2022]
|
5
|
De Keukeleire B, Micoud J, Biard J, Benharouga M. Endoplasmic reticulum-associated degradation of mutant CFTR requires a guanine nucleotide-sensitive step. Int J Biochem Cell Biol 2008; 40:1729-42. [PMID: 18280771 DOI: 10.1016/j.biocel.2007.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 12/07/2007] [Accepted: 12/24/2007] [Indexed: 11/30/2022]
Abstract
Proteasome degradation of endoplasmic reticulum (ER)-misfolded proteins requires retrograde transport from ER to the cytosol. To date, it is not clear whether this event constitutes the exclusive ER degradation process for non-native membrane proteins. Here we describe the role of GTP in the degradation of DeltaF508-CFTR and the alpha subunit of the T-cell receptor (TCRalpha), representative misfolded ER membrane proteins. Selective intracellular GTP depletion extended the DeltaF508-CFTR half-life sixfold, whereas ATP depletion accelerated its turnover and inhibited only 80% of the proteasome activity that was not affected by GTP depletion. AlF(4)(-), a well-known inhibitor of heterotrimeric G proteins, but not of AlF(3), delayed the mutant CFTR turnover in vivo, in semi-intact cells and in ER-enriched microsomes, without affecting ER to Golgi cargo transport. DeltaF508-CFTR degradation was also inhibited by alkaline stripping of ER-associated membrane proteins. We propose that at the ER, GTP may participate in the disposal of misfolded membrane proteins through activation of heterotrimeric G proteins.
Collapse
|
6
|
Abstract
Rab GTPase regulated hubs provide a framework for an integrated coding system, the membrome network, that controls the dynamics of the specialized exocytic and endocytic membrane architectures found in eukaryotic cells. Herein, we report that Rab recycling in the early exocytic pathways involves the heat-shock protein (Hsp)90 chaperone system. We find that Hsp90 forms a complex with guanine nucleotide dissociation inhibitor (GDI) to direct recycling of the client substrate Rab1 required for endoplasmic reticulum (ER)-to-Golgi transport. ER-to-Golgi traffic is inhibited by the Hsp90-specific inhibitors geldanamycin (GA), 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), and radicicol. Hsp90 activity is required to form a functional GDI complex to retrieve Rab1 from the membrane. Moreover, we find that Hsp90 is essential for Rab1-dependent Golgi assembly. The observation that the highly divergent Rab GTPases Rab1 involved in ER-to-Golgi transport and Rab3A involved in synaptic vesicle fusion require Hsp90 for retrieval from membranes lead us to now propose that the Hsp90 chaperone system may function as a general regulator for Rab GTPase recycling in exocytic and endocytic trafficking pathways involved in cell signaling and proliferation.
Collapse
Affiliation(s)
| | - William E. Balch
- Departments of *Cell Biology and
- Molecular Biology and
- The Institute for Childhood and Neglected Disease, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
7
|
Mohtashami M, Stewart BA, Boulianne GL, Trimble WS. Analysis of the mutant Drosophila N-ethylmaleimide sensitive fusion-1 protein in comatose reveals molecular correlates of the behavioural paralysis. J Neurochem 2001; 77:1407-17. [PMID: 11389191 DOI: 10.1046/j.1471-4159.2001.00363.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
NEM-sensitive fusion protein (NSF) is an ATPase required for many intracellular membrane trafficking steps. Recent studies have suggested that NSF alters the conformation of the SNAP receptors (SNAREs) to permit their interaction, or to uncouple them after they interact. Most organisms have a single NSF gene product but Drosophila express two highly related isoforms, dNSF-1 and dNSF-2. dNSF-1 is encoded by the gene comatose (comt), first identified as the locus of a temperature-sensitive paralytic mutation. Here we show that dNSF-1 is most abundant in the nervous system and can be detected in larval and adult CNS. Subcellular fractionation revealed that dNSF-1 was enriched in a vesicle fraction along with the synaptic vesicle protein synaptotagmin. comt flies maintained at the non-permissive temperature rapidly accumulate sodium dodecyl sulfate (SDS)-resistant SNARE complexes at the restrictive temperature, with concomitant translocation of dNSF-1 from cytosol and membrane fractions into a Triton X-100 insoluble fraction. The long recovery of comt flies after heat shock induced paralysis correlated with the irreversibility of this translocation. Interestingly, while dNSF-1 also translocates in comt(TP7) larvae, there is no associated neurophysiological phenotype at the neuromuscular junction (nmj) or accumulation of SDS-resistant complexes in the CNS. Together, these results suggest that dNSF-1 is required for adult neuronal function, but that in the larval nmj function may be maintained by other isoforms.
