1
|
Bruno F, Camuso S, Capuozzo E, Canterini S. The Antifungal Antibiotic Filipin as a Diagnostic Tool of Cholesterol Alterations in Lysosomal Storage Diseases and Neurodegenerative Disorders. Antibiotics (Basel) 2023; 12:antibiotics12010122. [PMID: 36671323 PMCID: PMC9855188 DOI: 10.3390/antibiotics12010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Cholesterol is the most considerable member of a family of polycyclic compounds understood as sterols, and represents an amphipathic molecule, such as phospholipids, with the polar hydroxyl group located in position 3 and the rest of the molecule is completely hydrophobic. In cells, it is usually present as free, unesterified cholesterol, or as esterified cholesterol, in which the hydroxyl group binds to a carboxylic acid and thus generates an apolar molecule. Filipin is a naturally fluorescent antibiotic that exerts a primary antifungal effect with low antibacterial activity, interfering with the sterol stabilization of the phospholipid layers and favoring membrane leakage. This polyene macrolide antibiotic does not bind to esterified sterols, but only to non-esterified cholesterol, and it is commonly used as a marker to label and quantify free cholesterol in cells and tissues. Several lines of evidence have indicated that filipin staining could be a good diagnostic tool for the cholesterol alterations present in neurodegenerative (e.g., Alzheimer's Disease and Huntington Disease) and lysosomal storage diseases (e.g., Niemann Pick type C Disease and GM1 gangliosidosis). Here, we have discussed the uses and applications of this fluorescent molecule in lipid storage diseases and neurodegenerative disorders, exploring not only the diagnostic strength of filipin staining, but also its limitations, which over the years have led to the development of new diagnostic tools to combine with filipin approach.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
| | - Serena Camuso
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Elisabetta Capuozzo
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (E.C.); (S.C.)
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (E.C.); (S.C.)
| |
Collapse
|
2
|
Silva LMR, Velásquez ZD, López-Osorio S, Hermosilla C, Taubert A. Novel Insights Into Sterol Uptake and Intracellular Cholesterol Trafficking During Eimeria bovis Macromeront Formation. Front Cell Infect Microbiol 2022; 12:809606. [PMID: 35223543 PMCID: PMC8878908 DOI: 10.3389/fcimb.2022.809606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Abstract
Apicomplexan parasites are considered as defective in cholesterol synthesis. Consequently, they need to scavenge cholesterol from the host cell by either enhancing the uptake of extracellular cholesterol sources or by upregulating host cellular de-novo biosynthesis. Given that Eimeria bovis macromeront formation in bovine lymphatic endothelial host cells in vivo is a highly cholesterol-demanding process, we here examined host parasite interactions based on host cellular uptake of different low-density lipoprotein (LDL) types, i.e., of non-modified (LDL), oxidized (oxLDL), and acetylated LDL (acLDL). Furthermore, the expression of lipoprotein-oxidized receptor 1 (LOX-1), which mediates acLDL and oxLDL internalization, was monitored throughout first merogony, in vitro and ex vivo. Moreover, the effects of inhibitors blocking exogenous sterol uptake or intracellular transport were studied during E. bovis macromeront formation in vitro. Hence, E. bovis-infected primary bovine umbilical vein endothelial cells (BUVEC) were treated with inhibitors of sterol uptake (ezetimibe, poly-C, poly-I, sucrose) and of intracellular sterol transport and release from endosomes (progesterone, U18666A). As a read-out system, the size and number of macromeronts as well as merozoite I production were estimated. Overall, the internalization of all LDL modifications (LDL, oxLDL, acLDL) was observed in E. bovis-infected BUVEC but to different extents. Supplementation with oxLDL and acLDL at lower concentrations (5 and 10 µg/ml, respectively) resulted in a slight increase of both macromeront numbers and size; however, at higher concentrations (25-50 µg/ml), merozoite I production was diminished. LOX-1 expression was enhanced in E. bovis-infected BUVEC, especially toward the end of merogony. As an interesting finding, ezetimibe treatments led to a highly significant blockage of macromeront development and merozoite I production confirming the relevance of sterol uptake for intracellular parasite development. Less prominent effects were induced by non-specific inhibition of LDL internalization via sucrose, poly-I, and poly-C. In addition, blockage of cholesterol transport via progesterone and U18666A treatments resulted in significant inhibition of parasite development. Overall, current data underline the relevance of exogenous sterol uptake and intracellular cholesterol transport for adequate E. bovis macromeront development, unfolding new perspectives for novel drug targets against E. bovis.
Collapse
Affiliation(s)
- Liliana M. R. Silva
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Zahady D. Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Sara López-Osorio
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
- Veterinary Medicine School, CIBAV Investigation Group, University of Antioquia, Medellin, Colombia
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
3
|
Gold JI, Gold NB, DeLeon DD, Ganetzky R. Contraceptive use in women with inherited metabolic disorders: a retrospective study and literature review. Orphanet J Rare Dis 2022; 17:41. [PMID: 35135572 PMCID: PMC8822780 DOI: 10.1186/s13023-022-02188-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reproductive planning is an emerging concern for women with inherited metabolic disease (IMD). Anticipatory guidance on contraception is necessary to prevent unintended pregnancies in this population. Few resources exist to aid informed decision-making on contraceptive choice. A retrospective case-control study was performed to examine trends in reproductive planning for adolescent and adult women seen at the Children's Hospital of Philadelphia (CHOP). Literature review on contraception and IMD was performed to assess global use. RESULTS In a cohort of 221 reproductive-aged female IMD patients, 29.4% reported routine contraceptive use. Anticipatory guidance on contraception was provided by metabolic physicians to 36.8% of patients during the study period. Contraception discussion was more likely to occur in women older than 21 years, who lived independently and were followed by gynecology. Women who received contraception counseling from their metabolic physician were 40-fold more likely to use regular contraception. Use of combined hormonal contraceptives was most commonly reported, but contraception choice varied by age and IMD. CONCLUSION Metabolic physicians are ideally suited to provide guidance on contraception to women with IMD. Reproductive planning should be addressed routinely using shared decision-making. Contraceptives should be selected for their efficacy, effects on metabolism, and likelihood of patient adherence.
Collapse
Affiliation(s)
- Jessica I Gold
- Division of Human Genetics, Section of Biochemical Genetics, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Nina B Gold
- Division of Medical Genetics and Metabolism, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Diva D DeLeon
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Ganetzky
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Division of Human Genetics, Section of Biochemical Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
4
|
Shi W, Wu H, Liu S, Wu Z, Wu H, Liu J, Hou Y. Progesterone Suppresses Cholesterol Esterification in APP/PS1 mice and a cell model of Alzheimer's Disease. Brain Res Bull 2021; 173:162-173. [PMID: 34044033 DOI: 10.1016/j.brainresbull.2021.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/27/2021] [Accepted: 05/21/2021] [Indexed: 01/01/2023]
Abstract
AIMS Cholesteryl ester(CE), generated from the mitochondria associated membrane (MAM), is involved in the pathogenesis of Alzheimer's Disease (AD). In theory, the different neuroprotective effects of progesterone in AD are all linked to MAM, yet the effect on cholesterol esterification has not been reported. Therefore, this study was aimed to investigate the regulation of progesterone on intracerebral CE in AD models and the underlying mechanism. METHODS APP/PS1 mice and AD cell model induced by Aβ 25-35 were selected as the research objects. APP/PS1 mice were daily administrated intragastrically with progesterone and The Morris Water Maze test was performed to detect the learning and memory abilities. Intracellular cholesterol was measured by Cholesterol/Cholesteryl Ester Quantitation Assay. The structure of MAMs were observed with transmission electron microscopy. The expression of acyl-CoA: cholesterol acyltransferase 1 (ACAT1), ERK1/2 and p-ERK1/2 were detected with western blotting, immunohistochemistry or immunofluorescence. RESULTS Progesterone suppressed the accumulation of intracellular CE, shortened the length of abnormally prolonged MAM in cortex of APP/PS1 mice. Progesterone decreased the expression of ACAT1, which could be blocked by progesterone receptor membrane component 1 (PGRMC1) inhibitor AG205. The ERK1/2 pathway maybe involved in the progesterone mediated regulation of ACAT1 in AD models, rather than the PI3K/Akt and the P38 MEPK pathways. SIGNIFICANCE The results supported a line of evidence that progesterone regulates CE level and the structure of MAM in neurons of AD models, providing a promising treatment against AD on the dysfunction of cholesterol metabolism.
Collapse
Affiliation(s)
- Wenjing Shi
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China; Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China.
| | - Hang Wu
- Department of Pharmacy, Heze University, Heze 274000, Shandong Province, China.
| | - Sha Liu
- Department of Pharmacy, the Third Hospital of Shijiazhuang, Shijiazhuang 050000, Hebei Province, China.
| | - Zhigang Wu
- Department of Pharmacy, Hebei North University, Hebei Key Laboratory of Neuropharmacology, Zhangjiakou 075000, China.
| | - Honghai Wu
- Department of Pharmacy, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei Province, China.
| | - Jianfang Liu
- Department of Pharmacy, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei Province, China.
| | - Yanning Hou
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China; Department of Pharmacy, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei Province, China.
| |
Collapse
|
5
|
Sturley SL, Rajakumar T, Hammond N, Higaki K, Márka Z, Márka S, Munkacsi AB. Potential COVID-19 therapeutics from a rare disease: weaponizing lipid dysregulation to combat viral infectivity. J Lipid Res 2020; 61:972-982. [PMID: 32457038 PMCID: PMC7328045 DOI: 10.1194/jlr.r120000851] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/21/2020] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has resulted in the death of more than 328,000 persons worldwide in the first 5 months of 2020. Herculean efforts to rapidly design and produce vaccines and other antiviral interventions are ongoing. However, newly evolving viral mutations, the prospect of only temporary immunity, and a long path to regulatory approval pose significant challenges and call for a common, readily available, and inexpensive treatment. Strategic drug repurposing combined with rapid testing of established molecular targets could provide a pause in disease progression. SARS-CoV-2 shares extensive structural and functional conservation with SARS-CoV-1, including engagement of the same host cell receptor (angiotensin-converting enzyme 2) localized in cholesterol-rich microdomains. These lipid-enveloped viruses encounter the endosomal/lysosomal host compartment in a critical step of infection and maturation. Niemann-Pick type C (NP-C) disease is a rare monogenic neurodegenerative disease caused by deficient efflux of lipids from the late endosome/lysosome (LE/L). The NP-C disease-causing gene (NPC1) has been strongly associated with viral infection, both as a filovirus receptor (e.g., Ebola) and through LE/L lipid trafficking. This suggests that NPC1 inhibitors or NP-C disease mimetics could serve as anti-SARS-CoV-2 agents. Fortunately, there are such clinically approved molecules that elicit antiviral activity in preclinical studies, without causing NP-C disease. Inhibition of NPC1 may impair viral SARS-CoV-2 infectivity via several lipid-dependent mechanisms, which disturb the microenvironment optimum for viral infectivity. We suggest that known mechanistic information on NPC1 could be utilized to identify existing and future drugs to treat COVID-19.
