1
|
Auer S, Schicht M, Hoffmann L, Budday S, Frischknecht R, Blümcke I, Paulsen F. The Role of Perineuronal Nets in Physiology and Disease: Insights from Recent Studies. Cells 2025; 14:321. [PMID: 40072050 PMCID: PMC11898492 DOI: 10.3390/cells14050321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 03/15/2025] Open
Abstract
Perineuronal nets (PNNs) are specialized extracellular matrix structures that predominantly surround inhibitory neurons in the central nervous system (CNS). They have been identified as crucial regulators of synaptic plasticity and neuronal excitability. This literature review aims to summarize the current state of knowledge about PNNs, their molecular composition and structure, as well as their functional roles and involvement in neurological diseases. Furthermore, future directions in PNN research are proposed, and the therapeutic potential of targeting PNNs to develop novel treatment options for various neurological disorders is explored. This review emphasizes the importance of PNNs in CNS physiology and pathology and underscores the need for further research in this area.
Collapse
Affiliation(s)
- Sophia Auer
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Martin Schicht
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Lucas Hoffmann
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Partner of the European Reference Network (ERN) EpiCARE, 91054 Erlangen, Germany; (L.H.); (I.B.)
| | - Silvia Budday
- Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany;
| | - Renato Frischknecht
- Department of Biology, Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany;
| | - Ingmar Blümcke
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Partner of the European Reference Network (ERN) EpiCARE, 91054 Erlangen, Germany; (L.H.); (I.B.)
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| |
Collapse
|
2
|
Li J, Ma X, Yin C. Proteome-wide Mendelian randomization identifies potential therapeutic targets for nonalcoholic fatty liver diseases. Sci Rep 2024; 14:11814. [PMID: 38782984 PMCID: PMC11116402 DOI: 10.1038/s41598-024-62742-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the predominant cause of liver pathology. Current evidence highlights plasma proteins as potential therapeutic targets. However, their mechanistic roles in NAFLD remain unclear. This study investigated the involvement of specific plasma proteins and intermediate risk factors in NAFLD progression. Two-sample Mendelian randomization (MR) analysis was conducted to examine the association between plasma proteins and NAFLD. Colocalization analysis determined the shared causal variants between the identified proteins and NAFLD. The MR analysis was applied separately to proteins, risk factors, and NAFLD. Mediator shares were computed by detecting the correlations among these elements. Phenome-wide association studies (phewas) were utilized to assess the safety implications of targeting these proteins. Among 1,834 cis-protein quantitative trait loci (cis-pQTLs), after-FDR correction revealed correlations between the plasma levels of four gene-predicted proteins (CSPG3, CILP2, Apo-E, and GCKR) and NAFLD. Colocalization analysis indicated shared causal variants for CSPG3 and GCKR in NAFLD (posterior probability > 0.8). Out of the 22 risk factors screened for MR analysis, only 8 showed associations with NAFLD (p ≤ 0.05), while 4 linked to CSPG3 and GCKR. The mediator shares for these associations were calculated separately. Additionally, reverse MR analysis was performed on the pQTLs, risk factors, and NAFLD, which exhibited a causal relationship with forward MR analysis. Finally, phewas summarized the potential side effects of associated-targeting proteins, including CSPG3 and GCKR. Our research emphasized the potential therapeutic targets for NAFLD and provided modifiable risk factors for preventing NAFLD.
Collapse
Affiliation(s)
- Junhang Li
- Department of Ultrasonography, Dali Prefecture Third People's Hospital, Dali Prefecture, Yunnan Province, China
| | - Xiang Ma
- Chongqing Medical University, Chongqing, China
| | - Cuihua Yin
- Department of Ultrasonography, Dali Prefecture Third People's Hospital, Dali Prefecture, Yunnan Province, China.
| |
Collapse
|
3
|
Mubuchi A, Takechi M, Nishio S, Matsuda T, Itoh Y, Sato C, Kitajima K, Kitagawa H, Miyata S. Assembly of neuron- and radial glial-cell-derived extracellular matrix molecules promotes radial migration of developing cortical neurons. eLife 2024; 12:RP92342. [PMID: 38512724 PMCID: PMC10957175 DOI: 10.7554/elife.92342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Radial neuronal migration is a key neurodevelopmental event for proper cortical laminar organization. The multipolar-to-bipolar transition, a critical step in establishing neuronal polarity during radial migration, occurs in the subplate/intermediate zone (SP/IZ), a distinct region of the embryonic cerebral cortex. It has been known that the extracellular matrix (ECM) molecules are enriched in the SP/IZ. However, the molecular constitution and functions of the ECM formed in this region remain poorly understood. Here, we identified neurocan (NCAN) as a major chondroitin sulfate proteoglycan in the mouse SP/IZ. NCAN binds to both radial glial-cell-derived tenascin-C (TNC) and hyaluronan (HA), a large linear polysaccharide, forming a ternary complex of NCAN, TNC, and HA in the SP/IZ. Developing cortical neurons make contact with the ternary complex during migration. The enzymatic or genetic disruption of the ternary complex impairs radial migration by suppressing the multipolar-to-bipolar transition. Furthermore, both TNC and NCAN promoted the morphological maturation of cortical neurons in vitro. The present results provide evidence for the cooperative role of neuron- and radial glial-cell-derived ECM molecules in cortical development.
Collapse
Affiliation(s)
- Ayumu Mubuchi
- Graduate School of Agriculture, Tokyo University of Agriculture and TechnologyFuchuJapan
| | - Mina Takechi
- Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoyaJapan
| | - Shunsuke Nishio
- Faculty of Food and Agricultural Sciences, Fukushima UniversityFukushimaJapan
| | - Tsukasa Matsuda
- Faculty of Food and Agricultural Sciences, Fukushima UniversityFukushimaJapan
| | - Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of OxfordOxfordUnited Kingdom
| | - Chihiro Sato
- Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoyaJapan
- Bioscience and Biotechnology Center, Nagoya UniversityNagoyaJapan
- Institute for Glyco-core Research, Nagoya UniversityNagoyaJapan
| | - Ken Kitajima
- Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoyaJapan
- Bioscience and Biotechnology Center, Nagoya UniversityNagoyaJapan
- Institute for Glyco-core Research, Nagoya UniversityNagoyaJapan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical UniversityKobeJapan
| | - Shinji Miyata
- Graduate School of Agriculture, Tokyo University of Agriculture and TechnologyFuchuJapan
| |
Collapse
|
4
|
Chmelova M, Androvic P, Kirdajova D, Tureckova J, Kriska J, Valihrach L, Anderova M, Vargova L. A view of the genetic and proteomic profile of extracellular matrix molecules in aging and stroke. Front Cell Neurosci 2023; 17:1296455. [PMID: 38107409 PMCID: PMC10723838 DOI: 10.3389/fncel.2023.1296455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Modification of the extracellular matrix (ECM) is one of the major processes in the pathology of brain damage following an ischemic stroke. However, our understanding of how age-related ECM alterations may affect stroke pathophysiology and its outcome is still very limited. Methods We conducted an ECM-targeted re-analysis of our previously obtained RNA-Seq dataset of aging, ischemic stroke and their interactions in young adult (3-month-old) and aged (18-month-old) mice. The permanent middle cerebral artery occlusion (pMCAo) in rodents was used as a model of ischemic stroke. Altogether 56 genes of interest were chosen for this study. Results We identified an increased activation of the genes encoding proteins related to ECM degradation, such as matrix metalloproteinases (MMPs), proteases of a disintegrin and metalloproteinase with the thrombospondin motifs (ADAMTS) family and molecules that regulate their activity, tissue inhibitors of metalloproteinases (TIMPs). Moreover, significant upregulation was also detected in the mRNA of other ECM molecules, such as proteoglycans, syndecans and link proteins. Notably, we identified 8 genes where this upregulation was enhanced in aged mice in comparison with the young ones. Ischemia evoked a significant downregulation in only 6 of our genes of interest, including those encoding proteins associated with the protective function of ECM molecules (e.g., brevican, Hapln4, Sparcl1); downregulation in brevican was more prominent in aged mice. The study was expanded by proteome analysis, where we observed an ischemia-induced overexpression in three proteins, which are associated with neuroinflammation (fibronectin and vitronectin) and neurodegeneration (link protein Hapln2). In fibronectin and Hapln2, this overexpression was more pronounced in aged post-ischemic animals. Conclusion Based on these results, we can conclude that the ratio between the protecting and degrading mechanisms in the aged brain is shifted toward degradation and contributes to the aged tissues' increased sensitivity to ischemic insults. Altogether, our data provide fresh perspectives on the processes underlying ischemic injury in the aging brain and serve as a freely accessible resource for upcoming research.
Collapse
Affiliation(s)
- Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Androvic
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences – BIOCEV, Vestec, Czechia
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Lukas Valihrach
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences – BIOCEV, Vestec, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Noborn F, Nikpour M, Persson A, Sihlbom C, Nilsson J, Larson G. A Glycoproteomic Approach to Identify Novel Proteoglycans. Methods Mol Biol 2022; 2303:71-85. [PMID: 34626371 DOI: 10.1007/978-1-0716-1398-6_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this chapter, we describe a glycoproteomic approach for the identification of novel chondroitin sulfate proteoglycans (CSPGs) using a combination of biochemical enrichments, enzymatic digestions, and nanoscale liquid chromatography tandem mass spectrometry (nLC-MS/MS) analysis. The identification is achieved by trypsin digestion of CSPG-containing samples, followed by enrichment of chondroitin sulfate (CS) glycopeptides by strong anion exchange chromatography (SAX). The enriched CS glycopeptides are then digested with chondroitinase ABC to depolymerize the CS polysaccharides, generating a residual hexasaccharide structure, composed of the linkage region tetrasaccharide extended with a terminal dehydrated disaccharide, still attached to the peptide. The obtained CS glycopeptides are analyzed by nLC-MS/MS, and the generated data sets are evaluated through proteomic software with adjustment in the settings to allow for glycopeptide identification. This approach has enabled the identification of several novel core proteins in human samples and in Caenorhabditis elegans. Here we specifically describe the procedure for the enrichment and characterization of CS glycopeptides from human cerebrospinal fluid (CSF).
