1
|
Lin J, Li J. Transfection of unmodified oligodeoxynucleotide with polyethylenimine reduces the level of hepatitis B surface antigen. Front Microbiol 2025; 16:1600679. [PMID: 40376456 PMCID: PMC12078216 DOI: 10.3389/fmicb.2025.1600679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 04/16/2025] [Indexed: 05/18/2025] Open
Abstract
Introduction The delivery of nucleic acid into cells using polyethylenimine (PEI) as non-viral carrier is a potential candidate technique for the treatment of hepatitis B virus (HBV) infection. Methods In the present study, PEI was used as cationic polymers and transfected with unmodified oligodeoxynucleotides in cell cultures and the BALB/c mouse model to investigate its efficiency in blocking HBV surface antigen (HBsAg) secretion. Results and discussion PEI/oligonucleotide complexes selectively inhibited HBsAg secretion in the culture supernatant, while there were no evident alterations in HBeAg and HBV DNA levels, thereby suggesting its potential inhibitory activity against the production of HBsAg. The complexes formed by PEI with double-stranded decoy oligonucleotides also suppressed HBsAg secretion but showed no expected interference with the intermediate levels of HBV transcription or replication. Furthermore, PEI/plasmid-DNA complexes demonstrated no influence on the expression levels of HBsAg, thus highlighting the specific effects of PEI/oligonucleotides exerted on HBsAg release. PEI-oligonucleotides transfection prior to the viral inoculation impaired HBV infection in HepG2-NCTP cells. Importantly, the PEI/oligonucleotide complex also induced the decline of HBsAg in hydrodynamically injected BALB/c mice. These findings demonstrate that transfection of PEI/oligonucleotide complexes can help effectively reduce HBsAg level and may offer a new potential avenue for the development of anti-HBV treatment.
Collapse
Affiliation(s)
- Junyu Lin
- Research Center for Basic Medical Science, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Garg S, Ochetto A, Hu J, Wang JCY. Unveiling the Molecular Architecture of HBV Spherical Subviral Particles: Structure, Symmetry, and Lipid Dynamics. Viruses 2024; 17:48. [PMID: 39861834 PMCID: PMC11768703 DOI: 10.3390/v17010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Since the discovery of the Australia antigen, now known as the hepatitis B surface antigen (HBsAg), significant research has been conducted to elucidate its physical, chemical, structural, and functional properties. Subviral particles (SVPs) containing HBsAg are highly immunogenic, non-infectious entities that have not only revolutionized vaccine development but also provided critical insights into HBV immune evasion and viral assembly. Recent advances in cryo-electron microscopy (cryo-EM) have uncovered the heterogeneity and dynamic nature of spherical HBV SVPs, emphasizing the essential role of lipid-protein interactions in maintaining particle stability. In this review, recent progress in understanding the molecular architecture of HBV SVPs is consolidated, focusing on their symmetry, lipid organization, and disassembly-reassembly dynamics. High-resolution structural models reveal unique lipid arrangements that stabilize hydrophobic residues, preserve antigenicity, and contribute to SVP functionality. These findings highlight the significance of hydrophobic interactions and lipid-protein dynamics in HBV SVP assembly and stability, offering valuable perspectives for optimizing SVP-based vaccine platforms and therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Joseph Che-Yen Wang
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA; (S.G.); (A.O.); (J.H.)
| |
Collapse
|
3
|
Wang Q, Wang T, Cao L, Mu A, Fu S, Wang P, Gao Y, Ji W, Liu Z, Du Z, Guddat LW, Zhang W, Li S, Li X, Lou Z, Wang X, Hu Z, Rao Z. Inherent symmetry and flexibility in hepatitis B virus subviral particles. Science 2024; 385:1217-1224. [PMID: 39264996 DOI: 10.1126/science.adp1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/12/2024] [Indexed: 09/14/2024]
Abstract
Chronic hepatitis B virus (HBV) infection poses a major global health challenge with massive morbidity and mortality. Despite a preventive vaccine, current treatments provide limited virus clearance, necessitating lifelong commitment. The HBV surface antigen (HBsAg) is crucial for diagnosis and prognosis, yet its high-resolution structure and assembly on the virus envelope remain elusive. Utilizing extensive datasets and advanced cryo-electron microscopy analysis, we present structural insights into HBsAg at a near-atomic resolution of 3.7 angstroms. HBsAg homodimers assemble into subviral particles with D2- and D4-like quasisymmetry, elucidating the dense-packing rules and structural adaptability of HBsAg. These findings provide insights into how HBsAg assembles into higher-order filaments and interacts with the capsid to form virions.
Collapse
Affiliation(s)
- Quan Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
- National Facility for Protein Science, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Tao Wang
- Laboratory of Structural Biology, Tsinghua University, Beijing, China
| | - Lin Cao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - An Mu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sheng Fu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing, China
| | - Peipei Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wenxin Ji
- National Facility for Protein Science, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Zhenyu Liu
- Laboratory of Structural Biology, Tsinghua University, Beijing, China
| | - Zhanqiang Du
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Australia
| | - Wenchi Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing, China
| | - Shuang Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing, China
| | - Xuemei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing, China
| | - Zhiyong Lou
- Laboratory of Structural Biology, Tsinghua University, Beijing, China
| | - Xiangxi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing, China
| | - Zhongyu Hu
- National Institutes for Food and Drug Control, Beijing, China
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Laboratory of Structural Biology, Tsinghua University, Beijing, China
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing, China
| |
Collapse
|
4
|
Li D, Hamadalnil Y, Tu T. Hepatitis B Viral Protein HBx: Roles in Viral Replication and Hepatocarcinogenesis. Viruses 2024; 16:1361. [PMID: 39339838 PMCID: PMC11437454 DOI: 10.3390/v16091361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatitis B virus (HBV) infection remains a major public health concern worldwide, with approximately 296 million individuals chronically infected. The HBV-encoded X protein (HBx) is a regulatory protein of 17 kDa, reportedly responsible for a broad range of functions, including viral replication and oncogenic processes. In this review, we summarize the state of knowledge on the mechanisms underlying HBx functions in viral replication, the antiviral effect of therapeutics directed against HBx, and the role of HBx in liver cancer development (including a hypothetical model of hepatocarcinogenesis). We conclude by highlighting major unanswered questions in the field and the implications of their answers.
Collapse
Affiliation(s)
- Dong Li
- The Westmead Institute for Medical Research, Faculty of Medicine, The University of Sydney, Westmead, NSW 2145, Australia;
| | | | - Thomas Tu
- The Westmead Institute for Medical Research, Faculty of Medicine, The University of Sydney, Westmead, NSW 2145, Australia;
- Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
5
|
Dooley L, Ahmad T, Ozberk V, Pandey M, Good M, Kotiw M. Chimeric hepatitis B surface antigen virus-like particles expressing the strep A epitope p*17 elicit a humoral immune response in mice. Heliyon 2024; 10:e30606. [PMID: 38765111 PMCID: PMC11101775 DOI: 10.1016/j.heliyon.2024.e30606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024] Open
Abstract
To optimize immunogenicity, bacterial epitopes in putative vaccine constructs can be presented to immune cells as multiple repeated structures on a defined nanoparticle. Virus-like particles (VLPs) are viral capsid proteins that self-assemble to form compact and highly ordered nanoparticles that are within the optimal size range for uptake by dendritic cells. VLPs mimic the live virus in size and form but contain no viral genetic material, are therefore noninfective and are the basis of safe and effective vaccines against hepatitis B virus (HBV) and human papillomavirus (HPV). Due to their particulate nature, molecular stability, and expression of high density and repetitive antigen displays, recombinant cell culture-derived VLPs are ideal platforms for the delivery of small molecules, including bacterial epitopes. We developed a putative vaccine by expressing a minimal epitope from the bacterium Streptococcus pyogenes (Strep A) on the surface of a recombinant VLP comprising multiple copies of HBV small envelope protein (HBsAg-S). Strep A is responsible for a wide spectrum of human infections and postinfectious diseases that disproportionately affect children and young adults living in resource-poor communities. No vaccine is currently available to offer sufficiently broad protection from the numerous and diverse strains of Strep A endemic in these at-risk populations. The Strep A antigen targeted by our vaccine construct is p*17, a cryptic epitope from a highly conserved region of the Strep A M-protein with demonstrated enhanced immunogenicity and broad protective potential against Strep A. To ensure surface expression and optimal immunogenicity, we expressed p*17 within the immunodominant "a" determinant of HBsAg-S. The recombinant VLPs (VLP-p*17) expressed in HEK293T cells spontaneously formed 22 nm particles and induced the production of high titers of p*17-specific IgG in BALB/c mice immunized with three 0.5 μg doses of VLP-p*17 formulated with adjuvant.
Collapse
Affiliation(s)
- Leanne Dooley
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Tarek Ahmad
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Victoria Ozberk
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Manisha Pandey
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Michael Good
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Michael Kotiw
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia
| |
Collapse
|
6
|
Shirasaki T, Murai K, Ishida A, Kuroki K, Kawaguchi K, Wang Y, Yamanaka S, Yasukawa R, Kawasaki N, Li YY, Shimakami T, Sumiyadorj A, Nio K, Sugimoto S, Orita N, Takayama H, Okada H, Thi Bich PD, Iwabuchi S, Hashimoto S, Ide M, Tabata N, Ito S, Matsushima K, Yanagawa H, Yamashita T, Kaneko S, Honda M. Functional involvement of endothelial lipase in hepatitis B virus infection. Hepatol Commun 2023; 7:e0206. [PMID: 37655967 PMCID: PMC10476801 DOI: 10.1097/hc9.0000000000000206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 04/05/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND HBV infection causes chronic liver disease and leads to the development of HCC. To identify host factors that support the HBV life cycle, we previously established the HC1 cell line that maintains HBV infection and identified host genes required for HBV persistence. METHODS The present study focused on endothelial lipase (LIPG), which binds to heparan sulfate proteoglycans (HSPGs) in the cell membrane. RESULTS We found HBV infection was impaired in humanized liver chimeric mouse-derived hepatocytes that were transduced with lentivirus expressing short hairpin RNA against LIPG. Long-term suppression of LIPG combined with entecavir further suppressed HBV replication. LIPG was shown to be involved in HBV attachment to the cell surface by using 2 sodium taurocholate cotransporting peptide (NTCP)-expressing cell lines, and the direct interaction of LIPG and HBV large surface protein was revealed. Heparin and heparinase almost completely suppressed the LIPG-induced increase of HBV attachment, indicating that LIPG accelerated HBV attachment to HSPGs followed by HBV entry through NTCP. Surprisingly, the attachment of a fluorescently labeled NTCP-binding preS1 probe to NTCP-expressing cells was not impaired by heparin, suggesting the HSPG-independent attachment of the preS1 probe to NTCP. Interestingly, attachment of the preS1 probe was severely impaired in LIPG knockdown or knockout cells. Inhibitors of the lipase activity of LIPG similarly impaired the attachment of the preS1 probe to NTCP-expressing cells. CONCLUSIONS LIPG participates in HBV infection by upregulating HBV attachment to the cell membrane by means of 2 possible mechanisms: increasing HBV attachment to HSPGs or facilitating HSPG-dependent or HSPG-independent HBV attachment to NTCP by its lipase activity.