Collapse
Affiliation(s)
- M Mohtashami
- Programme in Cell Biology, Developmental Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
8
|
Abstract
Homotypic (self) fusion of yeast vacuoles, which is essential for the low copy number of this organelle, uses catalytic elements similar to those used in heterotypic vesicular trafficking reactions between different organelles throughout nature. The study of vacuole inheritance has benefited from the ease of vacuole isolation, the availability of the yeast genome sequence and numerous mutants, and from a rapid, quantitative in vitro assay of fusion. The soluble proteins and small molecules that support fusion are being defined, conserved membrane proteins that catalyze the reaction have been identified, and the vacuole membrane has been solubilized and reconstituted into fusion-competent proteoliposomes, allowing the eventual purification of all needed factors. Studies of homotypic vacuole fusion have suggested a modified paradigm of membrane fusion in which integral membrane proteins termed "SNAREs" can form stable complexes in cis (when on the same membrane) as well as in trans (when anchored to opposing membranes). Chaperones (NSF/Sec18p, LMA1, and -SNAP/Sec17p) disassemble cis-SNARE complexes to prepare for the docking of organelles rather than to drive fusion. The specificity of organelle docking resides in a cascade of trans-interactions (involving Rab-like GTPases), "tethering factors," and trans-SNARE pairing. Fusion itself, the mixing of the membrane bilayers and the organelle contents, is triggered by calcium signaling.
Collapse
Affiliation(s)
- W Wickner
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, New Hampshire 03755-3844, USA
| | | |
Collapse
|
9
|
Abstract
Calcium cations play a critical role in regulating vesicular transport between different intracellular membrane-bound compartments. The role of calcium in transport between the Golgi cisternae, however, remains unclear. Using a well characterized cell-free intra-Golgi transport assay, we now show that changes in free Ca(2+) concentration in the physiological range regulate this transport process. The calcium-chelating agent 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid blocked transport with an IC(50) of approximately 0.8 mm. The effect of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid was reversible by addition of fresh cytosol and was irreversible when performed in the presence of a Ca(2+) ionophore that depletes calcium from lumenal stores. We demonstrate here that intra-Golgi transport is stimulated by low Ca(2+) concentrations (20-100 nm) but is inhibited by higher concentrations (above 100 nm). Further, we show that calmodulin antagonists specifically block intra-Golgi transport, implying a role for calmodulin in mediating the effect of calcium. Our results suggest that Ca(2+) efflux from intracellular pools may play an essential role in regulating intra-Golgi transport.
Collapse
Affiliation(s)
- A Porat
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
10
|
Elmendorf JS, Boeglin DJ, Pessin JE. Temporal separation of insulin-stimulated GLUT4/IRAP vesicle plasma membrane docking and fusion in 3T3L1 adipocytes. J Biol Chem 1999; 274:37357-61. [PMID: 10601305 DOI: 10.1074/jbc.274.52.37357] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Examination of the time and temperature dependence of insulin-stimulated GLUT4/IRAP-containing vesicle trafficking demonstrated an approximate 7-fold increase in the half-time for plasma membrane translocation at 23 degrees C (t((1)/(2)) = approximately 30 min) compared with 37 degrees C (t((1)/(2)) = approximately 4 min) without a significant change in the extent of either GLUT4 or IRAP translocation. Localization of the endogenous GLUT4 and expressed GLUT4-enhanced green fluorescent protein fusion protein in intact 3T3L1 adipocytes demonstrated that at 23 degrees C there was a time-dependent accumulation of discrete GLUT4-containing vesicles adjacent to the inner face of the cell surface membrane but that was not contiguous and/or physically incorporated into the plasma membrane. Together, these data demonstrate that the temperature-dependent decrease in the rate of GLUT4 and IRAP translocation results from a reduction in GLUT4/IRAP-containing vesicle fusion and not trafficking or docking to the plasma membrane.
Collapse
Affiliation(s)
- J S Elmendorf
- Department of Physiology, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
11
|
McIntosh DP, Schnitzer JE. Caveolae require intact VAMP for targeted transport in vascular endothelium. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H2222-32. [PMID: 10600840 DOI: 10.1152/ajpheart.1999.277.6.h2222] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caveolae appear to function in vesicular trafficking of specific molecular cargo into and across vascular endothelial and other cells. They contain the molecular machinery for docking and fusion, similar to other vesicular trafficking systems, yet the mechanisms mediating ligand internalization and targeted intracellular transport by caveolae remain unclear. Using immunoelectron microscopy, we show that caveolae in the microvascular endothelium of rat lung express vesicle-associated membrane protein (VAMP)-2 (also called synaptobrevin) on their cytoplasmic surface. Immunofluorescence studies of cholera toxin B (CTB)-FITC internalization in toxin-treated cells demonstrate that intact VAMP-2 is necessary for the efficient trafficking of caveolar ligands. The CTB subunit binds preferentially to GM1 in caveolae, and N-ethylmaleimide treatment drastically inhibits the intracellular accumulation of CTB. The cleavage of caveolar VAMP-2 with VAMP-specific neurotoxins (botulinum D and F but not A) significantly inhibits CTB endocytosis and targeted intracellular accumulation in cultured endothelial cells. This impairment of caveolae-mediated trafficking provides evidence that caveolae require intact VAMP-2 for efficient targeted delivery via vesicle docking with target organelles.
