1
|
Pan L, Boldogh I. The potential for OGG1 inhibition to be a therapeutic strategy for pulmonary diseases. Expert Opin Ther Targets 2024; 28:117-130. [PMID: 38344773 PMCID: PMC11111349 DOI: 10.1080/14728222.2024.2317900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Abstract
INTRODUCTION Pulmonary diseases impose a daunting burden on healthcare systems and societies. Current treatment approaches primarily address symptoms, underscoring the urgency for the development of innovative pharmaceutical solutions. A noteworthy focus lies in targeting enzymes recognizing oxidatively modified DNA bases within gene regulatory elements, given their pivotal role in governing gene expression. AREAS COVERED This review delves into the intricate interplay between the substrate-specific binding of 8-oxoguanine DNA glycosylase 1 (OGG1) and epigenetic regulation, with a focal point on elucidating the molecular underpinnings and their biological implications. The absence of OGG1 distinctly attenuates the binding of transcription factors to cis elements, thereby modulating pro-inflammatory or pro-fibrotic transcriptional activity. Through a synergy of experimental insights gained from cell culture studies and murine models, utilizing prototype OGG1 inhibitors (O8, TH5487, and SU0268), a promising panorama emerges. These investigations underscore the absence of cytotoxicity and the establishment of a favorable tolerance profile for these OGG1 inhibitors. EXPERT OPINION Thus, the strategic targeting of the active site pocket of OGG1 through the application of small molecules introduces an innovative trajectory for advancing redox medicine. This approach holds particular significance in the context of pulmonary diseases, offering a refined avenue for their management.
Collapse
Affiliation(s)
- Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| |
Collapse
|
2
|
Luo Y, Liu Y, Wu L, Ma X, Liu Q, Huang F, Zhang X, Zhang Y, Zhang J, Luo H, Yang Y, Lu G, Tang X, Li L, Zeng Y, Pan T, Zhang H. CUL7 E3 Ubiquitin Ligase Mediates the Degradation of Activation-Induced Cytidine Deaminase and Regulates the Ig Class Switch Recombination in B Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2019; 203:269-281. [PMID: 31092637 DOI: 10.4049/jimmunol.1900125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022]
Abstract
Activation-induced cytidine deaminase (AID) initiates class switch recombination and somatic hypermutation in Ig genes. The activity and protein levels of AID are tightly controlled by various mechanisms. In this study, we found that CUL7 E3 ubiquitin ligases specifically mediated AID ubiquitination. CUL7 overexpression or knockdown influenced the decay of AID, affecting AID protein levels and subsequently IgA class switching in CH12F3 cells, a mouse B lymphocyte cell line. Further analysis indicated that CUL7 mediated AID ubiquitination by forming a complex with FBXW11. In a CUL7 fl/fl CD19 cre+ mouse model, we demonstrated that CUL7 knockout significantly enhanced AID protein levels in B cells in the germinal center and increased both the IgG1 and IgA class switching. Collectively, our results reveal a subtle regulation mechanism for tightly controlling AID protein levels. The manipulation of this pathway may be useful for regulating AID abundance and efficiency of Ig class switching and is therefore a potential target for developing immunologic adjuvants for vaccines of various pathogens such as HIV-1 and influenza viruses.