Collapse
Affiliation(s)
- Takayoshi Shirasaki
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kazuhisa Murai
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Atsuya Ishida
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kazuyuki Kuroki
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kazunori Kawaguchi
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Ying Wang
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Souma Yamanaka
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Rio Yasukawa
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Narumi Kawasaki
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Ying-Yi Li
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Ariunaa Sumiyadorj
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Saiho Sugimoto
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Noriaki Orita
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Hideo Takayama
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Hikari Okada
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Phuong Doan Thi Bich
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | | | | | | | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | | | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Masao Honda
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| |
Collapse
|
7
|
Vaillant A. Oligonucleotide-Based Therapies for Chronic HBV Infection: A Primer on Biochemistry, Mechanisms and Antiviral Effects. Viruses 2022; 14:v14092052. [PMID: 36146858 PMCID: PMC9502277 DOI: 10.3390/v14092052] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
Three types of oligonucleotide-based medicines are under clinical development for the treatment of chronic HBV infection. Antisense oligonucleotides (ASOs) and synthetic interfering RNA (siRNA) are designed to degrade HBV mRNA, and nucleic acid polymers (NAPs) stop the assembly and secretion of HBV subviral particles. Extensive clinical development of ASOs and siRNA for a variety of liver diseases has established a solid understanding of their pharmacodynamics, accumulation in different tissue types in the liver, pharmacological effects, off-target effects and how chemical modifications and delivery approaches affect these parameters. These effects are highly conserved for all ASO and siRNA used in human studies to date. The clinical assessment of several ASO and siRNA compounds in chronic HBV infection in recent years is complicated by the different delivery approaches used. Moreover, these assessments have not considered the large clinical database of ASO/siRNA function in other liver diseases and known off target effects in other viral infections. The goal of this review is to summarize the current understanding of ASO/siRNA/NAP pharmacology and integrate these concepts into current clinical results for these compounds in the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Andrew Vaillant
- Replicor Inc., 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| |
Collapse
|
8
|
Mohsen MO, Bachmann MF. Virus-like particle vaccinology, from bench to bedside. Cell Mol Immunol 2022; 19:993-1011. [PMID: 35962190 PMCID: PMC9371956 DOI: 10.1038/s41423-022-00897-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Virus-like particles (VLPs) have become key tools in biology, medicine and even engineering. After their initial use to resolve viral structures at the atomic level, VLPs were rapidly harnessed to develop antiviral vaccines followed by their use as display platforms to generate any kind of vaccine. Most recently, VLPs have been employed as nanomachines to deliver pharmaceutically active products to specific sites and into specific cells in the body. Here, we focus on the use of VLPs for the development of vaccines with broad fields of indications ranging from classical vaccines against viruses to therapeutic vaccines against chronic inflammation, pain, allergy and cancer. In this review, we take a walk through time, starting with the latest developments in experimental preclinical VLP-based vaccines and ending with marketed vaccines, which earn billions of dollars every year, paving the way for the next wave of prophylactic and therapeutic vaccines already visible on the horizon.
Collapse
Affiliation(s)
- Mona O Mohsen
- Department of BioMedical Research, University of Bern, Bern, Switzerland.
- Department of Immunology RIA, University Hospital Bern, Bern, Switzerland.
- Saiba Biotech AG, Bahnhofstr. 13, CH-8808, Pfaeffikon, Switzerland.
| | - Martin F Bachmann
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, Bern, Switzerland
- The Jenner Institute, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Liu H, Hong X, Xi J, Menne S, Hu J, Wang JCY. Cryo-EM structures of human hepatitis B and woodchuck hepatitis virus small spherical subviral particles. SCIENCE ADVANCES 2022; 8:eabo4184. [PMID: 35930632 PMCID: PMC9355357 DOI: 10.1126/sciadv.abo4184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The loss of detectable hepatitis B surface antigen (HBsAg) is considered a functional cure in chronic hepatitis B. Naturally, HBsAg can be incorporated into the virion envelope or assembled into subviral particles (SVPs) with lipid from host cells. Until now, there has been no detailed structure of HBsAg, and the published SVP structures are controversial. Here, we report the first subnanometer-resolution structures of spherical SVP from hepatitis B virus (HBV) and the related woodchuck hepatitis virus (WHV) determined by cryo-electron microscopy in combination with AlphaFold2 prediction. Both structures showed unique rhombicuboctahedral symmetry with 24 protruding spikes comprising dimer of small HBsAg with four helical domains. The lipid moiety in the SVP is organized in a noncanonical lipid patch instead of a lipid bilayer, which can accommodate the exposed hydrophobic surface and modulate particle stability. Together, these findings advance our knowledge of viral membrane organization and the structures of HBV and WHV spherical SVPs.
Collapse
Affiliation(s)
- Haitao Liu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Xupeng Hong
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Ji Xi
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Stephan Menne
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC 20007, USA
| | - Jianming Hu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Joseph Che-Yen Wang
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
10
|
Targeting lipid biosynthesis pathways for hepatitis B virus cure. PLoS One 2022; 17:e0270273. [PMID: 35925919 PMCID: PMC9352027 DOI: 10.1371/journal.pone.0270273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is characterized by the presence of high circulating levels of non-infectious lipoprotein-like HBV surface antigen (HBsAg) particles thought to contribute to chronic immune dysfunction in patients. Lipid and metabolomic analysis of humanized livers from immunodeficient chimeric mice (uPA/SCID) revealed that HBV infection dysregulates several lipid metabolic pathways. Small molecule inhibitors of lipid biosynthetic pathway enzymes acetyl-CoA carboxylase (ACC), fatty acid synthase, and subtilisin kexin isozyme-1/site-1 protease in HBV-infected HepG2-NTCP cells demonstrated potent and selective reduction of extracellular HBsAg. However, a liver-targeted ACC inhibitor did not show antiviral activity in HBV-infected liver chimeric mice, despite evidence of on-target engagement. Our study suggests that while HBsAg production may be dependent on hepatic de novo lipogenesis in vitro, this may be overcome by extrahepatic sources (such as lipolysis or diet) in vivo. Thus, a combination of agents targeting more than one lipid metabolic pathway may be necessary to reduce HBsAg levels in patients with chronic HBV infection.
Collapse
|
11
|
Tale of Viruses in Male Infertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:275-323. [PMID: 35641875 DOI: 10.1007/978-3-030-89340-8_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Male infertility is a condition where the males either become sterile or critically infertile. The World Health Organisation assessed that approximately 9% of the couple have fertility issues where the contribution of the male partner was estimated to be 50%. There are several factors that can amalgamate to give rise to male infertility. Among them are lifestyle factors, genetic factors and as well as several environmental factors. The causes of male infertility may be acquired, congenital or sometimes idiopathic. All these factors adversely affect the spermatogenesis process as well as they impart serious threats to male genital organs thus resulting in infertility. Viruses are submicroscopic pathogenic agents that rely on host for their replication and survival. They enter the host cell, hijack the host cell machinery to aid their own replication and exit the cell for a new round of infection. With the growing abundance of different types of viruses and the havoc they have stirred in the form of pandemics, it is very essential to decipher their route of entry inside the human body and understand their diverse functional roles in order to combat them. In this chapter, we will review how viruses invade the male genital system thus in turn leading to detrimental consequence on male fertility. We will discuss the tropism of various viruses in the male genital organs and explore their sexual transmissibility. This chapter will summarise the functional and mechanistic approaches employed by the viruses in inducing oxidative stress inside spermatozoa thus leading to male infertility. Moreover, we will also highlight the various antiviral therapies that have been studied so far in order to ameliorate viral infection in order to combat the harmful consequences leading to male infertility.
Collapse
|
12
|
Tornesello AL, Tagliamonte M, Buonaguro FM, Tornesello ML, Buonaguro L. Virus-like Particles as Preventive and Therapeutic Cancer Vaccines. Vaccines (Basel) 2022; 10:227. [PMID: 35214685 PMCID: PMC8879290 DOI: 10.3390/vaccines10020227] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
Virus-like particles (VLPs) are self-assembled viral protein complexes that mimic the native virus structure without being infectious. VLPs, similarly to wild type viruses, are able to efficiently target and activate dendritic cells (DCs) triggering the B and T cell immunities. Therefore, VLPs hold great promise for the development of effective and affordable vaccines in infectious diseases and cancers. Vaccine formulations based on VLPs, compared to other nanoparticles, have the advantage of incorporating multiple antigens derived from different proteins. Moreover, such antigens can be functionalized by chemical modifications without affecting the structural conformation or the antigenicity. This review summarizes the current status of preventive and therapeutic VLP-based vaccines developed against human oncoviruses as well as cancers.
Collapse
Affiliation(s)
- Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, via Mariano Semmola, 80131 Napoli, Italy; (F.M.B.); (M.L.T.)
| | - Maria Tagliamonte
- Innovative Immunological Models, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, via Mariano Semmola, 80131 Napoli, Italy; (M.T.); (L.B.)
| | - Franco M. Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, via Mariano Semmola, 80131 Napoli, Italy; (F.M.B.); (M.L.T.)
