1
|
Zhang L, Zhao X, Hu J, Li T, Chen HZ, Zhang A, Wang H, Yu J, Zhang L. PRPS2 enhances RNA m 6A methylation by stimulating SAM synthesis through enzyme-dependent and independent mechanisms. Nat Commun 2025; 16:3966. [PMID: 40295500 PMCID: PMC12037730 DOI: 10.1038/s41467-025-59119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Cancer cells exploit altered metabolic pathways to dynamically regulate epigenetic methylation and thus promote tumorigenesis and metastasis. In various human cancers, such as lung adenocarcinoma, the level of a key cellular metabolite, S-adenosylmethionine (SAM), is prominently upregulated for RNA hypermethylation as the methyl donor. However, the specific mechanisms by which cancer cells produce SAM to sustain RNA methylation remain elusive. Here, we demonstrate that PRPS2, a phosphoribosyl pyrophosphate synthetase isoform involved in the first and rate-limiting step of the purine biosynthesis pathway, exhibits distinct oncogenic functionality in regulating RNA methylation, unlike its homolog PRPS1. PRPS2 utilizes four non-conserved key residues to bypass the typical ADP/GDP allosteric feedback inhibition, enabling sustained excess production of newly synthesized ATP. Moreover, PRPS2 stabilizes methionine adenosyltransferase 2 A (MAT2A) through direct interactions to positively stimulate ATP utilization and SAM synthesis for RNA m6A specific methylation via the WTAP/METTL3/METTL14 methyltransferase complex, thereby promoting lung tumorigenesis. Our study links nucleotide biosynthesis with RNA epigenetics in cancer progression through the PRPS2-MAT2A-WTAP/METTL3/METTL14 axis, and elucidates both enzyme-dependent and independent functions of PRPS2. These findings have significant implications for developing targeted therapies for cancers associated with PRPS2 abnormalities.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jingyan Hu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Tingting Li
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Hong-Zhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ao Zhang
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Wang
- The Division of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Karki BR, Macmillan AC, Vicente-Muñoz S, Greis KD, Romick LE, Cunningham JT. Evolutionary origins and innovations sculpting the mammalian PRPS enzyme complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.01.616059. [PMID: 39411161 PMCID: PMC11476008 DOI: 10.1101/2024.10.01.616059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The phosphoribosyl pyrophosphate synthetase (PRPS) enzyme conducts a chokepoint reaction connecting central carbon metabolism and nucleotide production pathways, making it essential for life1,2. Here, we show that the presence of multiple PRPS-encoding genes is a hallmark trait of eukaryotes, and we trace the evolutionary origins and define the individual functions of each of the five mammalian PRPS homologs - three isozymes (one testis-restricted)3,4 and two non-enzymatic associated proteins (APs)5,6 - which we demonstrate operate together as a large molecular weight complex capable of attaining a heterogeneous array of functional multimeric configurations. Employing a repertoire of isogenic fibroblast clones in all viable individual or combinatorial assembly states, we define preferential interactions between subunits, and we show that cells lacking PRPS2, PRPSAP1, and PRPSAP2 render PRPS1 into aberrant homo-oligomeric assemblies with diminished metabolic flux and impaired proliferative capacity. We demonstrate how numerous evolutionary innovations in the duplicated genes have created specialized roles for individual complex members and identify translational control mechanisms that enable fine-tuned regulation of PRPS assembly and activity, which provide clues into the positive and negative selective pressures that facilitate metabolic flexibility and tissue specialization in advanced lifeforms. Collectively, our study demonstrates how evolution has transformed a single PRPS gene into a multimeric complex endowed with functional and regulatory features that govern cellular biochemistry.
Collapse
Affiliation(s)
- Bibek R. Karki
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Austin C. Macmillan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Sara Vicente-Muñoz
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Kenneth D. Greis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lindsey E. Romick
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA
| | - J. Tom Cunningham
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
3
|
Ugbogu EA, Schweizer LM, Schweizer M. Contribution of Model Organisms to Investigating the Far-Reaching Consequences of PRPP Metabolism on Human Health and Well-Being. Cells 2022; 11:1909. [PMID: 35741038 PMCID: PMC9221600 DOI: 10.3390/cells11121909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Phosphoribosyl pyrophosphate synthetase (PRS EC 2.7.6.1) is a rate-limiting enzyme that irreversibly catalyzes the formation of phosphoribosyl pyrophosphate (PRPP) from ribose-5-phosphate and adenosine triphosphate (ATP). This key metabolite is required for the synthesis of purine and pyrimidine nucleotides, the two aromatic amino acids histidine and tryptophan, the cofactors nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+), all of which are essential for various life processes. Despite its ubiquity and essential nature across the plant and animal kingdoms, PRPP synthetase displays species-specific characteristics regarding the number of gene copies and architecture permitting interaction with other areas of cellular metabolism. The impact of mutated PRS genes in the model eukaryote Saccharomyces cerevisiae on cell signalling and metabolism may be relevant to the human neuropathies associated with PRPS mutations. Human PRPS1 and PRPS2 gene products are implicated in drug resistance associated with recurrent acute lymphoblastic leukaemia and progression of colorectal cancer and hepatocellular carcinoma. The investigation of PRPP metabolism in accepted model organisms, e.g., yeast and zebrafish, has the potential to reveal novel drug targets for treating at least some of the diseases, often characterized by overlapping symptoms, such as Arts syndrome and respiratory infections, and uncover the significance and relevance of human PRPS in disease diagnosis, management, and treatment.
Collapse
Affiliation(s)
- Eziuche A. Ugbogu
- School of Life Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK; (E.A.U.); (L.M.S.)
| | - Lilian M. Schweizer
- School of Life Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK; (E.A.U.); (L.M.S.)
| | - Michael Schweizer
- Institute of Biological Chemistry, Biophysics & Engineering (IB3), School of Engineering &Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK
| |
Collapse
|
4
|
í Kongsstovu S, Dahl HA, Gislason H, Homrum E, Jacobsen JA, Flicek P, Mikalsen S. Identification of male heterogametic sex-determining regions on the Atlantic herring Clupea harengus genome. JOURNAL OF FISH BIOLOGY 2020; 97:190-201. [PMID: 32293027 PMCID: PMC7115899 DOI: 10.1111/jfb.14349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The sex determination system of Atlantic herring Clupea harengus L., a commercially important fish, was investigated. Low coverage whole-genome sequencing of 48 females and 55 males and a genome-wide association study revealed two regions on chromosomes 8 and 21 associated with sex. The genotyping data of the single nucleotide polymorphisms associated with sex showed that 99.4% of the available female genotypes were homozygous, whereas 68.6% of the available male genotypes were heterozygous. This is close to the theoretical expectation of homo/heterozygous distribution at low sequencing coverage when the males are factually heterozygous. This suggested a male heterogametic sex determination system in C. harengus, consistent with other species within the Clupeiformes group. There were 76 protein coding genes on the sex regions but none of these genes were previously reported master sex regulation genes, or obviously related to sex determination. However, many of these genes are expressed in testis or ovary in other species, but the exact genes controlling sex determination in C. harengus could not be identified.
Collapse
Affiliation(s)
- Sunnvør í Kongsstovu
- Amplexa Genetics A/STórshavnFaroe Islands
- Faculty of Science and TechnologyUniversity of the Faroe IslandsTórshavnFaroe Islands
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteCambridgeUK
| | | | - Hannes Gislason
- Faculty of Science and TechnologyUniversity of the Faroe IslandsTórshavnFaroe Islands
| | - Eydna Homrum
- Faroe Marine Research InstituteTórshavnFaroe Islands
| | | | - Paul Flicek
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteCambridgeUK
| | - Svein‐Ole Mikalsen
- Faculty of Science and TechnologyUniversity of the Faroe IslandsTórshavnFaroe Islands
| |
Collapse
|
5
|
Huang X, Ye H, Chung JS. The presence of an insulin-like androgenic gland factor (IAG) and insulin-like peptide binding protein (ILPBP) in the ovary of the blue crab, Callinectes sapidus and their roles in ovarian development. Gen Comp Endocrinol 2017; 249:64-70. [PMID: 28479084 DOI: 10.1016/j.ygcen.2017.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/04/2017] [Accepted: 05/02/2017] [Indexed: 12/20/2022]
Abstract
Insulin-like androgenic gland factor (IAG) that is produced by the male androgenic gland (AG), plays a role in sexual differentiation and maintenance of male secondary sex characteristics in decapod crustaceans. With an earlier finding of IAG expression in a female Callinectes sapidus ovary, we aimed to examine a putative role of IAG during the ovarian development of this species. To this end, the full-length cDNA sequence of the ovarian CasIAG (termed CasIAG-ova) has been isolated. The predicted mature peptide sequence of CasIAG-ova is identical to that of the IAG from the AG, except in their signal peptide regions. The CasIAG-ova contains an alternative initiation codon (UUG) as the start codon, which suggests that the translational regulation of CasIAG-ova may differ from that of the IAG from AG. To define the function of CasIAG-ova, the expressions of CasIAG-ova as well as its putative binding protein, insulin-like peptide binding protein (ILPBP), are measured in the ovaries at various developmental stages obtained from different seasons. Season affects both CasIAG and ILPBP expression in the ovary. Overall, summer females at earlier ovarian stages contain high levels of CasIAG and ILPBP than spring or fall females. These findings indicate that CasIAG-ova and CasILPBP may be involved in the ovarian development. When comparing the levels of CasIAG and CasILPBP in the ovary, the latter are much higher (∼10-10000 fold) than the former. Expression patterns of CasILPBP differ from those of CasIAG-ova during ovarian development and by season, suggesting that ILPBP may have an additional role in ovarian development rather than a function of a putative binding protein of IAG.