Collapse
Affiliation(s)
- Yuewen Luo
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yang Liu
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Liyang Wu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiancai Ma
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Qin Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510060, Guangdong, China
| | - Feng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Department of Respiration, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; and
| | - Xu Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yiwen Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Junsong Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Haihua Luo
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yanyan Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Gen Lu
- Department of Respiration, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; and
| | - Xiaoping Tang
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Linghua Li
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Yixin Zeng
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Ting Pan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
3
|
Björkman A, Du L, Felgentreff K, Rosner C, Pankaj Kamdar R, Kokaraki G, Matsumoto Y, Davies EG, van der Burg M, Notarangelo LD, Hammarström L, Pan-Hammarström Q. DNA-PKcs Is Involved in Ig Class Switch Recombination in Human B Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:5608-15. [DOI: 10.4049/jimmunol.1501633] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/06/2015] [Indexed: 01/03/2023]
|
4
|
Kao YP, Hsieh WC, Hung ST, Huang CW, Lieber MR, Huang FT. Detection and characterization of R-loops at the murine immunoglobulin Sα region. Mol Immunol 2012; 54:208-16. [PMID: 23287599 DOI: 10.1016/j.molimm.2012.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/19/2012] [Accepted: 11/21/2012] [Indexed: 11/24/2022]
Abstract
IgA is the most abundant antibody in mammals. However, the mechanism of its class switching is still not clear. The formation of the R-loops, as the target for AID, has been proposed to play a crucial role during mammalian class switch recombination. Here, we provide a systematic evaluation of R-loops at Sα (IgA) in CH12F3-2A cells, which is a unique cell model system for class switch recombination because of its consistent switching to IgA upon stimulation. The results of R-loop analysis demonstrate distinct features specific to Sα. Some R-loops may initiate from the end of Iα, but all terminate exclusively within Sα. Time-course analysis also indicates that the percentage of R-loops peaks prior to the occurrence of class switch recombination. This is the first demonstration that R-loops form at Sαin vitro and in situ, despite variable G density and relatively few GGGG clusters in Sα. The short distance from the promoter to Sα may compensate for the less robust R-loop-forming factors at Sα relative to other switch regions. In conclusion, R-loops at the Sα region further support R-loop formation as a general feature of all stimulated switch regions.
Collapse
Affiliation(s)
- Yu-Pu Kao
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
5
|
Balter BB, Ciccone DN, Oettinger MA, Selsing E. Mice lacking Sμ tandem repeats maintain RNA polymerase patterns but exhibit histone modification pattern shifts linked to class switch site locations. Mol Immunol 2012; 52:1-8. [PMID: 22580346 DOI: 10.1016/j.molimm.2012.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 04/10/2012] [Accepted: 04/16/2012] [Indexed: 12/27/2022]
Abstract
Antibody switching involves class switch recombination (CSR) events between switch (S) regions located upstream of heavy chain constant (C) genes. Mechanisms targeting CSR to S-regions are not clear. Deletion of Sμ tandem repeat (SμTR) sequences causes CSR to shift into downstream regions that do not undergo CSR in WT B-cells, including the Cμ-region. We now find that, in SμTR(-/-) B cells, Sμ chromatin histone modification patterns also shift downstream relative to WT and coincide with SμTR(-/-) CSR locations. Our results suggest that histone H3 acetylation and methylation are involved in accessibility of switch regions and that these modifications are not dependent on the underlying sequence, but may be controlled by the location of upstream promoter or regulatory elements. Our studies also show RNA polymerase II (RNAPII) loading increases in the Eμ/Iμ region in stimulated B cells; these increases are independent of SμTR sequences. Longer Sμ deletions have been reported to eliminate increases in RNAPII density, therefore we suggest that sequences between Iμ and Sμ (possibly the Iμ splicing region as well as G-tracts that are involved in stable RNA:DNA complex formation during transcription) might control the RNAPII density increases.
Collapse
Affiliation(s)
- Barbara B Balter
- Immunology Program and Department of Pathology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
6
|
Overlapping activation-induced cytidine deaminase hotspot motifs in Ig class-switch recombination. Proc Natl Acad Sci U S A 2011; 108:11584-9. [PMID: 21709240 DOI: 10.1073/pnas.1018726108] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ig class-switch recombination (CSR) is directed by the long and repetitive switch regions and requires activation-induced cytidine deaminase (AID). One of the conserved switch-region sequence motifs (AGCT) is a preferred site for AID-mediated DNA-cytosine deamination. By using somatic gene targeting and recombinase-mediated cassette exchange, we established a cell line-based CSR assay that allows manipulation of switch sequences at the endogenous locus. We show that AGCT is only one of a family of four WGCW motifs in the switch region that can facilitate CSR. We go on to show that it is the overlap of AID hotspots at WGCW sites on the top and bottom strands that is critical. This finding leads to a much clearer model for the difference between CSR and somatic hypermutation.
