1
|
Guidi R, Xu D, Choy DF, Ramalingam TR, Lee WP, Modrusan Z, Liang Y, Marsters S, Ashkenazi A, Huynh A, Mills J, Flanagan S, Hambro S, Nunez V, Leong L, Cook A, Tran TH, Austin CD, Cao Y, Clarke C, Panettieri RA, Koziol-White C, Jester WF, Wang F, Wilson MS. Steroid-induced fibroblast growth factors drive an epithelial-mesenchymal inflammatory axis in severe asthma. Sci Transl Med 2022; 14:eabl8146. [PMID: 35442706 PMCID: PMC10301263 DOI: 10.1126/scitranslmed.abl8146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Asthma and inflammatory airway diseases restrict airflow in the lung, compromising gas exchange and lung function. Inhaled corticosteroids (ICSs) can reduce inflammation, control symptoms, and improve lung function; however, a growing number of patients with severe asthma do not benefit from ICS. Using bronchial airway epithelial brushings from patients with severe asthma or primary human cells, we delineated a corticosteroid-driven fibroblast growth factor (FGF)-dependent inflammatory axis, with FGF-responsive fibroblasts promoting downstream granulocyte colony-stimulating factor (G-CSF) production, hyaluronan secretion, and neutrophilic inflammation. Allergen challenge studies in mice demonstrate that the ICS, fluticasone propionate, inhibited type 2-driven eosinophilia but induced a concomitant increase in FGFs, G-CSF, hyaluronan, and neutrophil infiltration. We developed a model of steroid-induced neutrophilic inflammation mediated, in part, by induction of an FGF-dependent epithelial-mesenchymal axis, which may explain why some individuals do not benefit from ICS. In further proof-of-concept experiments, we found that combination therapy with pan-FGF receptor inhibitors and corticosteroids prevented both eosinophilic and steroid-induced neutrophilic inflammation. Together, these results establish FGFs as therapeutic targets for severe asthma patients who do not benefit from ICS.
Collapse
Affiliation(s)
- Riccardo Guidi
- Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| | - Daqi Xu
- Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| | - David F. Choy
- Biomarker Discovery OMNI, Genentech, South San Francisco, CA 94080, USA
| | | | - Wyne P. Lee
- Translational Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Zora Modrusan
- Next Generation Sequencing (NGS), Genentech, South San Francisco, CA 94080, USA
| | - Yuxin Liang
- Next Generation Sequencing (NGS), Genentech, South San Francisco, CA 94080, USA
| | - Scot Marsters
- Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Avi Ashkenazi
- Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Alison Huynh
- Necropsy, Genentech, South San Francisco, CA 94080, USA
| | - Jessica Mills
- Necropsy, Genentech, South San Francisco, CA 94080, USA
| | - Sean Flanagan
- Necropsy, Genentech, South San Francisco, CA 94080, USA
| | | | - Victor Nunez
- Necropsy, Genentech, South San Francisco, CA 94080, USA
| | - Laurie Leong
- Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Ashley Cook
- Pathology, Genentech, South San Francisco, CA 94080, USA
| | | | - Cary D. Austin
- Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Yi Cao
- OMNI Bioinformatics, Genentech, South San Francisco, CA 94080, USA
| | - Christine Clarke
- OMNI Bioinformatics, Genentech, South San Francisco, CA 94080, USA
| | - Reynold A. Panettieri
- Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Cynthia Koziol-White
- Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - William F. Jester
- Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Fen Wang
- Center for Cancer Biology and Nutrition, Texas A&M University, Houston, TX 77030, USA
| | - Mark S. Wilson
- Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| |
Collapse
|
2
|
Reynolds AB, Kanner SB, Bouton AH, Schaller MD, Weed SA, Flynn DC, Parsons JT. SRChing for the substrates of Src. Oncogene 2013; 33:4537-47. [PMID: 24121272 DOI: 10.1038/onc.2013.416] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 12/12/2022]
Abstract
By the mid 1980's, it was clear that the transforming activity of oncogenic Src was linked to the activity of its tyrosine kinase domain and attention turned to identifying substrates, the putative next level of control in the pathway to transformation. Among the first to recognize the potential of phosphotyrosine-specific antibodies, Parsons and colleagues launched a risky shotgun-based approach that led ultimately to the cDNA cloning and functional characterization of many of today's best-known Src substrates (for example, p85-Cortactin, p110-AFAP1, p130Cas, p125FAK and p120-catenin). Two decades and over 6000 citations later, the original goals of the project may be seen as secondary to the enormous impact of these protein substrates in many areas of biology. At the request of the editors, this review is not restricted to the current status of the substrates, but reflects also on the anatomy of the project itself and some of the challenges and decisions encountered along the way.