Collapse
Affiliation(s)
- Xiaoshuai Huang
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, 701 E. Pratt Street, Baltimore, MD 21202, USA; College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - J Sook Chung
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, 701 E. Pratt Street, Baltimore, MD 21202, USA.
| |
Collapse
|
6
|
Del Valle I, Buonocore F, Duncan AJ, Lin L, Barenco M, Parnaik R, Shah S, Hubank M, Gerrelli D, Achermann JC. A genomic atlas of human adrenal and gonad development. Wellcome Open Res 2017. [PMID: 28459107 DOI: 10.12688/wellcomeopenres.11253.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In humans, the adrenal glands and gonads undergo distinct biological events between 6-10 weeks post conception (wpc), such as testis determination, the onset of steroidogenesis and primordial germ cell development. However, relatively little is currently known about the genetic mechanisms underlying these processes. We therefore aimed to generate a detailed genomic atlas of adrenal and gonad development across these critical stages of human embryonic and fetal development. METHODS RNA was extracted from 53 tissue samples between 6-10 wpc (adrenal, testis, ovary and control). Affymetrix array analysis was performed and differential gene expression was analysed using Bioconductor. A mathematical model was constructed to investigate time-series changes across the dataset. Pathway analysis was performed using ClueGo and cellular localisation of novel factors confirmed using immunohistochemistry. RESULTS Using this approach, we have identified novel components of adrenal development (e.g. ASB4, NPR3) and confirmed the role of SRY as the main human testis-determining gene. By mathematical modelling time-series data we have found new genes up-regulated with SOX9 in the testis (e.g. CITED1), which may represent components of the testis development pathway. We have shown that testicular steroidogenesis has a distinct onset at around 8 wpc and identified potential novel components in adrenal and testicular steroidogenesis (e.g. MGARP, FOXO4, MAP3K15, GRAMD1B, RMND2), as well as testis biomarkers (e.g. SCUBE1). We have also shown that the developing human ovary expresses distinct subsets of genes (e.g. OR10G9, OR4D5), but enrichment for established biological pathways is limited. CONCLUSION This genomic atlas is revealing important novel aspects of human development and new candidate genes for adrenal and reproductive disorders.
Collapse
Affiliation(s)
- Ignacio Del Valle
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Federica Buonocore
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Andrew J Duncan
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Lin Lin
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Martino Barenco
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Rahul Parnaik
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sonia Shah
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia.,Institute of Cardiovascular Science, University College London, London, UK
| | - Mike Hubank
- The Centre for Molecular Pathology, Royal Marsden Hospital, Sutton, UK
| | - Dianne Gerrelli
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
| | - John C Achermann
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
7
|
Del Valle I, Buonocore F, Duncan AJ, Lin L, Barenco M, Parnaik R, Shah S, Hubank M, Gerrelli D, Achermann JC. A genomic atlas of human adrenal and gonad development. Wellcome Open Res 2017; 2:25. [PMID: 28459107 PMCID: PMC5407452 DOI: 10.12688/wellcomeopenres.11253.2] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background: In humans, the adrenal glands and gonads undergo distinct biological events between 6-10 weeks post conception (wpc), such as testis determination, the onset of steroidogenesis and primordial germ cell development. However, relatively little is currently known about the genetic mechanisms underlying these processes. We therefore aimed to generate a detailed genomic atlas of adrenal and gonad development across these critical stages of human embryonic and fetal development. Methods: RNA was extracted from 53 tissue samples between 6-10 wpc (adrenal, testis, ovary and control). Affymetrix array analysis was performed and differential gene expression was analysed using Bioconductor. A mathematical model was constructed to investigate time-series changes across the dataset. Pathway analysis was performed using ClueGo and cellular localisation of novel factors confirmed using immunohistochemistry. Results: Using this approach, we have identified novel components of adrenal development (e.g.
ASB4,
NPR3) and confirmed the role of
SRY as the main human testis-determining gene. By mathematical modelling time-series data we have found new genes up-regulated with
SOX9 in the testis (e.g.
CITED1), which may represent components of the testis development pathway. We have shown that testicular steroidogenesis has a distinct onset at around 8 wpc and identified potential novel components in adrenal and testicular steroidogenesis (e.g.
MGARP,
FOXO4,
MAP3K15,
GRAMD1B,
RMND2), as well as testis biomarkers (e.g.
SCUBE1). We have also shown that the developing human ovary expresses distinct subsets of genes (e.g.
OR10G9,
OR4D5), but enrichment for established biological pathways is limited. Conclusion: This genomic atlas is revealing important novel aspects of human development and new candidate genes for adrenal and reproductive disorders.
Collapse
Affiliation(s)
- Ignacio Del Valle
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Federica Buonocore
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Andrew J Duncan
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Lin Lin
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Martino Barenco
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Rahul Parnaik
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sonia Shah
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia.,Institute of Cardiovascular Science, University College London, London, UK
| | - Mike Hubank
- The Centre for Molecular Pathology, Royal Marsden Hospital, Sutton, UK
| | - Dianne Gerrelli
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
| | - John C Achermann
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
8
|
Yu H, Zhang Y, Zhang D, Lu Y, He H, Zheng F, Wang M. Identification of a Ribose-Phosphate Pyrophosphokinase that Can Interact In Vivo with the Anaphase Promoting Complex/Cyclosome. Int J Mol Sci 2017; 18:ijms18040617. [PMID: 28358323 PMCID: PMC5412264 DOI: 10.3390/ijms18040617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/26/2017] [Accepted: 03/06/2017] [Indexed: 11/25/2022] Open
Abstract
5-Phospho-d-ribosyl-1-diphosphate (PRPP) synthase (PRS) catalyzes the biosynthesis of PRPP, which is an important compound of metabolism in most organisms. However, no PRS genes have been cloned, let alone studied for their biological function in rubber tree. In this study, we identify a novel protein (PRS4) that interacts in vivo with rubber tree anaphase promoting complex/cyclosome (APC/C) subunit 10 (HbAPC10) by yeast two-hybrid assays. PRS4 has been cloned from rubber tree and named as HbPRS4. Blastp search in the genome of Arabidopsis thaliana showed that HbPRS4 shared the highest similarity with AtPRS4, with 80.71% identity. qRT-PCR was used to determine the expression of HbPRS4 in different tissues and under various treatments. HbPRS4 was preferentially expressed in the bark. Moreover, the expression level of HbPRS4 was significantly induced by the proteasome inhibitor MG132 treatment, suggesting it might be regulated by the ubiquitin/26S proteasome pathway. The amount of HbPRS4 transcript was obviously decreased after mechanical wounding and abscisic acid (ABA) treatments, while a slight increase was observed at 24 h after ABA treatment. HbPRS4 transcript in the latex was significantly upregulated by ethephon (ET) and methyl jasmonate (MeJA) treatments. These results suggested that HbPRS4 may be a specific substrate of HbAPC10 indirectly regulating natural rubber biosynthesis in rubber tree.
Collapse
Affiliation(s)
- Haiyang Yu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Yu Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Dong Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Yanxi Lu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Haixia He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Fucong Zheng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Meng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
9
|
Stoerger C, Flockerzi V. The transient receptor potential cation channel subfamily V member 6 (TRPV6): genetics, biochemical properties, and functions of exceptional calcium channel proteins. Biochem Cell Biol 2014; 92:441-8. [PMID: 25372600 DOI: 10.1139/bcb-2014-0063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The transient receptor potential cation channel subfamily V member 6 (TRPV6) gene and cDNA were identified 15 years ago and exceptional observations on TrpV6 proteins and their function as a Ca(2+)-selective cation channel have been made since then. In this review we will summarize recent studies regarding the genetics, biochemical properties, and physiological functions of murine and human TrpV6 channel proteins. We will focus on TRPV6 gene polymorphisms, the start of TRPV6 translation at a non-AUG codon and the functions of TRPV6 in intestinal Ca(2+) uptake, sperm maturation, and male fertility.
Collapse
Affiliation(s)
- Christof Stoerger
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | | |
Collapse
|
10
|
Abstract
TRPV6 (former synonyms ECAC2, CaT1, CaT-like) displays several specific features which makes it unique among the members of the mammalian Trp gene family (1) TRPV6 (and its closest relative, TRPV5) are the only highly Ca(2+)-selective channels of the entire TRP superfamily (Peng et al. 1999; Wissenbach et al. 2001; Voets et al. 2004). (2) Translation of Trpv6 initiates at a non-AUG codon, at ACG, located upstream of the annotated AUG, which is not used for initiation (Fecher-Trost et al. 2013). The ACG codon is nevertheless decoded by methionine. Not only a very rare event in eukaryotic biology, the full-length TRPV6 protein existing in vivo comprises an amino terminus extended by 40 amino acid residues compared to the annotated truncated TRPV6 protein which has been used in most studies on TRPV6 channel activity so far. (In the following numbering occurs according to this full-length protein, with the numbers of the so far annotated truncated protein in brackets). (3) Only in humans a coupled polymorphism of Trpv6 exists causing three amino acid exchanges and resulting in an ancestral Trpv6 haplotype and a so-called derived Trpv6 haplotype (Wissenbach et al. 2001). The ancestral allele encodes the amino acid residues C197(157), M418(378) and M721(681) and the derived alleles R197(157), V418(378) and T721(681). The ancestral haplotype is found in all species, the derived Trpv6 haplotype has only been identified in humans, and its frequency increases with the distance to the African continent. Apparently the Trpv6 gene has been a strong target for selection in humans, and its derived variant is one of the few examples showing consistently differences to the orthologues genes of other primates (Akey et al. 2004, 2006; Stajich and Hahn 2005; Hughes et al. 2008). (4) The Trpv6 gene expression is significantly upregulated in several human malignancies including the most common cancers, prostate and breast cancer (Wissenbach et al. 2001; Zhuang et al. 2002; Fixemer et al. 2003; Bolanz et al. 2008). (5) Male mice lacking functional TRPV6 channels are hypo-/infertile making TRPV6 one of the very few channels essential for male fertility (Weissgerber et al. 2011, 2012).