Collapse
|
7
|
Matheson LS, Osborn MJ, Smith JA, Corcos D, Hamon M, Chaouaf R, Coadwell J, Morgan G, Oxley D, Brüggemann M. Light chain-deficient mice produce novel multimeric heavy-chain-only IgA by faulty class switching. Int Immunol 2009; 21:957-66. [PMID: 19561045 DOI: 10.1093/intimm/dxp062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recently, we identified that diverse heavy chain (H-chain)-only IgG is spontaneously produced in light chain (L-chain)-deficient mice (L(-/-) with silenced kappa and lambda loci) despite a block in B cell development. In murine H-chain IgG, the first Cgamma exon, C(H)1, is removed after DNA rearrangement and secreted polypeptides are comparable with camelid-type H-chain IgG. Here we show that L(-/-) mice generate a novel class of H-chain Ig with covalently linked alpha chains, not identified in any other healthy mammal. Surprisingly, diverse H-chain-only IgA can be released from B cells at levels similar to conventional IgA and is found in serum and sometimes in milk and saliva. Surface IgA without L-chain is expressed in B220(+) spleen cells, which exhibited a novel B cell receptor, suggesting that associated conventional differentiation events occur. To facilitate the cellular transport and release of H-chain-only IgA, chaperoning via BiP association seems to be prevented as only alpha chains lacking C(H)1 are released from the cell. This appears to be accomplished by imprecise class-switch recombination (CSR) from Smu into the alpha constant region, which removes all or part of the Calpha1 exon at the genomic level.
Collapse
|
8
|
Wu X, Stavnezer J. DNA polymerase beta is able to repair breaks in switch regions and plays an inhibitory role during immunoglobulin class switch recombination. ACTA ACUST UNITED AC 2007; 204:1677-89. [PMID: 17591858 PMCID: PMC2118644 DOI: 10.1084/jem.20070756] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Immunoglobulin (Ig) class switch recombination (CSR) is initiated by activation-induced cytidine deaminase (AID), which converts cytosines to uracils in switch (S) regions. Subsequent excision of dU by uracil DNA glycosylase (UNG) of the base excision repair (BER) pathway is required to obtain double-strand break (DSB) intermediates for CSR. Since UNG normally initiates faithful repair, it is unclear how the AID-instigated S region lesions are converted into DSBs rather than correctly repaired by BER. Normally, DNA polymerase beta (Polbeta) would replace the dC deaminated by AID, leading to correct repair of the single-strand break, thereby preventing CSR. We address the question of whether Polbeta might be specifically down-regulated during CSR or inhibited from accessing the AID-instigated lesions, or whether the numerous AID-initiated S region lesions might simply overwhelm the BER capacity. We find that nuclear Polbeta levels are induced upon activation of splenic B cells to undergo CSR. When Polbeta(-/-) B cells are activated to switch in culture, they switch slightly better to IgG2a, IgG2b, and IgG3 and have more S region DSBs and mutations than wild-type controls. We conclude that Polbeta attempts to faithfully repair S region lesions but fails to repair them all.
Collapse
Affiliation(s)
- Xiaoming Wu
- Department of Molecular Genetics and Microbiology, Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
9
|
Pan-Hammarström Q, Zhao Y, Hammarström L. Class switch recombination: a comparison between mouse and human. Adv Immunol 2007; 93:1-61. [PMID: 17383538 DOI: 10.1016/s0065-2776(06)93001-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Humans and mice separated more than 60 million years ago. Since then, evolution has led to a multitude of changes in their genomic sequences. The divergence of genes has resulted in differences both in the innate and adaptive immune systems. In this chapter, we focus on species difference with regard to immunoglobulin class switch recombination (CSR). We have compared the immunoglobulin constant region gene loci from human and mouse, with an emphasis on the switch regions, germ line transcription promoters, and 3' enhancers. We have also compared pathways/factors that are involved in CSR. Although there are remarkable similarities in the cellular machinery involved in CSR, there are also a number of unique features in each species.