Collapse
Affiliation(s)
- D P McIntosh
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
12
|
del Valle M, Robledo Y, Sandoval IV. Membrane flow through the Golgi apparatus: specific disassembly of the cis-Golgi network by ATP depletion. J Cell Sci 1999; 112 ( Pt 22):4017-29. [PMID: 10547362 DOI: 10.1242/jcs.112.22.4017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Incubation of NRK cells for 30 to 45 minutes with 50 mM 2-deoxy-D-glucose (DOG) in glucose and pyruvate-free medium results in depletion of the cellular ATP pool and in specific disassembly of the cis-Golgi network (CGN), with the stack of Golgi cisternae (SGC) and the trans-Golgi network (TGN) remaining intact and sensitive to BFA. The disassembly of the CGN is mediated by long tubular structures extending outwards from the Golgi complex and involves microtubules. Upon removal of DOG and addition of glucose and pyruvate to the culture medium, the morphology of the CGN is slowly reestablished. Reconstruction of the CGN involves COPI/COPII-positive vesicles that resume the transport of proteins and in particular of CGN membrane proteins out of the ER. Exit of CGN membrane proteins from the ER is insensitive to BFA. In cells pretreated with nocodazole, the CGN membrane proteins are transported to the vicinity of the SGC fragments dispersed throughout the cytoplasm. Ultrastructural studies of cells engaged in the reconstruction of the CGN revealed that the CGN cisterna emerge as tubular structures extending from 0.2-0.3 microm uncoated vesicles prior to their organization on the cis-side of the SGC.
Collapse
Affiliation(s)
- M del Valle
- Centro de Biologia Molecular Severo Ochoa, CSIC, Facultad de Ciencias, Universidad Autónoma de Madrid
| | | | | |
Collapse
|
13
|
Hauri H, Schweizer A. The
ER
–Golgi Membrane System: Compartmental Organization and Protein Traffic. Compr Physiol 1997. [DOI: 10.1002/cphy.cp140115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Abstract
The small GTPase Rab2 is a resident of pre-Golgi intermediates and required for protein transport from the endoplasmic reticulum (ER) to the Golgi complex (Tisdale, E. J., Bourne, J. R., Khosravi-Far, R. , Der, C. J., and Balch, W. E. (1992) J. Cell Biol. 119, 749-761). The Rab2 protein, like all small GTPases, contains conserved GTP-binding domains as well as hypervariable carboxyl-terminal and amino-terminal domains. While the role of the carboxyl terminus in specific membrane localization is well recognized, the potential role of the variable NH2 terminus remains to be clarified. To determine whether the NH2 terminus of Rab2 was required for its activity in vivo, a trans dominant mutant of Rab2 that inhibits ER to Golgi transport was progressively truncated and analyzed for its effect on vesicular stomatitis virus glycoprotein transport in a vaccinia-based transient expression system. Deletion of the first 14 amino-terminal residues resulted in the loss of the inhibitory properties of the mutant without affecting its post-translational processing or membrane association. To assess the potential role of the NH2 terminus in Rab2 function, a peptide corresponding to the first 13 amino acids following the initiator methionine was introduced into an in vitro assay that efficiently reconstitutes transport of vesicular stomatitis virus glycoprotein from the ER to the Golgi stack. This peptide was a potent inhibitor of transport. Biochemical and morphological studies revealed that the peptide strongly interfered with assembly of pre-Golgi intermediates which mediate segregation of anterograde and retrograde transported proteins en route to the Golgi. The combined results suggest that the NH2 terminus of Rab2 is required for its function and for direct interaction with components of the transport machinery involved in the maturation of pre-Golgi intermediates.
Collapse
Affiliation(s)
- E J Tisdale
- Departments of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
15
|
Krijnse-Locker J, Schleich S, Rodriguez D, Goud B, Snijder EJ, Griffiths G. The role of a 21-kDa viral membrane protein in the assembly of vaccinia virus from the intermediate compartment. J Biol Chem 1996; 271:14950-8. [PMID: 8662995 DOI: 10.1074/jbc.271.25.14950] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have recently provided morphological evidence that a key event in the assembly of vaccinia virus is the formation of a novel cisternal domain of the intermediate compartment (IC) between the endoplasmic reticulum and the Golgi complex (Sodeik, B., Doms, R. W., Ericsson, M., Hiller, G., Machamer, C. E., van't Hof, W., van Meer, G., Moss, B., and Griffiths, G. (1993) J. Cell Biol. 121, 521-541). This tightly apposed cisternal domain incompletely surrounds the spherical immature virus that matures into the first of the two distinct infectious forms of vaccinia, the intracellular mature virus (IMV). In this study we describe the characterization of an abundant membrane protein of the IMV, the gene product of A17L, a 21-kDa protein that has recently been shown to be essential for the formation of the viral membranes (Rodriguez, D., Esteban, M., and Rodriguez, J. R. (1995) J. Virol. 69, 4640-4648). Upon translation in vitro, p21 associated with rough microsomal membranes in a co-translational manner. Using NH2- and COOH-terminal specific antibodies, we show that both in vitro as well as in vivo, p21 adopts a topology where the NH2 and COOH termini are cytoplasmically orientated. Immunocytochemical experiments demonstrated that p21 is a component of the inner of the two cisternal membranes of the immature virus as well as of membranes of the IC, identified using antibodies against Rab1. Taken together, these data provide the first molecular evidence in support of our assembly model; they show that an essential membrane protein of the IMV inserts into the rough endoplasmic reticulum, but gets efficiently targeted to the IC and membranes of the viral factory.