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Mahnaz Nikpour
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Andrea Persson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden. .,Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
6
|
Lin JZ, Duan MR, Lin N, Zhao WJ. The emerging role of the chondroitin sulfate proteoglycan family in neurodegenerative diseases. Rev Neurosci 2021; 32:737-750. [PMID: 33655733 DOI: 10.1515/revneuro-2020-0146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/07/2021] [Indexed: 02/05/2023]
Abstract
Chondroitin sulfate (CS) is a kind of linear polysaccharide that is covalently linked to proteins to form proteoglycans. Chondroitin sulfate proteoglycans (CSPGs) consist of a core protein, with one or more CS chains covalently attached. CSPGs are precisely regulated and they exert a variety of physiological functions by binding to adhesion molecules and growth factors. Widely distributed in the nervous system in human body, CSPGs contribute to the major component of extracellular matrix (ECM), where they play an important role in the development and maturation of the nervous system, as well as in the pathophysiological response to damage to the central nervous system (CNS). While there are more than 30 types of CSPGs, this review covers the roles of the most important ones, including versican, aggrecan, neurocan and NG2 in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis. The updated reports of the treatment of neurodegenerative diseases are involving CSPGs.
Collapse
Affiliation(s)
- Jia-Zhe Lin
- Neurosurgical Department, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
- Center for Neuroscience, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ming-Rui Duan
- Center for Neuroscience, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Nuan Lin
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wei-Jiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou 515041, Guangdong, China
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
7
|
Snow AD, Cummings JA, Lake T. The Unifying Hypothesis of Alzheimer's Disease: Heparan Sulfate Proteoglycans/Glycosaminoglycans Are Key as First Hypothesized Over 30 Years Ago. Front Aging Neurosci 2021; 13:710683. [PMID: 34671250 PMCID: PMC8521200 DOI: 10.3389/fnagi.2021.710683] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/23/2021] [Indexed: 01/03/2023] Open
Abstract
The updated "Unifying Hypothesis of Alzheimer's disease" (AD) is described that links all the observed neuropathology in AD brain (i.e., plaques, tangles, and cerebrovascular amyloid deposits), as well as inflammation, genetic factors (involving ApoE), "AD-in-a-Dish" studies, beta-amyloid protein (Aβ) as a microbial peptide; and theories that bacteria, gut microflora, gingivitis and viruses all play a role in the cause of AD. The common link is the early accumulation of heparan sulfate proteoglycans (HSPGs) and heparan sulfate glycosaminoglycans (GAGs). HS GAG accumulation and/or decreased HS GAG degradation is postulated to be the key initiating event. HS GAGs and highly sulfated macromolecules induce Aβ 1-40 (but not 1-42) to form spherical congophilic maltese-cross star-like amyloid core deposits identical to those in the AD brain. Heparin/HS also induces tau protein to form paired helical filaments (PHFs). Increased sulfation and/or decreased degradation of HSPGs and HS GAGs that occur due to brain aging leads to the formation of plaques and tangles in AD brain. Knockout of HS genes markedly reduce the accumulation of Aβ fibrils in the brain demonstrating that HS GAGs are key. Bacteria and viruses all use cell surface HS GAGs for entry into cells, including SARS-CoV-2. Bacteria and viruses cause HS GAGs to rapidly increase to cause near-immediate aggregation of Aβ fibrils. "AD-in-a-dish" studies use "Matrigel" as the underlying scaffold that spontaneously causes plaque, and then tangle formation in a dish. Matrigel mostly contains large amounts of perlecan, the same specific HSPG implicated in AD and amyloid disorders. Mucopolysaccharidoses caused by lack of specific HS GAG enzymes lead to massive accumulation of HS in lysosomal compartments in neurons and contribute to cognitive impairment in children. Neurons full of HS demonstrate marked accumulation and fibrillization of Aβ, tau, α-synuclein, and prion protein (PrP) in mucopolysaccharidosis animal models demonstrating that HS GAG accumulation is a precursor to Aβ accumulation in neurons. Brain aging leads to changes in HSPGs, including newly identified splice variants leading to increased HS GAG sulfation in the AD brain. All of these events lead to the new "Unifying Hypothesis of Alzheimer's disease" that further implicates HSPGs /HS GAGs as key (as first hypothesized by Snow and Wight in 1989).
Collapse
|
8
|
Lamprey lecticans link new vertebrate genes to the origin and elaboration of vertebrate tissues. Dev Biol 2021; 476:282-293. [PMID: 33887266 DOI: 10.1016/j.ydbio.2021.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/23/2022]
Abstract
The evolution of vertebrates from an invertebrate chordate ancestor involved the evolution of new organs, tissues, and cell types. It was also marked by the origin and duplication of new gene families. If, and how, these morphological and genetic innovations are related is an unresolved question in vertebrate evolution. Hyaluronan is an extracellular matrix (ECM) polysaccharide important for water homeostasis and tissue structure. Vertebrates possess a novel family of hyaluronan binding proteins called Lecticans, and studies in jawed vertebrates (gnathostomes) have shown they function in many of the cells and tissues that are unique to vertebrates. This raises the possibility that the origin and/or expansion of this gene family helped drive the evolution of these vertebrate novelties. In order to better understand the evolution of the lectican gene family, and its role in the evolution of vertebrate morphological novelties, we investigated the phylogeny, genomic arrangement, and expression patterns of all lecticans in the sea lamprey (Petromyzon marinus), a jawless vertebrate. Though both P. marinus and gnathostomes each have four lecticans, our phylogenetic and syntenic analyses are most consistent with the independent duplication of one of more lecticans in the lamprey lineage. Despite the likely independent expansion of the lamprey and gnathostome lectican families, we find highly conserved expression of lecticans in vertebrate-specific and mesenchyme-derived tissues. We also find that, unlike gnathostomes, lamprey expresses its lectican paralogs in distinct subpopulations of head skeleton precursors, potentially reflecting an ancestral diversity of skeletal tissue types. Together, these observations suggest that the ancestral pre-duplication lectican had a complex expression pattern, functioned to support mesenchymal histology, and likely played a role in the evolution of vertebrate-specific cell and tissue types.
Collapse
|
9
|
Johnston KJA, Ward J, Ray PR, Adams MJ, McIntosh AM, Smith BH, Strawbridge RJ, Price TJ, Smith DJ, Nicholl BI, Bailey MES. Sex-stratified genome-wide association study of multisite chronic pain in UK Biobank. PLoS Genet 2021; 17:e1009428. [PMID: 33830993 PMCID: PMC8031124 DOI: 10.1371/journal.pgen.1009428] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/16/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic pain is highly prevalent worldwide and imparts a significant socioeconomic and public health burden. Factors influencing susceptibility to, and mechanisms of, chronic pain development, are not fully understood, but sex is thought to play a significant role, and chronic pain is more prevalent in women than in men. To investigate sex differences in chronic pain, we carried out a sex-stratified genome-wide association study of Multisite Chronic Pain (MCP), a derived chronic pain phenotype, in UK Biobank on 178,556 men and 209,093 women, as well as investigating sex-specific genetic correlations with a range of psychiatric, autoimmune and anthropometric phenotypes and the relationship between sex-specific polygenic risk scores for MCP and chronic widespread pain. We also assessed whether MCP-associated genes showed expression pattern enrichment across tissues. A total of 123 SNPs at five independent loci were significantly associated with MCP in men. In women, a total of 286 genome-wide significant SNPs at ten independent loci were discovered. Meta-analysis of sex-stratified GWAS outputs revealed a further 87 independent associated SNPs. Gene-level analyses revealed sex-specific MCP associations, with 31 genes significantly associated in females, 37 genes associated in males, and a single gene, DCC, associated in both sexes. We found evidence for sex-specific pleiotropy and risk for MCP was found to be associated with chronic widespread pain in a sex-differential manner. Male and female MCP were highly genetically correlated, but at an rg of significantly less than 1 (0.92). All 37 male MCP-associated genes and all but one of 31 female MCP-associated genes were found to be expressed in the dorsal root ganglion, and there was a degree of enrichment for expression in sex-specific tissues. Overall, the findings indicate that sex differences in chronic pain exist at the SNP, gene and transcript abundance level, and highlight possible sex-specific pleiotropy for MCP. Results support the proposition of a strong central nervous-system component to chronic pain in both sexes, additionally highlighting a potential role for the DRG and nociception.