Collapse
Affiliation(s)
- Qiang Pan-Hammarström
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | | | | |
Collapse
|
10
|
Honjo T, Muramatsu M, Nagaoka H, Kinoshita K, Shinkura R. AID to overcome the limitations of genomic information by introducing somatic DNA alterations. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2006; 82:104-20. [PMID: 25873751 PMCID: PMC4323042 DOI: 10.2183/pjab.82.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Accepted: 03/13/2006] [Indexed: 06/04/2023]
Abstract
The immune system has adopted somatic DNA alterations to overcome the limitations of the genomic information. Activation induced cytidine deaminase (AID) is an essential enzyme to regulate class switch recombination (CSR), somatic hypermutation (SHM) and gene conversion (GC) of the immunoglobulin gene. AID is known to be required for DNA cleavage of S regions in CSR and V regions in SHM. However, its molecular mechanism is a focus of extensive debate. RNA editing hypothesis postulates that AID edits yet unknown mRNA, to generate specific endonucleases for CSR and SHM. By contrast, DNA deamination hypothesis assumes that AID deaminates cytosine in DNA, followed by DNA cleavage by base excision repair enzymes. We summarize the basic knowledge for molecular mechanisms for CSR and SHM and then discuss the importance of AID not only in the immune regulation but also in the genome instability.
Collapse
Affiliation(s)
- Tasuku Honjo
- Department of Immunology and Genomic Medicine Graduate School of Medicine, Kyoto University, Kyoto,
Japan
| | - Masamichi Muramatsu
- Department of Immunology and Genomic Medicine Graduate School of Medicine, Kyoto University, Kyoto,
Japan
| | - Hitoshi Nagaoka
- Department of Immunology and Genomic Medicine Graduate School of Medicine, Kyoto University, Kyoto,
Japan
| | - Kazuo Kinoshita
- Department of Immunology and Genomic Medicine Graduate School of Medicine, Kyoto University, Kyoto,
Japan
| | - Reiko Shinkura
- Department of Immunology and Genomic Medicine Graduate School of Medicine, Kyoto University, Kyoto,
Japan
| |
Collapse
|
11
|
Zarrin AA, Tian M, Wang J, Borjeson T, Alt FW. Influence of switch region length on immunoglobulin class switch recombination. Proc Natl Acad Sci U S A 2005; 102:2466-70. [PMID: 15684074 PMCID: PMC548964 DOI: 10.1073/pnas.0409847102] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The class and effector functions of antibodies are modulated through the process of Ig heavy chain class switch recombination (CSR). CSR occurs between switch (S) regions that lie upstream of the various Ig heavy chain constant region exons. Molecular analyses of S-region functions have been hampered by their large size and repetitive nature. To test potential relationships between S-region size and efficiency of CSR, we generated normal B lymphocytes in which the 12-kb S region flanking the Cgamma1 exons (Sgamma1) was replaced with synthetic or endogenous S regions of various lengths. Replacement of Sgamma1 with 1- and 2-kb synthetic sequences representing the Sgamma1 core repeats or a 4-kb portion of the core endogenous Sgamma1 region supported CSR frequencies that directly correlated with S-region length. These findings indicate that S-region size is an important factor in determining endogenous CSR efficiency. Moreover, these results also will allow the development of a systematic system to test the function of various S-region motifs by replacing endogenous S regions with synthetic S regions controlled for size effects.
Collapse
Affiliation(s)
- Ali A Zarrin
- Howard Hughes Medical Institute, Children's Hospital, CBR Institute for Biomedical Research, and Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
12
|
Arudchandran A, Bernstein RM, Max EE. Single-stranded DNA breaks adjacent to cytosines occur during Ig gene class switch recombination. THE JOURNAL OF IMMUNOLOGY 2004; 173:3223-9. [PMID: 15322184 DOI: 10.4049/jimmunol.173.5.3223] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Class switch recombination (CSR) at the DNA level underlies ability of B lymphocytes to switch from expressing IgM to expressing IgG, IgA, or IgE. The mechanism of CSR is largely unknown, but it is clear that CSR is stimulated by T cell signals and is mediated in part by activation-induced deaminase (AID), an enzyme that is also required for somatic hypermutation of Ig genes. In one current model, AID is proposed to initiate CSR by deaminating cytosines in the unpaired nontemplate strand of DNA displaced from its complementary strand by the "sterile" RNA transcript across the switch region. We have used LM-PCR to analyze single-strand breaks in CH12F3-2, a murine cell line that switches in vitro to IgA expression. In contrast to the above model, we have detected CSR-associated ssDNA breaks in the template strand of the H chain alpha switch region, the strand thought to be complexed with RNA. Most breaks are adjacent to cytosines, consistent with mediation by AID, and occur within the novel consensus sequence C*AG, which occurs much more frequently on the template strand than on the putatively displaced nontemplate strand. These results suggest that AID may target the DNA strand bound to RNA, perhaps resembling APOBEC-3G, a cytosine deaminase related to AID that inhibits HIV replication by mutating viral DNA. Furthermore, the absence of detectable breaks in the nontemplate strand within the DNA segment under study suggests that the two DNA strands are handled differently in the generation or processing of strand breaks.