Collapse
MESH Headings
- Androstenes/therapeutic use
- Angiotensin-Converting Enzyme 2
- Anticholesteremic Agents/therapeutic use
- Antiviral Agents/therapeutic use
- Betacoronavirus/drug effects
- Betacoronavirus/metabolism
- Betacoronavirus/pathogenicity
- COVID-19
- Cholesterol/metabolism
- Coronavirus Infections/diagnosis
- Coronavirus Infections/drug therapy
- Coronavirus Infections/epidemiology
- Drug Repositioning/methods
- Humans
- Hydroxychloroquine/therapeutic use
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Lysosomes/drug effects
- Lysosomes/metabolism
- Lysosomes/virology
- Niemann-Pick C1 Protein
- Niemann-Pick Disease, Type C/drug therapy
- Niemann-Pick Disease, Type C/genetics
- Niemann-Pick Disease, Type C/metabolism
- Niemann-Pick Disease, Type C/pathology
- Pandemics
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/diagnosis
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/epidemiology
- Protein Binding
- Receptors, Virus/antagonists & inhibitors
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
Collapse
Affiliation(s)
| | - Tamayanthi Rajakumar
- School of Biological Sciences and Centre for
Biodiscovery, Victoria University of Wellington,
Wellington 6012, New Zealand
| | - Natalie Hammond
- School of Biological Sciences and Centre for
Biodiscovery, Victoria University of Wellington,
Wellington 6012, New Zealand
| | - Katsumi Higaki
- Division of Functional Genomics,
Tottori University, Yonago 683-8503,
Japan
| | - Zsuzsa Márka
- Department of Physics,
Columbia University, New York,
NY 10027
| | - Szabolcs Márka
- Department of Physics,
Columbia University, New York,
NY 10027
| | - Andrew B. Munkacsi
- School of Biological Sciences and Centre for
Biodiscovery, Victoria University of Wellington,
Wellington 6012, New Zealand
| |
Collapse
|
6
|
Mizutani S, Matsumoto K, Kato Y, Mizutani E, Mizutani H, Iwase A, Shibata K. New insights into human endometrial aminopeptidases in both implantation and menstruation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140332. [PMID: 31765716 DOI: 10.1016/j.bbapap.2019.140332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 01/16/2023]
Abstract
The endometrium cycle involves proliferation of endometrial epithelial cells in preparation for implantation of fertilized ovum. With ovulation, the endometrium secretes nutrients such as peptides and amino acids into the endometrial cavity. The histological evidence of ovulation in normal menstrual cycle includes subnuclear glycogen vacuoles surrounded by placental leucine aminopeptidase (P-LAP) in endometrial epithelial cells. P-LAP is an essentially involved in intracellular trafficking of glucose transporter (GLUT) 4 which is primarily important for glucose uptake in skeletal muscles and fat tissues. On the other hand, glucose influx from blood into endometrial epithelial cells is not mainly mediated by GLUTs, but by coincident appearing progesterone just after ovulation. Progesterone increases permeability of not only plasma membranes, but also lysosomal membranes, and this may be primarily involved in glucose influx. Progesterone also expands the exocytosis in the endometrium after ovulation, and endometrial secretion after ovulation is possibly apocrine and holocrine, which is augmented and exaggerated exocytosis of the lysosomal contents. The endometrial spiral arteries/arterioles are surrounded by endometrial stromal cells which are differentiated into decidual/pre-decidual cells. Decidual cells are devoid of aminopeptidase A (APA), possibly leading to enhancement of Angiotensin-II action in decidual cell area due to loss of its degradation by APA. Angiotensin-II is thought to exert growth-factor-like effects in post-implantation embryos in decidual cells, thereby contributing to implantation. Without implantation, angiotensin-II constricts the endometrial spiral arteries/arterioles to promote menstruation. Thus, P-LAP and APA may be involved in homeostasis in uterus via regulating glucose transport and vasoconstrictive peptides.
Collapse
Affiliation(s)
- Shigehiko Mizutani
- Daiyabilding Lady's Clinic, 3-15-1 Meieki, Nakamura-ku, Nagoya 450-0002, Japan; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan.
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Yukio Kato
- Department of Molecular Pharmacotherapeutics, Faculty of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Eita Mizutani
- Daiyabilding Lady's Clinic, 3-15-1 Meieki, Nakamura-ku, Nagoya 450-0002, Japan; Department of Obstetrics and Gynecology, Bantane Hospital, Fujita Health University, 3-6-10 Odobashi, Nakagawa-ku, Nagoya 454-8509, Japan
| | - Hidesuke Mizutani
- Department of Obstetrics and Gynecology, Okazaki Municipal Hospital, 3-1 Koryuji-cho, Okazaaki 444-8553, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi 371-8511, Japan
| | - Kiyosumi Shibata
- Department of Obstetrics and Gynecology, Bantane Hospital, Fujita Health University, 3-6-10 Odobashi, Nakagawa-ku, Nagoya 454-8509, Japan
| |
Collapse
|
7
|
Abstract
Bietti’s crystalline dystrophy (BCD) is an autosomal recessive, progressive chorioretinal degenerative disease. Retinal pigment epithelium (RPE) cells are impaired in patients with BCD, but the underlying mechanisms of RPE cell damage have not yet been determined because cells from lesions cannot be readily acquired from patients with BCD. In the present study, we successfully generated a human in vitro model of BCD, BCD patient-specific iPSC-RPE cells, and demonstrated that the accumulation of free cholesterol caused RPE cell damage and subsequent cell death via the induction of lysosomal dysfunction and impairment of autophagy flux in BCD-affected cells. We believe these findings provide evidence of the possible therapeutic efficacy of reducing intracellular free cholesterol in BCD. Bietti’s crystalline dystrophy (BCD) is an intractable and progressive chorioretinal degenerative disease caused by mutations in the CYP4V2 gene, resulting in blindness in most patients. Although we and others have shown that retinal pigment epithelium (RPE) cells are primarily impaired in patients with BCD, the underlying mechanisms of RPE cell damage are still unclear because we lack access to appropriate disease models and to lesion-affected cells from patients with BCD. Here, we generated human RPE cells from induced pluripotent stem cells (iPSCs) derived from patients with BCD carrying a CYP4V2 mutation and successfully established an in vitro model of BCD, i.e., BCD patient-specific iPSC-RPE cells. In this model, RPE cells showed degenerative changes of vacuolated cytoplasm similar to those in postmortem specimens from patients with BCD. BCD iPSC-RPE cells exhibited lysosomal dysfunction and impairment of autophagy flux, followed by cell death. Lipidomic analyses revealed the accumulation of glucosylceramide and free cholesterol in BCD-affected cells. Notably, we found that reducing free cholesterol by cyclodextrins or δ-tocopherol in RPE cells rescued BCD phenotypes, whereas glucosylceramide reduction did not affect the BCD phenotype. Our data provide evidence that reducing intracellular free cholesterol may have therapeutic efficacy in patients with BCD.
Collapse
|
8
|
Davis W, Tew KD. ATP-binding cassette transporter-2 (ABCA2) as a therapeutic target. Biochem Pharmacol 2017; 151:188-200. [PMID: 29223352 DOI: 10.1016/j.bcp.2017.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022]
Abstract
The ATP binding cassette transporter ABCA2 is primarily an endolysosomal membrane protein that demonstrates pleiotropic functionalities, coalescing around the maintenance of homeostasis of sterols, sphingolipids and cholesterol. It is most highly expressed in brain tissue and ABCA2 knockout mice express neurological defects consistent with aberrant myelination. Increased expression of the transporter has been linked with resistance to cancer drugs, particularly those possessing a steroid backbone and gene expression (in concert with other genes involved in cholesterol metabolism) was found to be regulated by sterols. Moreover, in macrophages ABCA2 is influenced by sterols and has a role in regulating cholesterol sequestration, potentially important in cardiovascular disease. Accumulating data indicate the critical importance of ABCA2 in mediating movement of sphingolipids within cellular compartments and these have been implicated in various aspects of cholesterol trafficking. Perhaps because the functions of ABCA2 are linked with membrane building blocks, there are reports linking it with human pathologies, including, cholesterolemias and cardiovascular disease, Alzheimer's and cancer. The present review addresses whether there is now sufficient information to consider ABCA2 as a plausible therapeutic target.
Collapse
Affiliation(s)
- Warren Davis
- Dept. of Cell & Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, BSB, MSC 509, Charleston, SC 29425, United States
| | - Kenneth D Tew
- Dept. of Cell & Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, BSB, MSC 509, Charleston, SC 29425, United States.
| |
Collapse
|
9
|
Yasuda K, Sugimoto H, Hayashi K, Takita T, Yasukawa K, Ohta M, Kamakura M, Ikushiro S, Shiro Y, Sakaki T. Protein engineering of CYP105s for their industrial uses. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:23-31. [PMID: 28583351 DOI: 10.1016/j.bbapap.2017.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/20/2017] [Accepted: 05/27/2017] [Indexed: 12/26/2022]
Abstract
Cytochrome P450 enzymes belonging to the CYP105 family are predominantly found in bacteria belonging to the phylum Actinobacteria and the order Actinomycetales. In this review, we focused on the protein engineering of P450s belonging to the CYP105 family for industrial use. Two Arg substitutions to Ala of CYP105A1 enhanced its vitamin D3 25- and 1α-hydroxylation activities by 400 and 100-fold, respectively. The coupling efficiency between product formation and NADPH oxidation was largely improved by the R84A mutation. The quintuple mutant Q87W/T115A/H132L/R194W/G294D of CYP105AB3 showed a 20-fold higher activity than the wild-type enzyme. Amino acids at positions 87 and 191 were located at the substrate entrance channel, and that at position 294 was located close to the heme group. Semi-rational engineering of CYP105A3 selected the best performing mutant, T85F/T119S/V194N/N363Y, for producing pravastatin. The T119S and N363Y mutations synergistically had remarkable effects on the interaction between CYP105A3 and putidaredoxin. Although wild-type CYP105AS1 hydroxylated compactin to 6-epi-pravastatin, the quintuple mutant I95T/Q127R/A180V/L236I/A265N converted almost all compactin to pravastatin. Five amino acid substitutions by two rounds of mutagenesis almost completely changed the stereo-selectivity of CYP105AS1. These results strongly suggest that the protein engineering of CYP105 enzymes greatly increase their industrial utility. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Hiroshi Sugimoto
- RIKEN Spring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan
| | - Keiko Hayashi
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Teisuke Takita
- Division of Food Science and Technology, Graduate School of Agriculture, Kyoto University, KitashirakawaOiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Technology, Graduate School of Agriculture, Kyoto University, KitashirakawaOiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Miho Ohta
- Department of Food and Nutrition Management Studies, Faculty of Human Development, Soai University, 4-4-1 Nanko-naka, Suminoe-ku, Osaka 559-0033, Japan
| | - Masaki Kamakura
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yoshitsugu Shiro
- RIKEN Spring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
10
|
Formichi P, Battisti C, De Santi MM, Guazzo R, Tripodi SA, Radi E, Rossi B, Tarquini E, Federico A. Primary cilium alterations and expression changes of Patched1 proteins in niemann-pick type C disease. J Cell Physiol 2017; 233:663-672. [PMID: 28332184 DOI: 10.1002/jcp.25926] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/20/2017] [Indexed: 01/07/2023]
Abstract
Niemann-Pick type C disease (NPC) is a disorder characterized by abnormal intracellular accumulation of unesterified cholesterol and glycolipids. Two distinct disease-causing genes have been isolated, NPC1 and NPC2. The NPC1 protein is involved in the sorting and recycling of cholesterol and glycosphingolipids in the late endosomal/lysosomal system. It has extensive homology with the Patched1 (Ptc1) receptor, a transmembrane protein localized in the primary cilium, and involved in the Hedgehog signaling (Shh) pathway. We assessed the presence of NPC1 and Ptc1 proteins and evaluated the relative distribution and morphology of primary cilia in fibroblasts from five NPC1 patients and controls, and in normal fibroblasts treated with 3-ß-[2-(diethylamino)ethoxy]androst-5-en-17-one (U18666A), a cholesterol transport-inhibiting drug that is widely used to mimic NPC. Immunofluorescence and western blot analyses showed a significant decrease in expression of NPC1 and Ptc1 in NPC1 fibroblasts, while they were normally expressed in U18666A-treated fibroblasts. Moreover, fibroblasts from NPC1 patients and U18666A-treated cells showed a lower percentage distribution of primary cilia and a significant reduction in median cilia length with respect to controls. These are the first results demonstrating altered cytoplasmic expression of Ptc1 and reduced number and length of primary cilia, where Ptc1 is located, in fibroblasts from NPC1 patients. We suggest that the alterations in Ptc1 expression in cells from NPC1 patients are closely related to NPC1 expression deficit, while the primary cilia alterations observed in NPC1 and U18666A-treated fibroblasts may represent a secondary event derived from a defective metabolic pathway.