Collapse
Affiliation(s)
- J Krijnse-Locker
- European Molecular Biology Laboratory, Cell Biology Program, Meyerhofstrasse 1, 69118 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Musci G, Di Marco S, Bellenchi GC, Calabrese L. Reconstitution of ceruloplasmin by the Cu(I)-glutathione complex. Evidence for a role of Mg2+ and ATP. J Biol Chem 1996; 271:1972-8. [PMID: 8567646 DOI: 10.1074/jbc.271.4.1972] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The copper-glutathione complex (Cu(I)-GSH) efficiently acted in vitro as the source of Cu(I) in the reconstitution of apoceruloplasmin. Copper was found to reinstate in the various sites in a multistep process, with metal entry into the protein in a first phase, and a second step involving conformational changes of the protein leading to the recovery of the native structural and functional properties. This latter phase was found to be strongly facilitated by Mg2+ or Ca2+ and by ATP. Both Mg2+ and ATP had to be present for optimal reconstitution. These results may shed some light on the mechanisms governing the biosynthesis of ceruloplasmin in vivo. Cu(I)-GSH was the only complex able to reconstitute ceruloplasmin at neutral pH. Glutathione may thus function to shuttle the metal from the membrane copper pump, as the Wilson disease ATPase, and ceruloplasmin in the secretory compartments of the cell. The finding that ceruloplasmin acquires the native conformation after metal entry through a complex pathway triggered by Mg2+ and ATP suggests that they may act as physiological modulators of this process in vivo.
Collapse
Affiliation(s)
- G Musci
- Department of Organic and Biological Chemistry, University of Messina, Italy
| | | | | | | |
Collapse
|
17
|
Schiller MR, Mains RE, Eipper BA. A neuroendocrine-specific protein localized to the endoplasmic reticulum by distal degradation. J Biol Chem 1995; 270:26129-38. [PMID: 7592816 DOI: 10.1074/jbc.270.44.26129] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Regulated endocrine-specific protein, 18-kDa (RESP18), was previously cloned from rat neurointermediate pituitary based on its coordinate regulation with proopiomelanocortin and neuroendocrine specificity. RESP18 has no homology to any known protein. Although RESP18 is translocated across microsomal membranes after in vitro translation, AtT-20 pituitary tumor cells, which endogenously synthesize RESP18, do not release it into the culture medium. In this work, immunostaining and subcellular fractionation have identified RESP18 as an endoplasmic reticulum (ER) protein. Biosynthetic labeling and temperature block studies of AtT-20 cells demonstrated the localization of RESP18 to the ER lumen by a unique mechanism, degradation by proteolysis in a post-ER pre-Golgi compartment. Proteases in this compartment were saturated by exogenous RESP18 overexpression in AtT-20 cells. Furthermore, a calpain protease inhibitor enhanced secretion of RESP18 from AtT-20 cells overexpressing RESP18. Saturation and inhibition of the RESP18 degrading proteases allowed RESP18 to enter secretory granules and acquire a post-translational modification, likely O-glycosylation; this modified 21-kDa RESP18 isoform was the only RESP18 secreted. Rat anterior pituitary extracts contain 18-kDa and O-glycosylated RESP18 with similar properties. Exogenous RESP18 expression in hEK-293 cells demonstrated ER localization and RESP18 metabolism similar to AtT-20 cells, indicating that the cellular machinery involved in localizing RESP18 is not specific to neuroendocrine cells. The data implicate a novel ER localization mechanism for this neuroendocrine-specific luminal ER resident.
Collapse
Affiliation(s)
- M R Schiller
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
18
|
Andersson LM, Warburton MJ. Intracellular degradation of type I collagen and fibronectin in human lung fibroblasts: evidence against degradation in pre-lysosomal compartments. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1268:27-34. [PMID: 7626659 DOI: 10.1016/0167-4889(95)00038-t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fibroblasts degrade about 15% of newly synthesised collagen within the cell before it can be secreted. When the helical structure of collagen is disrupted, about 30% is degraded intracellularly. To determine if collagen degradation occurs in a pre-lysosomal compartment, the passage of type 1 collagen out of the endoplasmic reticulum or Golgi was inhibited by incubating human lung fibroblasts with brefeldin A or monensin. In both cases, the type I collagen retained within the cell was stable over a 20 h period. Disrupting the helical structure of collagen with cis-hydroxyproline, 2,2'-bipyridyl or ethyl 3,4-dihydroxybenzoate did not alter the stability of type I collagen in brefeldin or monensin-treated cells. Incubating permeabilised cells in the presence of GTP gamma S (guanosine 5'-(3-O-thio)triphosphate), which blocks transport out of the endoplasmic reticulum, also resulted in the stable retention of type I collagen. Addition of dithiothreitol to permeabilised cells failed to initiate intracellular degradation. Similar results were obtained with fibronectin. Both normal fibronectin and fibronectin in which canavanine replaced arginine were stable for 20 h in cells treated with brefeldin A or monensin. The degradation of native collagen is sensitive to inhibition by a cell-permeable cysteine proteinase inhibitor (ALLN) but is insensitive to chloroquine (which raises the pH of acidic intracellular compartments), whereas the degradation of abnormal collagen was sensitive to both ALLN and chloroquine. These results argue against the intracellular degradation of collagen or fibronectin in a pre-lysosomal compartment.