Collapse
Affiliation(s)
- Arulvathani Arudchandran
- Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
13
|
Duquette ML, Handa P, Vincent JA, Taylor AF, Maizels N. Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev 2004; 18:1618-29. [PMID: 15231739 PMCID: PMC443523 DOI: 10.1101/gad.1200804] [Citation(s) in RCA: 425] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We show that intracellular transcription of G-rich regions produces novel DNA structures, visible by electron microscopy as large (150-500 bp) loops. These G-loops are formed cotranscriptionally, and they contain G4 DNA on one strand and a stable RNA/DNA hybrid on the other. G-loop formation requires a G-rich nontemplate strand and reflects the unusual stability of the rG/dC base pair. G-loops and G4 DNA form efficiently within plasmid genomes transcribed in vitro or in Escherichia coli. These results establish that G4 DNA can form in vivo, a finding with implications for stability and maintenance of all G-rich genomic regions.
Collapse
Affiliation(s)
- Michelle L Duquette
- Department of Genetics, Yale University School of Medicine, New Haven, Conneticut 06520, USA
| | | | | | | | | |
Collapse
|
14
|
Honjo T, Kinoshita K, Muramatsu M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu Rev Immunol 2002; 20:165-96. [PMID: 11861601 DOI: 10.1146/annurev.immunol.20.090501.112049] [Citation(s) in RCA: 456] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Class switch recombination (CSR) and somatic hypermutation (SHM) have been considered to be mediated by different molecular mechanisms because both target DNAs and DNA modification products are quite distinct. However, involvement of activation-induced cytidine deaminase (AID) in both CSR and SHM has revealed that the two genetic alteration mechanisms are surprisingly similar. Accumulating data led us to propose the following scenario: AID is likely to be an RNA editing enzyme that modifies an unknown pre-mRNA to generate mRNA encoding a nicking endonuclease specific to the stem-loop structure. Transcription of the S and V regions, which contain palindromic sequences, leads to transient denaturation, forming the stem-loop structure that is cleaved by the AID-regulated endonuclease. Cleaved single-strand tails will be processed by error-prone DNA polymerase-mediated gap-filling or exonuclease-mediated resection. Mismatched bases will be corrected or fixed by mismatch repair enzymes. CSR ends are then ligated by the NHEJ system while SHM nicks are repaired by another ligation system.
Collapse
Affiliation(s)
- Tasuku Honjo
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
15
|
Tashiro J, Kinoshita K, Honjo T. Palindromic but not G-rich sequences are targets of class switch recombination. Int Immunol 2001; 13:495-505. [PMID: 11282989 DOI: 10.1093/intimm/13.4.495] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In order to understand the specificity of sequences or structures recognized by a recombinase involved in class switch recombination (CSR), we examined the relative CSR efficiency of various switch sequences in artificial CSR constructs that undergo CSR in CH12F3-2 murine B lymphoma line. Since CSR recombination is not specific to switch regions of different isotypes or orientation of S sequences, we examined the efficiency of S sequences of non-mammalian species and artificial sequences which lack several characters of mammal switch sequences: chicken S(mu), Xenopus S(mu), telomere, multiple cloning site (MCS) and unrelated negative control sequence. CSR occurred in chicken S(mu) and MCS with significantly higher efficiency than the negative control. A common character of these two sequences is that they are rich in palindrome and stem-loop structures. However, telomeres, which are G-rich and repetitive but not palindromic, could not serve as switch sequences at all. The AT-rich Xenopus S(mu) sequence was inefficient but capable of CSR. CSR breakpoint distribution suggests that the cleavage may take place preferentially in the proximity of the junctions (neck) between the loop and stem in the secondary structure of the single-stranded S sequence, which can be formed by palindromic sequences. The results suggest that the secondary structure of S-region sequences which is transiently formed during transcription may be necessary for recognition by class switch recombinase.