Collapse
Affiliation(s)
- Patrizia Formichi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Carla Battisti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | | | | | - Elena Radi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | - Ermelinda Tarquini
- Unit of Clinic Neurology and Neurometabolic Diseases, AOU Siena, Siena, Italy
| | - Antonio Federico
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
11
|
Ogawa Y, Tanaka M. A fluorescent cholesterol analogue for observation of free cholesterol in the plasma membrane of live cells. Anal Biochem 2016; 492:49-55. [DOI: 10.1016/j.ab.2015.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/14/2015] [Accepted: 09/03/2015] [Indexed: 01/16/2023]
|
12
|
Wüstner D, Solanko K. How cholesterol interacts with proteins and lipids during its intracellular transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1908-26. [DOI: 10.1016/j.bbamem.2015.05.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/14/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022]
|
13
|
Lee HJ, Zhang W, Zhang D, Yang Y, Liu B, Barker EL, Buhman KK, Slipchenko LV, Dai M, Cheng JX. Assessing cholesterol storage in live cells and C. elegans by stimulated Raman scattering imaging of phenyl-Diyne cholesterol. Sci Rep 2015; 5:7930. [PMID: 25608867 PMCID: PMC4302291 DOI: 10.1038/srep07930] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/22/2014] [Indexed: 02/07/2023] Open
Abstract
We report a cholesterol imaging method using rationally synthesized phenyl-diyne cholesterol (PhDY-Chol) and stimulated Raman scattering (SRS) microscope. The phenyl-diyne group is biologically inert and provides a Raman scattering cross section that is 88 times larger than the endogenous C = O stretching mode. SRS microscopy offers an imaging speed that is faster than spontaneous Raman microscopy by three orders of magnitude, and a detection sensitivity of 31 μM PhDY-Chol (~1,800 molecules in the excitation volume). Inside living CHO cells, PhDY-Chol mimics the behavior of cholesterol, including membrane incorporation and esterification. In a cellular model of Niemann-Pick type C disease, PhDY-Chol reflects the lysosomal accumulation of cholesterol, and shows relocation to lipid droplets after HPβCD treatment. In live C. elegans, PhDY-Chol mimics cholesterol uptake by intestinal cells and reflects cholesterol storage. Together, our work demonstrates an enabling platform for study of cholesterol storage and trafficking in living cells and vital organisms.
Collapse
Affiliation(s)
- Hyeon Jeong Lee
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Wandi Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Delong Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Yang Yang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Bin Liu
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, China
| | - Eric L. Barker
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA
- Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Kimberly K. Buhman
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | | | - Mingji Dai
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Ji-Xin Cheng
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
14
|
Pourmousa M, Róg T, Mikkeli R, Vattulainen L, Solanko LM, Wüstner D, List NH, Kongsted J, Karttunen M. Dehydroergosterol as an Analogue for Cholesterol: Why It Mimics Cholesterol So Well—or Does It? J Phys Chem B 2014; 118:7345-57. [DOI: 10.1021/jp406883k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mohsen Pourmousa
- Department
of Physics, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - Tomasz Róg
- Department
of Physics, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - Risto Mikkeli
- Department
of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland
| | - llpo Vattulainen
- Department
of Physics, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland
- MEMPHYS−Center
of Biomembrane Physics, Physics Department, University of Southern Denmark, Odense, Denmark
| | | | | | | | | | - Mikko Karttunen
- Department
of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| |
Collapse
|
15
|
Fridolfsson HN, Roth DM, Insel PA, Patel HH. Regulation of intracellular signaling and function by caveolin. FASEB J 2014; 28:3823-31. [PMID: 24858278 DOI: 10.1096/fj.14-252320] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/12/2014] [Indexed: 12/28/2022]
Abstract
Caveolae, flask-like invaginations of the plasma membrane, were discovered nearly 60 years ago. Originally regarded as fixation artifacts of electron microscopy, the functional role for these structures has taken decades to unravel. The discovery of the caveolin protein in 1992 (by the late Richard G.W. Anderson) accelerated progress in defining the contribution of caveolae to cellular physiology and pathophysiology. The three isoforms of caveolin (caveolin-1, -2, and -3) are caveolae-resident structural and scaffolding proteins that are critical for the formation of caveolae and their localization of signaling entities. A PubMed search for "caveolae" reveals ∼280 publications from their discovery in the 1950s to the early 1990s, whereas a search for "caveolae or caveolin" after 1990, identifies ∼7000 entries. Most work on the regulation of biological responses by caveolae and caveolin since 1990 has focused on caveolae as plasma membrane microdomains and the function of caveolin proteins at the plasma membrane. By contrast, our recent work and that of others has explored the localization of caveolins in multiple cellular membrane compartments and in the regulation of intracellular signaling. Cellular organelles that contain caveolin include mitochondria, nuclei and the endoplasmic reticulum. Such intracellular localization allows for a complexity of responses to extracellular stimuli by caveolin and the possibility of novel organelle-targeted therapeutics. This review focuses on the impact of intracellular localization of caveolin on signal transduction and cell regulation.
Collapse
Affiliation(s)
- Heidi N Fridolfsson
- VA San Diego Healthcare System, San Diego, California and the Departments of Anesthesiology
| | - David M Roth
- VA San Diego Healthcare System, San Diego, California and the Departments of Anesthesiology
| | - Paul A Insel
- Medicine, and Pharmacology, University of California San Diego, La Jolla, California
| | - Hemal H Patel
- VA San Diego Healthcare System, San Diego, California and the Departments of Anesthesiology,
| |
Collapse
|
16
|
Chapuy-Regaud S, Subra C, Requena M, de Medina P, Amara S, Delton-Vandenbroucke I, Payre B, Cazabat M, Carriere F, Izopet J, Poirot M, Record M. Progesterone and a phospholipase inhibitor increase the endosomal bis(monoacylglycero)phosphate content and block HIV viral particle intercellular transmission. Biochimie 2013; 95:1677-88. [PMID: 23774297 DOI: 10.1016/j.biochi.2013.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/27/2013] [Indexed: 10/26/2022]
Abstract
Progesterone, the cationic amphiphile U18666A and a phospholipase inhibitor (Methyl Arachidonyl Fluoro Phosphonate, MAFP) inhibited by 70%-90% HIV production in viral reservoir cells, i.e. human THP-1 monocytes and monocyte-derived macrophages (MDM). These compounds triggered an inhibition of fluid phase endocytosis (macropinocytosis) and modified cellular lipid homeostasis since endosomes accumulated filipin-stained sterols and Bis(Monoacylglycero)Phosphate (BMP). BMP was quantified using a new cytometry procedure and was increased by 1.25 times with MAFP, 1.7 times with U18666A and 2.5 times with progesterone. MAFP but not progesterone or U18666A inhibited the hydrolysis of BMP by the Pancreatic Lipase Related Protein 2 (PLRP2) as shown by in-vitro experiments. The possible role of sterol transporters in steroid-mediated BMP increase is discussed. Electron microscopy showed the accumulation of viral particles either into large intracellular viral-containing compartments or outside the cells, indicating that endosomal accumulation of BMP could block intracellular biogenesis of viral particles while inhibition of macropinocytosis would prevent viral particle uptake. This is the first report linking BMP metabolism with a natural steroid such as progesterone or with involvement of a phospholipase A1 activity. BMP cellular content could be used as a biomarker for efficient anti-viral drugs.
Collapse
Affiliation(s)
- Sabine Chapuy-Regaud
- INSERM, U1043, Equipe Infection virales: persistance, réponse de l'hôte et physiopathologie, Toulouse F-31300, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kobayashi K, Ohshiro T, Matsuda D, Jiang W, Hong B, Si S, Tomoda H. The mechanism of action of bufalin in inhibition of lipid droplet accumulation in mouse macrophages. Biol Pharm Bull 2013; 36:364-9. [PMID: 23449325 DOI: 10.1248/bpb.b12-00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cardiotonic glycoside, bufalin, originally isolated from the dried white venom of Chinese toad Bufo gargarizans, was found to inhibit lipid droplet accumulation in mouse macrophages. Bufalin selectively inhibited synthesis of [C]cholesteryl ester (CE), a main component of lipid droplet, from [C]oleic acid and [C]cholesterol with IC values of 8.6 µM and 10 µM, respectively. The postlysosomal metabolism of cholesterol to CE in macrophages was also inhibited by the compound with a similar IC value of 13.2 µM. However, the compound exhibited almost no effect on acyl-CoA : cholesterol acyltransferase, a key enzyme in CE synthesis localized in the endoplasmic reticulum (ER). From the fluorescent microscopic observation of cellular lipids, bufalin-treated macrophages increased the accumulation of free cholesterol in lysosomes and caused to enlarge the shape and volume of lysosomes as well as pregnenolone-treated macrophages. These findings suggest that bufalin inhibited the postlysosomal metabolism of cholesterol, leading to a reduction of lipid droplets in mouse macrophages without cytotoxicity.