Collapse
Affiliation(s)
- Keira J. A. Johnston
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, United Kingdom
- Division of Psychiatry, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Joey Ward
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Pradipta R. Ray
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States of America
| | - Mark J. Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Andrew M. McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Blair H. Smith
- Division of Population Health Sciences, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Rona J. Strawbridge
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, United Kingdom
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Theodore J. Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States of America
| | - Daniel J. Smith
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Barbara I. Nicholl
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Mark E. S. Bailey
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
10
|
Fontanil T, Mohamedi Y, Espina-Casado J, Obaya ÁJ, Cobo T, Cal S. Hyalectanase Activities by the ADAMTS Metalloproteases. Int J Mol Sci 2021; 22:ijms22062988. [PMID: 33804223 PMCID: PMC8000579 DOI: 10.3390/ijms22062988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
The hyalectan family is composed of the proteoglycans aggrecan, versican, brevican and neurocan. Hyalectans, also known as lecticans, are components of the extracellular matrix of different tissues and play essential roles in key biological processes including skeletal development, and they are related to the correct maintenance of the vascular and central nervous system. For instance, hyalectans participate in the organization of structures such as perineural nets and in the regulation of neurite outgrowth or brain recovery following a traumatic injury. The ADAMTS (A Disintegrin and Metalloprotease domains, with thrombospondin motifs) family consists of 19 secreted metalloproteases. These enzymes also perform important roles in the structural organization and function of the extracellular matrix through interactions with other matrix components or as a consequence of their catalytic activity. In this regard, some of their preferred substrates are the hyalectans. In fact, ADAMTSs cleave hyalectans not only as a mechanism for clearance or turnover of proteoglycans but also to generate bioactive fragments which display specific functions. In this article we review some of the physiological and pathological effects derived from cleavages of hyalectans mediated by ADAMTSs.
Collapse
Affiliation(s)
- Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (T.F.); (Y.M.)
- Departamento de Investigación, Instituto Ordóñez, 33012 Oviedo, Spain
| | - Yamina Mohamedi
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (T.F.); (Y.M.)
| | - Jorge Espina-Casado
- Departamento de Química Física y Analítica, Universidad de Oviedo, 33006 Oviedo, Spain;
| | - Álvaro J. Obaya
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto Asturiano de Odontología, 33006 Oviedo, Spain
- Correspondence: (T.C.); (S.C.); Tel.: +34-985966014 (T.C.); +34-985106282 (S.C.)
| | - Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (T.F.); (Y.M.)
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Spain
- Correspondence: (T.C.); (S.C.); Tel.: +34-985966014 (T.C.); +34-985106282 (S.C.)
| |
Collapse
|
11
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Affiliation(s)
- Dong Gil Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Hyo Jung Sim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Eun Kyung Song
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Taejoon Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Korea
| | - Tae Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Korea
| |
Collapse
|
13
|
|
14
|
Bekku Y, Oohashi T. Under the ECM Dome: The Physiological Role of the Perinodal Extracellular Matrix as an Ion Diffusion Barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:107-122. [DOI: 10.1007/978-981-32-9636-7_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Mohan V, Wyatt EV, Gotthard I, Phend KD, Diestel S, Duncan BW, Weinberg RJ, Tripathy A, Maness PF. Neurocan Inhibits Semaphorin 3F Induced Dendritic Spine Remodeling Through NrCAM in Cortical Neurons. Front Cell Neurosci 2018; 12:346. [PMID: 30356641 PMCID: PMC6189303 DOI: 10.3389/fncel.2018.00346] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/18/2018] [Indexed: 01/09/2023] Open
Abstract
Neurocan is a chondroitin sulfate proteoglycan present in perineuronal nets, which are associated with closure of the critical period of synaptic plasticity. During postnatal development of the neocortex dendritic spines on pyramidal neurons are initially overproduced; later they are pruned to achieve an appropriate balance of excitatory to inhibitory synapses. Little is understood about how spine pruning is terminated upon maturation. NrCAM (Neuron-glial related cell adhesion molecule) was found to mediate spine pruning as a subunit of the receptor complex for the repellent ligand Semaphorin 3F (Sema3F). As shown here in the postnatal mouse frontal and visual neocortex, Neurocan was localized at both light and electron microscopic level to the cell surface of cortical pyramidal neurons and was adjacent to neuronal processes and dendritic spines. Sema3F-induced spine elimination was inhibited by Neurocan in cortical neuron cultures. Neurocan also blocked Sema3F-induced morphological retraction in COS-7 cells, which was mediated through NrCAM and other subunits of the Sema3F holoreceptor, Neuropilin-2, and PlexinA3. Cell binding and ELISA assays demonstrated an association of Neurocan with NrCAM. Glycosaminoglycan chain interactions of Neurocan were required for inhibition of Sema3F-induced spine elimination, but the C-terminal sushi domain was dispensable. These results describe a novel mechanism wherein Neurocan inhibits NrCAM/Sema3F-induced spine elimination.
Collapse
Affiliation(s)
- Vishwa Mohan
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Elliott V. Wyatt
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ingo Gotthard
- Human Metabolomics, Institute of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | - Kristen D. Phend
- Department of Cell Biology and Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Simone Diestel
- Human Metabolomics, Institute of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | - Bryce W. Duncan
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Richard J. Weinberg
- Department of Cell Biology and Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ashutosh Tripathy
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Patricia F. Maness
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
16
|
Sonntag M, Blosa M, Schmidt S, Reimann K, Blum K, Eckrich T, Seeger G, Hecker D, Schick B, Arendt T, Engel J, Morawski M. Synaptic coupling of inner ear sensory cells is controlled by brevican-based extracellular matrix baskets resembling perineuronal nets. BMC Biol 2018; 16:99. [PMID: 30253762 PMCID: PMC6156866 DOI: 10.1186/s12915-018-0566-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/15/2018] [Indexed: 02/08/2023] Open
Abstract
Background Perineuronal nets (PNNs) are specialized aggregations of extracellular matrix (ECM) molecules surrounding specific neurons in the central nervous system (CNS). PNNs are supposed to control synaptic transmission and are frequently associated with neurons firing at high rates, including principal neurons of auditory brainstem nuclei. The origin of high-frequency activity of auditory brainstem neurons is the indefatigable sound-driven transmitter release of inner hair cells (IHCs) in the cochlea. Results Here, we show that synaptic poles of IHCs are ensheathed by basket-like ECM complexes formed by the same molecules that constitute PNNs of neurons in the CNS, including brevican, aggreccan, neurocan, hyaluronan, and proteoglycan link proteins 1 and 4 and tenascin-R. Genetic deletion of brevican, one of the main components, resulted in a massive degradation of ECM baskets at IHCs, a significant impairment in spatial coupling of pre- and postsynaptic elements and mild impairment of hearing. Conclusions These ECM baskets potentially contribute to control of synaptic transmission at IHCs and might be functionally related to PNNs of neurons in the CNS. Electronic supplementary material The online version of this article (10.1186/s12915-018-0566-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mandy Sonntag
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Maren Blosa
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Sophie Schmidt
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Katja Reimann
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Kerstin Blum
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Tobias Eckrich
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Gudrun Seeger
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Dietmar Hecker
- Department of Otorhinolaryngology, School of Medicine, Saarland University, Homburg, Germany
| | - Bernhard Schick
- Department of Otorhinolaryngology, School of Medicine, Saarland University, Homburg, Germany
| | - Thomas Arendt
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jutta Engel
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Markus Morawski
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
17
|
Vieira MS, Santos AK, Vasconcellos R, Goulart VAM, Parreira RC, Kihara AH, Ulrich H, Resende RR. Neural stem cell differentiation into mature neurons: Mechanisms of regulation and biotechnological applications. Biotechnol Adv 2018; 36:1946-1970. [PMID: 30077716 DOI: 10.1016/j.biotechadv.2018.08.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
The abilities of stem cells to self-renew and form different mature cells expand the possibilities of applications in cell-based therapies such as tissue recomposition in regenerative medicine, drug screening, and treatment of neurodegenerative diseases. In addition to stem cells found in the embryo, various adult organs and tissues have niches of stem cells in an undifferentiated state. In the central nervous system of adult mammals, neurogenesis occurs in two regions: the subventricular zone and the dentate gyrus in the hippocampus. The generation of the different neural lines originates in adult neural stem cells that can self-renew or differentiate into astrocytes, oligodendrocytes, or neurons in response to specific stimuli. The regulation of the fate of neural stem cells is a finely controlled process relying on a complex regulatory network that extends from the epigenetic to the translational level and involves extracellular matrix components. Thus, a better understanding of the mechanisms underlying how the process of neurogenesis is induced, regulated, and maintained will provide elues for development of novel for strategies for neurodegenerative therapies. In this review, we focus on describing the mechanisms underlying the regulation of the neuronal differentiation process by transcription factors, microRNAs, and extracellular matrix components.
Collapse
Affiliation(s)
- Mariana S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Anderson K Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rebecca Vasconcellos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Vânia A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo C Parreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Alexandre H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil.
| |
Collapse
|
18
|
Su Z, Kishida S, Tsubota S, Sakamoto K, Cao D, Kiyonari S, Ohira M, Kamijo T, Narita A, Xu Y, Takahashi Y, Kadomatsu K. Neurocan, an extracellular chondroitin sulfate proteoglycan, stimulates neuroblastoma cells to promote malignant phenotypes. Oncotarget 2017; 8:106296-106310. [PMID: 29290949 PMCID: PMC5739734 DOI: 10.18632/oncotarget.22435] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/27/2017] [Indexed: 12/16/2022] Open
Abstract
Neurocan (NCAN), a secreted chondroitin sulfate proteoglycan, is one of the major inhibitory molecules for axon regeneration in nervous injury. However, its role in cancer is not clear. Here we observed that high NCAN expression was closely associated with the unfavorable outcome of neuroblastoma (NB). NCAN was also highly and ubiquitously expressed in the early lesions and terminal tumor of TH-MYCN mice, a NB model. Interestingly, exogenous NCAN (i.e., overexpression, recombinant protein and conditioned medium) transformed adherent NB cells into spheres whose malignancies in vitro (anchorage-independent growth and chemoresistance) and in vivo (xenograft tumor growth) were potentiated. Both chondroitin sulfate sugar chains and NCAN's core protein were essential for the sphere formation. The CSG3 domain was essential in the moiety of NCAN. Our comprehensive microarray analysis and RT-qPCR of mRNA expression suggested that NCAN treatment promoted cell division, and urged cells to undifferentiated state. The knockdown of NCAN in tumor sphere cells cultured from TH-MYCN mice resulted in growth suppression in vitro and in vivo. Our findings suggest that NCAN, which stimulates NB cells to promote malignant phenotypes, is an extracellular molecule providing a growth advantage to cancer cells.