Collapse
Affiliation(s)
- J Tashiro
- Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
16
|
Kitao H, Arakawa H, Kuma K, Yamagishi H, Nakamura N, Furusawa S, Matsuda H, Yasuda M, Ekino S, Shimizu A. Class switch recombination of the chicken IgH chain genes: implications for the primordial switch region repeats. Int Immunol 2000; 12:959-68. [PMID: 10882407 DOI: 10.1093/intimm/12.7.959] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In mammals and the amphibian, Xenopus, isotypes of antibodies have been shown to be changed through class switch recombination within the IgH chain gene locus. Here, we identified switch (S) repetitive sequences in the 5' introns of the Ig C(mu) and C(gamma) genes of the chicken. The S(mu) region is composed of two homologous regions, S(mu)1 and S(mu)2. The S(mu)1 region is an upstream 3.7 kb sequence composed of 37 repeats of a consensus sequence containing tandem repeats of the decamer ACCAGTATGG. The S(mu)2 region is a downstream 1.4 kb sequence consisting of simple tandem repeats of a decamer CCCAGTACAG. The S(gamma) region contains repeats of the decamer TATGGGGCAG. Analysis of chicken IgG-producing hybridomas revealed that the C(mu) gene was deleted from the chromosome by the recombination occurring between the S(mu) and S(gamma) regions. Recombination breakpoints at the C(mu) gene of splenocytes from an immunized chicken were scattered around the S(mu) region and two such breakpoints, the precise position of which were determined, were located within possible hairpin loop structures at the palindromic sequence of S(mu)1. A primordial palindromic sequence from which the prevalent switch repeat motifs of mammals, chickens and amphibians may have diverged is presented.
Collapse
Affiliation(s)
- H Kitao
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ono SJ, Zhou G, Tai AK, Inaba M, Kinoshita K, Honjo T. Identification of a stimulus-dependent DNase I hypersensitive site between the Ialpha and Calpha exons during immunoglobulin heavy chain class switch recombination. FEBS Lett 2000; 467:268-72. [PMID: 10675552 DOI: 10.1016/s0014-5793(00)01151-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The complete humoral response to foreign antigen depends upon two distinct recombination events within the heavy chain locus of immunoglobulin. The first recombination event takes place in what will become the antigen combining site of the antibody molecule, encoded by V, D and J segments. The second recombination event involves the looping-out of large spans of DNA which separate the various clusters of heavy chain exons which define the different immunoglobulin isotypes, or classes. While a great deal has been learned about the nature of the VDJ recombinase, very little is known about the nature of the class-switch recombinase. Using a cell system where class-switch recombination occurs primarily to the IgA locus, we have looked for stimulus-dependent changes in the chromatin structure of the IgA locus which might result from interactions between components of the recombinase and cis-elements within the region. We present evidence that strongly suggests that the class-switch recombinase interacts between the Ialpha and Calpha exons of IgA, just upstream of the highly reiterated DR1 and DR2 elements. However, although multiple potential SMAD-4 sites are located precisely within the DNase I hypersensitive site and 160 bp upstream of that site, we failed to detect any evidence of DNA/protein interactions near the hypersensitive site. Moreover, recombinant SMAD-3/4 proteins fail to interact with these sites with appreciable affinity in vitro. These data suggest that some other structural alteration at this site (e.g. RNA/DNA hybrid) may mediate the nuclease sensitivity.