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, via Mariano Semmola, 80131 Napoli, Italy; (F.M.B.); (M.L.T.)
| | - Luigi Buonaguro
- Innovative Immunological Models, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, via Mariano Semmola, 80131 Napoli, Italy; (M.T.); (L.B.)
| |
Collapse
|
13
|
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus and an important human pathogen. There are an estimated 296 million people in the world that are chronically infected by this virus, and many of them will develop severe liver diseases including hepatitis, cirrhosis and hepatocellular carcinoma (HCC). HBV is a small DNA virus that replicates via the reverse transcription pathway. In this review, we summarize the molecular pathways that govern the replication of HBV and its interactions with host cells. We also discuss viral and non-viral factors that are associated with HBV-induced carcinogenesis and pathogenesis, as well as the role of host immune responses in HBV persistence and liver pathogenesis.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| |
Collapse
|
14
|
Aruna V, Sneha A, Harshitha DS. Hepatocellular carcinoma—An updated review. THERANOSTICS AND PRECISION MEDICINE FOR THE MANAGEMENT OF HEPATOCELLULAR CARCINOMA 2022:11-31. [DOI: 10.1016/b978-0-323-98806-3.00022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Vaillant A. HBsAg, Subviral Particles, and Their Clearance in Establishing a Functional Cure of Chronic Hepatitis B Virus Infection. ACS Infect Dis 2021; 7:1351-1368. [PMID: 33302622 DOI: 10.1021/acsinfecdis.0c00638] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In diverse viral infections, the production of excess viral particles containing only viral glycoproteins (subviral particles or SVP) is commonly observed and is a commonly evolved mechanism for immune evasion. In hepatitis B virus (HBV) infection, spherical particles contain the hepatitis B surface antigen, outnumber infectious virus 10 000-100 000 to 1, and have diverse inhibitory effects on the innate and adaptive immune response, playing a major role in the chronic nature of HBV infection. The current goal of therapies in development for HBV infection is a clinical outcome called functional cure, which signals a persistent and effective immune control of the infection. Although removal of spherical SVP (and the HBsAg they carry) is an important milestone in achieving functional cure, this outcome is rarely achieved with current therapies due to distinct mechanisms for assembly, secretion, and persistence of SVP, which are poorly targeted by direct acting antivirals or immunotherapies. In this Review, the current understanding of the distinct mechanisms involved in the production and persistence of spherical SVP in chronic HBV infection and their immunoinhibitory activity will be reviewed as well as current therapies in development with the goal of clearing spherical SVP and achieving functional cure.
Collapse
Affiliation(s)
- Andrew Vaillant
- Replicor Inc., 6100 Royalmount Avenue, Montreal, Quebec H8Y 3E6, Canada
| |
Collapse
|
16
|
Schmidt NM, Wing PAC, Diniz MO, Pallett LJ, Swadling L, Harris JM, Burton AR, Jeffery-Smith A, Zakeri N, Amin OE, Kucykowicz S, Heemskerk MH, Davidson B, Meyer T, Grove J, Stauss HJ, Pineda-Torra I, Jolly C, Jury EC, McKeating JA, Maini MK. Targeting human Acyl-CoA:cholesterol acyltransferase as a dual viral and T cell metabolic checkpoint. Nat Commun 2021; 12:2814. [PMID: 33990561 PMCID: PMC8121939 DOI: 10.1038/s41467-021-22967-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Determining divergent metabolic requirements of T cells, and the viruses and tumours they fail to combat, could provide new therapeutic checkpoints. Inhibition of acyl-CoA:cholesterol acyltransferase (ACAT) has direct anti-carcinogenic activity. Here, we show that ACAT inhibition has antiviral activity against hepatitis B (HBV), as well as boosting protective anti-HBV and anti-hepatocellular carcinoma (HCC) T cells. ACAT inhibition reduces CD8+ T cell neutral lipid droplets and promotes lipid microdomains, enhancing TCR signalling and TCR-independent bioenergetics. Dysfunctional HBV- and HCC-specific T cells are rescued by ACAT inhibitors directly ex vivo from human liver and tumour tissue respectively, including tissue-resident responses. ACAT inhibition enhances in vitro responsiveness of HBV-specific CD8+ T cells to PD-1 blockade and increases the functional avidity of TCR-gene-modified T cells. Finally, ACAT regulates HBV particle genesis in vitro, with inhibitors reducing both virions and subviral particles. Thus, ACAT inhibition provides a paradigm of a metabolic checkpoint able to constrain tumours and viruses but rescue exhausted T cells, rendering it an attractive therapeutic target for the functional cure of HBV and HBV-related HCC.
Collapse
Affiliation(s)
- Nathalie M Schmidt
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Peter A C Wing
- Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Mariana O Diniz
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Laura J Pallett
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Leo Swadling
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - James M Harris
- Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Alice R Burton
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Anna Jeffery-Smith
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Nekisa Zakeri
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Oliver E Amin
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Stephanie Kucykowicz
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Mirjam H Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Brian Davidson
- Division of Surgery, University College London, London, UK
- Royal Free London NHS Foundation Trust, London, UK
| | - Tim Meyer
- Royal Free London NHS Foundation Trust, London, UK
- Cancer Institute, University College London, London, UK
| | - Joe Grove
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Hans J Stauss
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | | | - Clare Jolly
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | | | | | - Mala K Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK.
| |
Collapse
|
17
|
Seitz S, Habjanič J, Schütz AK, Bartenschlager R. The Hepatitis B Virus Envelope Proteins: Molecular Gymnastics Throughout the Viral Life Cycle. Annu Rev Virol 2020; 7:263-288. [PMID: 32600157 DOI: 10.1146/annurev-virology-092818-015508] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
New hepatitis B virions released from infected hepatocytes are the result of an intricate maturation process that starts with the formation of the nucleocapsid providing a confined space where the viral DNA genome is synthesized via reverse transcription. Virion assembly is finalized by the enclosure of the icosahedral nucleocapsid within a heterogeneous envelope. The latter contains integral membrane proteins of three sizes, collectively known as hepatitis B surface antigen, and adopts multiple conformations in the course of the viral life cycle. The nucleocapsid conformation depends on the reverse transcription status of the genome, which in turn controls nucleocapsid interaction with the envelope proteins for virus exit. In addition, after secretion the virions undergo a distinct maturation step during which a topological switch of the large envelope protein confers infectivity. Here we review molecular determinants for envelopment and models that postulate molecular signals encoded in the capsid scaffold conducive or adverse to the recruitment of envelope proteins.
Collapse
Affiliation(s)
- Stefan Seitz
- Department of Infectious Diseases, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Jelena Habjanič
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Anne K Schütz
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, University of Heidelberg, 69120 Heidelberg, Germany; .,Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
18
|
Herrscher C, Roingeard P, Blanchard E. Hepatitis B Virus Entry into Cells. Cells 2020; 9:cells9061486. [PMID: 32570893 PMCID: PMC7349259 DOI: 10.3390/cells9061486] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV), an enveloped partially double-stranded DNA virus, is a widespread human pathogen responsible for more than 250 million chronic infections worldwide. Current therapeutic strategies cannot eradicate HBV due to the persistence of the viral genome in a special DNA structure (covalently closed circular DNA, cccDNA). The identification of sodium taurocholate co-transporting polypeptide (NTCP) as an entry receptor for both HBV and its satellite virus hepatitis delta virus (HDV) has led to great advances in our understanding of the life cycle of HBV, including the early steps of infection in particular. However, the mechanisms of HBV internalization and the host factors involved in this uptake remain unclear. Improvements in our understanding of HBV entry would facilitate the design of new therapeutic approaches targeting this stage and preventing the de novo infection of naïve hepatocytes. In this review, we provide an overview of current knowledge about the process of HBV internalization into cells.
Collapse
Affiliation(s)
- Charline Herrscher
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France;
| | - Philippe Roingeard
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France;
- Plate-Forme IBiSA des Microscopies, PPF ASB, Université de Tours and CHRU de Tours, 37032 Tours, France
- Correspondence: (P.R.); (E.B.); Tel.: +33-2-3437-9646 (E.B.)
| | - Emmanuelle Blanchard
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France;
- Plate-Forme IBiSA des Microscopies, PPF ASB, Université de Tours and CHRU de Tours, 37032 Tours, France
- Correspondence: (P.R.); (E.B.); Tel.: +33-2-3437-9646 (E.B.)
| |
Collapse
|
19
|
Czarnota A, Offersgaard A, Pihl AF, Prentoe J, Bukh J, Gottwein JM, Bieńkowska-Szewczyk K, Grzyb K. Specific Antibodies Induced by Immunization with Hepatitis B Virus-Like Particles Carrying Hepatitis C Virus Envelope Glycoprotein 2 Epitopes Show Differential Neutralization Efficiency. Vaccines (Basel) 2020; 8:vaccines8020294. [PMID: 32532076 PMCID: PMC7350033 DOI: 10.3390/vaccines8020294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/30/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection with associated chronic liver diseases is a major health problem worldwide. Here, we designed hepatitis B virus (HBV) small surface antigen (sHBsAg) virus-like particles (VLPs) presenting different epitopes derived from the HCV E2 glycoprotein (residues 412-425, 434-446, 502-520, and 523-535 of isolate H77C). Epitopes were selected based on their amino acid sequence conservation and were previously reported as targets of HCV neutralizing antibodies. Chimeric VLPs obtained in the Leishmania tarentolae expression system, in combination with the adjuvant Addavax, were used to immunize mice. Although all VLPs induced strong humoral responses, only antibodies directed against HCV 412-425 and 523-535 epitopes were able to react with the native E1E2 glycoprotein complexes of different HCV genotypes in ELISA. Neutralization assays against genotype 1-6 cell culture infectious HCV (HCVcc), revealed that only VLPs carrying the 412-425 epitope induced efficient HCV cross-neutralizing antibodies, but with isolate specific variations in efficacy that could not necessarily be explained by differences in epitope sequences. In contrast, antibodies targeting 434-446, 502-520, and 523-535 epitopes were not neutralizing HCVcc, highlighting the importance of conformational antibodies for efficient virus neutralization. Thus, 412-425 remains the most promising linear E2 epitope for further bivalent, rationally designed vaccine research.
Collapse
Affiliation(s)
- Anna Czarnota
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, 80-309 Gdańsk, Poland; (A.C.); (K.B.-S.)
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anne Finne Pihl
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Judith Margarete Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, 80-309 Gdańsk, Poland; (A.C.); (K.B.-S.)
| | - Katarzyna Grzyb
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, 80-309 Gdańsk, Poland; (A.C.); (K.B.-S.)