Collapse
Affiliation(s)
- Claudia Fecher-Trost
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421, Homburg, Germany
| | | | | |
Collapse
|
11
|
Cell cycle regulation of purine synthesis by phosphoribosyl pyrophosphate and inorganic phosphate. Biochem J 2013; 454:91-9. [PMID: 23734909 DOI: 10.1042/bj20130153] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cells must increase synthesis of purine nucleotides/deoxynucleotides before or during S-phase. We found that rates of purine synthesis via the de novo and salvage pathways increased 5.0- and 3.3-fold respectively, as cells progressed from mid-G1-phase to early S-phase. The increased purine synthesis could be attributed to a 3.2-fold increase in intracellular PRPP (5-phosphoribosyl-α-1-pyrophosphate), a rate-limiting substrate for de novo and salvage purine synthesis. PRPP can be produced by the oxidative and non-oxidative pentose phosphate pathways, and we found a 3.1-fold increase in flow through the non-oxidative pathway, with no change in oxidative pathway activity. Non-oxidative pentose phosphate pathway enzymes showed no change in activity, but PRPP synthetase is regulated by phosphate, and we found that phosphate uptake and total intracellular phosphate concentration increased significantly between mid-G1-phase and early S-phase. Over the same time period, PRPP synthetase activity increased 2.5-fold when assayed in the absence of added phosphate, making enzyme activity dependent on cellular phosphate at the time of extraction. We conclude that purine synthesis increases as cells progress from G1- to S-phase, and that the increase is from heightened PRPP synthetase activity due to increased intracellular phosphate.
Collapse
|
12
|
Fecher-Trost C, Wissenbach U, Beck A, Schalkowsky P, Stoerger C, Doerr J, Dembek A, Simon-Thomas M, Weber A, Wollenberg P, Ruppert T, Middendorff R, Maurer HH, Flockerzi V. The in vivo TRPV6 protein starts at a non-AUG triplet, decoded as methionine, upstream of canonical initiation at AUG. J Biol Chem 2013; 288:16629-16644. [PMID: 23612980 DOI: 10.1074/jbc.m113.469726] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPV6 channels function as epithelial Ca(2+) entry pathways in the epididymis, prostate, and placenta. However, the identity of the endogenous TRPV6 protein relies on predicted gene coding regions and is only known to a certain level of approximation. We show that in vivo the TRPV6 protein has an extended N terminus. Translation initiates at a non-AUG codon, at ACG, which is decoded by methionine and which is upstream of the annotated AUG, which is not used for initiation. The in vitro properties of channels formed by the extended full-length TRPV6 proteins and the so-far annotated and smaller TRPV6 are similar, but the extended N terminus increases trafficking to the plasma membrane and represents an additional scaffold for channel assembly. The increased translation of the smaller TRPV6 cDNA version may overestimate the in vivo situation where translation efficiency may represent an additional mechanism to tightly control the TRPV6-mediated Ca(2+) entry to prevent deleterious Ca(2+) overload.
Collapse
Affiliation(s)
- Claudia Fecher-Trost
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany.
| | - Ulrich Wissenbach
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany.
| | - Andreas Beck
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Pascal Schalkowsky
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Christof Stoerger
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Janka Doerr
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Anna Dembek
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Martin Simon-Thomas
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Armin Weber
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Peter Wollenberg
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Thomas Ruppert
- Zentrum für Molekulare Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Ralf Middendorff
- Institut für Anatomie und Zellbiologie, Justus Liebig Universität Gieβen, Aulweg 123, 35385 Giessen, Germany
| | - Hans H Maurer
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Veit Flockerzi
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany.
| |
Collapse
|
13
|
Geoghegan KF, Feng X, Chang JS, Kelleher K, Wu PW, Lin L, Rajamohan F. Initiation of translation at an upstream non-AUG codon accounting for N-terminally extended minor forms of recombinant proteins expressed in insect cells. Protein Expr Purif 2010; 76:72-8. [PMID: 20888915 DOI: 10.1016/j.pep.2010.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 09/26/2010] [Accepted: 09/27/2010] [Indexed: 11/29/2022]
Abstract
When the 34 kDa kinase domain of human spleen tyrosine kinase (Syk-KD) was expressed as a C-terminally His-tagged protein in baculovirus-infected Sf-21 insect cells, the purified protein included two forms that migrated slightly differently in SDS-polyacrylamide gel electrophoresis. Intact mass analysis and LC-MS/MS peptide mapping showed that the major and faster-migrating product had the intended amino-acid sequence and 0-6 phosphorylations. This material accounted for about 95% of the purified protein. The minor product was Syk-KD with a 26 amino-acid N-terminal extension. The result suggested the existence of an upstream alternative site for the initiation of translation, and this proved to be an ACG codon derived from the pBacPAK9 vector used to express Syk-KD. The ACG codon was preceded and followed by Kozak-type sequence elements (a purine in the -3 position and a G in the +4 position) that would have enhanced the viability of initiation at ACG. The initiating amino-acid residue was Met for both minor and major products, and both forms of the protein were α-N-acetylated. For the minor product, protein intact mass analysis and peptide mapping both gave results in agreement with the sequence predicted from the DNA. A similar result with the same underlying cause was obtained with insect cell expression of full-length Syk. It appears that similar results are possible whenever this vector is used.
Collapse
|
14
|
Gerashchenko MV, Su D, Gladyshev VN. CUG start codon generates thioredoxin/glutathione reductase isoforms in mouse testes. J Biol Chem 2009; 285:4595-602. [PMID: 20018845 DOI: 10.1074/jbc.m109.070532] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mammalian cytosolic and mitochondrial thioredoxin reductases are essential selenocysteine-containing enzymes that control thioredoxin functions. Thioredoxin/glutathione reductase (TGR) is a third member of this enzyme family. It has an additional glutaredoxin domain and shows highest expression in testes. Herein, we found that human and several other mammalian TGR genes lack any AUG codons that could function in translation initiation. Although mouse and rat TGRs have such codons, we detected protein sequences upstream of them by immunoblot assays and direct proteomic analyses. Further gene engineering and expression analyses demonstrated that a CUG codon, located upstream of the sequences previously thought to initiate translation, is the actual start codon in mouse TGR. The use of this codon relies on the Kozak consensus sequence and ribosome-scanning mechanism. However, CUG serves as an inefficient start codon that allows downstream initiation, thus generating two isoforms of the enzyme in vivo and in vitro. The use of CUG evolved in mammalian TGRs, and in some of these organisms, GUG is used instead. The newly discovered longer TGR form shows cytosolic localization in cultured cells and is expressed in spermatids in mouse testes. This study shows that CUG codon is used as an inefficient start codon to generate protein isoforms in mouse.
Collapse
Affiliation(s)
- Maxim V Gerashchenko
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588, USA
| | | | | |
Collapse
|
15
|
Valproic acid- and lithium-sensitivity in prs mutants of Saccharomyces cerevisiae. Biochem Soc Trans 2009; 37:1115-20. [PMID: 19754463 DOI: 10.1042/bst0371115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prs [PRPP (phosphoribosyl pyrophosphate) synthetase] catalyses the transfer of pyrophosphate from ATP to ribose 5-phosphate, thereby activating the pentose sugar for incorporation into purine and pyrimidine nucleotides. The Saccharomyces cerevisiae genome contains five genes, PRS1-PRS5, whose products display characteristic PRPP and bivalent-cation-binding sites of Prs polypeptides. Deletion of one or more of the five PRS genes has far-reaching and unexpected consequences, e.g. impaired cell integrity, temperature-sensitivity and sensitivity to VPA (valproic acid) and LiCl. CTP pools in prs1Delta and prs3Delta are reduced to 12 and 31% of the wild-type respectively, resulting in an imbalance in phospholipid metabolism which may have an impact on the intracellular inositol pool which is affected by the administration of either VPA or LiCl. Overexpression of CTP synthetase in prs1Delta prs3Delta strains partially reverses the VPA-sensitive phenotype. Yeast two-hybrid screening revealed that Prs3 and the yeast orthologue of GSK3 (glycogen synthase kinase 3), Rim11, a serine/threonine kinase involved in several signalling pathways, interact with each other. Furthermore, Prs5, an essential partner of Prs3, which also interacts with GSK3 contains three neighbouring phosphorylation sites, typical of GSK3 activation. These studies on yeast PRPP synthetases bring together and expand the current theories for the mood-stabilizing effects of VPA and LiCl in bipolar disorder.