Collapse
Affiliation(s)
- Zhendong Su
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Satoshi Kishida
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shoma Tsubota
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuma Sakamoto
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Dongliang Cao
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinichi Kiyonari
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Miki Ohira
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Saitama, Japan
| | - Takehiko Kamijo
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Saitama, Japan
| | - Atsushi Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yinyan Xu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
19
|
Pérez-Garnes M, Monleón-Pradas M. Poly(methacrylated hyaluronan-co-ethyl acrylate) copolymer networks with tunable properties and enzymatic degradation. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Thomsen MS, Routhe LJ, Moos T. The vascular basement membrane in the healthy and pathological brain. J Cereb Blood Flow Metab 2017; 37:3300-3317. [PMID: 28753105 PMCID: PMC5624399 DOI: 10.1177/0271678x17722436] [Citation(s) in RCA: 328] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 12/24/2022]
Abstract
The vascular basement membrane contributes to the integrity of the blood-brain barrier (BBB), which is formed by brain capillary endothelial cells (BCECs). The BCECs receive support from pericytes embedded in the vascular basement membrane and from astrocyte endfeet. The vascular basement membrane forms a three-dimensional protein network predominantly composed of laminin, collagen IV, nidogen, and heparan sulfate proteoglycans that mutually support interactions between BCECs, pericytes, and astrocytes. Major changes in the molecular composition of the vascular basement membrane are observed in acute and chronic neuropathological settings. In the present review, we cover the significance of the vascular basement membrane in the healthy and pathological brain. In stroke, loss of BBB integrity is accompanied by upregulation of proteolytic enzymes and degradation of vascular basement membrane proteins. There is yet no causal relationship between expression or activity of matrix proteases and the degradation of vascular matrix proteins in vivo. In Alzheimer's disease, changes in the vascular basement membrane include accumulation of Aβ, composite changes, and thickening. The physical properties of the vascular basement membrane carry the potential of obstructing drug delivery to the brain, e.g. thickening of the basement membrane can affect drug delivery to the brain, especially the delivery of nanoparticles.
Collapse
Affiliation(s)
- Maj S Thomsen
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lisa J Routhe
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Torben Moos
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
21
|
The ADAMTS hyalectanase family: biological insights from diverse species. Biochem J 2017; 473:2011-22. [PMID: 27407170 DOI: 10.1042/bcj20160148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/29/2016] [Indexed: 12/13/2022]
Abstract
The a disintegrin-like and metalloproteinase with thrombospondin type-1 motifs (ADAMTS) family of metzincins are complex secreted proteins that have diverse functions during development. The hyalectanases (ADAMTS1, 4, 5, 8, 9, 15 and 20) are a subset of this family that have enzymatic activity against hyalectan proteoglycans, the processing of which has important implications during development. This review explores the evolution, expression and developmental functions of the ADAMTS family, focusing on the ADAMTS hyalectanases and their substrates in diverse species. This review gives an overview of how the family and their substrates evolved from non-vertebrates to mammals, the expression of the hyalectanases and substrates in different species and their functions during development, and how these functions are conserved across species.
Collapse
|
22
|
Binder MJ, McCoombe S, Williams ED, McCulloch DR, Ward AC. The extracellular matrix in cancer progression: Role of hyalectan proteoglycans and ADAMTS enzymes. Cancer Lett 2016; 385:55-64. [PMID: 27838414 DOI: 10.1016/j.canlet.2016.11.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 01/08/2023]
Abstract
Remodelling of the extracellular matrix (ECM) has emerged as a key factor in cancer progression. Proteoglycans, including versican and other hyalectans, represent major structural elements of the ECM where they interact with other important molecules, including the glycosaminoglycan hyaluronan and the CD44 cell surface receptor. The hyalectan proteoglycans are regulated through cleavage by the proteolytic actions of A Disintegrin-like And Metalloproteinase domain with Thrombospondin-1 motif (ADAMTS) family members. Alteration in the balance between hyalectan proteoglycans and ADAMTS enzymes has been proposed to be a crucial factor in cancer progression either in a positive or negative manner depending on the context. Further complexity arises due to the formation of bioactive cleavage products, such as versikine, which may also play a role, and non-enzymatic functions for ADAMTS proteins. This research is providing fresh insights into cancer biology and opportunities for the development of new diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Marley J Binder
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Scott McCoombe
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland 4000, Australia
| | - Daniel R McCulloch
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia; Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia; Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| |
Collapse
|
23
|
Ono M, Saibara T. Are genetic variations the most important risk factors for development of hepatocellular carcinoma? J Gastroenterol 2016; 51:404-5. [PMID: 26520856 DOI: 10.1007/s00535-015-1130-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 02/04/2023]
Affiliation(s)
- Masafumi Ono
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi, Japan.
| | - Toshiji Saibara
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi, Japan
| |
Collapse
|
24
|
Neuron-Glia Interactions in Neural Plasticity: Contributions of Neural Extracellular Matrix and Perineuronal Nets. Neural Plast 2016; 2016:5214961. [PMID: 26881114 PMCID: PMC4736403 DOI: 10.1155/2016/5214961] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/10/2015] [Indexed: 11/17/2022] Open
Abstract
Synapses are specialized structures that mediate rapid and efficient signal transmission between neurons and are surrounded by glial cells. Astrocytes develop an intimate association with synapses in the central nervous system (CNS) and contribute to the regulation of ion and neurotransmitter concentrations. Together with neurons, they shape intercellular space to provide a stable milieu for neuronal activity. Extracellular matrix (ECM) components are synthesized by both neurons and astrocytes and play an important role in the formation, maintenance, and function of synapses in the CNS. The components of the ECM have been detected near glial processes, which abut onto the CNS synaptic unit, where they are part of the specialized macromolecular assemblies, termed perineuronal nets (PNNs). PNNs have originally been discovered by Golgi and represent a molecular scaffold deposited in the interface between the astrocyte and subsets of neurons in the vicinity of the synapse. Recent reports strongly suggest that PNNs are tightly involved in the regulation of synaptic plasticity. Moreover, several studies have implicated PNNs and the neural ECM in neuropsychiatric diseases. Here, we highlight current concepts relating to neural ECM and PNNs and describe an in vitro approach that allows for the investigation of ECM functions for synaptogenesis.
Collapse
|
25
|
Canning DR, Brelsford NR, Lovett NW. Chondroitin sulfate effects on neural stem cell differentiation. In Vitro Cell Dev Biol Anim 2015; 52:35-44. [PMID: 26288008 DOI: 10.1007/s11626-015-9941-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/10/2015] [Indexed: 11/25/2022]
Abstract
We have investigated the role chondroitin sulfate has on cell interactions during neural plate formation in the early chick embryo. Using tissue culture isolates from the prospective neural plate, we have measured neural gene expression profiles associated with neural stem cell differentiation. Removal of chondroitin sulfate from stage 4 neural plate tissue leads to altered associations of N-cadherin-positive neural progenitors and causes changes in the normal sequence of neural marker gene expression. Absence of chondroitin sulfate in the neural plate leads to reduced Sox2 expression and is accompanied by an increase in the expression of anterior markers of neural regionalization. Results obtained in this study suggest that the presence of chondroitin sulfate in the anterior chick embryo is instrumental in maintaining cells in the neural precursor state.
Collapse
Affiliation(s)
- David R Canning
- Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA.
| | - Natalie R Brelsford
- Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA
| | - Neil W Lovett
- Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA
| |
Collapse
|
26
|
Maeda N. Proteoglycans and neuronal migration in the cerebral cortex during development and disease. Front Neurosci 2015; 9:98. [PMID: 25852466 PMCID: PMC4369650 DOI: 10.3389/fnins.2015.00098] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/07/2015] [Indexed: 12/13/2022] Open
Abstract
Chondroitin sulfate proteoglycans and heparan sulfate proteoglycans are major constituents of the extracellular matrix and the cell surface in the brain. Proteoglycans bind with many proteins including growth factors, chemokines, axon guidance molecules, and cell adhesion molecules through both the glycosaminoglycan and the core protein portions. The functions of proteoglycans are flexibly regulated due to the structural variability of glycosaminoglycans, which are generated by multiple glycosaminoglycan synthesis and modifying enzymes. Neuronal cell surface proteoglycans such as PTPζ, neuroglycan C and syndecan-3 function as direct receptors for heparin-binding growth factors that induce neuronal migration. The lectican family, secreted chondroitin sulfate proteoglycans, forms large aggregates with hyaluronic acid and tenascins, in which many signaling molecules and enzymes including matrix proteases are preserved. In the developing cerebrum, secreted chondroitin sulfate proteoglycans such as neurocan, versican and phosphacan are richly expressed in the areas that are strategically important for neuronal migration such as the striatum, marginal zone, subplate and subventricular zone in the neocortex. These proteoglycans may anchor various attractive and/or repulsive cues, regulating the migration routes of inhibitory neurons. Recent studies demonstrated that the genes encoding proteoglycan core proteins and glycosaminoglycan synthesis and modifying enzymes are associated with various psychiatric and intellectual disorders, which may be related to the defects of neuronal migration.