- Correspondence:
| |
Collapse
|
20
|
Berthier L, Brass O, Deleage G, Terreux R. Construction of atomic models of full hepatitis B vaccine particles at different stages of maturation. J Mol Graph Model 2020; 98:107610. [PMID: 32302938 DOI: 10.1016/j.jmgm.2020.107610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/02/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022]
Abstract
Hepatitis B, one of the world's most common liver infections, is caused by the Hepatitis B Virus (HBV). Via the infected cells, this virus generates non pathogen particles with similar surface structures as those found in the full virus. These particles are used in a recombinant form (HBsAg) to produce efficient vaccines. The atomic structure of the HBsAg particles is currently unsolved, and the only existing structural data for the full particle were obtained by electronic microscopy with a maximum resolution of 12 Å. As many vaccines, HBsAg is a complex bio-system. This complexity results from numerous sources of heterogeneity, and traditional bio-immuno-chemistry analytic tools are often limited in their ability to fully describe the molecular surface or the particle. For the Hepatitis B vaccine particle (HBsAg), no atomic data are available so far. In this study, we used the principal well-known elements of HBsAg structure to reconstitute and model the full HBsAg particle assembly at a molecular level (protein assembly, particle formation and maturation). Full HBsAg particle atomic models were built based on an exhaustive experimental data review, amino acid sequence analysis, iterative threading modeling, and molecular dynamic approaches.
Collapse
Affiliation(s)
- Laurent Berthier
- PRABI-LG - Laboratoire de Biologie Tissulaire et d'ingénierie Thérapeutique (LBTI), UMR, UCBL, CNRS 5305, Université de Lyon, 7 Passage du Vercors, 69367, Lyon Cedex 07, France
| | - Olivier Brass
- Sanofi Pasteur, avenue Ch. Mérieux, F-69280, Marcy-l'Etoile, France
| | - Gilbert Deleage
- PRABI-LG - Laboratoire de Biologie Tissulaire et d'ingénierie Thérapeutique (LBTI), UMR, UCBL, CNRS 5305, Université de Lyon, 7 Passage du Vercors, 69367, Lyon Cedex 07, France
| | - Raphaël Terreux
- PRABI-LG - Laboratoire de Biologie Tissulaire et d'ingénierie Thérapeutique (LBTI), UMR, UCBL, CNRS 5305, Université de Lyon, 7 Passage du Vercors, 69367, Lyon Cedex 07, France.
| |
Collapse
|
21
|
Joe CCD, Chatterjee S, Lovrecz G, Adams TE, Thaysen-Andersen M, Walsh R, Locarnini SA, Smooker P, Netter HJ. Glycoengineered hepatitis B virus-like particles with enhanced immunogenicity. Vaccine 2020; 38:3892-3901. [PMID: 32284273 DOI: 10.1016/j.vaccine.2020.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 01/04/2023]
Abstract
Virus-like particles (VLP) represent biological platforms for the development of novel products such as vaccines and delivery platforms for foreign antigenic sequences. VLPs composed of the small surface antigen (HBsAgS) derived from the hepatitis B virus (HBV) are the immunogenic components of a licensed, preventative vaccine, which contains aluminum hydroxide as adjuvant. Herein, we report that glycoengineering of N-glycosylated HBsAgS to generate hyper-glycosylated VLPs display an enhanced immunogenicity relative to the wild type (WT) HBsAgS VLPs when expressed in FreeStyle HEK 293F cells. Comparative mass spectrometry-based N-glycan profiling, gel electrophoresis, and immunoassays demonstrated that WT and hyper-glycosylated HBsAgS VLPs contain the same type and distribution of N-glycan structures, but the latter shows a higher glycan abundance per protein mass. The antigenic integrity of the modified VLPs was also shown to be retained. To assess whether hyper-glycosylated VLPs induce an enhanced immune response in the presence of the adjuvant aluminum hydroxide, the anti-HBV surface antigen (anti-HBsAgS) antibody response was monitored in BALB/c mice, subcutaneously injected with different VLP derivatives. In the absence and presence of adjuvant, hyper-glycosylated VLPs showed an enhanced immunogenicity compared to WT VLPs. The ability of hyper-glycosylated VLPs to promote potent anti-HBsAgS immune responses compared to VLPs with a native N-glycan level as well as non-glycosylated, yeast-derived HBsAgS VLPs opens exciting avenues for generating more efficacious VLP-based vaccines against hepatitis B and improved HBsAgS VLP carrier platforms using glycoengineering.
Collapse
Affiliation(s)
- Carina C D Joe
- Royal Melbourne Institute of Technology (RMIT) University, School of Science, Melbourne, Victoria 3001, Australia; Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria 3169, Australia
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - George Lovrecz
- Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria 3169, Australia
| | - Timothy E Adams
- Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria 3169, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Renae Walsh
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia
| | - Stephen A Locarnini
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia
| | - Peter Smooker
- Royal Melbourne Institute of Technology (RMIT) University, School of Science, Melbourne, Victoria 3001, Australia
| | - Hans J Netter
- Royal Melbourne Institute of Technology (RMIT) University, School of Science, Melbourne, Victoria 3001, Australia; Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
22
|
Ho JKT, Jeevan-Raj B, Netter HJ. Hepatitis B Virus (HBV) Subviral Particles as Protective Vaccines and Vaccine Platforms. Viruses 2020; 12:v12020126. [PMID: 31973017 PMCID: PMC7077199 DOI: 10.3390/v12020126] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B remains one of the major global health problems more than 40 years after the identification of human hepatitis B virus (HBV) as the causative agent. A critical turning point in combating this virus was the development of a preventative vaccine composed of the HBV surface (envelope) protein (HBsAg) to reduce the risk of new infections. The isolation of HBsAg sub-viral particles (SVPs) from the blood of asymptomatic HBV carriers as antigens for the first-generation vaccines, followed by the development of recombinant HBsAg SVPs produced in yeast as the antigenic components of the second-generation vaccines, represent landmark advancements in biotechnology and medicine. The ability of the HBsAg SVPs to accept and present foreign antigenic sequences provides the basis of a chimeric particulate delivery platform, and resulted in the development of a vaccine against malaria (RTS,S/AS01, MosquirixTM), and various preclinical vaccine candidates to overcome infectious diseases for which there are no effective vaccines. Biomedical modifications of the HBsAg subunits allowed the identification of strategies to enhance the HBsAg SVP immunogenicity to build potent vaccines for preventative and possibly therapeutic applications. The review provides an overview of the formation and assembly of the HBsAg SVPs and highlights the utilization of the particles in key effective vaccines.
Collapse
Affiliation(s)
- Joan Kha-Tu Ho
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia; (J.K.-T.H.); (B.J.-R.)
| | - Beena Jeevan-Raj
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia; (J.K.-T.H.); (B.J.-R.)
| | - Hans-Jürgen Netter
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia; (J.K.-T.H.); (B.J.-R.)
- Royal Melbourne Institute of Technology (RMIT) University, School of Science, Melbourne, Victoria 3001, Australia
- Correspondence:
| |
Collapse
|
23
|
Vaillant A. REP 2139: Antiviral Mechanisms and Applications in Achieving Functional Control of HBV and HDV Infection. ACS Infect Dis 2019; 5:675-687. [PMID: 30199230 DOI: 10.1021/acsinfecdis.8b00156] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleic acid polymers (NAPs) are broad spectrum antiviral agents whose antiviral activity in hepatitis B virus (HBV) infection is derived from their ability to block the release of the hepatitis B virus surface antigen (HBsAg). This pharmacological activity blocks replenishment of HBsAg in the circulation, allowing host mediated clearance. This effect has important clinical significance as the clearance of circulating HBsAg dramatically potentiates the ability of immunotherapies to restore functional control of HBV infection which persists after antiviral therapy is removed. These effects are reproducible in preclinical evaluations and in several clinical trials that have evaluated the activity of the lead NAP, REP 2139, in monotherapy and in combination with immunotherapy in hepatitis B e antigen (HBeAg) negative and HBeAg positive HBV infection and also in HBeAg negative HBV/hepatitis D virus (HDV) coinfection. These antiviral effects of REP 2139 are achieved in the absence of any direct immunostimulatory effect in the liver and also without any discernible direct interaction with viral components. The search for the host protein interaction with NAPs that drives their antiviral effects is ongoing, and the interaction targeted by REP 2139 within infected cells has not yet been elucidated. This article provides an updated review of available data on the effects of REP 2139 in HBV and HDV infection and the ability of REP 2139-based combination therapy to achieve functional control of HBV and HDV infection in patients.
Collapse
Affiliation(s)
- Andrew Vaillant
- Replicor Inc., 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| |
Collapse
|
24
|
Kingston NJ, Kurtovic L, Walsh R, Joe C, Lovrecz G, Locarnini S, Beeson JG, Netter HJ. Hepatitis B virus-like particles expressing Plasmodium falciparum epitopes induce complement-fixing antibodies against the circumsporozoite protein. Vaccine 2019; 37:1674-1684. [PMID: 30773400 DOI: 10.1016/j.vaccine.2019.01.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 12/21/2022]
Abstract
The repetitive structure of compact virus-like particles (VLPs) provides high density displays of antigenic sequences, which trigger key parts of the immune system. The hepatitis B virus (HBV) and human papilloma virus (HPV) vaccines exploit the assembly competence of structural proteins, which are the effective immunogenic components of the prophylactic HBV and HPV vaccines, respectively. To optimize vaccine designs and to promote immune responses against protective epitopes, the "Asp-Ala-Asp-Pro" (NANP)-repeat from the Plasmodium falciparum circumsporozoite protein (CSP) was expressed within the exposed, main antigenic site of the small HBV envelope protein (HBsAgS); this differs from the RTS,S vaccine, in which CSP epitopes are fused to the N-terminus of HBsAgS. The chimeric HBsAgS proteins are assembly competent, produce VLPs, and provide a high antigenic density of the NANP repeat sequence. Chimeric VLPs with four or nine NANP-repeats (NANP4 and NANP9, respectively) were expressed in mammalian cells, the HBsAgS- and CSP-specific antigenicity of the VLPs was determined, and the immunogenicity of the VLPs assessed in relation to the induction of anti-HBsAgS and anti-CSP antibody responses. The chimeric VLPs induced high anti-CSP titres in BALB/c mice independent of the number of the NANP repeats. However, the number of NANP repeats influenced the activity of vaccine-induced antibodies measured by complement fixation to CSP, one of the proposed effector mechanisms for Plasmodium neutralization in vivo. Sera from mice immunized with VLPs containing nine NANP repeats performed better in the complement fixation assay than the group with four NANP repeats. The effect of the epitope-specific density on the antibody quality may instruct VLP platform designs to optimize immunological outcomes and vaccine efficacy.