Collapse
|
16
|
Li S, Lu Y, Peng B, Ding J. Crystal structure of human phosphoribosylpyrophosphate synthetase 1 reveals a novel allosteric site. Biochem J 2007; 401:39-47. [PMID: 16939420 PMCID: PMC1698673 DOI: 10.1042/bj20061066] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PRPP (phosphoribosylpyrophosphate) is an important metabolite essential for nucleotide synthesis and PRS (PRPP synthetase) catalyses synthesis of PRPP from R5P (ribose 5-phosphate) and ATP. The enzymatic activity of PRS is regulated by phosphate ions, divalent metal cations and ADP. In the present study we report the crystal structures of recombinant human PRS1 in complexes with SO4(2-) ions alone and with ATP, Cd2+ and SO4(2-) ions respectively. The AMP moiety of ATP binds at the ATP-binding site, and a Cd2+ ion binds at the active site and in a position to interact with the beta- and gamma-phosphates of ATP. A SO4(2-) ion, an analogue of the activator phosphate, was found to bind at both the R5P-binding site and the allosteric site defined previously. In addi-tion, an extra SO4(2-) binds at a site at the dimer interface between the ATP-binding site and the allosteric site. Binding of this SO4(2-) stabilizes the conformation of the flexible loop at the active site, leading to the formation of the active, open conformation which is essential for binding of ATP and initiation of the catalytic reaction. This is the first time that structural stabilization at the active site caused by binding of an activator has been observed. Structural and biochemical data show that mutations of some residues at this site influence the binding of SO4(2-) and affect the enzymatic activity. The results in the present paper suggest that this new SO4(2-)-binding site is a second allosteric site to regulate the enzymatic activity which might also exist in other eukaryotic PRSs (except plant PRSs of class II), but not in bacterial PRSs.
Collapse
Affiliation(s)
- Sheng Li
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
- †Graduate School of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Yongcheng Lu
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
- †Graduate School of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Baozhen Peng
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Jianping Ding
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
- To whom correspondence should be addressed (email )
| |
Collapse
|
17
|
Takahashi K, Maruyama M, Tokuzawa Y, Murakami M, Oda Y, Yoshikane N, Makabe KW, Ichisaka T, Yamanaka S. Evolutionarily conserved non-AUG translation initiation in NAT1/p97/DAP5 (EIF4G2). Genomics 2005; 85:360-71. [PMID: 15718103 DOI: 10.1016/j.ygeno.2004.11.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 11/22/2004] [Indexed: 11/17/2022]
Abstract
Only a few cases of exclusive translation initiation at non-AUG codons have been reported. We recently demonstrated that mammalian NAT1 mRNA, encoded by EIF4G2, uses GUG as its only translation initiation codon. In this study, we identified NAT1 orthologs from chicken, Xenopus, and zebrafish and found that in all species, the GUG codon also serves as the initiation codon. In all species, the GUG codon fulfilled the reported requirements for non-AUG initiation: an optimal Kozak motif and a downstream hairpin structure. Site-directed mutagenesis showed that nucleotides at positions -3 and +4 are critical for the GUG-mediated translation initiation in vitro. We found that NAT1 orthologs in Drosophila melanogaster and Halocynthia roretzi also use non-AUG start codons, demonstrating evolutionary conservation of the noncanonical translation initiation.
Collapse
Affiliation(s)
- Kazutoshi Takahashi
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Ikoma 8916-5, Nara 630-0101, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Mammalian sex chromosomes have undergone profound changes since evolving from ancestral autosomes. By examining retroposed genes in the human and mouse genomes, we demonstrate that, during evolution, the mammalian X chromosome has generated and recruited a disproportionately high number of functional retroposed genes, whereas the autosomes experienced lower gene turnover. Most autosomal copies originating from X-linked genes exhibited testis-biased expression. Such export is incompatible with mutational bias and is likely driven by natural selection to attain male germline function. However, the excess recruitment is consistent with a combination of both natural selection and mutational bias.
Collapse
Affiliation(s)
- J J Emerson
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
19
|
Becker MA, Ahmed M. Cell type-specific differential expression of human PRPP synthetase (PRPS) genes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 486:5-10. [PMID: 11783526 DOI: 10.1007/0-306-46843-3_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- M A Becker
- Department of Medicine, The University of Chicago, University of Chicago Medical Center, Illinois 60637, USA
| | | |
Collapse
|
20
|
Becker MA. Phosphoribosylpyrophosphate synthetase and the regulation of phosphoribosylpyrophosphate production in human cells. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 69:115-48. [PMID: 11550793 DOI: 10.1016/s0079-6603(01)69046-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
between purine nucleoside diphosphate inhibition and inorganic phosphate (Pi) activation; and intracellular concentration of the PRS1 isoform. The operation of additional determinants of rates of PRPP synthesis in human cells is suggested by: (1) multiple PRS isoforms with distinctive physical and kinetic properties; (2) nearly immediate activation of intracellular PRPP synthesis in response to mitogens, growth-promoters, and increased intracellular Mg2+ concentrations; (3) tissue-specific differences in PRS1 and PRS2 transcript and isoform expression; and (4) reversible association of PRS subunits with one another and/or with PRS-associated proteins (PAPs), as a result of which the catalytic and perhaps regulatory properties of PRS isoforms are modified.
Collapse
Affiliation(s)
- M A Becker
- The Unversity of Chicago, University of Chicago Medical Center, Illinois 60637, USA
| |
Collapse
|
21
|
Lagacé M, Xuan JY, Young SS, McRoberts C, Maier J, Rajcan-Separovic E, Korneluk RG. Genomic organization of the X-linked inhibitor of apoptosis and identification of a novel testis-specific transcript. Genomics 2001; 77:181-8. [PMID: 11597143 DOI: 10.1006/geno.2001.6635] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we report the genomic organization and mapping of the X-linked inhibitor of apoptosis gene (BIRC4, also known as XIAP and hILP) and the identification of a closely related transcript. BIRC4 is located on Xq25 and is composed of seven exons. The intron/exon structure is highly conserved between the mouse homologue and its human counterpart. Four bands cross-react with a BIRC4 coding region probe on a genomic Southern blot. One of these cross-reactive bands encodes an intronless gene that expresses a 2.2-kb transcript solely in the testis. This testis-specific transcript contains a putative open reading frame (ORF) that is homologous to the carboxy-terminal end of BIRC4; overexpression of this ORF shows protective effects against BAX-induced apoptosis.
Collapse
Affiliation(s)
- M Lagacé
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Tailor CS, Marin M, Nouri A, Kavanaugh MP, Kabat D. Truncated forms of the dual function human ASCT2 neutral amino acid transporter/retroviral receptor are translationally initiated at multiple alternative CUG and GUG codons. J Biol Chem 2001; 276:27221-30. [PMID: 11350958 DOI: 10.1074/jbc.m100737200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sodium-dependent neutral amino acid transporter type 2 (ASCT2) was recently identified as a cell surface receptor for endogenously inherited retroviruses of cats, baboons, and humans as well as for horizontally transmitted type-D simian retroviruses. By functional cloning, we obtained 10 full-length 2.9-kilobase pair (kbp) cDNAs and two smaller identical 2.1-kbp cDNAs that conferred susceptibility to these viruses. Compared with the 2.9-kbp cDNA, the 2.1-kbp cDNA contains exonic deletions in its 3' noncoding region and a 627-bp 5' truncation that eliminates sequences encoding the amino-terminal portion of the full-length ASCT2 protein. Although expression of the truncated mRNA caused enhanced amino acid transport and viral receptor activities, the AUG codon nearest to its 5' end is flanked by nucleotides that are incompatible with translational initiation and the next in-frame AUG codon is far downstream toward the end of the protein coding sequence. Interestingly, the 5' region of the truncated ASCT2 mRNA contains a closely linked series of CUG(Leu) and GUG(Val) codons in optimal consensus contexts for translational initiation. By deletion and site-directed mutagenesis, cell-free translation, and analyses of epitope-tagged ASCT2 proteins synthesized intracellularly, we determined that the truncated mRNA encodes multiple ASCT2 isoforms with distinct amino termini that are translationally initiated by a leaky scanning mechanism at these CUG and GUG codons. Although the full-length ASCT2 mRNA contains a 5'-situated AUG initiation codon, a significant degree of leaky scanning also occurred in its translation. ASCT2 isoforms with relatively short truncations were active in both amino acid transport and viral reception, whereas an isoform with a 79-amino acid truncation that lacked the first transmembrane sequence was active only in viral reception. We conclude that ASCT2 isoforms with truncated amino termini are synthesized in mammalian cells by a leaky scanning mechanism that employs multiple alternative CUG and GUG initiation codons.
Collapse
Affiliation(s)
- C S Tailor
- Department of Biochemistry and Molecular Biology and the Vollum Institute, Oregon Health Sciences University, Portland, Oregon 87201-3098, USA
| | | | | | | | | |
Collapse
|
23
|
Schneiter R, Carter AT, Hernando Y, Zellnig G, Schweizer LM, Schweizer M. The importance of the five phosphoribosyl-pyrophosphate synthetase (Prs) gene products of Saccharomyces cerevisiae in the maintenance of cell integrity and the subcellular localization of Prs1p. MICROBIOLOGY (READING, ENGLAND) 2000; 146 Pt 12:3269-3278. [PMID: 11101685 DOI: 10.1099/00221287-146-12-3269] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phosphoribosyl-pyrophosphate synthetase (Prs) catalyses the synthesis of phosphoribosyl pyrophosphate (PRPP), an intermediate in nucleotide metabolism and the biosynthesis of the amino acids histidine and tryptophan. The Saccharomyces cerevisiae genome contains a family of five PRS genes, PRS1-PRS5. Using anti-peptide antisera directed against two different epitopes of Prs1p it was shown that Prs1p localizes to granular cytoplasmic structures. This localization was confirmed by living cell microscopy of strains expressing a functional green fluorescent protein (GFP)-tagged Prs1p. Analysis of Prs1p distribution in conditional secretory-deficient (sec) mutants suggested that the observed distribution of Prs1p is independent of the secretory pathway. Electron microscopy revealed that plasma membrane invaginations and accumulation of cytoplasmic vesicles were more frequent in strains which lack some of the PRS genes than in the wild-type. The fact that Deltaprs1 and Deltaprs3 are hypersensitive to caffeine and unable to recover from exposure to it as judged by the release of alkaline phosphatase points to a possible link between Prs and the maintenance of cell integrity.