Collapse
Affiliation(s)
- L M Andersson
- Department of Histopathology, St George's Hospital Medical School, London, UK
| | | |
Collapse
|
19
|
Moreau P, Cassagne C. Phospholipid trafficking and membrane biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1197:257-90. [PMID: 7819268 DOI: 10.1016/0304-4157(94)90010-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- P Moreau
- URA 1811 CNRS, IBGC, University of Bordeaux II, France
| | | |
Collapse
|
20
|
|
21
|
Rusiñol AE, Cui Z, Chen MH, Vance JE. A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47012-3] [Citation(s) in RCA: 355] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Abstract
An NADH oxidase activity of animal and plant plasma membrane is described that is stimulated by hormones and growth factors. In plasma membranes of cancer cells and tissues, the activity appears to be constitutively activated and no longer hormone responsive. With drugs that inhibit the activity, cells are unable to grow although growth inhibition may be more related to a failure of the cells to enlarge than to a direct inhibition of mitosis. The hormone-stimulated activity in plasma membranes of plants and the constitutively activated NADH oxidase in tumor cell plasma membranes is inhibited by thiol reagents whereas the basal activity is not. These findings point to a thiol involvement in the action of the activated form of the oxidase. NADH oxidase oxidation by Golgi apparatus of rat liver is inhibited by brefeldin A plus GDP. Brefeldin A is a macrolide antibiotic inhibitor of membrane trafficking. A model is presented where the NADH oxidase functions as a thiol-disulfide oxidoreductase activity involved in the formation and breakage of disulfide bonds. The thiol-disulfide interchange is postulated as being associated with physical membrane displacement as encountered in cell enlargement or in vesicle budding. The model, although speculative, does provide a basis for further experimentation to probe a potential function for this enzyme system which, under certain conditions, exhibits a hormone- and growth factor-stimulated oxidation of NADH.
Collapse
Affiliation(s)
- D J Morré
- Department of Medicinal Chemistry and Pharmacognosy, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
23
|
Querfurth HW, Selkoe DJ. Calcium ionophore increases amyloid beta peptide production by cultured cells. Biochemistry 1994; 33:4550-61. [PMID: 8161510 DOI: 10.1021/bi00181a016] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Amyloid beta peptide (A beta) is released into the media of a variety of cells in culture during normal metabolism. The discovery of several missense mutations within or flanking the A beta region of the beta amyloid precursor protein (beta APP) in familial Alzheimer's disease provides strong evidence for a role of altered processing of beta APP in the pathogenesis of this disorder. The cellular mechanisms that regulate the relative utilization of the secretory pathway, which causes beta APP to be cleaved within the A beta domain, and the alternative proteolytic pathway, which produces intact A beta, are unknown. It is hypothesized that a number of neurodegenerative diseases, including Alzheimer's disease, are characterized by abnormal calcium metabolism. We investigated the effect of disordered calcium homeostasis on A beta production in human kidney 293 cells transfected with beta APP cDNA. A beta immunoprecipitated from the conditioned media of cells was compared to immunoprecipitated full-length and secreted forms of beta APP in both metabolic labeling and pulse-chase labeling paradigms. The calcium ionophore A23187 consistently increased the production of A beta approximately 3-fold. This effect was dependent on the presence of extracellular calcium in intact cells. Caffeine also increased A beta production, possibly through release of calcium from intracellular stores. The increase in A beta was cAMP-independent, and it was not mediated by a protein kinase C-dependent pathway, as treatment with phorbol esters decreased A beta levels. The effects of the ionophore on beta APP maturation and phosphorylation were also established. We conclude that elevation of intracellular calcium levels has an important effect on beta APP maturation and proteolytic processing and substantially enhances the production and release of the amyloidogenic A beta peptide.