Collapse
Affiliation(s)
- Nobuaki Maeda
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science Setagaya, Japan
| |
Collapse
|
27
|
Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol 2015; 42:11-55. [PMID: 25701227 PMCID: PMC4859157 DOI: 10.1016/j.matbio.2015.02.003] [Citation(s) in RCA: 852] [Impact Index Per Article: 85.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
We provide a comprehensive classification of the proteoglycan gene families and respective protein cores. This updated nomenclature is based on three criteria: Cellular and subcellular location, overall gene/protein homology, and the utilization of specific protein modules within their respective protein cores. These three signatures were utilized to design four major classes of proteoglycans with distinct forms and functions: the intracellular, cell-surface, pericellular and extracellular proteoglycans. The proposed nomenclature encompasses forty-three distinct proteoglycan-encoding genes and many alternatively-spliced variants. The biological functions of these four proteoglycan families are critically assessed in development, cancer and angiogenesis, and in various acquired and genetic diseases where their expression is aberrant.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
28
|
Nischalke HD, Lutz P, Krämer B, Söhne J, Müller T, Rosendahl J, Fischer J, Berg T, Hittatiya K, Fischer HP, Soyka M, Semmo N, Nattermann J, Sauerbruch T, Strassburg CP, Stickel F, Spengler U. A common polymorphism in the NCAN gene is associated with hepatocellular carcinoma in alcoholic liver disease. J Hepatol 2014; 61:1073-9. [PMID: 24946282 DOI: 10.1016/j.jhep.2014.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 05/17/2014] [Accepted: 06/02/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS The genetic background of alcoholic liver diseases and their complications are increasingly recognized. A common polymorphism in the neurocan (NCAN) gene, which is known to be expressed in neuronal tissue, has been identified as a risk factor for non-alcoholic fatty liver disease (NAFLD). We investigated if this polymorphism may also be related to alcoholic liver disease (ALD) and hepatocellular carcinoma (HCC). METHODS We analysed the distribution of the NCAN rs2228603 genotypes in 356 patients with alcoholic liver cirrhosis, 126 patients with alcoholic HCC, 382 persons with alcohol abuse without liver damage, 362 healthy controls and in 171 patients with hepatitis C virus (HCV) associated HCC. Furthermore, a validation cohort of 229 patients with alcoholic cirrhosis (83 with HCC) was analysed. The genotypes were determined by LightSNiP assays. The expression of NCAN was studied by RT-PCR and immunofluorescence microscopy. RESULTS The frequency of the NCAN rs2228603 T allele was significantly increased in patients with HCC due to ALD (15.1%) compared to alcoholic cirrhosis without HCC (9.3%), alcoholic controls (7.2%), healthy controls (7.9%), and HCV associated HCC (9.1%). This finding was confirmed in the validation cohort (15.7% vs. 6.8%, OR=2.53; 95%CI: 1.36-4.68; p=0.0025) and by multivariate analysis (OR=1.840; 95%CI: 1.22-2.78; p=0.004 for carriage of the rs2228603 T allele). In addition, we identified and localised NCAN expression in human liver. CONCLUSIONS NCAN is not only expressed in neuronal tissue, but also in the liver. Its rs2228603 polymorphism is a risk factor for HCC in ALD, but not in HCV infection.
Collapse
Affiliation(s)
| | - Philipp Lutz
- Department of Internal Medicine I, University of Bonn, Germany; German Center for Infection Research, Germany
| | - Benjamin Krämer
- Department of Internal Medicine I, University of Bonn, Germany; German Center for Infection Research, Germany
| | - Jennifer Söhne
- Department of Internal Medicine I, University of Bonn, Germany
| | - Tobias Müller
- Department of Gastroenterology, University Hospital Leipzig, Germany
| | - Jonas Rosendahl
- Department of Gastroenterology, University Hospital Leipzig, Germany
| | - Janett Fischer
- Department of Gastroenterology, University Hospital Leipzig, Germany
| | - Thomas Berg
- Department of Gastroenterology, University Hospital Leipzig, Germany
| | | | | | - Michael Soyka
- Psychiatric Hospital Meiringen, Switzerland; Psychiatric Hospital, University of Munich, Germany
| | - Nasser Semmo
- Hepatology Unit, Klinik Beau-Site, Department of Visceral Surgery and Medicine Inselspital, University of Bern, Switzerland
| | - Jacob Nattermann
- Department of Internal Medicine I, University of Bonn, Germany; German Center for Infection Research, Germany
| | | | - Christian P Strassburg
- Department of Internal Medicine I, University of Bonn, Germany; German Center for Infection Research, Germany
| | - Felix Stickel
- Hepatology Unit, Klinik Beau-Site, Department of Visceral Surgery and Medicine Inselspital, University of Bern, Switzerland
| | - Ulrich Spengler
- Department of Internal Medicine I, University of Bonn, Germany; German Center for Infection Research, Germany.
| |
Collapse
|
29
|
Zhang X, Bhattacharyya S, Kusumo H, Goodlett CR, Tobacman JK, Guizzetti M. Arylsulfatase B modulates neurite outgrowth via astrocyte chondroitin-4-sulfate: dysregulation by ethanol. Glia 2013; 62:259-71. [PMID: 24311516 DOI: 10.1002/glia.22604] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 10/07/2013] [Accepted: 11/06/2013] [Indexed: 11/10/2022]
Abstract
In utero ethanol exposure causes fetal alcohol spectrum disorders, associated with reduced brain plasticity; the mechanisms of these effects are not well understood, particularly with respect to glial involvement. Astrocytes release factors that modulate neurite outgrowth. We explored the hypothesis that ethanol inhibits neurite outgrowth by increasing the levels of inhibitory chondroitin sulfate proteoglycans (CSPGs) in astrocytes. Astrocyte treatment with ethanol inhibited the activity of arylsulfatase B (ARSB), the enzyme that removes sulfate groups from chondroitin-4-sulfate (C4S) and triggers the degradation of C4S, increased total sulfated glycosaminoglycans (GAGs), C4S, and neurocan core-protein content and inhibited neurite outgrowth in neurons cocultured with ethanol-treated astrocytes in vitro, effects reversed by treatment with recombinant ARSB. Ethanol also inhibited ARSB activity and increased sulfate GAG and neurocan levels in the developing hippocampus after in vivo ethanol exposure. ARSB silencing increased the levels of sulfated GAGs, C4S, and neurocan in astrocytes and inhibited neurite outgrowth in cocultured neurons, indicating that ARSB activity directly regulates C4S and affects neurocan expression. In summary, this study reports two major findings: ARSB modulates sulfated GAG and neurocan levels in astrocytes and astrocyte-mediated neurite outgrowth in cocultured neurons; and ethanol inhibits the activity of ARSB, increases sulfated GAG, C4S, and neurocan levels, and thereby inhibits astrocyte-mediated neurite outgrowth. An unscheduled increase in CSPGs in the developing brain may lead to altered brain connectivity and to premature decrease in neuronal plasticity and therefore represents a novel mechanism by which ethanol can exert its neurodevelopmental effects.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown VA Medical Center, Chicago, Illinois
| | | | | | | | | | | |
Collapse
|
30
|
Teng S, Yang JY, Wang L. Genome-wide prediction and analysis of human tissue-selective genes using microarray expression data. BMC Med Genomics 2013; 6 Suppl 1:S10. [PMID: 23369200 PMCID: PMC3552705 DOI: 10.1186/1755-8794-6-s1-s10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Understanding how genes are expressed specifically in particular tissues is a fundamental question in developmental biology. Many tissue-specific genes are involved in the pathogenesis of complex human diseases. However, experimental identification of tissue-specific genes is time consuming and difficult. The accurate predictions of tissue-specific gene targets could provide useful information for biomarker development and drug target identification. Results In this study, we have developed a machine learning approach for predicting the human tissue-specific genes using microarray expression data. The lists of known tissue-specific genes for different tissues were collected from UniProt database, and the expression data retrieved from the previously compiled dataset according to the lists were used for input vector encoding. Random Forests (RFs) and Support Vector Machines (SVMs) were used to construct accurate classifiers. The RF classifiers were found to outperform SVM models for tissue-specific gene prediction. The results suggest that the candidate genes for brain or liver specific expression can provide valuable information for further experimental studies. Our approach was also applied for identifying tissue-selective gene targets for different types of tissues. Conclusions A machine learning approach has been developed for accurately identifying the candidate genes for tissue specific/selective expression. The approach provides an efficient way to select some interesting genes for developing new biomedical markers and improve our knowledge of tissue-specific expression.