Collapse
Affiliation(s)
- Natalie J Kingston
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia; School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Liriye Kurtovic
- Burnet Institute, Commercial Road, Melbourne, Victoria 3004, Australia; Department of Immunology and Pathology, Monash University, Melbourne, Victoria 2004, Australia
| | - Renae Walsh
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia
| | - Carina Joe
- Royal Melbourne Institute of Technology (RMIT) University, School of Science, Melbourne, Victoria 3001, Australia; Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria 3169, Australia
| | - George Lovrecz
- Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria 3169, Australia
| | - Stephen Locarnini
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia
| | - James G Beeson
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia; Burnet Institute, Commercial Road, Melbourne, Victoria 3004, Australia; Department of Immunology and Pathology, Monash University, Melbourne, Victoria 2004, Australia; Department of Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hans J Netter
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia; Royal Melbourne Institute of Technology (RMIT) University, School of Science, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
25
|
González-Aramundiz JV, Peleteiro M, González-Fernández Á, Alonso MJ, Csaba NS. Protamine Nanocapsules for the Development of Thermostable Adjuvanted Nanovaccines. Mol Pharm 2018; 15:5653-5664. [PMID: 30375877 DOI: 10.1021/acs.molpharmaceut.8b00852] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
One of the main challenges in the development of vaccine has been to improve their stability at room temperature and eliminate the limitations associated with the cold chain storage. In this paper, we describe the development and optimization of thermostable nanocarriers consisting of an oily core with immunostimulating activity, containing squalene or α tocopherol surrounded by a protamine shell. The results showed that these nanocapsules can efficiently associate the recombinant hepatitis B surface antigen (rHBsAg) without compromising its antigenicity. Furthermore, the freeze-dried protamine nanocapsules were able to preserve the integrity and bioactivity of the associated antigen upon storage for at least 12 months at room temperature. In vitro studies evidenced the high internalization of the nanocapsules by immunocompetent cells, followed by cytokine secretion and complement activation. In vivo studies showed the capacity of rHBsAg-loaded nanocapsules to elicit protective levels upon intramuscular or intranasal administration to mice. Overall, our data indicate that protamine nanocapsules are an innovative thermostable nanovaccine platform for improved antigen delivery.
Collapse
Affiliation(s)
- José Vicente González-Aramundiz
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy , University of Santiago de Compostela , 15782 Santiago de Compostela , Spain.,Departamento de Farmacia, Facultad de Química , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Mercedes Peleteiro
- Inmunologı́a, Centro de Investigaciones Biomédicas (CINBIO) (Centro Singular de Investigación de Galicia) , Instituto de Investigación Sanitaria Galicia Sur, Universidade de Vigo , Vigo , Spain
| | - África González-Fernández
- Inmunologı́a, Centro de Investigaciones Biomédicas (CINBIO) (Centro Singular de Investigación de Galicia) , Instituto de Investigación Sanitaria Galicia Sur, Universidade de Vigo , Vigo , Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy , University of Santiago de Compostela , 15782 Santiago de Compostela , Spain
| | - Noemi Stefánia Csaba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy , University of Santiago de Compostela , 15782 Santiago de Compostela , Spain
| |
Collapse
|
26
|
Cryo-EM structure of native spherical subviral particles isolated from HBV carriers. Virus Res 2018; 259:90-96. [PMID: 30391399 DOI: 10.1016/j.virusres.2018.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 11/24/2022]
Abstract
Hepatitis B virus (HBV) contains 3 types of particles, i.e., 22-nm-diameter spherical and tubular subviral particles (SVPs) and 44-nm-diameter Dane particles. The SVPs are non-infectious and present strong immunogenicity, while Dane particles are infectious. In this study, we isolated spherical SVPs from HBV carriers' sera and determined their 3D structure at the resolution of ∼30 Å by cryo-electron microscopy (cryo-EM) single-particle reconstruction. Our cryo-EM structure suggests that the native HBV spherical SVP is irregularly organized, where spike-like features are arranged in a crystalline-like pattern on the surface. Strikingly, the hepatitis B surface antigen (HBsAg) in the native spherical SVPs folds as protrusions on the surface, as those on the native tubular SVPs and Dane particles, but is largely different from that in the recombinant octahedral SVPs. These results suggest a universal folding shape of HBsAg on the native HBV viral and subviral particles.
Collapse
|
27
|
Hosseini SN, Ghaisari P, Sharifnia S, Khatami M, Javidanbardan A. Improving the recovery of clarification process of recombinant hepatitis B surface antigen in large-scale by optimizing adsorption-desorption parameters on Aerosil-380. Prep Biochem Biotechnol 2018; 48:490-497. [DOI: 10.1080/10826068.2018.1466153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
| | - Parisa Ghaisari
- Department of Chemical Engineering, Razi University, Kermanshah, Iran
| | - Shahram Sharifnia
- Department of Chemical Engineering, Razi University, Kermanshah, Iran
| | - Maryam Khatami
- Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Amin Javidanbardan
- Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
28
|
Quinet J, Jamard C, Burtin M, Lemasson M, Guerret S, Sureau C, Vaillant A, Cova L. Nucleic acid polymer REP 2139 and nucleos(T)ide analogues act synergistically against chronic hepadnaviral infection in vivo in Pekin ducks. Hepatology 2018; 67:2127-2140. [PMID: 29251788 PMCID: PMC6001552 DOI: 10.1002/hep.29737] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/24/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022]
Abstract
Nucleic acid polymer (NAP) REP 2139 treatment was shown to block the release of viral surface antigen in duck HBV (DHBV)-infected ducks and in patients with chronic HBV or HBV/hepatitis D virus infection. In this preclinical study, a combination therapy consisting of REP 2139 with tenofovir disoproxil fumarate (TDF) and entecavir (ETV) was evaluated in vivo in the chronic DHBV infection model. DHBV-infected duck groups were treated as follows: normal saline (control); REP 2139 TDF; REP 2139 + TDF; and REP 2139 + TDF + ETV. After 4 weeks of treatment, all animals were followed for 8 weeks. Serum DHBsAg and anti-DHBsAg antibodies were monitored by enzyme-linked immunosorbent assay and viremia by qPCR. Total viral DNA and covalently closed circular DNA (cccDNA) were quantified in autopsy liver samples by qPCR. Intrahepatic DHBsAg was assessed at the end of follow-up by immunohistochemistry. On-treatment reduction of serum DHBsAg and viremia was more rapid when REP 2139 was combined with TDF or TDF and ETV, and, in contrast to TDF monotherapy, no viral rebound was observed after treatment cessation. Importantly, combination therapy resulted in a significant decrease in intrahepatic viral DNA (>3 log) and cccDNA (>2 log), which were tightly correlated with the clearance of DHBsAg in the liver. CONCLUSION Synergistic antiviral effects were observed when REP 2139 was combined with TDF or TDF + ETV leading to control of infection in blood and liver, associated with intrahepatic viral surface antigen elimination that persisted after treatment withdrawal. Our findings suggest the potential of developing such combination therapy for treatment of chronically infected patients in the absence of pegylated interferon. (Hepatology 2018;67:2127-2140).
Collapse
Affiliation(s)
- Jonathan Quinet
- Institut National de Santé et Recherche Médicale (INSERM) U1052LyonFrance
| | - Catherine Jamard
- Institut National de Santé et Recherche Médicale (INSERM) U1052LyonFrance
| | - Madeleine Burtin
- Institut National de Santé et Recherche Médicale (INSERM) U1052LyonFrance
| | | | | | - Camille Sureau
- Institut National de la Transfusion Sanguine (INTS)ParisFrance
| | | | - Lucyna Cova
- Institut National de Santé et Recherche Médicale (INSERM) U1052LyonFrance
| |
Collapse
|
29
|
Jully V, Mathot F, Moniotte N, Préat V, Lemoine D. Mechanisms of Antigen Adsorption Onto an Aluminum-Hydroxide Adjuvant Evaluated by High-Throughput Screening. J Pharm Sci 2017; 105:1829-1836. [PMID: 27238481 DOI: 10.1016/j.xphs.2016.03.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/27/2016] [Accepted: 03/22/2016] [Indexed: 02/05/2023]
Abstract
The adsorption mechanism of antigen on aluminum adjuvant can affect antigen elution at the injection site and hence the immune response. Our aim was to evaluate adsorption onto aluminum hydroxide (AH) by ligand exchange and electrostatic interactions of model proteins and antigens, bovine serum albumin (BSA), β-casein, ovalbumin (OVA), hepatitis B surface antigen, and tetanus toxin (TT). A high-throughput screening platform was developed to measure adsorption isotherms in the presence of electrolytes and ligand exchange by a fluorescence-spectroscopy method that detects the catalysis of 6,8-difluoro-4-methylumbelliferyl phosphate by free hydroxyl groups on AH. BSA adsorption depended on predominant electrostatic interactions. Ligand exchange contributes to the adsorption of β-casein, OVA, hepatitis B surface antigen, and TT onto AH. Based on relative surface phosphophilicity and adsorption isotherms in the presence of phosphate and fluoride, the capacities of the proteins to interact with AH by ligand exchange followed the trend: OVA < β-casein < BSA < TT. This could be explained by both the content of ligands available in the protein structure for ligand exchange and the antigen's molecular weight. The high-throughput screening platform can be used to better understand the contributions of ligand exchange and electrostatic attractions governing the interactions between an antigen adsorbed onto aluminum-containing adjuvant.