Collapse
Affiliation(s)
- H W Querfurth
- Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
24
|
Dominant inhibitory mutants of ARF1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42277-0] [Citation(s) in RCA: 312] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
25
|
Young J, Kane L, Exley M, Wileman T. Regulation of selective protein degradation in the endoplasmic reticulum by redox potential. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36586-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
26
|
Kain S, Jen T, Firestone G. Glucocorticoid-regulated trafficking of mouse mammary tumor virus proteins in permeabilized hepatoma cells. Requirements of intracellular membrane transport for maturation of the cytoplasmic phosphorylated polyprotein. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36564-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
27
|
Schweizer A, Ericsson M, Bächi T, Griffiths G, Hauri HP. Characterization of a novel 63 kDa membrane protein. Implications for the organization of the ER-to-Golgi pathway. J Cell Sci 1993; 104 ( Pt 3):671-83. [PMID: 8314869 DOI: 10.1242/jcs.104.3.671] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Owing to the lack of appropriate markers the structural organization of the ER-to-Golgi pathway and the dynamics of its membrane elements have been elusive. To elucidate this organization we have taken a monoclonal antibody (mAb) approach. A mAb against a novel 63 kDa membrane protein (p63) was produced that identifies a large tubular network of smooth membranes in the cytoplasm of primate cells. The distribution of p63 overlaps with the ER-Golgi intermediate compartment, defined by a previously described 53 kDa marker protein (here termed ERGIC-53), as visualized by confocal laser scanning immunofluorescence microscopy and immunoelectron microscopy. The p63 compartment mediates protein transport from the ER to Golgi apparatus, as indicated by partial colocalization of p63 and vesicular stomatitis virus G protein in Vero cells cultured at 15 degrees C. Low temperatures and brefeldin A had little effect on the cellular distribution of p63, suggesting that this novel marker is a stably anchored resident protein of these pre-Golgi membranes. p63 and ERGIC-53 were enriched to a similar degree by the same subcellular fractionation procedure. These findings demonstrate an unanticipated complexity of the ER-Golgi interface and suggest that the ER-Golgi intermediate compartment defined by ERGIC-53 may be part of a greater network of smooth membranes.
Collapse
Affiliation(s)
- A Schweizer
- Department of Pharmacology, University of Basel, Switzerland
| | | | | | | | | |
Collapse
|
28
|
Watkins J, Hermanowski A, Balch W. Oligomerization of immunoglobulin G heavy and light chains in vitro. A cell-free assay to study the assembly of the endoplasmic reticulum. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53518-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
29
|
Bonatti S, Torrisi MR. The intermediate compartment between endoplasmic reticulum and Golgi complex in mammalian cells. Subcell Biochem 1993; 21:121-42. [PMID: 8256263 DOI: 10.1007/978-1-4615-2912-5_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- S Bonatti
- Department of Biochemistry and Medical Biotechnology, University of Naples Federico II, Italy
| | | |
Collapse
|
30
|
Kagiwada S, Murata M, Hishida R, Tagaya M, Yamashina S, Ohnishi S. In vitro fusion of rabbit liver Golgi membranes with liposomes. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54093-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
31
|
Stettler O, Zahraoui A, Moya KL, Tavitian B. Expression of the small GTP-binding protein Rab3A in the adult rat brain. Mol Cell Neurosci 1992; 3:497-507. [DOI: 10.1016/1044-7431(92)90062-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/1992] [Indexed: 10/26/2022] Open
|
32
|
Slomiany A, Grzelinska E, Grabska M, Yamaki K, Tamura S, Kasinathan C, Slomiany BL. Intracellular processes associated with glycoprotein transport and processing. Arch Biochem Biophys 1992; 298:167-75. [PMID: 1524425 DOI: 10.1016/0003-9861(92)90108-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The intracellular transport of mucus glycoprotein precursor (apomucin) from endoplasmic reticulum (ER) to Golgi was quantitated by the immunoprecipitation with 3G12 antimucin monoclonal antibody and by estimation of the apomucin glycosylation using UDP-[3H]galactose. The assembly of the entities carrying apomucin to Golgi was assessed by electron microscopy and by quantitation of the incorporation of [14C]choline, [14C]ethanolamine, and [14C]oleic acid into their lipids. The microscopic image of the isolated transport components revealed a population of 80- to 100-nm vesicles with occasional membranes of the ER used for their synthesis. On the average, the vesicles contained 82 ng apomucin/microgram of protein and 80-90% of the total incorporated lipid precursors. From that, 91% of [14C]choline was detected in phosphatidylcholine, and 9% in phosphatidylethanolamine, lysophosphatidylcholine, and sphingomyelin. With [14C]oleate, 54% of the label was incorporated into ceramide, diglyceride, and phosphatidic acid, 35% to phosphatidylcholine, 7% in phosphatidylethanolamine, and 2% in sphingomyelin. After incubation of the vesicles with Golgi, the apomucin was found glycosylated and the lipids of the transport vesicles incorporated into Golgi membranes. The fusion of the vesicular membranes was accompanied by the synthesis of sphingomyelin. In the Golgi, 39-55% of the radiolabeled phosphatidylcholine of transport vesicles was converted to sphingomyelin. The results indicate that the newly synthesized membranes of apomucin transporting vesicles are enriched in phosphoglycerides and ceramides. Upon fusion with the Golgi, the membranes of the vesicles are replenished with sphingomyelin by exchange reaction between phosphatidylcholine and ceramide.