Collapse
Affiliation(s)
- Shaolei Teng
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | | | | |
Collapse
|
31
|
Cui H, Freeman C, Jacobson GA, Small DH. Proteoglycans in the central nervous system: role in development, neural repair, and Alzheimer's disease. IUBMB Life 2013; 65:108-20. [PMID: 23297096 DOI: 10.1002/iub.1118] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 11/20/2012] [Indexed: 12/25/2022]
Abstract
Proteoglycans (PGs) are major components of the cell surface and extracellular matrix and play critical roles in development and maintenance of the central nervous system (CNS). PGs are a family of proteins, all of which contain a core protein to which glycosaminoglycan side chains are covalently attached. PGs possess diverse physiological roles, particularly in neural development, and are also implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD). The main functions of PGs in the CNS are reviewed as are the roles of PGs in brain injury and in the development or treatment of AD.
Collapse
Affiliation(s)
- Hao Cui
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| | | | | | | |
Collapse
|
32
|
Mecham RP. Overview of extracellular matrix. CURRENT PROTOCOLS IN CELL BIOLOGY 2012; Chapter 10:10.1.1-10.1.16. [PMID: 23208544 DOI: 10.1002/0471143030.cb1001s57] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The extracellular matrix provides an environment for cells. It is produced, assembled, and modified by cells and in turn, it modifies the functions and behavior of the cells it encounters. The molecules that make up the matrix are diverse in both structure and function. This well-illustrated unit provides an introduction to the structure and function of the major components of the extracellular matrix and serves as a background for the other units in the chapter, which include protocols for isolation and analysis of individual components.
Collapse
Affiliation(s)
- Robert P Mecham
- Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
33
|
Abstract
The aggregating proteoglycans of the lectican family are important components of extracellular matrices. Aggrecan is the most well studied of these and is central to cartilage biomechanical properties and skeletal development. Key to its biological function is the fixed charge of the many glycosaminoglycan chains, that provide the basis for the viscoelastic properties necessary for load distribution over the articular surface. This review is focused on the globular domains of aggrecan and their role in anchoring the proteoglycans to other extracellular matrix components. The N-terminal G1 domain is vital in that it binds the proteoglycan to hyaluronan in ternary complex with link protein, retaining the proteoglycan in the tissue. The importance of the C-terminal G3 domain interactions has recently been emphasized by two different human hereditary disorders: autosomal recessive aggrecan-type spondyloepimetaphyseal dysplasia and autosomal dominant familial osteochondritis dissecans. In these two conditions, different missense mutations in the aggrecan C-type lectin repeat have been described. The resulting amino acid replacements affect the ligand interactions of the G3 domain, albeit with widely different phenotypic outcomes.
Collapse
Affiliation(s)
- Anders Aspberg
- Department of Biology, Copenhagen University, Copenhagen N, Denmark.
| |
Collapse
|
34
|
McRae PA, Porter BE. The perineuronal net component of the extracellular matrix in plasticity and epilepsy. Neurochem Int 2012; 61:963-72. [PMID: 22954428 DOI: 10.1016/j.neuint.2012.08.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 12/20/2022]
Abstract
During development the extracellular matrix (ECM) of the central nervous system (CNS) facilitates proliferation, migration, and synaptogenesis. In the mature nervous system due to changes in the ECM it provides structural stability and impedes proliferation, migration, and synaptogensis. The perineuronal net (PN) is a specialized ECM structure found primarily surrounding inhibitory interneurons where it forms a mesh-like structure around points of synaptic contact. The PN organizes the extracellular space by binding multiple components of the ECM and bringing them into close proximity to the cell membrane, forming dense aggregates surrounding synapses. The PN is expressed late in postnatal development when the nervous system is in the final stages of maturation and the critical periods are closing. Once fully expressed the PN envelopes synapses and leads to decreased plasticity and increases synaptic stability in the CNS. Disruptions in the PN have been studied in a number of disease states including epilepsy. Epilepsy is one of the most common neurologic disorders characterized by excessive neuronal activity which results in recurrent spontaneous seizures. A shift in the delicate balance between excitation and inhibition is believed to be one of the underlying mechanisms in the development of epilepsy. During epileptogenesis, the brain undergoes numerous changes including synaptic rearrangement and axonal sprouting, which require structural plasticity. Because of the PNs location around inhibitory cells and its role in limiting plasticity, the PN is an important candidate for altering the progression of epilepsy. In this review, an overview of the ECM and PN in the CNS will be presented with special emphasis on potential roles in epileptogenesis.
Collapse
Affiliation(s)
- Paulette A McRae
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | | |
Collapse
|
35
|
Cichon S, Mühleisen TW, Degenhardt FA, Mattheisen M, Miró X, Strohmaier J, Steffens M, Meesters C, Herms S, Weingarten M, Priebe L, Haenisch B, Alexander M, Vollmer J, Breuer R, Schmäl C, Tessmann P, Moebus S, Wichmann HE, Schreiber S, Müller-Myhsok B, Lucae S, Jamain S, Leboyer M, Bellivier F, Etain B, Henry C, Kahn JP, Heath S, Hamshere M, O'Donovan MC, Owen MJ, Craddock N, Schwarz M, Vedder H, Kammerer-Ciernioch J, Reif A, Sasse J, Bauer M, Hautzinger M, Wright A, Mitchell PB, Schofield PR, Montgomery GW, Medland SE, Gordon SD, Martin NG, Gustafsson O, Andreassen O, Djurovic S, Sigurdsson E, Steinberg S, Stefansson H, Stefansson K, Kapur-Pojskic L, Oruc L, Rivas F, Mayoral F, Chuchalin A, Babadjanova G, Tiganov AS, Pantelejeva G, Abramova LI, Grigoroiu-Serbanescu M, Diaconu CC, Czerski PM, Hauser J, Zimmer A, Lathrop M, Schulze TG, Wienker TF, Schumacher J, Maier W, Propping P, Rietschel M, Nöthen MM. Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder. Am J Hum Genet 2011; 88:372-381. [PMID: 21353194 PMCID: PMC3059436 DOI: 10.1016/j.ajhg.2011.01.017] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/14/2011] [Accepted: 01/29/2011] [Indexed: 02/03/2023] Open
Abstract
We conducted a genome-wide association study (GWAS) and a follow-up study of bipolar disorder (BD), a common neuropsychiatric disorder. In the GWAS, we investigated 499,494 autosomal and 12,484 X-chromosomal SNPs in 682 patients with BD and in 1300 controls. In the first follow-up step, we tested the most significant 48 SNPs in 1729 patients with BD and in 2313 controls. Eight SNPs showed nominally significant association with BD and were introduced to a meta-analysis of the GWAS and the first follow-up samples. Genetic variation in the neurocan gene (NCAN) showed genome-wide significant association with BD in 2411 patients and 3613 controls (rs1064395, p = 3.02 × 10(-8); odds ratio = 1.31). In a second follow-up step, we replicated this finding in independent samples of BD, totaling 6030 patients and 31,749 controls (p = 2.74 × 10(-4); odds ratio = 1.12). The combined analysis of all study samples yielded a p value of 2.14 × 10(-9) (odds ratio = 1.17). Our results provide evidence that rs1064395 is a common risk factor for BD. NCAN encodes neurocan, an extracellular matrix glycoprotein, which is thought to be involved in cell adhesion and migration. We found that expression in mice is localized within cortical and hippocampal areas. These areas are involved in cognition and emotion regulation and have previously been implicated in BD by neuropsychological, neuroimaging, and postmortem studies.
Collapse
Affiliation(s)
- Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Brain, Genomic Imaging, Research Center Juelich, Juelich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abaskharoun M, Bellemare M, Lau E, Margolis RU. Expression of hyaluronan and the hyaluronan-binding proteoglycans neurocan, aggrecan, and versican by neural stem cells and neural cells derived from embryonic stem cells. Brain Res 2010; 1327:6-15. [PMID: 20176001 PMCID: PMC2878141 DOI: 10.1016/j.brainres.2010.02.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 02/09/2010] [Accepted: 02/12/2010] [Indexed: 01/16/2023]
Abstract
We have examined the expression and localization patterns of hyaluronan and hyaluronan-binding chondroitin sulfate proteoglycans in neural stem cells and differentiated neural cells derived from mouse embryonic stem cells. Expression of proteoglycans and hyaluronan was weak in the SSEA1-positive embryonic stem cells but increased noticeably after retinoic acid induction to nestin-positive neural stem cells. After subsequent plating, the hyaluronan-binding chondroitin sulfate proteoglycans aggrecan, neurocan, and versican are expressed by cells in both the astrocytic and neuronal lineages. During the time period that hyaluronan was present, it co-localized with each of the hyaluronan-binding proteoglycans studied and was found to be clearly associated with beta-III tubulin-expressing neurons and oligodendrocytes expressing the O4 sulfatide marker. Although proteoglycan expression levels increased to varying degrees following neural differentiation, they did not change noticably during the following 2 weeks in culture, but there was a significant decrease in hyaluronan expression. Our studies therefore demonstrate the expression by neural stem cells and neural cells derived from them of hyaluronan and its associated proteoglycans, thereby providing a necessary foundation for integrating their specific properties into developing strategies for therapeutic applications.