Collapse
Affiliation(s)
- Vanessa Jully
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels 1200, Belgium; GSK Vaccines, Vaccine Discovery and Development, Rixensart 1330, Belgium
| | - Frédéric Mathot
- GSK Vaccines, Vaccine Discovery and Development, Rixensart 1330, Belgium
| | - Nicolas Moniotte
- GSK Vaccines, Vaccine Discovery and Development, Rixensart 1330, Belgium
| | - Véronique Préat
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels 1200, Belgium.
| | - Dominique Lemoine
- GSK Vaccines, Vaccine Discovery and Development, Rixensart 1330, Belgium
| |
Collapse
|
30
|
Schöneweis K, Motter N, Roppert PL, Lu M, Wang B, Roehl I, Glebe D, Yang D, Morrey JD, Roggendorf M, Vaillant A. Activity of nucleic acid polymers in rodent models of HBV infection. Antiviral Res 2017; 149:26-33. [PMID: 29126900 DOI: 10.1016/j.antiviral.2017.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/19/2017] [Accepted: 10/27/2017] [Indexed: 12/18/2022]
Abstract
Nucleic acid polymers (NAPs) block the release of HBsAg from infected hepatocytes. These compounds have been previously shown to have the unique ability to eliminate serum surface antigen in DHBV-infected Pekin ducks and achieve multilog reduction of HBsAg or HBsAg loss in patients with chronic HBV infection and HBV/HDV coinfection. In ducks and humans, the blockage of HBsAg release by NAPs occurs by the selective targeting of the assembly and/or secretion of subviral particles (SVPs). The clinically active NAP species REP 2055 and REP 2139 were investigated in other relevant animal models of HBV infection including woodchucks chronically infected with WHV, HBV transgenic mice and HBV infected SCID-Hu mice. The liver accumulation of REP 2139 in woodchucks following subcutaneous administration was examined and was found to be similar to that observed in mice and ducks. However, in woodchucks, NAP treatment was associated with only mild (36-79% relative to baseline) reductions in WHsAg (4/10 animals) after 3-5 weeks of treatment without changes in serum WHV DNA. In HBV infected SCID-Hu mice, REP 2055 treatment was not associated with any reduction of HBsAg, HBeAg or HBV DNA in the serum after 28 days of treatment. In HBV transgenic mice, no reductions in serum HBsAg were observed with REP 2139 with up to 12 weeks of treatment. In conclusion, the antiviral effects of NAPs in DHBV infected ducks and patients with chronic HBV infection were weak or absent in woodchuck and mouse models despite similar liver accumulation of NAPs in all these species, suggesting that the mechanisms of SVP assembly and or secretion present in rodent models differs from that in DHBV and chronic HBV infections.
Collapse
Affiliation(s)
- Katrin Schöneweis
- Department of Virology, University of Duisburg-Essen, Essen, Germany
| | - Neil Motter
- Institute for Antiviral Research, Utah State University, Logan, UT, USA
| | - Pia L Roppert
- Institute of Medical Virology, National Reference Centre for Hepatitis B and D Viruses, German Centre for Infection Research (DZIF), Justus Liebig University of Giessen, Giessen, Germany
| | - Mengji Lu
- Department of Virology, University of Duisburg-Essen, Essen, Germany
| | - Baoju Wang
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B and D Viruses, German Centre for Infection Research (DZIF), Justus Liebig University of Giessen, Giessen, Germany
| | - Dongliang Yang
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - John D Morrey
- Institute for Antiviral Research, Utah State University, Logan, UT, USA
| | | | | |
Collapse
|
31
|
Huang J, Zhao L, Yang P, Chen Z, Ruan XZ, Huang A, Tang N, Chen Y. Fatty acid translocase promoted hepatitis B virus replication by upregulating the levels of hepatic cytosolic calcium. Exp Cell Res 2017; 358:360-368. [PMID: 28697919 DOI: 10.1016/j.yexcr.2017.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/27/2017] [Accepted: 07/07/2017] [Indexed: 12/19/2022]
Abstract
Hepatitis B virus (HBV) is designated a "metabolovirus" due to the intimate connection between the virus and host metabolism. The nutrition state of the host plays a relevant role in the severity of HBV infection. Metabolic syndrome (MS) is prone to increasing HBV DNA loads and accelerating the progression of liver disease in patients with chronic hepatitis B (CHB). Cluster of differentiation 36 (CD36), also named fatty acid translocase, is known to facilitate long-chain fatty acid uptake and contribute to the development of MS. We recently found that CD36 overexpression enhanced HBV replication. In this study, we further explored the mechanism by which CD36 overexpression promotes HBV replication. Our data showed that CD36 overexpression increased HBV replication, and CD36 knockdown inhibited HBV replication. RNA sequencing found some of the differentially expressed genes were involved in calcium ion homeostasis. CD36 overexpression elevated the cytosolic calcium level, and CD36 knockdown decreased the cytosolic calcium level. Calcium chelator BAPTA-AM could override the HBV replication increased by CD36 overexpression, and the calcium activator thapsigargin could improve the HBV replication reduced by CD36 knockdown. We further found that CD36 overexpression activated Src kinase, which plays an important role in the regulation of the store-operated Ca2+ channel. An inhibitor of Src kinase (SU6656) significantly reduced the CD36-induced HBV replication. We identified a novel link between CD36 and HBV replication, which is associated with cytosolic calcium and the Src kinase pathway. CD36 may represent a potential therapeutic target for the treatment of CHB patients with MS.
Collapse
Affiliation(s)
- Jian Huang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Lei Zhao
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ping Yang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhen Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xiong Z Ruan
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, NW3 2PF, United Kingdom; The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (CCID), Zhejiang University, Hangzhou 310058, China
| | - Ailong Huang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (CCID), Zhejiang University, Hangzhou 310058, China
| | - Ni Tang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Yaxi Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
32
|
Abstract
Although viruses are simple biological systems, they are capable of evolving highly efficient techniques for infecting cells, expressing their genomes, and generating new copies of themselves. It is possible to genetically manipulate most of the different classes of known viruses in order to produce recombinant viruses that express foreign proteins. Recombinant viruses have been used in gene therapy to deliver selected genes into higher organisms, in vaccinology and immunotherapy, and as important research tools to study the structure and function of these proteins. Virus-like particles (VLPs) are multiprotein structures that mimic the organization and conformation of authentic native viruses but lack the viral genome. They have been applied not only as prophylactic and therapeutic vaccines but also as vehicles in drug and gene delivery and, more recently, as tools in nanobiotechnology. In this chapter, basic and advanced features of viruses and VLPs are presented and their major applications are discussed. The different production platforms based on animal cell technology are explained, and their main challenges and future perspectives are explored. The implications of large-scale production of viruses and VLPs are discussed in the context of process control, monitoring, and optimization. The main upstream and downstream technical challenges are identified and discussed accordingly.
Collapse
|
33
|
Vaillant A. Nucleic acid polymers: Broad spectrum antiviral activity, antiviral mechanisms and optimization for the treatment of hepatitis B and hepatitis D infection. Antiviral Res 2016; 133:32-40. [PMID: 27400989 DOI: 10.1016/j.antiviral.2016.07.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 12/18/2022]
Abstract
Antiviral polymers are a well-studied class of broad spectrum viral attachment/entry inhibitors whose activity increases with polymer length and with increased amphipathic (hydrophobic) character. The newest members of this class of compounds are nucleic acid polymers whose activity is derived from the sequence independent properties of phosphorothioated oligonucleotides as amphipathic polymers. Although the antiviral mechanisms and broad spectrum antiviral activity of nucleic acid polymers mirror the functionality of other members of this class, they exert in addition a unique post entry activity in hepatitis B infection which inhibits the release of HBsAg from infected hepatocytes. This review provides a general overview of the antiviral polymer class with a focus on nucleic acid polymers and their development as therapeutic agents for the treatment of hepatitis B/hepatitis D. This article forms part of a symposium in Antiviral Research on ''An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B.''.
Collapse
Affiliation(s)
- Andrew Vaillant
- Replicor Inc., 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada.
| |
Collapse
|
34
|
Fatty acid biosynthesis is involved in the production of hepatitis B virus particles. Biochem Biophys Res Commun 2016; 475:87-92. [PMID: 27178211 DOI: 10.1016/j.bbrc.2016.05.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 01/12/2023]
Abstract
Hepatitis B virus (HBV) proliferates in hepatocytes after infection, but the host factors that contribute to the HBV lifecycle are poorly understood at the molecular level. We investigated whether fatty acid biosynthesis (FABS), which was recently reported to contribute to the genomic replication of hepatitis C virus, plays a role in HBV proliferation. We examined the effects of inhibitors of the enzymes in the FABS pathway on the HBV lifecycle by using recombinant HBV-producing cultured cells and found that the extracellular HBV DNA level, reflecting HBV particle production, was decreased by treatment with inhibitors suppressed the synthesis of long-chain saturated fatty acids with little cytotoxicity. The reduced HBV DNA level was reversed when palmitic acid, which is the product of fatty acid synthase (FAS) during FABS, was used simultaneously with the inhibitor. We also observed that the amount of intracellular HBV DNA in the cells was increased by FAS inhibitor treatment, suggesting that FABS is associated with HBV particle production but not its genome replication. This suggests that FABS might be a potent target for anti-HBV drug with a mode of action different from current HBV therapy.
Collapse
|
35
|
Czarnota A, Tyborowska J, Peszyńska-Sularz G, Gromadzka B, Bieńkowska-Szewczyk K, Grzyb K. Immunogenicity of Leishmania-derived hepatitis B small surface antigen particles exposing highly conserved E2 epitope of hepatitis C virus. Microb Cell Fact 2016; 15:62. [PMID: 27075377 PMCID: PMC4831159 DOI: 10.1186/s12934-016-0460-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 03/31/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) infection is a major health problem worldwide, affecting an estimated 2-3 % of human population. An HCV vaccine, however, remains unavailable. High viral diversity poses a challenge in developing a vaccine capable of eliciting a broad neutralizing antibody response against all HCV genotypes. The small surface antigen (sHBsAg) of hepatitis B virus (HBV) has the ability to form highly immunogenic subviral particles which are currently used as an efficient anti-HBV vaccine. It also represents an attractive antigen carrier for the delivery of foreign sequences. In the present study, we propose a bivalent vaccine candidate based on novel chimeric particles in which highly conserved epitope of HCV E2 glycoprotein (residues 412-425) was inserted into the hydrophilic loop of sHBsAg. RESULTS The expression of chimeric protein was performed in an unconventional, Leishmania tarentolae expression system resulting in an assembly of particles which retained immunogenicity of both HCV epitope and sHBsAg protein. Direct transmission electron microscopy observation and immunogold staining confirmed the formation of spherical particles approximately 22 nm in diameter, and proper foreign epitope exposition. Furthermore, the sera of mice immunized with chimeric particles proved reactive not only to purified yeast-derived sHBsAg proteins but also HCV E2 412-425 synthetic peptide. Most importantly, they were also able to cross-react with E1E2 complexes from different HCV genotypes. CONCLUSIONS For the first time, we confirmed successful assembly of chimeric sHBsAg virus-like particles (VLPs) in the L. tarentolae expression system which has the potential to produce high-yields of properly N-glycosylated mammalian proteins. We also proved that chimeric Leishmania-derived VLPs are highly immunogenic and able to elicit cross-reactive antibody response against HCV. This approach may prove useful in the development of a bivalent prophylactic vaccine against HBV and HCV and opens up a new and low-cost opportunity for the production of chimeric sHBsAg VLPs requiring N-glycosylation process for their proper functionality and immunogenicity.