Collapse
Affiliation(s)
- Keisuke Kobayashi
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5–9–1 Shirokane, Minato-ku, Tokyo 108–8641, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Liao YJ, Chen TL, Lee TS, Wang HA, Wang CK, Liao LY, Liu RS, Huang SF, Chen YMA. Glycine N-methyltransferase deficiency affects Niemann-Pick type C2 protein stability and regulates hepatic cholesterol homeostasis. Mol Med 2012; 18:412-22. [PMID: 22183894 DOI: 10.2119/molmed.2011.00258] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 12/14/2011] [Indexed: 01/09/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with the development of metabolic syndromes and hepatocellular carcinoma (HCC). Cholesterol accumulation is related to NAFLD, whereas its detailed mechanism is not fully understood. Previously, we reported that glycine N-methyltransferase (GNMT) knockout (Gnmt(-/-)) mice develop chronic hepatitis and HCC. In this study, we showed that Gnmt(-/-) mice had hyperlipidemia and steatohepatitis. Single photon emission computed tomography images of mice injected with (131)I-labeled 6β-iodocholesterol demonstrated that Gnmt(-/-) mice had slower hepatic cholesterol uptake and excretion rates than wild-type mice. In addition, genes related to cholesterol uptake (scavenger receptor class B type 1 [SR-B1] and ATP-binding cassette A1 [ABCA1]), intracellular trafficking (Niemann-Pick type C1 protein [NPC1] and Niemann-Pick type C2 protein [NPC2]) and excretion (ATP-binding cassette G1 [ABCG1]) were downregulated in Gnmt(-/-) mice. Yeast two-hybrid screenings and coimmunoprecipitation assays elucidated that the C conserved region (81-105 amino acids) of NPC2 interacts with the carboxyl-terminal fragment (171-295 amino acids) of GNMT. Confocal microscopy demonstrated that when cells were treated with low-density lipoprotein, NPC2 was released from lysosomes and interacts with GNMT in the cytosol. Overexpression of GNMT doubled the half-lives of both NPC2 isoforms and reduced cholesterol accumulation in cells. Furthermore, GNMT was downregulated in the liver tissues from patients suffering with NAFLD as well as from mice fed a high-fat diet, high-cholesterol diet or methionine/choline-deficient diet. In conclusion, our study demonstrated that GNMT regulates the homeostasis of cholesterol metabolism, and hepatic cholesterol accumulation may result from downregulation of GNMT and instability of its interactive protein NPC2. Novel therapeutics for steatohepatitis and HCC may be developed by using this concept.
Collapse
Affiliation(s)
- Yi-Jen Liao
- AIDS Prevention and Research Center, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mundy DI, Li WP, Luby-Phelps K, Anderson RGW. Caveolin targeting to late endosome/lysosomal membranes is induced by perturbations of lysosomal pH and cholesterol content. Mol Biol Cell 2012; 23:864-80. [PMID: 22238363 PMCID: PMC3290645 DOI: 10.1091/mbc.e11-07-0598] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Caveolin-1 traffics to late endosomal/lysosomal membranes in response to manipulations of the cholesterol content of cells, suggesting that caveolin functions in the egress of cholesterol from this organelle. Cavicles associate with the periphery of the lysosome as they do with caveosomes, but these are separate organelles. Caveolin-1 is an integral membrane protein of plasma membrane caveolae. Here we report that caveolin-1 collects at the cytosolic surface of lysosomal membranes when cells are serum starved. This is due to an elevation of the intralysosomal pH, since ionophores and proton pump inhibitors that dissipate the lysosomal pH gradient also trapped caveolin-1 on late endosome/lysosomes. Accumulation is both saturable and reversible. At least a portion of the caveolin-1 goes to the plasma membrane upon reversal. Several studies suggest that caveolin-1 is involved in cholesterol transport within the cell. Strikingly, we find that blocking cholesterol export from lysosomes with progesterone or U18666A or treating cells with low concentrations of cyclodextrin also caused caveolin-1 to accumulate on late endosome/lysosomal membranes. Under these conditions, however, live-cell imaging shows cavicles actively docking with lysosomes, suggesting that these structures might be involved in delivering caveolin-1. Targeting of caveolin-1 to late endosome/lysosomes is not observed normally, and the degradation rate of caveolin-1 is not altered by any of these conditions, indicating that caveolin-1 accumulation is not a consequence of blocked degradation. We conclude that caveolin-1 normally traffics to and from the cytoplasmic surface of lysosomes during intracellular cholesterol trafficking.
Collapse
Affiliation(s)
- Dorothy I Mundy
- Department of Internal Medicine-Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | | | | | |
Collapse
|
20
|
Ishitsuka R, Saito T, Osada H, Ohno-Iwashita Y, Kobayashi T. Fluorescence image screening for chemical compounds modifying cholesterol metabolism and distribution. J Lipid Res 2011; 52:2084-94. [PMID: 21862703 DOI: 10.1194/jlr.d018184] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
An automated fluorescence microscopy assay using a nontoxic cholesterol binding protein, toxin domain 4, (D4), was developed in order to identify chemical compounds modifying intracellular cholesterol metabolism and distribution. Using this method, we screened a library of 1,056 compounds and identified 35 compounds that decreased D4 binding to the cell surface. Among them, 8 compounds were already reported to alter the biosynthesis or the intracellular distribution of cholesterol. The remaining 27 hit compounds were further analyzed biochemically and histochemically. Cell staining with another fluorescent cholesterol probe, filipin, revealed that 17 compounds accumulated cholesterol in the late endosomes. Five compounds decreased cholesterol biosynthesis, and two compounds inhibited the binding of D4 to the membrane. This visual screening method, based on the cholesterol-specific probe D4 in combination with biochemical analyses, is a cell-based, sensitive technique for identifying new chemical compounds and modifying cholesterol distribution and metabolism. Furthermore, it is suitable for high-throughput analysis for drug discovery.
Collapse
Affiliation(s)
- Reiko Ishitsuka
- Lipid Biology Laboratory, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
21
|
Gimpl G, Gehrig-Burger K. Probes for studying cholesterol binding and cell biology. Steroids 2011; 76:216-31. [PMID: 21074546 DOI: 10.1016/j.steroids.2010.11.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/03/2010] [Accepted: 11/05/2010] [Indexed: 11/20/2022]
Abstract
Cholesterol is a multifunctional lipid in eukaryotic cells. It regulates the physical state of the phospholipid bilayer, is crucially involved in the formation of membrane microdomains, affects the activity of many membrane proteins, and is the precursor for steroid hormones and bile acids. Thus, cholesterol plays a profound role in the physiology and pathophysiology of eukaryotic cells. The cholesterol molecule has achieved evolutionary perfection to fulfill its different functions in membrane organization. Here, we review basic approaches to explore the interaction of cholesterol with proteins, with a particular focus on the high diversity of fluorescent and photoreactive cholesterol probes available today.
Collapse
Affiliation(s)
- Gerald Gimpl
- Institute of Pharmacy and Biochemistry, Department of Biochemistry, Johannes Gutenberg-University of Mainz, Mainz, Germany.
| | | |
Collapse
|
22
|
Comhair TM, Garcia Caraballo SC, Dejong CH, Lamers WH, Köhler SE. Dietary cholesterol, female gender and n-3 fatty acid deficiency are more important factors in the development of non-alcoholic fatty liver disease than the saturation index of the fat. Nutr Metab (Lond) 2011; 8:4. [PMID: 21261989 PMCID: PMC3045875 DOI: 10.1186/1743-7075-8-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 01/24/2011] [Indexed: 12/29/2022] Open
Abstract
Background The central feature of NAFLD is a disturbed fatty-acid metabolism with hepatic lipid accumulation. However, the factors that determine the severity of NAFLD, including the role of nutrition, gender, and plasma lipid levels, remain to be determined. Methods High-fat diets (42 en% fat), containing 0.2% cholesterol, were fed to male and female wild-type and hyperlipidemic APOE2ki C57BL/6J mice for three weeks. The fats were, in order of decreasing saturation, fractionated palm fat (fPF; ~95%), cocoa butter (CB; ~60%), olive oil (OO; ~15%), sunflower oil (SO; ~12%), and high-oleic-acid sunflower oil (hoSO; ~7%). Plasma and liver triglycerides (concentration and composition), liver inflammation (Ccl2, Cd68, Tnf-α mRNA), and infiltration of macrophages (Cd68, Cd11b immunohistochemistry) and neutrophils (Mpo) were quantified. Results Addition of cholesterol to a low-fat diet decreased plasma HDL and increased (V)LDL levels in APOE2ki mice. Plasma cholesterol levels in female, but not male APOE2ki mice correlated significantly with inflammation. Kupffer cells of inflamed livers were swollen. Wild-type mice refused the highly saturated fPF diet. The high-fat CB, OO, and SO diets induced hyperglycemia and a 2-fold increase in hepatic fat content in male, but not female wild-type mice (in females, hepatic fat content was similar to that in males fed a high-fat diet). All high-fat diets induced macrovesicular setatosis. APOE2ki mice were protected against high-fat diet-induced steatosis and hyperglycemia, except when fed a hoSO diet. This diet caused a 5-fold increase in liver triglyceride and mead-acid content, and an increased expression of lipogenic genes, suggesting a deficiency in poly-unsaturated fatty acids. Irrespective of the composition of the high-fat diet, oleic acid was the main triglyceride component of liver fat in wild-type and APOE2ki mouse livers. Liver inflammation was dependent on genotype (APOE2ki > wild type), gender (female > male), and cholesterol content (high > low) of the diet, but not on dietary fat composition. Conclusions Dietary cholesterol plays a determining, independent role in inflammation, especially in female mice. The fatty-acid saturation of the diet hardly affected hepatic steatosis or inflammation.
Collapse
Affiliation(s)
- Tine M Comhair
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.,NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands.,Nutrigenomics Consortium, Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Sonia C Garcia Caraballo
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.,NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Cornelis Hc Dejong
- Department of General Surgery, Maastricht University, Maastricht, The Netherlands.,NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Wouter H Lamers
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.,NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands.,Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - S Eleonore Köhler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.,NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
23
|
Labaied M, Jayabalasingham B, Bano N, Cha SJ, Sandoval J, Guan G, Coppens I. Plasmodium salvages cholesterol internalized by LDL and synthesized de novo in the liver. Cell Microbiol 2010; 13:569-86. [PMID: 21105984 DOI: 10.1111/j.1462-5822.2010.01555.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Our previous morphological studies illustrated the association of sterols with Plasmodium infecting hepatocytes. Because malaria parasites cannot synthesize sterols, they must scavenge these lipids from the host. In this paper, we have examined the source/s of sterols for intrahepatic Plasmodium and evaluated the importance of sterols for liver stage development. We show that Plasmodium continuously diverts cholesterol from hepatocytes until release of merozoites. Removal of plasma lipoproteins from the medium results in a 70% reduction of cholesterol content in hepatic merozoites but these parasites remain infectious in animals. Plasmodium salvages cholesterol that has been internalized by low-density lipoprotein but reduced expression of host low-density lipoprotein receptors by 70% does not influence liver stage burden. Plasmodium is also able to intercept cholesterol synthesized by hepatocytes. Pharmacological blockade of host squalene synthase or downregulation of the expression of this enzyme by 80% decreases by twofold the cholesterol content of merozoites without further impacting parasite development. These data enlighten that, on one hand, malaria parasites have moderate need of sterols for optimal development in hepatocytes and, on the other hand, they can adapt to survive in cholesterol-restrictive conditions by exploitation of accessible sterols derived from alternative sources in hepatocytes to maintain proper infectivity.