Collapse
Affiliation(s)
- Mary Abaskharoun
- Department of Pharmacology, New York University Medical Center, 550 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|
37
|
Fan Y, Wang Y, Fan Y, Ma J. Potentiometric studies on the interaction between superoxide dismutase and hyaluronic acid. J Appl Polym Sci 2009. [DOI: 10.1002/app.30238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Gao F, Koenitzer JR, Tobolewski JM, Jiang D, Liang J, Noble PW, Oury TD. Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan. J Biol Chem 2008; 283:6058-66. [PMID: 18165226 PMCID: PMC2268976 DOI: 10.1074/jbc.m709273200] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular superoxide dismutase (EC-SOD) is expressed at high levels in lungs. EC-SOD has a polycationic matrix-binding domain that binds to polyanionic constituents in the matrix. Previous studies indicate that EC-SOD protects the lung in both bleomycin- and asbestos-induced models of pulmonary fibrosis. Although the mechanism of EC-SOD protection is not fully understood, these studies indicate that EC-SOD plays an important role in regulating inflammatory responses to pulmonary injury. Hyaluronan is a polyanionic high molecular mass polysaccharide found in the extracellular matrix that is sensitive to oxidant-mediated fragmentation. Recent studies found that elevated levels of low molecular mass hyaluronan are associated with inflammatory conditions. We hypothesize that EC-SOD may inhibit pulmonary inflammation in part by preventing superoxide-mediated fragmentation of hyaluronan to low molecular mass fragments. We found that EC-SOD directly binds to hyaluronan and significantly inhibits oxidant-induced degradation of this glycosaminoglycan. In vitro human polymorphic neutrophil chemotaxis studies indicate that oxidative fragmentation of hyaluronan results in polymorphic neutrophil chemotaxis and that EC-SOD can completely prevent this response. Intratracheal injection of crocidolite asbestos in mice leads to pulmonary inflammation and injury that is enhanced in EC-SOD knock-out mice. Notably, hyaluronan levels are increased in the bronchoalveolar lavage fluid after asbestos-induced pulmonary injury, and this response is markedly enhanced in EC-SOD knock-out mice. These data indicate that inhibition of oxidative hyaluronan fragmentation probably represents one mechanism by which EC-SOD inhibits inflammation in response to lung injury.
Collapse
Affiliation(s)
- Fei Gao
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The extracellular matrix provides an environment for cells. It is produced, assembled and modified by cells and in turn, it modifies the functions and behavior of the cells it encounters. The molecules that make up the matrix are diverse in both structure and function. This well-illustrated unit provides an introduction to the structure and function of the major components of matrix and serves as a background for the other units in the chapter which include protocols for isolation and analysis of individual components.
Collapse
Affiliation(s)
- R P Mecham
- Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
40
|
Massey JM, Amps J, Viapiano MS, Matthews RT, Wagoner MR, Whitaker CM, Alilain W, Yonkof AL, Khalyfa A, Cooper NGF, Silver J, Onifer SM. Increased chondroitin sulfate proteoglycan expression in denervated brainstem targets following spinal cord injury creates a barrier to axonal regeneration overcome by chondroitinase ABC and neurotrophin-3. Exp Neurol 2008; 209:426-45. [PMID: 17540369 PMCID: PMC2270474 DOI: 10.1016/j.expneurol.2007.03.029] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 03/24/2007] [Accepted: 03/27/2007] [Indexed: 01/11/2023]
Abstract
Increased chondroitin sulfate proteoglycan (CSPG) expression in the vicinity of a spinal cord injury (SCI) is a primary participant in axonal regeneration failure. However, the presence of similar increases of CSPG expression in denervated synaptic targets well away from the primary lesion and the subsequent impact on regenerating axons attempting to approach deafferented neurons have not been studied. Constitutively expressed CSPGs within the extracellular matrix and perineuronal nets of the adult rat dorsal column nuclei (DCN) were characterized using real-time PCR, Western blot analysis and immunohistochemistry. We show for the first time that by 2 days and through 3 weeks following SCI, the levels of NG2, neurocan and brevican associated with reactive glia throughout the DCN were dramatically increased throughout the DCN despite being well beyond areas of trauma-induced blood brain barrier breakdown. Importantly, regenerating axons from adult sensory neurons microtransplanted 2 weeks following SCI between the injury site and the DCN were able to regenerate rapidly within white matter (as shown previously by Davies et al. [Davies, S.J., Goucher, D.R., Doller, C., Silver, J., 1999. Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J. Neurosci. 19, 5810-5822]) but were unable to enter the denervated DCN. Application of chondroitinase ABC or neurotrophin-3-expressing lentivirus in the DCN partially overcame this inhibition. When the treatments were combined, entrance by regenerating axons into the DCN was significantly augmented. These results demonstrate both an additional challenge and potential treatment strategy for successful functional pathway reconstruction after SCI.
Collapse
Affiliation(s)
- James M. Massey
- M.D./Ph.D. Program, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
- Department of Anatomical Sciences & Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
- Department of Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
| | - Jeremy Amps
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
| | - Mariano S. Viapiano
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, 06520
| | - Russell. T. Matthews
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, 06520
| | - Michelle R. Wagoner
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
- Department of Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
| | - Christopher M. Whitaker
- Department of Anatomical Sciences & Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
- Department of Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
| | - Warren Alilain
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
| | - Alicia L. Yonkof
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
| | - Abdelnaby Khalyfa
- Department of Anatomical Sciences & Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
| | - Nigel G. F. Cooper
- Department of Anatomical Sciences & Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
| | - Stephen M. Onifer
- Department of Anatomical Sciences & Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
- Department of Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
| |
Collapse
|
41
|
Halasi G, Wolf E, Bácskai T, Székely G, Módis L, Szigeti ZM, Mészár Z, Felszeghy S, Matesz C. The effect of vestibular nerve section on the expression of the hyaluronan in the frog, Rana esculenta. Brain Struct Funct 2007; 212:321-34. [PMID: 17912549 DOI: 10.1007/s00429-007-0162-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 09/14/2007] [Indexed: 01/03/2023]
Abstract
Following postganglionic lesion of the eighth cranial nerve, the changes in the expression of hyaluronan (HA), one of the extracellular matrix macromolecules, were examined in the medial (MVN) and lateral (LVN) vestibular nuclei and in the entry or transitional zone (TZ) of the nerve in the frog. HA was detected in different survival times by using a specific biotinylated hyaluronan-binding probe. HA expression was defined by the area-integrated optical density (AIOD), calculated from pixel intensities of digitally captured images. During the first postoperative days the perineuronal net (PN), a HA-rich area around the neurons, was not distinguishable from the surrounding neuropil in the MVN and LVN, characterized by a bilateral drop of AIOD specifically on the operated side. From postoperative day 14 onwards AIOD increased whilst the PN reorganized. In contrast, the AIOD wobbled up and down bilaterally without any trend in the TZ. Statistical analysis indicated that AIOD changes in the structures studied ran parallel bilaterally presumably because of the operation. Our results demonstrated for the first time that (1) the lesion of the eighth cranial nerve is accompanied by the modification of AIOD reflected HA expression in the MVN, LVN and TZ, (2) different tendencies exist in the time course of AIOD in the structures studied and (3) these tendencies are similar on the intact and operated sides. Our findings may suggest an area dependent molecular mechanism of HA in the restoration of vestibular function.
Collapse
Affiliation(s)
- Gábor Halasi
- Department of Anatomy, Histology and Embryology, Medical and Health Science Center, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4012, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Graham VA, Marzo AL, Tough DF. A role for CD44 in T cell development and function during direct competition between CD44+ and CD44- cells. Eur J Immunol 2007; 37:925-34. [PMID: 17330818 DOI: 10.1002/eji.200635882] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The role of CD44 in T cell biology remains incompletely understood. Although studies using anti-CD44 antibodies have implicated this cell adhesion molecule in a variety of important T cell processes, few T cell defects have been reported in CD44-deficient mice. We have assessed the requirement for CD44 in T cell development and mature T cell function by analyzing mice in which CD44(-/-) and WT cells were produced simultaneously. In mixed (CD44(-/-) + CD44(+/+)) bone marrow chimeras, production of CD44(-/-) T cells was shown to be reduced compared to WT cells due to inefficient intrathymic development. In addition, mature CD44(-/-) CD8(+) T cells generated a substantially lower response than WT T cells after infection of mice with lymphocytic choriomeningitis virus, with the reduction in response apparent in both lymphoid and non-lymphoid tissues. Overall, these results demonstrate a poor capacity of CD44(-/-) T lineage cells to compete with WT cells at multiple levels, implicating CD44 in normal T cell function.
Collapse
Affiliation(s)
- Victoria A Graham
- The Edward Jenner Institute for Vaccine Research, Compton, Newbury, Berkshire, UK
| | | | | |
Collapse
|
43
|
Crespo D, Asher RA, Lin R, Rhodes KE, Fawcett JW. How does chondroitinase promote functional recovery in the damaged CNS? Exp Neurol 2007; 206:159-71. [PMID: 17572406 DOI: 10.1016/j.expneurol.2007.05.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 04/28/2007] [Accepted: 05/02/2007] [Indexed: 12/22/2022]
Abstract
A number of recent studies have established that the bacterial enzyme chondroitinase ABC promotes functional recovery in the injured CNS. The issue of how it works is rarely addressed, however. The effects of the enzyme are presumed to be due to the degradation of inhibitory chondroitin sulphate GAG chains. Here we review what is known about the composition, structure and distribution of the extracellular matrix in the CNS, and how it changes in response to injury. We summarize the data pertaining to the ability of chondroitinase to promote functional recovery, both in the context of axon regeneration and the reactivation of plasticity. We also present preliminary data on the persistence of the effects of the enzyme in vivo, and its hyaluronan-degrading activity in CNS homogenates in vitro. We then consider precisely how the enzyme might influence functional recovery in the CNS. The ability of chondroitinase to degrade hyaluronan is likely to result in greater matrix disruption than the degradation of chondroitin sulphate alone.