Collapse
Affiliation(s)
- Roger Schneiter
- Institut für Biochemie und Lebensmittelchemie, Technische Universität Graz, Petersgasse 12/II, A-8010 Graz, Austria2
| | - Andrew T Carter
- Genetics and Microbiology Dept, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK3
| | - Yolanda Hernando
- Genetics and Microbiology Dept, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK3
| | - Günther Zellnig
- Institut für Pflanzenphysiologie, Karl-Franzens Universität, Schubertstrasse 51, A-8010 Graz, Austria4
| | - Lilian M Schweizer
- Department of Biological Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK1
| | - Michael Schweizer
- Department of Biological Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK1
| |
Collapse
|
24
|
Riechmann JL, Ito T, Meyerowitz EM. Non-AUG initiation of AGAMOUS mRNA translation in Arabidopsis thaliana. Mol Cell Biol 1999; 19:8505-12. [PMID: 10567575 PMCID: PMC84964 DOI: 10.1128/mcb.19.12.8505] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MADS box organ identity gene AGAMOUS (AG) controls several steps during Arabidopsis thaliana flower development. AG cDNA contains an open reading frame that lacks an ATG triplet to function as the translation initiation codon, and the actual amino terminus of the AG protein remains uncharacterized. We have considered the possibility that AG translation can be initiated at a non-AUG codon. Two possible non-AUG initiation codons, CUG and ACG, are present in the 5' region of AG mRNA preceding the highly conserved MADS box sequence. We prepared a series of AG genomic constructs in which these codons are mutated and assayed their activity in phenotypic rescue experiments by introducing them as transgenes into ag mutant plants. Alteration of the CTG codon to render it unsuitable for acting as a translation initiation site does not affect complementation of the ag-3 mutation in transgenic plants. However, a similar mutation of the downstream ACG codon prevents the rescue of the ag-3 mutant phenotype. Conversely, if an ATG is introduced immediately 5' to the disrupted ACG codon, the resulting construct fully complements the ag-3 mutation. The AG protein synthesized in vitro by initiating translation at the ACG position is active in DNA binding and is of the same size as the AG protein detected from floral tissues, whereas AG polypeptides with additional amino-terminal residues do not appear to bind DNA. These results indicate that translation of AG is initiated exclusively at an ACG codon and prove that non-AUG triplets may be efficiently used as the sole translation initiation site in some plant cellular mRNAs.
Collapse
Affiliation(s)
- J L Riechmann
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
25
|
Hernando Y, Carter AT, Parr A, Hove-Jensen B, Schweizer M. Genetic analysis and enzyme activity suggest the existence of more than one minimal functional unit capable of synthesizing phosphoribosyl pyrophosphate in Saccharomyces cerevisiae. J Biol Chem 1999; 274:12480-7. [PMID: 10212224 DOI: 10.1074/jbc.274.18.12480] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PRS gene family in Saccharomyces cerevisiae consists of five genes each capable of encoding a 5-phosphoribosyl-1(alpha)-pyrophosphate synthetase polypeptide. To gain insight into the functional organization of this gene family we have constructed a collection of strains containing all possible combinations of disruptions in the five PRS genes. Phenotypically these deletant strains can be classified into three groups: (i) a lethal phenotype that corresponds to strains containing a double disruption in PRS2 and PRS4 in combination with a disruption in either PRS1 or PRS3; simultaneous deletion of PRS1 and PRS5 or PRS3 and PRS5 are also lethal combinations; (ii) a second phenotype that is encountered in strains containing disruptions in PRS1 and PRS3 together or in combination with any of the other PRS genes manifests itself as a reduction in growth rate, enzyme activity, and nucleotide content; (iii) a third phenotype that corresponds to strains that, although affected in their phosphoribosyl pyrophosphate-synthesizing ability, are unimpaired for growth and have nucleotide profiles virtually the same as the wild type. Deletions of PRS2, PRS4, and PRS5 or combinations thereof cause this phenotype. These results suggest that the polypeptides encoded by the members of the PRS gene family may be organized into two functional entities. Evidence that these polypeptides interact with each other in vivo was obtained using the yeast two-hybrid system. Specifically PRS1 and PRS3 polypeptides interact strongly with each other, and there are significant interactions between the PRS5 polypeptide and either the PRS2 or PRS4 polypeptides. These data suggest that yeast phosphoribosyl pyrophosphate synthetase exists in vivo as multimeric complex(es).
Collapse
Affiliation(s)
- Y Hernando
- Genetics and Microbiology Department, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Krath BN, Eriksen TA, Poulsen TS, Hove-Jensen B. Cloning and sequencing of cDNAs specifying a novel class of phosphoribosyl diphosphate synthase in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1430:403-8. [PMID: 10082968 DOI: 10.1016/s0167-4838(99)00022-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
cDNAs specifying four active phosphoribosyl diphosphate synthase isozymes were isolated from an Arabidopsis thaliana cDNA library. In contrast to other phosphoribosyl diphosphate synthases the activity of two of the A. thaliana isozymes are independent of Pi. Amino acid sequence comparison and phylogenetic analysis indicate that these two isozymes belong to a novel class of phosphoribosyl diphosphate synthases.
Collapse
Affiliation(s)
- B N Krath
- Center for Enzyme Research, Institute of Molecular Biology, University of Copenhagen, 83H Solvgade, DK-1307, Copenhagen K, Denmark
| | | | | | | |
Collapse
|
27
|
Ahmed M, Taylor W, Smith PR, Becker MA. Accelerated transcription of PRPS1 in X-linked overactivity of normal human phosphoribosylpyrophosphate synthetase. J Biol Chem 1999; 274:7482-8. [PMID: 10066814 DOI: 10.1074/jbc.274.11.7482] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoribosylpyrophosphate (PRPP) synthetase (PRS) superactivity is an X-linked disorder characterized by gout with overproduction of purine nucleotides and uric acid. Study of the two X-linked PRS isoforms (PRS1 and PRS2) in cells from certain affected individuals has shown selectively increased concentrations of structurally normal PRS1 transcript and isoform, suggesting that this form of the disorder involves pretranslational dysregulation of PRPS1 expression and might be more appropriately termed overactivity of normal PRS. We applied Southern and Northern blot analyses and slot blotting of nuclear runoffs to delineate the process underlying aberrant PRPS1 expression in fibroblasts and lymphoblasts from patients with overactivity of normal PRS. Neither PRPS1 amplification nor altered stability or processing of PRS1 mRNA was identified, but PRPS1 transcription was increased relative to GAPDH (3- to 4-fold normal in fibroblasts; 1.9- to 2.4-fold in lymphoblasts) and PRPS2. Nearly coordinate relative increases in each process mediating transfer of genetic information from PRPS1 transcription to maximal PRS1 isoform expression in patient fibroblasts further supported the idea that accelerated PRPS1 transcription is the major aberration leading to PRS1 overexpression. In addition, modulated relative increases in PRS activities at suboptimal Pi concentration and in rates of PRPP and purine nucleotide synthesis in intact patient fibroblasts indicate that despite an intact allosteric mechanism of regulation of PRS activity, PRPS1 transcription is a major determinant of PRPP and purine synthesis. The genetic basis of disordered PRPS1 transcription remains unresolved; normal- and patient-derived PRPS1s share nucleotide sequence identity at least 850 base pairs 5' to the consensus transcription initiation site.
Collapse
Affiliation(s)
- M Ahmed
- Rheumatology Section, Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
28
|
Krath BN, Hove-Jensen B. Organellar and cytosolic localization of four phosphoribosyl diphosphate synthase isozymes in spinach. PLANT PHYSIOLOGY 1999; 119:497-506. [PMID: 9952445 PMCID: PMC32126 DOI: 10.1104/pp.119.2.497] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/1998] [Accepted: 10/21/1998] [Indexed: 05/19/2023]
Abstract
Four cDNAs encoding phosphoribosyl diphosphate (PRPP) synthase were isolated from a spinach (Spinacia oleracea) cDNA library by complementation of an Escherichia coli Deltaprs mutation. The four gene products produced PRPP in vitro from ATP and ribose-5-phosphate. Two of the enzymes (isozymes 1 and 2) required inorganic phosphate for activity, whereas the others were phosphate independent. PRPP synthase isozymes 2 and 3 contained 76 and 87 amino acid extensions, respectively, at their N-terminal ends in comparison with other PRPP synthases. Isozyme 2 was synthesized in vitro and shown to be imported and processed by pea (Pisum sativum) chloroplasts. Amino acid sequence analysis indicated that isozyme 3 may be transported to mitochondria and that isozyme 4 may be located in the cytosol. The deduced amino acid sequences of isozymes 1 and 2 and isozymes 3 and 4 were 88% and 75% identical, respectively. In contrast, the amino acid identities of PRPP synthase isozyme 1 or 2 with 3 or 4 was modest (22%-25%), but the sequence motifs for binding of PRPP and divalent cation-nucleotide were identified in all four sequences. The results indicate that PRPP synthase isozymes 3 and 4 belong to a new class of PRPP synthases that may be specific to plants.