Collapse
Affiliation(s)
- Mehdi Labaied
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health and Malaria Research Institute, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
CVD (cardiovascular disease) is the leading cause of death for women. Considerable progress has been made in both our understanding of the complexities governing menopausal hormone therapy and our understanding of the cellular and molecular mechanisms underlying hormone and hormone receptor function. Understanding the interplay of atherosclerosis and sex steroid hormones and their cognate receptors at the level of the vessel wall has important ramifications for clinical practice. In the present review, we discuss the epidemiology of CVD in men and women, the clinical impact of sex hormones on CVD, and summarize our current understanding of the pathogenesis of atherosclerosis with a focus on gender differences in CVD, its clinical presentation and course, and pathobiology. The critical animal and human data that pertain to the role of oestrogens, androgens and progestins on the vessel wall is also reviewed, with particular attention to the actions of sex hormones on each of the three key cell types involved in atherogenesis: the endothelium, smooth muscle cells and macrophages. Where relevant, the systemic (metabolic) effects of sex hormones that influence atherogenesis, such as those involving vascular reactivity, inflammation and lipoprotein metabolism, are discussed. In addition, four key current concepts in the field are explored: (i) total hormone exposure time and coronary heart disease risk; (ii) the importance of tissue specificity of sex steroid hormones, critical timing and the stage of atherosclerosis in hormone action; (iii) biomarkers for atherosclerosis with regard to hormone therapy; and (iv) the complex role of sex steroids in inflammation. Future studies in this field will contribute to guiding clinical treatment recommendations for women and help define research priorities.
Collapse
|
25
|
Xu LH, Fushinobu S, Takamatsu S, Wakagi T, Ikeda H, Shoun H. Regio- and stereospecificity of filipin hydroxylation sites revealed by crystal structures of cytochrome P450 105P1 and 105D6 from Streptomyces avermitilis. J Biol Chem 2010; 285:16844-53. [PMID: 20375018 DOI: 10.1074/jbc.m109.092460] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polyene macrolide antibiotic filipin is widely used as a probe for cholesterol and a diagnostic tool for type C Niemann-Pick disease. Two position-specific P450 enzymes are involved in the post-polyketide modification of filipin during its biosynthesis, thereby providing molecular diversity to the "filipin complex." CYP105P1 and CYP105D6 from Streptomyces avermitilis, despite their high sequence similarities, catalyze filipin hydroxylation at different positions, C26 and C1', respectively. Here, we determined the crystal structure of the CYP105P1-filipin I complex. The distal pocket of CYP105P1 has the second largest size among P450 hydroxylases that act on macrolide substrates. Compared with previously determined substrate-free structures, the FG helices showed significant closing motion on substrate binding. The long BC loop region adopts a unique extended conformation without a B' helix. The binding site is essentially hydrophobic, but numerous water molecules are involved in recognizing the polyol side of the substrate. Therefore, the distal pocket of CYP105P1 provides a specific environment for the large filipin substrate to bind with its pro-S side of position C26 directed toward the heme iron. The ligand-free CYP105D6 structure was also determined. A small sub-pocket accommodating the long alkyl side chain of filipin I was observed in the CYP105P1 structure but was absent in the CYP105D6 structure, indicating that filipin cannot bind to CYP105D6 with a similar orientation due to steric hindrance. This observation can explain the strict regiospecificity of these enzymes.
Collapse
Affiliation(s)
- Lian-Hua Xu
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Cholesterol is a major constituent of the plasma membrane in eukaryotic cells. It regulates the physical state of the phospholipid bilayer and is crucially involved in the formation of membrane microdomains. Cholesterol also affects the activity of several membrane proteins, and is the precursor for steroid hormones and bile acids. Here, methods are described that are used to explore the binding and/or interaction of proteins to cholesterol. For this purpose, a variety of cholesterol probes bearing radio-, spin-, photoaffinity- or fluorescent labels are currently available. Examples of proven cholesterol binding molecules are polyene compounds, cholesterol-dependent cytolysins, enzymes accepting cholesterol as substrate, and proteins with cholesterol binding motifs. Main topics of this report are the localization of candidate membrane proteins in cholesterol-rich microdomains, the issue of specificity of cholesterol- protein interactions, and applications of the various cholesterol probes for these studies.
Collapse
Affiliation(s)
- Gerald Gimpl
- Institut für Biochemie, Johannes Gutenberg-Universität, Johann-Joachim-Becherweg 30, Mainz, Germany.
| |
Collapse
|
27
|
Cholesterol synthesis inhibitor U18666A and the role of sterol metabolism and trafficking in numerous pathophysiological processes. Lipids 2009; 44:477-87. [PMID: 19440746 DOI: 10.1007/s11745-009-3305-7] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 12/16/2008] [Indexed: 01/16/2023]
Abstract
The multiple actions of U18666A have enabled major discoveries in lipid research and contributed to understanding the pathophysiology of multiple diseases. This review describes these advances and the utility of U18666A as a tool in lipid research. Harry Rudney's recognition that U18666A inhibited oxidosqualene cyclase led him to discover a pathway for formation of polar sterols that he proved to be important regulators of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase. Laura Liscum's recognition that U18666A inhibited the egress of cholesterol from late endosomes and lysosomes led to greatly improved perspective on the major pathways of intracellular cholesterol trafficking. The inhibition of cholesterol trafficking by U18666A mimicked the loss of functional Niemann-Pick type C protein responsible for NPC disease and thus provided a model for this disorder. U18666A subsequently became a tool for assessing the importance of molecular trafficking through the lysosomal pathway in other conditions such as atherosclerosis, Alzheimer's disease, and prion infections. U18666A also provided animal models for two important disorders: petite mal (absence) epilepsy and cataracts. This was the first chronic model of absence epilepsy. U18666A is also being used to address the role of oxidative stress in apoptosis. How can one molecule have so many effects? Perhaps because of its structure as an amphipathic cationic amine it can interact and inhibit diverse proteins. Restricting the availability of cholesterol for membrane formation through inhibition of cholesterol synthesis and intracellular trafficking could also be a mechanism for broadly affecting many processes. Another possibility is that through intercalation into membrane U18666A can alter membrane order and therefore the function of resident proteins. The similarity of the effects of natural and enantiomeric U18666A on cells and the capacity of intercalated U18666A to increase membrane order are arguments in favor of this possibility.
Collapse
|
28
|
Walkley SU, Vanier MT. Secondary lipid accumulation in lysosomal disease. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:726-36. [PMID: 19111580 PMCID: PMC4382014 DOI: 10.1016/j.bbamcr.2008.11.014] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/11/2008] [Accepted: 11/28/2008] [Indexed: 01/22/2023]
Abstract
Lysosomal diseases are inherited metabolic disorders caused by defects in a wide spectrum of lysosomal and a few non-lysosomal proteins. In most cases a single type of primary storage material is identified, which has been used to name and classify the disorders: hence the terms sphingolipidoses, gangliosidoses, mucopolysaccharidoses, glycoproteinoses, and so forth. In addition to this primary storage, however, a host of secondary storage products can also be identified, more often than not having no direct link to the primary protein defect. Lipids - glycosphingolipids and phospholipids, as well as cholesterol - are the most ubiquitous and best studied of these secondary storage materials. While in the past typically considered nonspecific and nonconsequential features of these diseases, newer studies suggest direct links between secondary storage and disease pathogenesis and support the view that understanding all aspects of this sequestration process will provide important insights into the cell biology and treatment of lysosomal disease.
Collapse
Affiliation(s)
- Steven U Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY, USA.
| | | |
Collapse
|
29
|
Podechard N, Le Ferrec E, Rebillard A, Fardel O, Lecureur V. NPC1 repression contributes to lipid accumulation in human macrophages exposed to environmental aryl hydrocarbons. Cardiovasc Res 2009; 82:361-70. [PMID: 19131362 DOI: 10.1093/cvr/cvp007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
AIMS Aryl hydrocarbons (AHs), such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and benzo(a)pyrene (BP), are environmental contaminants promoting the development of atherosclerosis-related cardiovascular diseases. In order to identify molecular mechanisms involved in these effects, we have analysed AH-mediated regulation of the lipid trafficking Niemann-Pick type C1 protein (NPC1) and its contribution to AH-induced macrophage lipid accumulation. METHODS AND RESULTS Exposure of primary human macrophages to TCDD and BP decreased NPC1 mRNA expression in a time-dependent manner. NPC1 protein expression and NPC1-related acid sphingomyelinase activity were reduced in parallel. NPC1 was also similarly down-regulated in mice exposed to BP. Moreover, TCDD and BP were demonstrated to trigger lipid accumulation in human macrophages, as assessed by Oil Red O and Nile Red staining and cholesterol determination. Such lipid loading occurred at least partly in endosomal/lysosomal compartments as demonstrated by immunolabelling of lipid vesicles by the lysosome-associated membrane protein 1. These cellular phenotypic effects were found to be similar to those triggered by knock-down of NPC1 expression using siRNAs and were counteracted by NPC1 overexpression, thus supporting the contribution of NPC1 to AH-mediated lipid accumulation in macrophages. Finally, both NPC1 down-expression and lipid accumulation in response to TCDD were found to be abolished through knock-down of the AH receptor (AHR), a ligand-activated transcription factor mediating many effects of AHs. CONCLUSION Our data have shown that contaminants such as TCDD and BP repress NPC1 expression in macrophages in an AHR-dependent manner, which likely contributes to macrophage lipid accumulation caused by these environmental chemicals. Thus, NPC1 appears to be a new molecular target regulated by environmental AHs and putatively involved in their deleterious cardiovascular effects.
Collapse
Affiliation(s)
- Normand Podechard
- Institut National de la Santé et de la Recherche Médicale U620, IFR140, Université de Rennes 1, Faculté des Sciences Pharmaceutiques et Biologiques, 2, Avenue du Pr L. Bernard, 35043 Rennes, France
| | | | | | | | | |
Collapse
|
30
|
Crystal structures of cytochrome P450 105P1 from Streptomyces avermitilis: conformational flexibility and histidine ligation state. J Bacteriol 2008; 191:1211-9. [PMID: 19074393 DOI: 10.1128/jb.01276-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The polyene macrolide antibiotic filipin is widely used as a probe for cholesterol in biological membranes. The filipin biosynthetic pathway of Streptomyces avermitilis contains two position-specific hydroxylases, C26-specific CYP105P1 and C1'-specific CYP105D6. In this study, we describe the three X-ray crystal structures of CYP105P1: the ligand-free wild-type (WT-free), 4-phenylimidazole-bound wild-type (WT-4PI), and ligand-free H72A mutant (H72A-free) forms. The BC loop region in the WT-free structure has a unique feature; the side chain of His72 within this region is ligated to the heme iron. On the other hand, this region is highly disordered and widely open in WT-4PI and H72A-free structures, respectively. Histidine ligation of wild-type CYP105P1 was not detectable in solution, and a type II spectral change was clearly observed when 4-phenylimidazole was titrated. The H72A mutant showed spectroscopic characteristics that were almost identical to those of the wild-type protein. In the H72A-free structure, there is a large pocket that is of the same size as the filipin molecule. The highly flexible feature of the BC loop region of CYP105P1 may be required to accept a large hydrophobic substrate.