Collapse
Affiliation(s)
- Anna Czarnota
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Jolanta Tyborowska
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, A. Abrahama 58, Gdańsk, 80-307, Poland
| | - Grażyna Peszyńska-Sularz
- Tri-City Academic Laboratory Animal Centre, Medical University of Gdańsk, Dębinki 1, Gdańsk, 80-211, Poland
| | - Beata Gromadzka
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, A. Abrahama 58, Gdańsk, 80-307, Poland
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Katarzyna Grzyb
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland.
| |
Collapse
|
36
|
Shirbaghaee Z, Bolhassani A. Different applications of virus-like particles in biology and medicine: Vaccination and delivery systems. Biopolymers 2016; 105:113-32. [PMID: 26509554 PMCID: PMC7161881 DOI: 10.1002/bip.22759] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/25/2015] [Accepted: 10/25/2015] [Indexed: 12/17/2022]
Abstract
Virus-like particles (VLPs) mimic the whole construct of virus particles devoid of viral genome as used in subunit vaccine design. VLPs can elicit efficient protective immunity as direct immunogens compared to soluble antigens co-administered with adjuvants in several booster injections. Up to now, several prokaryotic and eukaryotic systems such as insect, yeast, plant, and E. coli were used to express recombinant proteins, especially for VLP production. Recent studies are also generating VLPs in plants using different transient expression vectors for edible vaccines. VLPs and viral particles have been applied for different functions such as gene therapy, vaccination, nanotechnology, and diagnostics. Herein, we describe VLP production in different systems as well as its applications in biology and medicine.
Collapse
Affiliation(s)
- Zeinab Shirbaghaee
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
- Department of Immunology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Azam Bolhassani
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| |
Collapse
|
37
|
Zhang YY, Hu KQ. Rethinking the pathogenesis of hepatitis B virus (HBV) infection. J Med Virol 2015; 87:1989-1999. [PMID: 25989114 DOI: 10.1002/jmv.24270] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 05/05/2015] [Accepted: 05/10/2015] [Indexed: 12/11/2022]
Abstract
Chronic hepatitis B virus (HBV) infection affects approximately 375 million people worldwide. Current antiviral treatment effectively controls, but rarely clears chronic HBV infection. In addition, a significant portion of chronic HBV infected patients are not suitable for currently available antiviral therapy, and still face higher risk for cirrhosis and hepatocellular carcinoma. The poorly understood pathogenesis of HBV infection is the main barrier for developing more effective treatment strategies. HBV has long been viewed as non-cytopathic and the central hypothesis for HBV pathogenesis lies in the belief that hepatitis B is a host specific immunity-mediated liver disease. However, this view has been challenged by the accumulating experimental and clinical data that support a model of cytopathic HBV replication. In this article we systematically review the pathogenic role of HBV replication in hepatitis B and suggest possible HBV replication related mechanisms for HBV-mediated liver injury. We propose that a full understanding of HBV pathogenesis should consider the following elements. I. Liver injury can be caused by high levels of HBV replication and accumulation of viral products in the infected hepatocytes. II. HBV infection can be either directly cytopathic, non-cytopathic, or a mix of both in an individual patient depending upon accumulation levels of viral products that are usually associated with HBV replication activity in individual infected hepatocytes.
Collapse
Affiliation(s)
| | - Ke-Qin Hu
- Division of Gastroenterology and Hepatology, University of California, Irvine Medical Center, Orange, California
| |
Collapse
|
38
|
Jain NK, Sahni N, Kumru OS, Joshi SB, Volkin DB, Russell Middaugh C. Formulation and stabilization of recombinant protein based virus-like particle vaccines. Adv Drug Deliv Rev 2015; 93:42-55. [PMID: 25451136 DOI: 10.1016/j.addr.2014.10.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 10/15/2014] [Accepted: 10/18/2014] [Indexed: 02/06/2023]
Abstract
Vaccine formulation development has traditionally focused on improving antigen storage stability and compatibility with conventional adjuvants. More recently, it has also provided an opportunity to modify the interaction and presentation of an antigen/adjuvant to the immune system to better stimulate the desired immune responses for maximal efficacy. In the last decade, there has been a paradigm shift in vaccine antigen and formulation design involving an improved physical understanding of antigens and a better understanding of the immune system. In addition, the discovery of novel adjuvants and delivery systems promises to further improve the design of new, more effective vaccines. Here we describe some of the fundamental aspects of formulation design applicable to virus-like-particle based vaccine antigens (VLPs). Case studies are presented for commercially approved VLP vaccines as well as some investigational VLP vaccine candidates. An emphasis is placed on the biophysical analysis of vaccines to facilitate formulation and stabilization of these particulate antigens.
Collapse
|
39
|
Zahid M, Lünsdorf H, Rinas U. Assessing stability and assembly of the hepatitis B surface antigen into virus-like particles during down-stream processing. Vaccine 2015; 33:3739-45. [PMID: 26079614 DOI: 10.1016/j.vaccine.2015.05.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 12/13/2022]
Abstract
The hepatitis B surface antigen (HBsAg) is a recombinant protein-based vaccine being able to form virus-like particles (VLPs). HBsAg is mainly produced using yeast-based expression systems, however, recent results strongly suggest that VLPs are not formed within the yeast cells during the cultivation but are formed in a gradual manner during the following down-stream procedures. VLPs are also not detectable during the first down-stream steps including mechanical and EDTA/detergent-assisted cell destruction. Moreover, VLPs are not detectable in the cell lysate treated with polyethylene glycol and colloidal silica. The first VLP resembling structures appear after elution of HBsAg from colloidal silica to which it binds through hydrophobic interaction. These first VLP resembling structures are non-symmetrical as well as heterodisperse and exhibit a high tendency toward cluster formation presumably because of surface exposed hydrophobic patches. More symmetrical and monodisperse VLPs appear after the following ion-exchange and size-exclusion chromatography most likely as the result of buffer changes during these purification steps (toward more neutral pH and less salt). Final treatment of the VLPs with the denaturant KSCN at moderate concentrations with following KSCN removal by dialysis does not cause unfolding and VLP disassembly but results in a re- and fine-structuring of the VLP surface topology.
Collapse
Affiliation(s)
- Maria Zahid
- Leibniz University of Hannover, Technical Chemistry, Life Science, Callinstr. 5, 30167 Hannover, Germany
| | - Heinrich Lünsdorf
- Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Ursula Rinas
- Leibniz University of Hannover, Technical Chemistry, Life Science, Callinstr. 5, 30167 Hannover, Germany; Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany.
| |
Collapse
|
40
|
Interaction of human tumor viruses with host cell surface receptors and cell entry. Viruses 2015; 7:2592-617. [PMID: 26008702 PMCID: PMC4452921 DOI: 10.3390/v7052592] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/12/2015] [Indexed: 02/06/2023] Open
Abstract
Currently, seven viruses, namely Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpes virus (KSHV), high-risk human papillomaviruses (HPVs), Merkel cell polyomavirus (MCPyV), hepatitis B virus (HBV), hepatitis C virus (HCV) and human T cell lymphotropic virus type 1 (HTLV-1), have been described to be consistently associated with different types of human cancer. These oncogenic viruses belong to distinct viral families, display diverse cell tropism and cause different malignancies. A key to their pathogenicity is attachment to the host cell and entry in order to replicate and complete their life cycle. Interaction with the host cell during viral entry is characterized by a sequence of events, involving viral envelope and/or capsid molecules as well as cellular entry factors that are critical in target cell recognition, thereby determining cell tropism. Most oncogenic viruses initially attach to cell surface heparan sulfate proteoglycans, followed by conformational change and transfer of the viral particle to secondary high-affinity cell- and virus-specific receptors. This review summarizes the current knowledge of the host cell surface factors and molecular mechanisms underlying oncogenic virus binding and uptake by their cognate host cell(s) with the aim to provide a concise overview of potential target molecules for prevention and/or treatment of oncogenic virus infection.
Collapse
|
41
|
Jully V, Moniotte N, Mathot F, Lemoine D, Préat V. Development of a High-Throughput Screening Platform to Study the Adsorption of Antigens onto Aluminum-Containing Adjuvants. J Pharm Sci 2015; 104:557-65. [DOI: 10.1002/jps.24256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/02/2014] [Accepted: 10/17/2014] [Indexed: 01/26/2023]
|
42
|
Thio CL, Hawkins C. Hepatitis B Virus and Hepatitis Delta Virus. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015:1815-1839.e7. [DOI: 10.1016/b978-1-4557-4801-3.00148-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
43
|
Jere KC, O'Neill HG, Potgieter AC, van Dijk AA. Chimaeric virus-like particles derived from consensus genome sequences of human rotavirus strains co-circulating in Africa. PLoS One 2014; 9:e105167. [PMID: 25268783 PMCID: PMC4181975 DOI: 10.1371/journal.pone.0105167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/21/2014] [Indexed: 12/04/2022] Open
Abstract
Rotavirus virus-like particles (RV-VLPs) are potential alternative non-live vaccine candidates due to their high immunogenicity. They mimic the natural conformation of native viral proteins but cannot replicate because they do not contain genomic material which makes them safe. To date, most RV-VLPs have been derived from cell culture adapted strains or common G1 and G3 rotaviruses that have been circulating in communities for some time. In this study, chimaeric RV-VLPs were generated from the consensus sequences of African rotaviruses (G2, G8, G9 or G12 strains associated with either P[4], P[6] or P[8] genotypes) characterised directly from human stool samples without prior adaptation of the wild type strains to cell culture. Codon-optimised sequences for insect cell expression of genome segments 2 (VP2), 4 (VP4), 6 (VP6) and 9 (VP7) were cloned into a modified pFASTBAC vector, which allowed simultaneous expression of up to four genes using the Bac-to-Bac Baculovirus Expression System (BEVS; Invitrogen). Several combinations of the genome segments originating from different field strains were cloned to produce double-layered RV-VLPs (dRV-VLP; VP2/6), triple-layered RV-VLPs (tRV-VLP; VP2/6/7 or VP2/6/7/4) and chimaeric tRV-VLPs. The RV-VLPs were produced by infecting Spodoptera frugiperda 9 and Trichoplusia ni cells with recombinant baculoviruses using multi-cistronic, dual co-infection and stepwise-infection expression strategies. The size and morphology of the RV-VLPs, as determined by transmission electron microscopy, revealed successful production of RV-VLPs. The novel approach of producing tRV-VLPs, by using the consensus insect cell codon-optimised nucleotide sequence derived from dsRNA extracted directly from clinical specimens, should speed-up vaccine research and development by by-passing the need to adapt rotaviruses to cell culture. Other problems associated with cell culture adaptation, such as possible changes in epitopes, can also be circumvented. Thus, it is now possible to generate tRV-VLPs for evaluation as non-live vaccine candidates for any human or animal field rotavirus strain.