Collapse
Affiliation(s)
- Dámaso Crespo
- Cambridge University Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge, CB2 2PY, UK
| | | | | | | | | |
Collapse
|
44
|
Girish KS, Kemparaju K. The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci 2007; 80:1921-43. [PMID: 17408700 DOI: 10.1016/j.lfs.2007.02.037] [Citation(s) in RCA: 458] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 02/04/2007] [Accepted: 02/19/2007] [Indexed: 01/09/2023]
Abstract
Hyaluronan (HA) is a multifunctional high molecular weight polysaccharide found throughout the animal kingdom, especially in the extracellular matrix (ECM) of soft connective tissues. HA is thought to participate in many biological processes, and its level is markedly elevated during embryogenesis, cell migration, wound healing, malignant transformation, and tissue turnover. The enzymes that degrade HA, hyaluronidases (HAases) are expressed both in prokaryotes and eukaryotes. These enzymes are known to be involved in physiological and pathological processes ranging from fertilization to aging. Hyaluronidase-mediated degradation of HA increases the permeability of connective tissues and decreases the viscosity of body fluids and is also involved in bacterial pathogenesis, the spread of toxins and venoms, acrosomal reaction/ovum fertilization, and cancer progression. Furthermore, these enzymes may promote direct contact between pathogens and the host cell surfaces. Depolymerization of HA also adversely affects the role of ECM and impairs its activity as a reservoir of growth factors, cytokines and various enzymes involved in signal transduction. Inhibition of HA degradation therefore may be crucial in reducing disease progression and spread of venom/toxins and bacterial pathogens. Hyaluronidase inhibitors are potent, ubiquitous regulating agents that are involved in maintaining the balance between the anabolism and catabolism of HA. Hyaluronidase inhibitors could also serve as contraceptives and anti-tumor agents and possibly have antibacterial and anti-venom/toxin activities. Additionally, these molecules can be used as pharmacological tools to study the physiological and pathophysiological role of HA and hyaluronidases.
Collapse
Affiliation(s)
- K S Girish
- Department of Biochemistry, University of Mysore, Manasagangothri, Mysore, Karnataka State, 560007, India.
| | | |
Collapse
|
45
|
Faissner A, Heck N, Dobbertin A, Garwood J. DSD-1-Proteoglycan/Phosphacan and Receptor Protein Tyrosine Phosphatase-Beta Isoforms during Development and Regeneration of Neural Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 557:25-53. [PMID: 16955703 DOI: 10.1007/0-387-30128-3_3] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Interactions between neurons and glial cells play important roles in regulating key events of development and regeneration of the CNS. Thus, migrating neurons are partly guided by radial glia to their target, and glial scaffolds direct the growth and directional choice of advancing axons, e.g., at the midline. In the adult, reactive astrocytes and myelin components play a pivotal role in the inhibition of regeneration. The past years have shown that astrocytic functions are mediated on the molecular level by extracellular matrix components, which include various glycoproteins and proteoglycans. One important, developmentally regulated chondroitin sulfate proteoglycan is DSD-1-PG/phosphacan, a glial derived proteoglycan which represents a splice variant of the receptor protein tyrosine phosphatase (RPTP)-beta (also known as PTP-zeta). Current evidence suggests that this proteoglycan influences axon growth in development and regeneration, displaying inhibitory or stimulatory effects dependent on the mode of presentation, and the neuronal lineage. These effects seem to be mediated by neuronal receptors of the Ig-CAM superfamily.
Collapse
Affiliation(s)
- Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University, Bochum, Germany
| | | | | | | |
Collapse
|
46
|
Skutella T, Conrad S, Hooge J, Bonin M, Alvarez-Bolado G. Microarray analysis of the fetal hippocampus in the Emx2 mutant. Dev Neurosci 2007; 29:28-47. [PMID: 17148947 DOI: 10.1159/000096209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 03/23/2006] [Indexed: 01/04/2023] Open
Abstract
Deficiency in the transcription factor Emx2 causes a specific alteration of hippocampal development, which has been well analyzed morphologically. We are currently using microarrays and in situ hybridization to characterize gene expression in the Emx2 mutant hippocampus. In this report on our preliminary results for the fetal stage, we identify a group of genes for most of which a putative relation to Emx2 pathways has not been previously recognized. Some candidates are development genes or are involved in functional maturation, and show expression in the hippocampal plate and/or developing dentate gyrus. A second class of candidates label neuronal, glial or vascular structures in the outer marginal zone, and likely represent markers for cell populations specifically absent in the mutant. Our results point at pathways and processes altered in the mutant, particularly the Notch and chemokine pathways, the processes of cell migration, axonal guidance and angiogenesis, and the relation of pia and Cajal-Retzius cells with hippocampal morphogenesis.
Collapse
Affiliation(s)
- Thomas Skutella
- Institute of Anatomy, Division Tissue Engineering, Tubingen University School of Medicine, Tubingen, Germany
| | | | | | | | | |
Collapse
|
47
|
Liu BP, Cafferty WB, Budel SO, Strittmatter SM. Extracellular regulators of axonal growth in the adult central nervous system. Philos Trans R Soc Lond B Biol Sci 2006; 361:1593-610. [PMID: 16939977 PMCID: PMC1664666 DOI: 10.1098/rstb.2006.1891] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Robust axonal growth is required during development to establish neuronal connectivity. However, stable fibre patterns are necessary to maintain adult mammalian central nervous system (CNS) function. After adult CNS injury, factors that maintain axonal stability limit the recovery of function. Extracellular molecules play an important role in preserving the stability of the adult CNS axons and in restricting recovery from pathological damage. Adult axonal growth inhibitors include a group of proteins on the oligodendrocyte, Nogo-A, myelin-associated glycoprotein, oligodendrocyte-myelin glycoprotein and ephrin-B3, which interact with axonal receptors, such as NgR1 and EphA4. Extracellular proteoglycans containing chondroitin sulphates also inhibit axonal sprouting in the adult CNS, particularly at the sites of astroglial scar formation. Therapeutic perturbations of these extracellular axonal growth inhibitors and their receptors or signalling mechanisms provide a degree of axonal sprouting and regeneration in the adult CNS. After CNS injury, such interventions support a partial return of neurological function.
Collapse
Affiliation(s)
| | | | | | - Stephen M Strittmatter
- Department of Neurology, Yale University School of MedicinePO Box 208018, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
48
|
Aono S, Oohira A. Chondroitin sulfate proteoglycans in the brain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2006; 53:323-36. [PMID: 17239773 DOI: 10.1016/s1054-3589(05)53015-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sachiko Aono
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Aichi 480-0392, Japan
| | | |
Collapse
|
49
|
Li HP, Oohira A, Ogawa M, Kawamura K, Kawano H. Aberrant trajectory of thalamocortical axons associated with abnormal localization of neurocan immunoreactivity in the cerebral neocortex of reeler mutant mice. Eur J Neurosci 2005; 22:2689-96. [PMID: 16324103 DOI: 10.1111/j.1460-9568.2005.04491.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We examined the molecular mechanisms underlying the formation of the thalamocortical pathway in the cerebral neocortex of normal and reeler mutant mice. During normal development of the mouse neocortex, thalamic axons immunoreactive for the neural cell adhesion molecule L1 rarely invaded the cortical plate and ran centered in the subplate which is immunoreactive for neurocan, a brain-specific chondroitin sulfate proteoglycan. On the other hand, in homozygous reeler mutant mice, thalamic axons took an aberrant course to run obliquely through the cortical plate. Injection of bromodeoxyuridine at embryonic day 11 specifically labeled subplate neurons in normal mice, whilst in the reeler neocortex it labeled cells scattered in the cortical plate as well as in the superficial layer (superplate). Neurocan immunoreactivity was associated with the bromodeoxyuridine-positive cells in the superplate, as well as being present in oblique bands within the cortical plate, along which L1-bearing thalamic axons preferentially ran. The present results support our previous hypothesis proposed for normal rats that a heterophilic molecular interaction between L1 and neurocan is involved in determining the thalamocortical pathway within the neocortical anlage [T. Fukuda et al. (1997) Journal of Comparative Neurology, 382, 141-152].
Collapse
Affiliation(s)
- Hong-Peng Li
- Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan
| | | | | | | | | |
Collapse
|
50
|
Wu YJ, La Pierre DP, Wu J, Yee AJ, Yang BB. The interaction of versican with its binding partners. Cell Res 2005; 15:483-94. [PMID: 16045811 DOI: 10.1038/sj.cr.7290318] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Versican belongs to the family of the large aggregating chondroitin sulfate proteoglycans located primarily within the extracellular matrix (ECM). Versican, like other members of its family, has unique N- and C-terminal globular regions, each with multiple motifs. A large glycosaminoglycan-binding region lies between them. This review will begin by outlining these structures, in the context of ECM proteoglycans. The diverse binding partners afforded to versican by virtue of its modular design will then be examined. These include ECM components, such as hyaluronan, type I collagen, tenascin-R, fibulin-1, and -2, fibrillin-1, fibronectin, P- and L-selectins, and chemokines. Versican also binds to the cell surface proteins CD44, integrin beta 1, epidermal growth factor receptor, and P-selectin glycoprotein ligand-1. These multiple interactors play important roles in cell behaviour, and the roles of versican in modulating such processes are discussed.
Collapse
Affiliation(s)
- Yao Jiong Wu
- Sunnybrook and Women's College Health Sciences Centre, 2075 Bayview Avenue, Toronto M4N 3M5 Canada
| | | | | | | | | |
Collapse
|