Collapse
|
31
|
Lübke T, Lobel P, Sleat DE. Proteomics of the lysosome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:625-35. [PMID: 18977398 DOI: 10.1016/j.bbamcr.2008.09.018] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 09/24/2008] [Accepted: 09/30/2008] [Indexed: 01/05/2023]
Abstract
Defects in lysosomal function have been associated with numerous monogenic human diseases typically classified as lysosomal storage diseases. However, there is increasing evidence that lysosomal proteins are also involved in more widespread human diseases including cancer and Alzheimer disease. Thus, there is a continuing interest in understanding the cellular functions of the lysosome and an emerging approach to this is the identification of its constituent proteins by proteomic analyses. To date, the mammalian lysosome has been shown to contain approximately 60 soluble luminal proteins and approximately 25 transmembrane proteins. However, recent proteomic studies based upon affinity purification of soluble components or subcellular fractionation to obtain both soluble and membrane components suggest that there may be many more of both classes of protein resident within this organelle than previously appreciated. Discovery of such proteins has important implications for understanding the function and the dynamics of the lysosome but can also lead the way towards the discovery of the genetic basis for human diseases of hitherto unknown etiology. Here, we describe current approaches to lysosomal proteomics and data interpretation and review the new lysosomal proteins that have recently emerged from such studies.
Collapse
Affiliation(s)
- Torben Lübke
- Zentrum Biochemie und Molekulare Zellbiologie, Abteilung Biochemie II, Georg-August Universität Göttingen, 37073 Göttingen, Germany
| | | | | |
Collapse
|
32
|
Diaz G, Melis M, Batetta B, Angius F, Falchi AM. Hydrophobic characterization of intracellular lipids in situ by Nile Red red/yellow emission ratio. Micron 2008; 39:819-24. [DOI: 10.1016/j.micron.2008.01.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/04/2008] [Accepted: 01/05/2008] [Indexed: 11/24/2022]
|
33
|
Kristiana I, Yang H, Brown AJ. Different kinetics of cholesterol delivery to components of the cholesterol homeostatic machinery: implications for cholesterol trafficking to the endoplasmic reticulum. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:724-30. [PMID: 18838129 DOI: 10.1016/j.bbalip.2008.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 08/18/2008] [Accepted: 08/29/2008] [Indexed: 11/17/2022]
Abstract
Previously, using an oxysterol to induce cholesterol trafficking to the Endoplasmic Reticulum (ER), we reported a dissociation between cholesterol transport to two important cholesterol regulatory components in the ER: the cholesterol esterifying enzyme ACAT (Acyl CoA:Cholesterol Acyltransferase) and the membrane-bound transcription factor SREBP (Sterol Regulatory Element Binding Protein) (X. Du, Y.H. Pham and A.J. Brown, Effects of 25-hydroxycholesterol on cholesterol esterification and SREBP processing are dissociable: implications for cholesterol movement to the regulatory pool in the endoplasmic reticulum, J. Biol Chem. 279 (2004) 47010-47016). Here, we employed low-density lipoprotein (LDL) as a more physiologically-relevant mode of cholesterol delivery, and compared cholesterol transport to ACAT (determined by esterification) and SREBP (assessed by processing) in mutant Chinese Hamster Ovary cells that have cholesterol-trafficking defects (including Niemann-Pick type C). We showed clear differences in kinetics between the two, with impaired cholesterol trafficking to SREBP being resolved more rapidly than to ACAT. This is unlikely to be due to a reduced threshold of cholesterol sensed by the SREBP system relative to ACAT, since both responded to LDL-derived cholesterol within 2 h whereas the divergence observed between the two was prolonged (>20 h). Furthermore, ACAT inhibition did not expand the ER regulatory pool of cholesterol as judged by unaltered sensitivity of SREBP processing to LDL. Collectively, our data favor the contention that there are different cholesterol pools and/or transport pathways which feed ACAT and SREBP within the ER.
Collapse
Affiliation(s)
- Ika Kristiana
- BABS, School of Biotechnology and Biomolecular Sciences, Biosciences Building D26, University of New South Wales, Sydney, 2052, Australia
| | | | | |
Collapse
|
34
|
Abstract
Cholesterol is a major constituent of the membranes in most eukaryotic cells where it fulfills multiple functions. Cholesterol regulates the physical state of the phospholipid bilayer, affects the activity of several membrane proteins, and is the precursor for steroid hormones and bile acids. Cholesterol plays a crucial role in the formation of membrane microdomains such as "lipid rafts" and caveolae. However, our current understanding on the membrane organization, intracellular distribution and trafficking of cholesterol is rather poor. This is mainly due to inherent difficulties to label and track this small lipid. In this review, we describe different approaches to detect cholesterol in vitro and in vivo. Cholesterol reporter molecules can be classified in two groups: cholesterol binding molecules and cholesterol analogues. The enzyme cholesterol oxidase is used for the determination of cholesterol in serum and food. Susceptibility to cholesterol oxidase can provide information about localization, transfer kinetics, or transbilayer distribution of cholesterol in membranes and cells. The polyene filipin forms a fluorescent complex with cholesterol and is commonly used to visualize the cellular distribution of free cholesterol. Perfringolysin O, a cholesterol binding cytolysin, selectively recognizes cholesterol-rich structures. Photoreactive cholesterol probes are appropriate tools to analyze or to identify cholesterol binding proteins. Among the fluorescent cholesterol analogues one can distinguish probes with intrinsic fluorescence (e.g., dehydroergosterol) from those possessing an attached fluorophore group. We summarize and critically discuss the features of the different cholesterol reporter molecules with a special focus on recent imaging approaches.
Collapse
Affiliation(s)
- Gerald Gimpl
- Institut für Biochemie, Johannes Gutenberg-University of Mainz, Becherweg 30, 55099, Mainz, Germany.
| | | |
Collapse
|
35
|
Gasingirwa MC, Thirion J, Costa C, Flamion B, Lobel P, Jadot M. A method to assess the lysosomal residence of proteins in cultured cells. Anal Biochem 2008; 374:31-40. [PMID: 18082124 DOI: 10.1016/j.ab.2007.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 11/06/2007] [Accepted: 11/16/2007] [Indexed: 10/22/2022]
Abstract
Analytical subcellular fractionation is playing an increasingly important role in proteomic studies to identify and validate components of cellular organelles. For lysosomes, definitive studies in this area have been restricted to rodent tissues due to technical constraints. Our goal was to design a quantitative assay that would allow clear demonstration of lysosomal localization in cultured human cells. We found that culturing HepG2 (human hepatocellular carcinoma) cells in progesterone-containing medium elicited an extensive shift in the buoyant density of lysosomes as measured by isopycnic centrifugation in sucrose density gradients. The density of other organelles remained essentially unchanged; thus, this shift represents a specific test for lysosomal localization. Progesterone treatment of a variety of other cultured cells also elicited a shift in lysosome density. This approach should represent a valuable tool for identification and validation of both luminal and membrane lysosomal proteins.
Collapse
Affiliation(s)
- M-C Gasingirwa
- Laboratoire de Chimie Physiologique, Unite de Recherche en Physiologie Moleculaire, Facultes Universitaires Notre-Dame de la Paix, 5000 Namur, Belgium
| | | | | | | | | | | |
Collapse
|
36
|
Cox BE, Griffin EE, Ullery JC, Jerome WG. Effects of cellular cholesterol loading on macrophage foam cell lysosome acidification. J Lipid Res 2007; 48:1012-21. [PMID: 17308299 DOI: 10.1194/jlr.m600390-jlr200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrophages incubated with mildly oxidized low density lipoprotein (OxLDL), aggregated low density lipoprotein (AggLDL), or cholesteryl ester-rich lipid dispersions (DISPs) accumulate cholesterol in lysosomes followed by an inhibition of lysosomal cholesteryl ester (CE) hydrolysis. The variety of cholesterol-containing particles producing inhibition of hydrolysis suggests that inhibition may relate to general changes in lysosomes. Lysosome pH is a key mediator of activity and thus is a potential mechanism for lipid-induced inhibition. We investigated the effects of cholesterol accumulation on THP-1 macrophage lysosome pH. Treatment with OxLDL, AggLDL, and DISPs resulted in inhibition of the lysosome's ability to maintain an active pH and concomitant decreases in CE hydrolysis. Consistent with an overall disruption of lysosome function, exposure to OxLDL or AggLDL reduced lysosomal apolipoprotein B degradation. The lysosomal cholesterol sequestration and inactivation are not observed in cholesterol-equivalent cells loaded using acetylated low density lipoprotein (AcLDL). However, AcLDL-derived cholesterol in the presence of progesterone (to block cholesterol egression from lysosomes) inhibited lysosome acidification. Lysosome inhibition was not attributable to a decrease in the overall levels of vacuolar ATPase. However, augmentation of membrane cholesterol in isolated lysosomes inhibited vacuolar ATPase-dependent pumping of H+ ions into lysosomes. These data indicate that lysosomal cholesterol accumulation alters lysosomes in ways that could exacerbate foam cell formation and influence atherosclerotic lesion development.
Collapse
Affiliation(s)
- Brian E Cox
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
37
|
Chinetti G, Fruchart JC, Staels B. Transcriptional regulation of macrophage cholesterol trafficking by PPARalpha and LXR. Biochem Soc Trans 2007; 34:1128-31. [PMID: 17073767 DOI: 10.1042/bst0341128] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PPARs (peroxisome-proliferator-activated receptors) and LXRs (liver X receptors) are ligand-activated transcription factors that control lipid and glucose metabolism, as well as the inflammatory response. Since the macrophage plays an important role in host defence and immuno-inflammatory pathologies, particular attention has been paid to the role of PPARs and LXRs in the control of macrophage gene expression and function. Altered macrophage functions contribute to the pathogenesis of many infectious, immunological and inflammatory disease processes, including atherosclerosis. Research over the last few years has revealed important roles for PPARs and LXRs in macrophage inflammation and cholesterol homoeostasis with consequences in atherosclerosis development. This review will discuss the role of these transcription factors in the control of cholesterol trafficking in macrophages.
Collapse
Affiliation(s)
- G Chinetti
- INSERM U545, Institut Pasteur de Lille, 1 rue du Professeur Calmette, BP 245, 59019 Lille, France
| | | | | |
Collapse
|
38
|
Imrie J, Dasgupta S, Besley GTN, Harris C, Heptinstall L, Knight S, Vanier MT, Fensom AH, Ward C, Jacklin E, Whitehouse C, Wraith JE. The natural history of Niemann-Pick disease type C in the UK. J Inherit Metab Dis 2007; 30:51-9. [PMID: 17160617 DOI: 10.1007/s10545-006-0384-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 10/20/2006] [Accepted: 11/13/2006] [Indexed: 10/23/2022]
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive, neurovisceral lipid storage disorder. Mutations in two genes (NPC1 and NPC2) produce indistinguishable clinical phenotypes by biochemical mechanisms that have not yet been entirely clarified. The wide spectrum of clinical presentations of NPC includes hepatic and pulmonary disease as well as a range of neuropsychiatric disorders. Late-onset disease has been increasingly recognized as the biochemical diagnosis of NPC has been more widely applied in adult neurology clinics. The clinical presentation and follow-up of 94 patients with NPC is described, 58 of whom were still alive at the time this report was prepared. The age at diagnosis ranged from the prenatal period (with hydrops fetalis) up to 51 years. This review of NPC patients in the UK confirms the phenotypic variability of this inherited lipid storage disorder reported elsewhere. Although a non-neuronopathic variant has been described, most patients in this series who survived childhood inevitably suffered neurological and in some cases neuropsychiatric deterioration. While symptomatic treatment, such as anticholinergic and antiepileptic drugs, can alleviate some aspects of the disease, there is a clear need to develop a specific treatment for this progressively debilitating neurodegenerative disorder.