Collapse
Affiliation(s)
- B N Krath
- Center for Enzyme Research, Institute of Molecular Biology, University of Copenhagen, 83H Solvgade, DK-1307 Copenhagen K, Denmark
| | | |
Collapse
|
29
|
Takahashi H, Noda S, Imamura Y, Nagasawa A, Kubota R, Mashima Y, Kudoh J, Oguchi Y, Shimizu N. Mouse myocilin (Myoc) gene expression in ocular tissues. Biochem Biophys Res Commun 1998; 248:104-9. [PMID: 9675094 DOI: 10.1006/bbrc.1998.8917] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human myocilin is identical to TIGR (trabecular meshwork inducible glucocorticoid response) which is responsible for the pathogenesis of juvenile-onset primary open angle glaucoma (GLCIA). We have isolated cDNA for mouse myocilin (Myoc) and investigated mouse myocilin gene expression in ocular tissues with in situ RNA hybridization. Hybridization signals were observed in the iris, ciliary body, trabecular meshwork, sclera, and retina in the mouse eye. The marked signals were seen in trabecular meshwork cells and the anterior portion of sclera. These findings suggest that myocilin mutation could affect the capacity of aqueous outflow and cause elevation of the intraocular pressure which is involved in the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- H Takahashi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hecht NB. Molecular mechanisms of male germ cell differentiation. Bioessays 1998. [PMID: 9723004 DOI: 10.1002/(sici)1521-1878(199807)20:7%3c555::aid-bies6%3e3.0.co;2-j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
During spermatogenesis, diploid stem cells differentiate, undergo meiosis, and transform into haploid spermatozoa. As this precisely timed series of events proceeds, chromosomal ploidy is reduced and the nucleosomes of the chromatin are replaced by a transcriptionally quiescent protamine-containing nucleus. The premature termination of transcription during the haploid phase of spermatogenesis necessitates an especially prominent role for posttranscriptional regulation in the temporal and spatial expression of many testis-specific proteins and isozymes. In this review article, discussion will focus on novel mechanisms regulating gene expression in mammalian male germ cells from genome to protein.
Collapse
Affiliation(s)
- N B Hecht
- Center for Research on Reproduction and Women's Health, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Abstract
During spermatogenesis, diploid stem cells differentiate, undergo meiosis, and transform into haploid spermatozoa. As this precisely timed series of events proceeds, chromosomal ploidy is reduced and the nucleosomes of the chromatin are replaced by a transcriptionally quiescent protamine-containing nucleus. The premature termination of transcription during the haploid phase of spermatogenesis necessitates an especially prominent role for posttranscriptional regulation in the temporal and spatial expression of many testis-specific proteins and isozymes. In this review article, discussion will focus on novel mechanisms regulating gene expression in mammalian male germ cells from genome to protein.
Collapse
Affiliation(s)
- N B Hecht
- Center for Research on Reproduction and Women's Health, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Becker MA, Taylor W, Smith PR, Ahmed M. Regulation of human PRS isoform expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 431:215-20. [PMID: 9598062 DOI: 10.1007/978-1-4615-5381-6_42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- M A Becker
- Department of Medicine, University of Chicago, Illinois, USA
| | | | | | | |
Collapse
|
33
|
Gu JJ, Spychala J, Mitchell BS. Regulation of the human inosine monophosphate dehydrogenase type I gene. Utilization of alternative promoters. J Biol Chem 1997; 272:4458-66. [PMID: 9020170 DOI: 10.1074/jbc.272.7.4458] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Catalysis of guanine nucleotide formation from IMP in the de novo purine synthetic pathway is carried out by two isoforms of the enzyme inosine monophosphate dehydrogenase (IMPDH) that are catalytically indistinguishable but are encoded by separate genes. In order to assess the potential for cell type-specific expression of IMPDH activity, we have characterized the IMPDH type I gene and identified three major RNA transcripts that are differentially expressed from three different promoters. A 4.0-kilobase pair (kb) mRNA containing 1.3 kb of 5'-untranslated region is expressed in activated peripheral blood lymphocytes and to a far lesser extent in cultured tumor cell lines. The P1 promoter that regulates the transcription of this mRNA has a high degree of sequence identity to an Alu repetitive sequence. A transcript of 2.7 kb is found in a subset of the tumor cell lines examined, whereas a 2.5-kb mRNA species is universally expressed and is the prevalent mRNA in most cell lines and tissues. The relative strengths of the three promoter regions and the effects of variable extents of 5'-flanking sequence on the P3 promoter differ in Jurkat T, as compared with Raji B lymphoid cell lines, demonstrating a complex cell type-specific transcriptional regulation of IMPDH type I gene expression.
Collapse
Affiliation(s)
- J J Gu
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
34
|
Sonoda T, Ishizuka T, Kita K, Ishijima S, Tatibana M. Cloning and sequencing of rat cDNA for the 41-kDa phosphoribosylpyrophosphate synthetase-associated protein has a high homology to the catalytic subunits and the 39-kDa associated protein. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1350:6-10. [PMID: 9003449 DOI: 10.1016/s0167-4781(96)00190-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Rat liver phosphoribosylpyrophosphate synthetase is a complex aggregate of 34-kDa catalytic subunits (PRS I and II) and 39- and 41-kDa associated proteins (PAP39 and 41). When the rat cDNA encoding PAP41 was isolated, the deduced protein sequence was seen to contain 369 amino acids with a calculated molecular mass of 41130. PAP41 has a 79 and 49% identity with PAP39 and PRSs, respectively. When conservative substitutions are included, PAP41 and the three other components have a 66% homology. PAP41 shares some common features with PAP39 and the two proteins form the PAP subfamily. The mRNA of PAP41 is present in all rat tissues we examined.
Collapse
Affiliation(s)
- T Sonoda
- Department of Biochemistry, Chiba University School of Medicine, Japan.
| | | | | | | | | |
Collapse
|
35
|
Oda Y, Muroishi Y, Nakanishi I. Translation initiation sites and relative activity of large and small forms of human choline acetyltransferase. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 38:135-8. [PMID: 8737676 DOI: 10.1016/0169-328x(95)00280-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have previously shown that translation of human choline acetyltransferase (ChAT) mRNA starts at least at two sites and produces two enzyme proteins with different molecular weights. In this study, translation initiation sites and relative activity of large and small forms of ChAT were determined by site-directed mutagenesis, followed by expression and immunoblotting analyses. The large and small forms were translated at the first and second ATG codons of ChAT cDNA, respectively, and the specific activity was almost the same between the two forms of the enzyme.
Collapse
Affiliation(s)
- Y Oda
- Department of Pathology, Kanazawa University School of Medicine, Ishikawa, Japan
| | | | | |
Collapse
|
36
|
Post DA, Switzer RL, Hove-Jensen B. The defective phosphoribosyl diphosphate synthase in a temperature-sensitive prs-2 mutant of Escherichia coli is compensated by increased enzyme synthesis. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 2):359-365. [PMID: 8932709 DOI: 10.1099/13500872-142-2-359] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An Escherichia coli strain which is temperature-sensitive for growth due to a mutation (prs-2) causing a defective phosphoribosyl diphosphate (PRPP) synthase has been characterized. The temperature-sensitive mutation was mapped to a 276 bp HindIII-BssHII DNA fragment located within the open reading frame specifying the PRPP synthase polypeptide. Cloning and sequencing of the mutant allele revealed two mutations. One, a G --> A transition, located in the ninth codon, was responsible for the temperature-conditional phenotype and resulted in a serine residue at this position. The wild-type codon at this position specified a glycine residue that is conserved among PRPP synthases across a broad phylogenetic range. Cells harbouring the glycine-to-serine alteration specified by a plasmid contained approximately 50% of the PRPP synthase activity of cells harbouring a plasmid-borne wild-type allele, both grown at 25 degrees C. The mutant enzyme had nearly normal heat stability, as long as it was synthesized at 25 degrees C. In contrast, there was hardly any PRPP synthase activity or anti-PRPP synthase antibody cross-reactive material present in cells harbouring the glycine to serine alteration following temperature shift to 42 degrees C. The other mutation was a C --> T transition located 39 bp upstream of the G --> A mutation, i.e. outside the coding sequence and close to the Shine-Dalgarno sequence. Cells harbouring only the C --> T mutation in a plasmid contained approximately three times as much PRPP synthase activity as a strain harbouring a plasmid-borne wild-type prs allele. In cells harbouring both mutations, the C --> T mutation appeared to compensate for the G --> A mutation by increasing the amount of a partially defective enzyme at the permissive temperature.