Collapse
Affiliation(s)
- A Slomiany
- Research Center, University of Medicine and Dentistry of New Jersey, Newark 07103-2400
| | | | | | | | | | | | | |
Collapse
|
33
|
Oda K. Calcium depletion blocks proteolytic cleavages of plasma protein precursors which occur at the Golgi and/or trans-Golgi network. Possible involvement of Ca(2+)-dependent Golgi endoproteases. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41949-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Lahtinen U, Dahllöf B, Saraste J. Characterization of a 58 kDa cis-Golgi protein in pancreatic exocrine cells. J Cell Sci 1992; 103 ( Pt 2):321-33. [PMID: 1478936 DOI: 10.1242/jcs.103.2.321] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied the biochemical characteristics and localization of a 58 kDa cis-Golgi marker protein (p58) in rat pancreatic exocrine cells. The protein remained associated with membranes after extraction at alkaline pH and was largely resistant to proteases, added to intact microsomes. By electrophoresis p58 could be resolved into two bands which in two-dimensional gels separated into several charge variants around pI 5.5. This size and charge heterogeneity of p58 did not appear to be due to acylation, glycosylation or phosphorylation. In non-reduced gels p58 migrated as two kinetically related, high relative molecular mass forms, apparently corresponding to disulfide-linked homo-dimers and -hexamers. Immuno-electron microscopy localized p58 to both the fenestrated cis-Golgi cisternae and small Golgi vesicles or buds as well as large, pleiomorphic structures, scattered throughout the cells and associated with distinct smooth ER (endoplasmic reticulum) clusters. These findings correlated with cell fractionation results showing the concentration of p58 in two microsomal subfractions, banding at intermediate densities between the rough ER and trans-Golgi in sucrose gradients. Our results indicate that p58 is a major component of pre- and cis-Golgi elements and could be part of the transport machinery that operates in these membranes. Together with results obtained with other cell types, these observations suggest that the peripheral smooth ER clusters are involved in the early stages of the secretory pathway in the pancreatic acinar cells.
Collapse
Affiliation(s)
- U Lahtinen
- Ludwig Institute for Cancer Research, Stockholm Branch, Sweden
| | | | | |
Collapse
|
35
|
Slomiany A, Grzelinska E, Kasinathan C, Yamaki K, Palecz D, Slomiany BL. Function of intracellular phospholipase A2 in vectorial transport of apoproteins from ER to Golgi. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1992; 24:1397-406. [PMID: 1426521 DOI: 10.1016/0020-711x(92)90065-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. The cytosolic fraction required in in vitro reconstituted intracellular transport of mucus glycoprotein apopeptide (apomucin) was isolated and its potential as transport supporting factor assessed by the quantitation of the gastric apomucin transferred to Golgi. 2. The experiments with the fraction promoting transport and delivery of apomucin to Golgi revealed that the active protein has the property of phospholipase A2 (PLA2) which assists ER vesicles fusion with Golgi. 3. The ability of the 76 kDa PLA2 to hydrolyze phospholipids and to support transport and fusion of ER vesicles with Golgi was abolished by phosphorylation and regained following dephosphorylation. 4. The data provide evidence that 76 kDa intracellular PLA2 is responsible for the fusion of ER-transport vesicles with Golgi. The process of fusion is accomplished by generation of lysophospholipids in fusing membranes.
Collapse
Affiliation(s)
- A Slomiany
- Research Center, University of Medicine and Dentistry of New Jersey, Newark 07103-2400
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The recent identification of an endoplasmic reticulum-Golgi intermediate compartment has added to the complexity of the structural and functional organization of the early secretory pathway. Protein sorting along the endoplasmic reticulum-Golgi pathway depends on different signals and mechanisms, some of which guarantee recycling from various levels of the Golgi apparatus to biosynthetically earlier compartments.
Collapse
|
37
|
Slomiany A, Grzelinska E, Kasinathan C, Yamaki K, Palecz D, Slomiany BA, Slomiany BL. Biogenesis of endoplasmic reticulum transport vesicles transferring gastric apomucin from ER to Golgi. Exp Cell Res 1992; 201:321-9. [PMID: 1639131 DOI: 10.1016/0014-4827(92)90280-l] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rough endoplasmic reticulum (RER) transport vesicles were generated from gastric mucous cell RER microsomes in the presence of labeled precursors of phospholipids. The vesicles contained 7-10% of their proteins in the form of apomucin (cargo), and 80% of de novo synthesized phosphatidylcholine (PC) was incorporated into the vesicular membrane. In the absence of choline and ethanolamine precursors or in the presence of 3 mM N-ethylmaleimide (NEM), an inhibitor of CTP:phosphocholine cytidylyltransferase, formation of the transport vesicles, their enrichment in the newly synthesized PC, and the total synthesis of PC decreased by 86%, whereas in the presence of 3 mM Zn2+, complete blockage of vesicle formation and PC synthesis was observed. Analysis of the mucin-transporting vesicles indicated that the CTP:phosphocholine cytidylyltransferase and 1,2-diacyl-sn-glycerol:CDP-choline phosphotransferase remained associated with transport vesicles released from ER. The enzymes and other proteins separated from the vesicle surface prior to vesicle fusion with Golgi and the process was induced by phosphorylation. Based on the results of this study, it is proposed that the formation of the ER transport vesicles of gastric mucosal cells is in concert with synthesis of phospholipids and thus in part is regulated by phospholipid-synthesizing enzymes that reside on the membrane during its biogenesis and dissociate from its surface once the task is completed.