Collapse
Affiliation(s)
- J Imrie
- Willink Biochemical Genetics Unit, Royal Manchester Children's Hospital, Manchester, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Howe D, Heinzen RA. Replication of Coxiella burnetii is inhibited in CHO K-1 cells treated with inhibitors of cholesterol metabolism. Ann N Y Acad Sci 2006; 1063:123-9. [PMID: 16481503 DOI: 10.1196/annals.1355.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Coxiella burnetii directs the synthesis of a large parasitophorous vacuole (PV) that is required for its replication. While some lysosomal characteristics of the PV have been described, the origin and composition of the PV membrane remain largely undefined. Cholesterol is an essential component of mammalian membranes where it lends mechanical stability and serves as a platform for signaling proteins. Using infected Chinese hamster ovary cells as a model, we examined whether cholesterol is trafficked to the C. burnetii PV membrane and the effects of inhibitors of cholesterol metabolism on C. burnetii replication. When infected cells were stained with filipin, a fluorescent polyene antifungal agent that binds cholesterol, obvious staining of PV was observed indicating the PV membrane is cholesterol-rich. Furthermore, replication of C. burnetii was significantly inhibited in cells treated with the cholesterol metabolism inhibitors lovastatin, ketoconazole, imipramine, progesterone, and U18666A. These data suggest that cholesterol is an important component of the C. burnetii PV membrane and that normal cellular cholesterol metabolism is required for optimal C. burnetii replication.
Collapse
Affiliation(s)
- Dale Howe
- Coxiella Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA
| | | |
Collapse
|
40
|
Vance JE. Lipid imbalance in the neurological disorder, Niemann-Pick C disease. FEBS Lett 2006; 580:5518-24. [PMID: 16797010 DOI: 10.1016/j.febslet.2006.06.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 05/29/2006] [Accepted: 06/01/2006] [Indexed: 10/24/2022]
Abstract
Niemann-Pick C (NPC) disease is a progressive neurological disorder in which cholesterol, gangliosides and bis-monoacylglycerol phosphate accumulate in late endosomes/lysosomes. This disease is caused by mutations in either the NPC1 or NPC2 gene. NPC1 and NPC2 are involved in egress of lipids, particularly cholesterol, from late endosomes/lysosomes but the precise functions of these proteins are not clear. An important question regarding the function of NPC proteins is: why do mutations in these ubiquitously expressed proteins have such dire consequences in the brain? This review summarizes the roles of NPC proteins in lipid homeostasis particularly in the central nervous system.
Collapse
Affiliation(s)
- Jean E Vance
- Canadian Institutes for Health Research Group on the Molecular and Cell Biology of Lipids, Department of Medicine, 332 HMRC, University of Alberta, Edmonton, Alta., Canada T6G 2S2.
| |
Collapse
|
41
|
Klingenstein R, Löber S, Kujala P, Godsave S, Leliveld SR, Gmeiner P, Peters PJ, Korth C. Tricyclic antidepressants, quinacrine and a novel, synthetic chimera thereof clear prions by destabilizing detergent-resistant membrane compartments. J Neurochem 2006; 98:748-59. [PMID: 16749906 DOI: 10.1111/j.1471-4159.2006.03889.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prion diseases are invariably fatal, neurodegenerative diseases transmitted by an infectious agent, PrPSc, a pathogenic, conformational isoform of the normal prion protein (PrPC). Heterocyclic compounds such as acridine derivatives like quinacrine abolish prion infectivity in a cell culture model of prion disease. Here, we report that these compounds execute their antiprion activity by redistributing cholesterol from the plasma membrane to intracellular compartments, thereby destabilizing membrane domains. Our findings are supported by the fact that structurally unrelated compounds with known cholesterol-redistributing effects - U18666A, amiodarone, and progesterone - also possessed high antiprion potency. We show that tricyclic antidepressants (e.g. desipramine), another class of heterocyclic compounds, displayed structure-dependent antiprion effects and enhanced the antiprion effects of quinacrine, allowing lower doses of both drugs to be used in combination. Treatment of ScN2a cells with quinacrine or desipramine induced different ultrastructural and morphological changes in endosomal compartments. We synthesized a novel drug from quinacrine and desipramine, termed quinpramine, that led to a fivefold increase in antiprion activity compared to quinacrine with an EC50 of 85 nm. Furthermore, simvastatin, an inhibitor of cholesterol biosynthesis, acted synergistically with both heterocyclic compounds to clear PrPSc. Our data suggest that a cocktail of drugs targeting the lipid metabolism that controls PrP conversion may be the most efficient in treating Creutzfeldt-Jakob disease.
Collapse
Affiliation(s)
- Ralf Klingenstein
- Institute for Neuropathology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Koh CHV, Cheung NS. Cellular mechanism of U18666A-mediated apoptosis in cultured murine cortical neurons: bridging Niemann-Pick disease type C and Alzheimer's disease. Cell Signal 2006; 18:1844-53. [PMID: 16797161 DOI: 10.1016/j.cellsig.2006.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 04/28/2006] [Indexed: 10/24/2022]
Abstract
Neuronal cell death can occur by means of either necrosis or apoptosis. Both necrosis and apoptosis are generally believed to be distinct mechanisms of cell death with different characteristic features distinguished on the basis of their morphological and biochemical properties. The brain is the most cholesterol-rich organ in the body but not much is known about the mechanisms that regulate cholesterol homeostasis in the brain. Recently, several clinical and biochemical studies suggest that cholesterol imbalance in the brain may be a risk factor related to the development of neurological disorders such as Niemann-Pick disease type C (NPC) and Alzheimer's disease (AD). NPC is a fatal juvenile neurodegenerative disorder characterized by premature neuronal death and somatically altered cholesterol metabolism. The main biochemical manifestation in NPC is elevated intracellular accumulation of free cholesterol caused by a genetic deficit in cholesterol trafficking. The pharmacological agent, U18666A (3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one), is a well-known class-2 amphiphile which inhibits cholesterol transport. Cells treated with this agent accumulate intracellular cholesterol to massive levels, similar to that observed in cells from NPC patients. NPC and AD have some pathological similarities which may share a common underlying cause. AD is one of the most common types of dementia affecting the elderly. However, the molecular mechanisms of neurodegeneration in NPC and AD are largely unknown. This review provides a consolidation of work done using U18666A in the past half century and focuses on the implications of our research findings on the mechanism of U18666A-mediated neuronal apoptosis in primary cortical neurons, which may provide an insight to elucidate the mechanisms of neurodegenerative diseases, particularly NPC and AD, where apoptosis might occur through a similar mechanism.
Collapse
Affiliation(s)
- Chor Hui Vivien Koh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | |
Collapse
|
43
|
Lim CH, Schoonderwoerd K, Kleijer WJ, de Jonge HR, Tilly BC. Regulation of the cell swelling-activated chloride conductance by cholesterol-rich membrane domains. Acta Physiol (Oxf) 2006; 187:295-303. [PMID: 16734766 DOI: 10.1111/j.1748-1716.2006.01534.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
AIM The role of high cholesterol-containing microdomains in the signal transduction cascade leading to the activation of volume-regulated anion channels (VRACs) was studied. METHODS Osmotic cell swelling-induced efflux of 125I- was determined in human epithelial Intestine 407 cells and in skin fibroblasts obtained from healthy controls or Niemann-Pick type C (NPC) patients. Cellular cholesterol content was modulated by pre-incubation with 2-hydroxypropyl-beta-cyclodextrin in the presence of acceptor lipid vesicles. RESULTS Osmotic cell swelling of human Intestine 407 cells leads to the rapid activation of a compensatory anion conductance. Treatment of the cells with cyclodextrin enhanced the response to submaximal hypotonic stimulation by approx. twofold, but did not further increase the efflux elicited by a saturating stimulus. In contrast, the volume-sensitive anion efflux was markedly inhibited when cholesterol-loaded cyclodextrin was used. Potentiation of the response by cholesterol depletion was maintained in caveolin-1 deficient Caco-2 colonocytes as well as in sphingomyelinase-treated Intestine 407 cells, indicating that cholesterol-rich microdomains are not crucially involved. However, treatment of the cells with progesterone, an inhibitor of NPC1-dependent endosomal cholesterol trafficking, not only markedly reduced the hypotonicity-provoked anion efflux, but also prevented its potentiation by cyclodextrin. In addition, the volume-sensitive anion efflux from human NPC skin fibroblasts was significantly smaller when compared with control fibroblasts. CONCLUSIONS The results support a model of regulatory volume decrease involving recruitment of volume-sensitive anion channels from intracellular compartments to the plasma membrane.
Collapse
Affiliation(s)
- C H Lim
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
Huang Z, Hou Q, Cheung NS, Li QT. Neuronal cell death caused by inhibition of intracellular cholesterol trafficking is caspase dependent and associated with activation of the mitochondrial apoptosis pathway. J Neurochem 2006; 97:280-91. [PMID: 16515545 DOI: 10.1111/j.1471-4159.2006.03733.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An elevated level of cholesterol in mitochondrial membranes of Niemann-Pick disease type C1 (NPC1) mouse brains and neural cells has been found to cause mitochondrial dysfunction. In this study, we demonstrate that inhibition of intracellular cholesterol trafficking in primary neurons by class 2 amphiphiles, which mimics the major biochemical and cellular feature of NPC1, led to not only impaired mitochondrial function but also activation of the mitochondrial apoptosis pathway. In activation of this pathway both cytochrome c and Smac/Diablo were released but apoptosis-inducing factor (AIF) was not involved. Treatment of the neurons with taurine, a caspase 9-specific inhibitor, could prevent the amphiphile-induced apoptotic cell death, suggesting that formation of apoptosome, followed by caspase 9 and caspase 3 activation, might play a critical role in the neuronal death pathway. Taken together, the mitochondria-dependent death cascade induced by blocking intracellular cholesterol trafficking was caspase dependent. The findings provide clues for both understanding the molecular basis of neurodegeneration in NPC1 disease and developing therapeutic strategies for treatment of this disorder.