Collapse
Affiliation(s)
- David A Post
- Department of Biological Chemistry, Institute of Molecular Biology, University of Copenhagen, 83H Sølvgade, DK-1307 Copenhagen K, Denmark
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Robert L Switzer
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Bjarne Hove-Jensen
- Department of Biological Chemistry, Institute of Molecular Biology, University of Copenhagen, 83H Sølvgade, DK-1307 Copenhagen K, Denmark
| |
Collapse
|
37
|
Payne TL, Calderone RA. Isolation of phosphoribosylpyrophosphate synthetase (PRS1) gene from Candida albicans. Yeast 1995; 11:1295-302. [PMID: 8553701 DOI: 10.1002/yea.320111310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have isolated a 3.7 kb EcoR1 fragment from a genomic library of Candida albicans which displayed a 65% level of identity with the PRS gene family (PRS) of Saccharomyces cerevisiae. The PRS gene encodes a phosphoribosylpyrophosphate (PRPP) synthetase of S. cerevisiae, which catalyses the synthesis of purines, pyrimidines, and amino acids such as histidine and tryptophan. By Northern analyses, we observed that the entire 3.7 kb EcoR1 fragment as well as 1.1 kb KpnI-SacI internal fragment of the 3.7 kb EcoR1 fragment hybridized to the same 1.4 kb transcript. An internal 2.6 kb KpnI fragment was subcloned and sequenced. A deduced sequence of 321 amino acids representing a polypeptide of 35.2 kDa was determined. A FASTA search indicated that the C. albicans PRS (Ca PRS1) had an overall homology at the amino acid level of 91% with the S. cerevisiae PRS3. Putative transcriptional start and termination sequences as well as a cation-binding, PRPP synthetase signature sequence were identified. Ca PRS1 was localized to chromosome 2 of the C. albicans genome. Low stringency hybridizations indicates that the organism may possess multiple PRS genes. The function of these genes in nitrogen signaling is discussed.
Collapse
Affiliation(s)
- T L Payne
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | |
Collapse
|
38
|
Shastri N, Nguyen V, Gonzalez F. Major histocompatibility class I molecules can present cryptic translation products to T-cells. J Biol Chem 1995; 270:1088-91. [PMID: 7836364 DOI: 10.1074/jbc.270.3.1088] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Self or foreign cellular proteins provide peptides for presentation by major histocompatibility complex (MHC) class I molecules on the surface of antigen presenting cells (APC). Surprisingly, several studies have shown that T-cells can recognize APC transfected with antigen genes that were not present in the appropriate translational context. To understand the basis of this phenomenon, APC were transfected with DNA constructs encoding the OVA257-264 (SL8) peptide, but with varying translation initiation codons. We report that, in addition to ATG, 6 other codons (ATT, ACG, CTG, GCG, TGG, GAT) also allowed presentation to SL8-Kb-specific T-cells. Significantly, this set includes 3 of 4 known non-ATG translation initiation codons strongly suggesting that cryptic translation accounts for this phenomenon. Although expression of the SL8-Kb complex was readily detected by T-cell activation, the amount of processed peptides was below detection limit (< 30 copies/cell) in cell extracts. Thus, the fortuitous presence of these cryptic translation initiation sites in transcribed genes can explain how peptide MHC complexes were obtained in sufficient amounts for T-cell activation. The translation initiation codons identified here could also be useful for identifying potential open reading frames that possess biological and/or immunological activities.
Collapse
Affiliation(s)
- N Shastri
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3200
| | | | | |
Collapse
|
39
|
Tatibana M, Kita K, Taira M, Ishijima S, Sonoda T, Ishizuka T, Iizasa T, Ahmad I. Mammalian phosphoribosyl-pyrophosphate synthetase. ADVANCES IN ENZYME REGULATION 1995; 35:229-49. [PMID: 7572345 DOI: 10.1016/0065-2571(94)00017-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PRPP synthetase from rat liver exists as large molecular weight aggregates composed of at least three different components. Cloning of cDNA for the catalytic subunit revealed the presence of two highly homologous isoforms of 34 kDa, designated as PRS I and PRS II. Northern blot analysis showed tissue-differential expression of the two isoform genes. cDNA was expressed in E. coli and studies on the recombinant isoforms showed differences in sensitivity to inhibition by ADP and GDP and to heat inactivation. The rat gene for PRS I has 22 kb and is split into 7 exons. cDNAs for human enzymes were also cloned. Human genes for PRS I and PRS II are localized at different regions on the X-chromosome and their promoter regions were examined. Another component, PRPP synthetase-associated protein of 39 kDa (PAP39), was cloned from cDNA library of the rat liver. The deduced amino acid sequence of PAP39 is remarkably similar to those of PRS I and PRS II. Evidence indicated molecular interaction between PAP39 and the catalytic subunits and an inhibitory effect of PAP39 on the catalytic activity. Expression of the PAP39 gene is tissue-differential like the PRS genes, indicating that the composition of PRPP synthetase may differ with the tissue, hence properties of the enzyme would differ. Further studies on these components and their interaction are expected to reveal various mechanisms governing mammalian PRPP synthetase.
Collapse
Affiliation(s)
- M Tatibana
- Department of Biochemistry, Chiba University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lee K, Keitz B, Taira M, Chapman VM. Linkage of phosphoribosylpyrophosphate synthetases 1 and 2, Prps1 and Prps2, on the mouse X chromosome. Mamm Genome 1994; 5:612-5. [PMID: 7849396 DOI: 10.1007/bf00411455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The X Chromosome (Chr) genes for phosphoribosylpyrophosphate synthetases 1 and 2, Prps1 and Prps2, were mapped on the mouse X Chr with interspecific backcrosses between C57BL/6 (B6) and M. spretus (S). Southern analysis showed that Prps1 mapped between Plp and DXWas31, a mouse X Chr region that is homologous to Xq21-24 on the human X Chr while Prps2 mapped between DXWas31 and Amg, a region that is homologous to the map position of PRPS2 on Xp22 of the human X Chr. Additionally, other restriction fragments highlighted by PRS II showed autosomal segregation. In situ hybridization and FISH analysis of metaphase chromosome spreads prepared from lymphocytes of B6 or S male mice confirmed that there were in fact two different locations on the X Chr, X F1-2 and X F2-3 for Prps1 and 2 respectively, as well as two autosomal sites for Prps-like genes.
Collapse
Affiliation(s)
- K Lee
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| | | | | | | |
Collapse
|
41
|
Carter AT, Narbad A, Pearson BM, Beck KF, Logghe M, Contreras R, Schweizer M. Phosphoribosylpyrophosphate synthetase (PRS): a new gene family in Saccharomyces cerevisiae. Yeast 1994; 10:1031-44. [PMID: 7992503 DOI: 10.1002/yea.320100805] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Saccharomyces cerevisiae contains at least four PRS genes, all of which have been cloned and sequenced. Each of the four derived amino acid sequences have more than 60% similarity to the corresponding polypeptides of man, rat, Escherichia coli and Salmonella typhimurium. The PRS1 gene maps on chromosome XI, PRS2 on chromosome V, PRS3 on chromosome VIII and PRS4 on chromosome II. One member of this gene family, PRS1, contains a region of non-homology (NHR) shown by cDNA cloning and sequencing not to be an intron. The results presented here suggest that the presence of this NHR is not detrimental to the function of the gene. To date the possibility of protein splicing can be neither proven nor disputed.
Collapse
Affiliation(s)
- A T Carter
- Institute of Food Research, Genetics & Microbiology Department, Colney, Norwich, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Kita K, Ishizuka T, Ishijima S, Sonoda T, Tatibana M. A novel 39-kDa phosphoribosylpyrophosphate synthetase-associated protein of rat liver. Cloning, high sequence similarity to the catalytic subunits, and a negative regulatory role. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37198-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
43
|
Davidson BL, Golovoy N, Roessler BJ. A 13 base pair deletion in exon 1 of HPRTIllinois forms a functional GUG initiation codon. Hum Genet 1994; 93:300-4. [PMID: 8125482 DOI: 10.1007/bf00212027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
More than 50 mutations in the human hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus have been described, yet only 2 alter the AUG initiation codon. One, variant HPRT1151, results in Lesch-Nyhan syndrome (LNS), and the other, HPRTIllinois, results in partial HPRT deficiency. Although previously undetectable, we used a sensitive gel assay to demonstrate that HPRTIllinois is not only active, but has a native Mr indistinguishable from normal. Confirmatory evidence of activity and native Mr is demonstrated following transfection of HPRT cells with expression plasmids containing cDNA sequences representing HPRTIllinois. These data provide support for the hypothesis that patient RT, or variant HPRTIllinois, is spared manifestations of the LNS as a result of translation at the newly formed GUG initiation codon.
Collapse
Affiliation(s)
- B L Davidson
- Department of Internal Medicine, University of Michigan, Ann Arbor 48109-0680
| | | | | |
Collapse
|
44
|
Abstract
A small, yet growing, number of cellular eukaryotic mRNAs encoding important regulatory proteins, such as c-myc and other proto-oncogenes, initiate translation from a non-AUG codon, usually in addition to initiating at a downstream AUG. The efficiency of non-AUG initiation on these natural cellular mRNAs varies considerably and appears to be governed by several features, including the codon sequence, the context surrounding the codon and the secondary structure of the transcript. In addition to factors which control the overall efficiency of c-myc non-AUG initiation, the relative efficiency of the upstream non-AUG initiation compared with the AUG initiation changes during the growth of cells. As lymphoid and fibroblast cells approach high densities in culture there is a sustained 5-10-fold induction in the synthesis of the non-AUG-initiated c-Myc 1 protein to levels comparable to or greater than the AUG-initiated c-Myc 2 protein. This increased efficiency of c-myc non-AUG initiation, due to methionine depletion of the growth medium, suggests that the scanning preinitiation complex can be regulated to enhance the recognition of a suboptimal non-AUG codon. The significance of non-AUG initiation for the growth-regulatory genes is illustrated by the different localizations of the int-2, bFGF and hck non-AUG-initiated proteins, the disruption of the c-myc and lyl-1 non-AUG initiation in tumor-derived cell lines, and the distinct biological function of the non-AUG-initiated forms of bFGF.