Collapse
Affiliation(s)
- S J Ono
- Laboratory of Molecular Immunology, The Schepens Eye Research Institute and Committee on Immunology, Harvard University, 20 Staniford St., Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Kinoshita K, Tashiro J, Tomita S, Lee CG, Honjo T. Target specificity of immunoglobulin class switch recombination is not determined by nucleotide sequences of S regions. Immunity 1998; 9:849-58. [PMID: 9881975 DOI: 10.1016/s1074-7613(00)80650-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We describe a model system for class switch recombination (CSR) using CH12F3-2 cells transfected with a DNA construct containing two S sequences transcribed by different promoters and separated by a viral thymidine kinase (TK) gene. Recombination observed using this system shares key properties with physiological CSR: deletion of DNA between two S regions, requirement for cytokine stimulation, and nonhomologous and no consensus breakpoint sequences. Studies on transfectants with variants of this construct led us to the following conclusions: (1) two S sequences are required for CSR; (2) isotype specificity of recombination is not determined by nucleotide sequences of S regions; (3) S sequences are not strand-specific; and (4) induction of recombination activity requires cytokine stimulation.
Collapse
Affiliation(s)
- K Kinoshita
- Department of Medical Chemistry, Kyoto University Faculty of Medicine, Japan
| | | | | | | | | |
Collapse
|
19
|
Kitao H, Arakawa H, Yamagishi H, Shimizu A. Chicken immunoglobulin mu-chain gene: germline organization and tandem repeats characteristic of class switch recombination. Immunol Lett 1996; 52:99-104. [PMID: 8905403 DOI: 10.1016/0165-2478(96)02592-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have isolated the phage clones covering the region spanning from the heavy (H)-chain joining (J) region to the end of the mu-chain gene of the chicken immunoglobulin (Ig). The distance from JH to the first exon of the mu-chain constant (C) region is approximately 13 kb, and introns between the C region exons measure more than 3 kb. These distances are significantly larger than those of known mu-chain genes. We found a region cross-hybridizing to the switch regions of the mouse C mu and C alpha genes just in front of the first exon of C mu. Partial nucleotide sequencing of this region revealed that this region consists of tandem repeats of pentamers (C/T)(C/A)CAG complementary to the mammalian switch repetitive region. These findings suggest that this region is a good candidate for a class switch region of the mu-chain gene of chicken Ig.
Collapse
Affiliation(s)
- H Kitao
- Center for Molecular Biology and Genetics, Kyoto University, Japan
| | | | | | | |
Collapse
|
20
|
Affiliation(s)
- J Stavnezer
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655-0122, USA
| |
Collapse
|
21
|
Chaillet JR, Bader DS, Leder P. Regulation of genomic imprinting by gametic and embryonic processes. Genes Dev 1995; 9:1177-87. [PMID: 7758943 DOI: 10.1101/gad.9.10.1177] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Parental genomic imprinting refers to the phenomenon by which alleles behave differently depending on the sex of the parent from which they are inherited. In the case of the murine transgene RSVIgmyc, imprinting is manifest in two ways: differential DNA methylation and differential expression. In inbred FVB/N mice, a transgene inherited from a male parent is undermethylated and expressed; a transgene inherited from the female parent is overmethylated and silent. Using a series of RSVIgmyc constructs and transgenic mice, we show that the imprinting of this transgene requires a cis-acting signal that is principally derived from the repeat sequences that make up the 3' portion of the murine immunoglobulin alpha heavy-chain switch region. Such imprinting is relatively independent of the site of transgene insertion but is influenced by the structure of the transgene itself. Imprinting is also modulated by genetic background. Detailed studies indicate that the paternal allele is undermethylated and expressed in inbred FVB/N mice and in heterozygous F1 FVB/N/C57Bl/6J mice but is overmethylated and silent in inbred C57Bl/6J mice. Consequently, the FVB/N genome appears to carry alleles of modulating genes that dominantly block methylation and permit expression of the paternally imprinted transgene. Furthermore, our results suggest that overmethylation is the default status of both parental alleles and that the paternal allele can be marked in trans by polymorphic factors that act in postblastocyst embryos.
Collapse
Affiliation(s)
- J R Chaillet
- Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|