Collapse
Affiliation(s)
- Khuzwayo C. Jere
- Biochemistry, Centre of Human Metabonomics, North-West University, Potchefstroom, South Africa
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Hester G. O'Neill
- Biochemistry, Centre of Human Metabonomics, North-West University, Potchefstroom, South Africa
- Department of Microbiology, Biochemistry and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - A. Christiaan Potgieter
- Biochemistry, Centre of Human Metabonomics, North-West University, Potchefstroom, South Africa
- Deltamune (Pty.) Ltd., Lyttelton, Centurion, South Africa
| | - Alberdina A. van Dijk
- Biochemistry, Centre of Human Metabonomics, North-West University, Potchefstroom, South Africa
- * E-mail:
| |
Collapse
|
44
|
Snow goose hepatitis B virus (SGHBV) envelope and capsid proteins independently contribute to the ability of SGHBV to package capsids containing single-stranded DNA in virions. J Virol 2014; 88:10705-13. [PMID: 24991016 DOI: 10.1128/jvi.01694-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Hepadnaviruses selectively package capsids containing mature double-stranded DNA (dsDNA) genomes in virions. Snow goose hepatitis B virus (SGHBV) is the only known hepadnavirus that packages capsids containing single-stranded DNA (ssDNA) in virions. We found that cells replicating SGHBV produce virions containing ssDNA as efficiently as virions containing mature dsDNA. We determined that SGHBV capsid and envelope proteins independently contribute to the production of virions containing ssDNA, with the capsid protein (Cp) making a larger contribution. We identified that amino acid residues 74 and 107 of SGHBV Cp contribute to this feature of SGHBV. When we changed these residues in duck hepatitis B virus (DHBV) Cp, capsids containing immature ssDNA were packaged in virions. This result suggests that residues 74 and 107 contribute to the appearance of the "capsid packaging signal" on the surface of capsids and interact with the envelope proteins during virion formation. We also found that cells replicating SGHBV package a larger fraction of the total dsDNA they synthesize into virions than do those replicating DHBV. We determined that the SGHBV envelope proteins are responsible for this property of SGHBV. Determining if the ability of SGHBV envelope proteins to cause the formation of virions containing ssDNA is related to its ability to support high levels of virion production or if these two properties are mechanistically distinct will provide insights into virion morphogenesis. IMPORTANCE Cells replicating hepadnaviruses contain cytoplasmic capsids that contain mature and immature genomes. However, only capsids containing mature dsDNA genomes are packaged in virions. A mechanistic understanding of this phenomenon, which is currently lacking, is critical to understanding the process of hepadnaviral virion morphogenesis. In this study, we determined that the envelope proteins contribute to the ability of hepadnaviruses to selectively produce virions containing mature dsDNA genomes. Our finding sheds new light on the mechanisms underlying virion morphogenesis and challenges the dogma that "capsid maturation," and therefore the capsid protein (Cp), is solely responsible for the selective production of virions containing mature dsDNA genomes. Further, we identified amino acid residues of Cp that contribute to its ability to cause the selective production of virions containing mature dsDNA genomes. Future studies on the role of these residues in selective secretion will broaden our understanding of this poorly understood aspect of virus replication.
Collapse
|
45
|
Greiner VJ, Manin C, Larquet E, Ikhelef N, Gréco F, Naville S, Milhiet PE, Ronzon F, Klymchenko A, Mély Y. Characterization of the structural modifications accompanying the loss of HBsAg particle immunogenicity. Vaccine 2014; 32:1049-54. [DOI: 10.1016/j.vaccine.2014.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/20/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
|
46
|
Hayden CA, Smith EM, Turner DD, Keener TK, Wong JC, Walker JH, Tizard IR, Jimenez-Flores R, Howard JA. Supercritical fluid extraction provides an enhancement to the immune response for orally-delivered hepatitis B surface antigen. Vaccine 2014; 32:1240-6. [PMID: 24486361 DOI: 10.1016/j.vaccine.2014.01.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/27/2013] [Accepted: 01/14/2014] [Indexed: 01/27/2023]
Abstract
The hepatitis B virus continues to be a major pathogen worldwide despite the availability of an effective parenteral vaccine for over 20 years. Orally-delivered subunit vaccines produced in maize may help to alleviate the disease burden by providing a low-cost, heat-stable alternative to the parenteral vaccine. Oral subunit vaccination has been an elusive goal due to the large amounts of antigen required to induce an immunologic response when administered through the digestive tract. Here we show that high levels of HBsAg were obtained in maize grain, the grain was formed into edible wafers, and wafers were fed to mice at a concentration of approximately 300 μg/g. When these wafers were made with supercritical fluid extraction (SFE)-treated maize material, robust IgG and IgA responses in sera were observed that were comparable to the injected commercial vaccine (Recombivax(®)). In addition, all mice administered SFE wafers showed high secretory IgA titers in fecal material whereas Recombivax(®) treated mice showed no detectable titer. Increased salivary IgA titers were also detected in SFE-fed mice but not in Recombivax(®) treated mice. Wafers made from hexane-treated or full fat maize material induced immunologic responses, but fecal titers were attenuated relative to those produced by SFE-treated wafers. These responses demonstrate the feasibility of using a two-dose oral vaccine booster in the absence of an adjuvant to induce immunologic responses in both sera and at mucosal surfaces, and highlight the potential limitations of using an exclusively parenteral dosing regime.
Collapse
Affiliation(s)
- Celine A Hayden
- Applied Biotechnology Institute, Cal Poly Tech Park, San Luis Obispo, CA 93407, USA
| | - Emily M Smith
- Applied Biotechnology Institute, Cal Poly Tech Park, San Luis Obispo, CA 93407, USA
| | - Debra D Turner
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Todd K Keener
- Applied Biotechnology Institute, Cal Poly Tech Park, San Luis Obispo, CA 93407, USA
| | - Jeffrey C Wong
- Horticulture and Crop Science Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - John H Walker
- Department of Statistics, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Ian R Tizard
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Rafael Jimenez-Flores
- Dairy Product Technology Center, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - John A Howard
- Applied Biotechnology Institute, Cal Poly Tech Park, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
47
|
Rustandi RR, Wang F, Hamm C, Cuciniello JJ, Marley ML. Development of imaged capillary isoelectric focusing method and use of capillary zone electrophoresis in hepatitis B vaccine RECOMBIVAX HB®. Electrophoresis 2013; 35:1072-8. [PMID: 24812686 DOI: 10.1002/elps.201300422] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Richard R. Rustandi
- Vaccine Analytical Development; Merck Research Laboratories; West Point PA USA
| | - Feng Wang
- Vaccine Analytical Development; Merck Research Laboratories; West Point PA USA
| | - Christopher Hamm
- Vaccine Analytical Development; Merck Research Laboratories; West Point PA USA
| | - Joseph J. Cuciniello
- Biologic Critical Reagents-Biochemistry; Merck Manufacturing Division; West Point PA USA
| | - Michelle L. Marley
- Biologic Critical Reagents-Biochemistry; Merck Manufacturing Division; West Point PA USA
| |
Collapse
|
48
|
Fast Single-Use VLP Vaccine Productions Based on Insect Cells and the Baculovirus Expression Vector System: Influenza as Case Study. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 138:99-125. [DOI: 10.1007/10_2013_186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Lucifora J, Esser K, Protzer U. Ezetimibe blocks hepatitis B virus infection after virus uptake into hepatocytes. Antiviral Res 2012; 97:195-7. [PMID: 23266293 DOI: 10.1016/j.antiviral.2012.12.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/09/2012] [Accepted: 12/11/2012] [Indexed: 02/09/2023]
Abstract
Current treatment of chronic hepatitis B virus (HBV) infection mainly targets viral replication in hepatocytes and leads to curing only in exceptional cases. Despite their potential to improve therapeutic success, no drugs interfering with early infection steps of the hepatotropic pathogen HBV are available to date. Recently, entry of the hepatitis C virus (HCV) has been shown to occur along hepatic cholesterol uptake pathways and ezetimibe, a drug which blocks this lipid transport, has been shown to inhibit HCV infection. We here investigated the effect of ezetimibe on HBV infection using differentiated HepaRG cells as a cell-culture infection model. Treatment with ezetimibe inhibited establishment of intrahepatic cccDNA and expression of viral replication markers when cells were infected with HBV virions, while we observed no effect when the HBV viral genome was transduced via an adenoviral vector. Our data suggest that modulating hepatic cholesterol uptake by ezetimibe inhibits early HBV infection and that ezetimibe sensitive lipid transport pathways represent new targets for antiviral therapy in HBV infection.
Collapse
Affiliation(s)
- Julie Lucifora
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | | | | |
Collapse
|
50
|
Kushnir N, Streatfield SJ, Yusibov V. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine 2012; 31:58-83. [PMID: 23142589 PMCID: PMC7115575 DOI: 10.1016/j.vaccine.2012.10.083] [Citation(s) in RCA: 423] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/13/2012] [Accepted: 10/25/2012] [Indexed: 12/16/2022]
Abstract
Virus-like particles (VLPs) are a class of subunit vaccines that differentiate themselves from soluble recombinant antigens by stronger protective immunogenicity associated with the VLP structure. Like parental viruses, VLPs can be either non-enveloped or enveloped, and they can form following expression of one or several viral structural proteins in a recombinant heterologous system. Depending on the complexity of the VLP, it can be produced in either a prokaryotic or eukaryotic expression system using target-encoding recombinant vectors, or in some cases can be assembled in cell-free conditions. To date, a wide variety of VLP-based candidate vaccines targeting various viral, bacterial, parasitic and fungal pathogens, as well as non-infectious diseases, have been produced in different expression systems. Some VLPs have entered clinical development and a few have been licensed and commercialized. This article reviews VLP-based vaccines produced in different systems, their immunogenicity in animal models and their status in clinical development.
Collapse
Affiliation(s)
- Natasha Kushnir
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE 19711, USA
| | | | | |
Collapse
|