Collapse
Affiliation(s)
- S R Hann
- Department of Cell Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232-2175
| |
Collapse
|
45
|
Hendrickson N, Allen T, Ullman B. Molecular characterization of phosphoribosylpyrophosphate synthetase from Leishmania donovani. Mol Biochem Parasitol 1993; 59:15-27. [PMID: 8390611 DOI: 10.1016/0166-6851(93)90003-g] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The phosphoribosylpyrophosphate synthetase (PRS) enzyme from parasitic protozoa plays a critical role in the acquisition of exogenous purine bases by providing the phosphoribosylpyrophosphate substrate for phosphoribosylation. To characterize a PRS enzyme from parasitic protozoa, the prs gene was isolated from a genomic library of Leishmania donovani DNA. A 1936-bp SalI fragment was sequenced that encompassed an open reading frame of 1113 nucleotides encoding a polypeptide of 371 amino acids and 40 787 Da. After gap alignment, the leishmanial PRS exhibited 40-42% amino acid identity with a variety of mammalian and prokaryotic PRSs. L. donovani PRS also contained an approx. 20-amino acid stretch that was highly homologous to the phosphoribosylpyrophosphate binding domains of mammalian phosphoribosyltransferase enzymes. Two prs-specific transcripts of 2.6 and 2.1 kb were detected by Northern analysis, and Southern blots of genomic DNA implied that the prs locus was not tandemly repeated in the L. donovani genome. PRS activity was detected in L. donovani extracts, and apparent Km values of approx. 30 microM and approx. 1 mM were calculated for ribose-5-phosphate and ATP, respectively. PRS was sensitive to inhibition by AMP and ADP but refractory to IMP, GMP, GTP, CTP, and UTP. The high apparent Km value of the parasite enzyme for ATP and its insensitivity to inhibition by many nucleotides suggested that kinetic differences between the L. donovani and human PRSs could provide an avenue for rational therapeutic manipulation of parasitic disease. The isolation of the L. donovani prs gene now provides an opportunity to genetically dissect the determinants responsible for the function and regulation of this indispensable enzyme of purine and pyrimidine metabolism in a genus of parasitic protozoa.
Collapse
Affiliation(s)
- N Hendrickson
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland 97201-3098
| | | | | |
Collapse
|
46
|
Oda Y, Nakanishi I, Deguchi T. A complementary DNA for human choline acetyltransferase induces two forms of enzyme with different molecular weights in cultured cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1992; 16:287-94. [PMID: 1337937 DOI: 10.1016/0169-328x(92)90237-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Complementary DNA (cDNA) clones containing the entire coding region of human choline acetyltransferase (ChAT) were isolated from cDNA libraries prepared from the autopsied spinal cord. In the human cDNA, the ATG codon assigned to the putative initiation codon for pig, rat and mouse ChAT cDNAs was replaced by ACG. The human cDNA contained an in-frame ATG codon 324 nucleotides upstream of the ACG codon. Therefore, human ChAT cDNA should code for a 748 amino acid polypeptide of 82.6 kDa. This deduced molecular weight was larger than that of ChAT protein purified from the human brain and placenta (64-70 kDa). The human ChAT cDNA containing the entire coding region was ligated to an expression vector and introduced into African green monkey kidney (COS) cells and Chinese hamster ovary (CHO) cells. The cells expressed high ChAT activity and produced two protein bands immunostained with an antibody to monkey ChAT. The molecular weight of the proteins was estimated to be approximately 70 and 80 kDa by polyacrylamide-SDS gel electrophoresis. When partial cDNAs that lacked the first ATG but contained the replaced ACG codon were introduced into COS cells, the cells expressed moderate ChAT activity and an immunoreactive protein band of 70 kDa. These results indicate that translation of human ChAT mRNA starts at two sites and produces two enzyme proteins with different molecular weights. It might be that the larger form of ChAT molecule is an enzyme precursor for processing or that the N-terminal extrapeptide is needed for subcellular localization of the enzyme.
Collapse
Affiliation(s)
- Y Oda
- Department of Molecular Neurobiology, Tokyo Metropolitan Institute for Neurosciences, Japan
| | | | | |
Collapse
|
47
|
Russell SM, Sparrow RL, McKenzie IF, Purcell DF. Tissue-specific and allelic expression of the complement regulator CD46 is controlled by alternative splicing. Eur J Immunol 1992; 22:1513-8. [PMID: 1601037 DOI: 10.1002/eji.1830220625] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CD46 (membrane cofactor protein) is a human cell surface glycoprotein with cofactor activity for factor I-mediated cleavage of complement components C3b and C4b. The CD46 protein from normal lymphocytes resolves on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as two major bands of 66 and 56 kDa. CD46 cDNA encodes four extracellular short consensus repeat domains, a Ser/Thr/Pro (STP)-rich region, a transmembrane region and a cytoplasmic tail. We now show that exquisite control of mRNA splicing is responsible for the heterogeneous expression of CD46 isoforms. Differential splicing of 5 exons generates at least 14 CD46 mRNA variants whose expression is stringently regulated by allelic, tissue-specific and malignancy-related factors, as: (a) leukemic cells and Epstein-Barr virus-transformed B cells preferentially incorporate the first of three STP exons (exon 7) into mRNA, and produce a larger CD46 isoform of 74 kDa, (b) an allelic difference in the proportion of 66- and 56-kDa CD46 isoforms on lymphocytes corresponds to the preferential inclusion or exclusion of the second STP exon (exon 8), (c) the third STP exon (exon 9) is specifically deleted in some placentae, (d) spermatozoa delete both exons 12 and 13, encoding a shorter transmembrane region and a unique cytoplasmic tail and (e) all tissues tested differentially splice exon 13, resulting in two alternative cytoplasmic tails. The distribution of the 14 alternatively spliced RNA transcripts correlated with the presence of protein isoforms of the predicted size, indicating that alternative splicing leads to heterogeneity of CD46 glycoproteins.
Collapse
Affiliation(s)
- S M Russell
- Austin Research Institute, Austin Hospital, Heidelberg, Victoria, Australia
| | | | | | | |
Collapse
|
48
|
Ishizuka T, Iizasa T, Taira M, Ishijima S, Sonoda T, Shimada H, Nagatake N, Tatibana M. Promoter regions of the human X-linked housekeeping genes PRPS1 and PRPS2 encoding phosphoribosylpyrophosphate synthetase subunit I and II isoforms. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1130:139-48. [PMID: 1314091 DOI: 10.1016/0167-4781(92)90521-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The 5' regions of the human phosphoribosylpyrophosphate synthetase subunit I and II genes (PRPS1 and PRPS2, respectively) were isolated and sequenced. A comparison of the nucleotide sequences between human and rat PRPS1 genes revealed that the sequences around the transcription initiation sites were conserved over 56 nucleotides, and that a TATA-like sequence, a CCAAT box and three putative Sp1 binding sites were present at almost the same positions in the GC-rich sequences. Two major transcription initiation sites were localized in the human PRPS1, one of the two was located 27 nucleotides downstream from the TATA-like sequence, while the upstream initiation site was in the TATA-like sequence. The promoter region of the human PRPS2 gene was also GC-rich and contained a TATA-like sequence, four Sp1 binding sites and a homopyrimidine stretch. The initiation sites were localized at 90 nucleotides upstream from the ATG initiation codon. Chloramphenicol acetyltransferase (CAT)/promoter fusion assays showed that a 2.0 kb region (human PRPS1) and a 1.1 kb region (human PRPS2) possessed the promoter activities in four cell lines. The CAT activities in the three human cell lines tended to correlate with the steady-state mRNA levels of the PRPS1 and PRPS2 genes. These results suggest that the 5' flanking regions cloned contribute to the cell-differential expression of these two genes.
Collapse
Affiliation(s)
- T Ishizuka
- Department of Biochemistry, Chiba University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Sligh JE, Hurwitz MY, Zhu CM, Anderson DC, Beaudet AL. An initiation codon mutation in CD18 in association with the moderate phenotype of leukocyte adhesion deficiency. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48342-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
50
|
Xiao JH, Davidson I, Matthes H, Garnier JM, Chambon P. Cloning, expression, and transcriptional properties of the human enhancer factor TEF-1. Cell 1991; 65:551-68. [PMID: 1851669 DOI: 10.1016/0092-8674(91)90088-g] [Citation(s) in RCA: 339] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We describe the cDNA encoding the SV40 transcriptional enhancer factor 1 (TEF-1) and show that its translation initiates exclusively at an AUU codon in vivo. Cloned TEF-1, which is unrelated to other known transcription factors, specifically binds the SV40 GT-IIC and Sph enhansons. Cloned TEF-1 does not activate these enhansons in lymphoid MPC11 cells where they are known to be inactive, but represses the endogenous HeLa TEF-1 activity in vivo and in vitro. Repression is also observed with chimeras where the DNA-binding domain of the GAL4 activator replaces that of TEF-1, showing that repression results from interference/squelching. Such chimeras stimulate transcription in HeLa, but not in MPC11, cells in vivo and in HeLa cell extracts in vitro. However, high concentrations result in self-interference/squelching. These results strongly suggest that the trans-activation function of TEF-1 is mediated by a highly limiting, possible cell-specific, titratable transcriptional intermediary factor(s).
Collapse
Affiliation(s)
- J H Xiao
- Laboratoire de Génétique Moléculaire des Eucaryotes du CNRS, Unité 184 de Génie Génétique et de Biologie, Faculté de Médecine, Strasbourg, France
| | | | | | | | | |
Collapse
|