Collapse
Affiliation(s)
- Zhili Huang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
45
|
Saccharomyces cerevisiae, a model to study sterol uptake and transport in eukaryotes. Biochem Soc Trans 2005. [DOI: 10.1042/bst0331186] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The molecular mechanisms that govern intracellular transport of sterols in eukaryotic cells are only poorly understood. Saccharomyces cerevisiae is a facultative anaerobic organism that requires supplementation with unsaturated fatty acids and sterols to grow in the absence of oxygen, as the synthesis of these lipids requires molecular oxygen. The fact that yeast grows well under anaerobic conditions indicates that lipid uptake is rapid and efficient. To identify components in this lipid uptake and transport pathway, we screened the yeast mutant collection for genes that are essential under anaerobic conditions. Out of the approx. 4800 non-essential genes represented in the mutant collection, 37 were required for growth under anaerobic conditions. Uptake assays using radiolabelled cholesterol revealed that 16 of these genes are required for cholesterol uptake/transport and esterification. Further characterization of the precise role of these genes is likely to advance our understanding of this elusive pathway in yeast and may prove to be relevant to understand sterol homoeostasis in higher eukaryotic cells.
Collapse
|
46
|
Rigamonti E, Helin L, Lestavel S, Mutka AL, Lepore M, Fontaine C, Bouhlel MA, Bultel S, Fruchart JC, Ikonen E, Clavey V, Staels B, Chinetti-Gbaguidi G. Liver X Receptor Activation Controls Intracellular Cholesterol Trafficking and Esterification in Human Macrophages. Circ Res 2005; 97:682-9. [PMID: 16141411 DOI: 10.1161/01.res.0000184678.43488.9f] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Liver X receptors (LXRs) are nuclear receptors that regulate macrophage cholesterol efflux by inducing ATP-binding cassette transporter A1 (ABCA1) and ABCG1/ABCG4 gene expression. The Niemann-Pick C (NPC) proteins NPC1 and NPC2 are located in the late endosome, where they control cholesterol trafficking to the plasma membrane. The mobilization of cholesterol from intracellular pools to the plasma membrane is a determinant governing its availability for efflux to extracellular acceptors. Here we investigated the influence of LXR activation on intracellular cholesterol trafficking in primary human macrophages. Synthetic LXR activators increase the amount of free cholesterol in the plasma membrane by inducing NPC1 and NPC2 gene expression. Moreover, ABCA1-dependent cholesterol efflux induced by LXR activators was drastically decreased in the presence of progesterone, which blocks postlysosomal cholesterol trafficking, and reduced when NPC1 and NPC2 mRNA expression was depleted using small interfering RNA. The stimulation of cholesterol mobilization to the plasma membrane by LXRs led to a decrease in cholesteryl ester formation and Acyl-coenzyme A cholesterol acyltransferase-1 activity. These data indicate that LXR activation enhances cholesterol trafficking to the plasma membrane, where it becomes available for efflux, at the expense of esterification, thus contributing to the overall effects of LXR agonists in the control of macrophage cholesterol homeostasis.
Collapse
Affiliation(s)
- E Rigamonti
- UR 545 Inserm, Institut Pasteur de Lille and Université de Lille 2, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chinetti-Gbaguidi G, Rigamonti E, Helin L, Mutka AL, Lepore M, Fruchart JC, Clavey V, Ikonen E, Lestavel S, Staels B. Peroxisome proliferator-activated receptor alpha controls cellular cholesterol trafficking in macrophages. J Lipid Res 2005; 46:2717-25. [PMID: 16162941 DOI: 10.1194/jlr.m500326-jlr200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mobilization of cholesterol from intracellular pools to the plasma membrane is a determinant that governs its availability for efflux to extracellular acceptors. NPC1 and NPC2 are proteins localized in the late endosome and control cholesterol transport from the lysosome to the plasma membrane. Here, we report that NPC1 and NPC2 gene expression is induced by oxidized LDL (OxLDL) in human macrophages. Because OxLDLs contain natural activators of peroxisome proliferator-activated receptor alpha (PPARalpha), a fatty acid-activated nuclear receptor, the regulation of NPC1 and NPC2 by PPARalpha and the consequences on cholesterol trafficking were further studied. NPC1 and NPC2 expression is induced by synthetic PPARalpha ligands in human macrophages. Furthermore, PPARalpha activation leads to an enrichment of cholesterol in the plasma membrane. By contrast, incubation with progesterone, which blocks postlysosomal cholesterol trafficking, as well as NPC1 and NPC2 mRNA depletion using small interfering RNA, abolished ABCA1-dependent cholesterol efflux induced by PPARalpha activators. These observations identify a novel regulatory role for PPARalpha in the control of cholesterol availability for efflux that, associated with its ability to inhibit cholesterol esterification and to stimulate ABCA1 and scavenger receptor class B type I expression, may contribute to the stimulation of reverse cholesterol transport.
Collapse
Affiliation(s)
- G Chinetti-Gbaguidi
- UR 545 Inserm, Institut Pasteur de Lille and Université de Lille 2, Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zheng H, Kiss RS, Franklin V, Wang MD, Haidar B, Marcel YL. ApoA-I Lipidation in Primary Mouse Hepatocytes. J Biol Chem 2005; 280:21612-21. [PMID: 15797865 DOI: 10.1074/jbc.m502200200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The liver is the major site of both apolipoprotein A-I (apoA-I) synthesis and ATP-binding cassette transporter A1 (ABCA1) expression. Here, we compare the lipidation with cholesterol and phospholipid of newly synthesized human apoA-I (hapoA-I) using adenoviral vector-mediated endogenous expression or exogenously added hapoA-I in wild type and ABCA1-null hepatocytes. Hepatocytes were labeled with [3H]cholesterol (delivered with LDL or methyl-beta-cyclodextrin), [3H]mevalonate, or [3H]choline. ABCA1 deficiency decreased apoA-I phospholipidation by 80%, but acquisition of de novo synthesized and exogenous cholesterol only decreased by 40-60%. The transfer of de novo synthesized cholesterol to apoA-I was decreased at all time points, but that of exogenously delivered cholesterol was independent of ABCA1 activity at the early time points. Progesterone does not affect apoA-I synthesis or its lipidation but inhibited the early phase of apoA-I cholesterol lipidation in both wild type and ABCA1-null hepatocytes. Fast protein liquid chromatography analysis of medium lipoproteins confirmed that with ABCA1 deficiency, the proportion of secreted high density lipoprotein-associated apoA-I and cholesterol decreased by about 50%. The very low density lipoprotein (VLDL)/LDL size fraction also contained a significant level of cholesterol in ABCA1 deficiency, consistent with the result of immunoprecipitations showing the presence of lipoproteins with both apoA-I and murine apoB. ApoA-I lipidation with newly synthesized cholesterol in ABCA1-null hepatocytes was significantly decreased by brefeldin A and monensin. In conclusion, we demonstrate that: (i) whereas most hepatic phospholipidation of apoA-I is mediated by ABCA1, acquisition of cholesterol depends on active transfer from intracellular compartments by ABCA1-dependent and -independent pathways, both sensitive to progesterone and (ii) there is separate regulation of phospholipid and cholesterol lipidation of apoA-I in hepatocytes.
Collapse
Affiliation(s)
- Hui Zheng
- Lipoprotein and Atherosclerosis Research Group, University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario K1Y 4W7, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Lajoie P, Guay G, Dennis JW, Nabi IR. The lipid composition of autophagic vacuoles regulates expression of multilamellar bodies. J Cell Sci 2005; 118:1991-2003. [PMID: 15840653 DOI: 10.1242/jcs.02324] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multilamellar bodies (MLBs) are responsible for surfactant secretion in type II alveolar cells but also accumulate in other cell types under pathological conditions, including cancer and lysosomal storage diseases such as Niemann-Pick C (NPC), a congenital disease where defective cholesterol transport leads to its accumulation in lysosomes. Mv1Lu type II alveolar cells transfected with Golgi β1,6 N-acetylglucosaminyltransferase V (Mgat5), enhancing the polylactosamine content of complex-type N-glycans, exhibit stable expression of MLBs whose formation requires lysosomal proteolysis within dense autophagic vacuoles. MLBs of Mgat5-transfected Mv1Lu cells are rich in phospholipids and have low levels of cholesterol. In Mv1Lu cells treated with the NPC-mimicking drug U18666A, cholesterol-rich MLBs accumulate independently of both Mgat5 expression and lysosomal proteolysis. Inhibition of autophagy by blocking the PI 3-kinase pathway with 3-methyladenine prevents MLB formation and results in the accumulation of non-lamellar, acidic lysosomal vacuoles. Treatment with 3-methyladenine inhibited the accumulation of monodansylcadaverine, a phospholipid-specific marker for autophagic vacuoles, but did not block endocytic access to the lysosomal vacuoles. Induction of autophagy via serum starvation resulted in an increased size of cholesterol-rich MLBs. Although expression of MLBs in the Mv1Lu cell line can be induced by modulating lysosomal cholesterol or protein glycosylation, an autophagic contribution of phospholipids is critical for the formation of concentric membrane lamellae within late lysosomal organelles.
Collapse
Affiliation(s)
- Patrick Lajoie
- Department of Cellular and Physiological Sciences, University of British Columbia, 2177 Wesbrook Mall, Vancouver V6T 1Z3, British Columbia, Canada
| | | | | | | |
Collapse
|
50
|
Cignarella A, Engel T, von Eckardstein A, Kratz M, Lorkowski S, Lueken A, Assmann G, Cullen P. Pharmacological regulation of cholesterol efflux in human monocyte-derived macrophages in the absence of exogenous cholesterol acceptors. Atherosclerosis 2005; 179:229-36. [PMID: 15777536 DOI: 10.1016/j.atherosclerosis.2004.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 11/02/2004] [Accepted: 11/15/2004] [Indexed: 11/24/2022]
Abstract
Cholesterol efflux from human monocyte-derived macrophages in the absence of exogenous acceptors has been described, but is unclear in mechanism. We investigated this process in relation to the expression of relevant genes, intracellular cholesterol storage and apoE secretion using drugs affecting different aspects of cholesterol metabolism. Both natural (22R-hydroxycholesterol/9-cis-retinoic acid) and synthetic (T0901317 and RO264456) LXR/RXR ligands increased ABCA1 and ABCG1 mRNAs in native macrophages and in cells loaded with acetylated LDL (acLDL). The ACAT inhibitor avasimibe increased only ABCG1 mRNA, whereas no treatment affected apoE mRNA. Avasimibe, progesterone, and natural but not synthetic LXR/RXR ligands prevented cholesterol esterification after acLDL-loading. Cholesterol efflux into acceptor-free medium was increased only by synthetic LXR/RXR ligands and avasimibe in acLDL-loaded cells. ApoE secretion was reduced by drugs affecting cholesterol trafficking but enhanced by LXR/RXR ligands. Incubation with an anti-apoE antibody virtually removed immunodetectable apoE from the medium, significantly increasing cholesterol storage and decreasing efflux. These findings indicate that in human macrophages spontaneous cholesterol efflux: (i) is not necessarily promoted by increasing intracellular free cholesterol, (ii) is increased by compounds that activate ABCA1 and, to a greater extent, ABCG1 and (iii) is only partially correlated with secretion of endogenous apoE, which acted as a cholesterol acceptor.
Collapse
Affiliation(s)
- Andrea Cignarella
- Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|