Collapse
Affiliation(s)
- A Slomiany
- Research Center, University of Medicine and Dentistry of New Jersey, Newark 07103-2400
| | | | | | | | | | | | | |
Collapse
|
38
|
ADP-ribosylation factor is required for vesicular trafficking between the endoplasmic reticulum and the cis-Golgi compartment. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42380-0] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
|
40
|
Davidson HW, Balch WE. Use of two-stage incubations to define sequential intermediates in endoplasmic reticulum to Golgi transport. Methods Enzymol 1992; 219:261-7. [PMID: 1487999 DOI: 10.1016/0076-6879(92)19027-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Identification of the temporal requirement for components through the use of two-stage incubations is valuable in dissecting the overall transport reaction into steps relevant to vesicle fission and those related to vesicle fusion. In the context of semiintact mammalian cells in which a functional vesicle intermediate has not been detected, components playing a role in targeting are presently difficult to identify. However, the two-stage incubations are particularly powerful when either the donor or acceptor compartments can be manipulated independently, as is the case for intra-Golgi transport using enriched Golgi fractions or in the case of ER-to-Golgi transport in perforated yeast, in which a vesicle intermediate can be physically isolated.
Collapse
Affiliation(s)
- H W Davidson
- Department of Cell and Molecular Biology, Scripps Research Institute, La Jolla, California 92037
| | | |
Collapse
|
41
|
Abstract
A genetic analysis of secretory pathway function in yeast was initiated some 12 years ago in the laboratory of Randy Schekman. These mutants held great promise in terms of providing an experimental system with which molecular participants of secretory pathway function could be investigated. This early promise has not failed. For the last five years, analysis of yeast secretory pathway function has been at the cutting edge of our understanding of the mechanisms by which proteins travel between intracellular compartments. In some cases, Sacch. cerevisiae has provided a valuable in vivo corroboration of the concepts derived from biochemical studies of mammalian intercompartmental protein transport in vitro. In other cases, studies conducted in the yeast system have defined previously unanticipated involvements for known catalytic activities in the secretory process. It is clear that yeast will continue to play a major role in setting the pace of research directed towards a detailed molecular understanding of protein secretion. Since it is now apparent that the basic strategies that underlie secretory pathway function have been conserved among eukaryotes, further exploitation of the powerful and complementary yeast and mammalian experimental systems guarantees that the next decade will see even greater progress towards our understanding of protein secretion in eukaryotic cells than did the first.
Collapse
Affiliation(s)
- A E Cleves
- Department of Microbiology, University of Illinois, Urbana
| | | |
Collapse
|
42
|
Opas M, Dziak E, Fliegel L, Michalak M. Regulation of expression and intracellular distribution of calreticulin, a major calcium binding protein of nonmuscle cells. J Cell Physiol 1991; 149:160-71. [PMID: 1939344 DOI: 10.1002/jcp.1041490120] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the present study we have demonstrated the presence of calreticulin, a major Ca(2+)-sequestering protein of nonmuscle cells, in a variety of cell types in tissue culture. The protein localizes to the endoplasmic reticulum in most cell types and also to the nuclear envelope or nucleoli-like structures in some cell types. Calreticulin is enriched in the rough endoplasmic reticulum, suggesting a possible involvement in protein synthesis. Calreticulin terminates with the KDEL-COOH sequence, which is likely responsible for its endoplasmic reticulum localization. Unlike some other KDEL proteins, calreticulin expression is neither heat-shock nor Ca(2+)-shock dependent. Using a variety of metabolic inhibitors, we have shown that the pool of calreticulin in L6 cells has a relatively slow turnover and a stable intracellular distribution. In proliferating muscle cells in culture (both L6 and human skeletal muscle) calreticulin is present in the endoplasmic reticulum, and additional intranuclear staining is observed. When fusion of the L6 cells is inhibited with either a high serum concentration or TGF-beta or TPA, the nucleolar staining by anticalreticulin antibodies is diminished, although the presence of calreticulin in the endoplasmic reticulum remains unchanged. In contrast, in differentiated (i.e., fused) muscle cells neither intranuclear nor intracellular staining for calreticulin is present. We conclude, therefore, that calreticulin is abundant in the endoplasmic reticulum in proliferating myoblasts, while it is present in only small amounts in sarcoplasmic reticulum membranes in terminally differentiated myotubes. We propose a model for the domain structure of calreticulin that may explain the differential subcellular distribution of this protein. Because of its widespread distribution in nonmuscle tissues, we postulate that calreticulin is a multifunctional protein that plays an important role in Ca(2+) sequestering and thus that it is the nonmuscle analog of calsequestrin.
Collapse
Affiliation(s)
- M Opas
- Department of Anatomy, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
43
|
Schwaninger R, Beckers C, Balch W. Sequential transport of protein between the endoplasmic reticulum and successive Golgi compartments in semi-intact cells. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98802-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|