Collapse
Affiliation(s)
- A B Reynolds
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - S B Kanner
- Arrowhead Research Corporation, Madison, WI, USA
| | - A H Bouton
- Departments of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - M D Schaller
- Department of Biochemistry, 3124 HSN, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV, USA
| | - S A Weed
- Department of Neurobiology and Anatomy, 1833 Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV, USA
| | - D C Flynn
- Department of Medical Lab Sciences, College of Health Sciences, University of Delaware, Newark, DE, USA
| | - J T Parsons
- Departments of Microbiology, Immunology and Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA, USA
| |
Collapse
|
3
|
Zakrzewska M, Sørensen V, Jin Y, Wiedlocha A, Olsnes S. Translocation of exogenous FGF1 into cytosol and nucleus is a periodic event independent of receptor kinase activity. Exp Cell Res 2011; 317:1005-15. [DOI: 10.1016/j.yexcr.2011.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/10/2010] [Accepted: 01/03/2011] [Indexed: 10/18/2022]
|
4
|
Cell surface heparan sulfates mediate internalization of the PWWP/HATH domain of HDGF via macropinocytosis to fine-tune cell signalling processes involved in fibroblast cell migration. Biochem J 2011; 433:127-38. [PMID: 20964630 DOI: 10.1042/bj20100589] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
HDGF (hepatoma-derived growth factor) stimulates cell proliferation by functioning on both sides of the plasma membrane as a ligand for membrane receptor binding to trigger cell signalling and as a stimulator for DNA synthesis in the nucleus. Although HDGF was initially identified as a secretory heparin-binding protein, the biological significance of its heparin-binding ability remains to be determined. In the present study we demonstrate that cells devoid of surface HS (heparan sulfate) were unable to internalize HDGF, HATH (N-terminal domain of HDGF consisting of amino acid residues 1-100, including the PWWP motif) and HATH(K96A) (single-site mutant form of HATH devoid of receptor binding activity), suggesting that the binding of HATH to surface HS is important for HDGF internalization. We further demonstrate that both HATH and HATH(K96A) could be internalized through macropinocytosis after binding to the cell surface HS. Interestingly, HS-mediated HATH(K96A) internalization is found to exhibit an inhibitory effect on cell migration and proliferation in contrast with that observed for HATH action on NIH 3T3 cells, suggesting that HDGF exploits the innate properties of both cell surface HS and membrane receptor via the HATH domain to affect related cell signalling processes. The present study indicates that MAPK (mitogen-activated protein kinase) signalling pathways could be affected by the HS-mediated HATH internalization to regulate cell migration in NIH 3T3 fibroblasts, as judged from the differential effect of HATH and HATH(K96A) treatment on the expression level of matrix metalloproteases.
Collapse
|
5
|
Zakrzewska M, Wiedlocha A, Szlachcic A, Krowarsch D, Otlewski J, Olsnes S. Increased protein stability of FGF1 can compensate for its reduced affinity for heparin. J Biol Chem 2009; 284:25388-403. [PMID: 19574212 PMCID: PMC2757240 DOI: 10.1074/jbc.m109.001289] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human FGF1 (fibroblast growth factor 1) is a powerful signaling molecule with a short half-life in vivo and a denaturation temperature close to physiological. Binding to heparin increases the stability of FGF1 and is believed to be important in the formation of FGF1.fibroblast growth factor receptor (FGFR) active complex. In order to reveal the function of heparin in FGF1.FGFR complex formation and signaling, we constructed several FGF1 variants with reduced affinity for heparin and with diverse stability. We determined their biophysical properties and biological activities as well as their ability to translocate across cellular membranes. Our study showed that increased thermodynamic stability of FGF1 nicely compensates for decreased binding of heparin in FGFR activation, induction of DNA synthesis, and cell proliferation. By stepwise introduction of stabilizing mutations into the K118E (K132E) FGF1 variant that shows reduced affinity for heparin and is inactive in stimulation of DNA synthesis, we were able to restore the full mitogenic activity of this mutant. Our results indicate that the main role of heparin in FGF-induced signaling is to protect this naturally unstable protein against heat and/or proteolytic degradation and that heparin is not essential for a direct FGF1-FGFR interaction and receptor activation.
Collapse
Affiliation(s)
- Malgorzata Zakrzewska
- Centre for Cancer Biomedicine, University of Oslo, and Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
6
|
Zakrzewska M, Marcinkowska E, Wiedlocha A. FGF-1: From Biology Through Engineering to Potential Medical Applications. Crit Rev Clin Lab Sci 2008; 45:91-135. [DOI: 10.1080/10408360701713120] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Schalper KA, Palacios-Prado N, Retamal MA, Shoji KF, Martínez AD, Sáez JC. Connexin hemichannel composition determines the FGF-1-induced membrane permeability and free [Ca2+]i responses. Mol Biol Cell 2008; 19:3501-13. [PMID: 18495870 DOI: 10.1091/mbc.e07-12-1240] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cell surface hemichannels (HCs) composed of different connexin (Cx) types are present in diverse cells and their possible role on FGF-1-induced cellular responses remains unknown. Here, we show that FGF-1 transiently (4-14 h, maximal at 7 h) increases the membrane permeability through HCs in HeLa cells expressing Cx43 or Cx45 under physiological extracellular Ca(2+)/Mg(2+) concentrations. The effect does not occur in HeLa cells expressing HCs constituted of Cx26 or Cx43 with its C-terminus truncated at aa 257, or in parental nontransfected HeLa cells. The increase in membrane permeability is associated with a rise in HC levels at the cell surface and a proportional increase in HC unitary events. The response requires an early intracellular free Ca(2+) concentration increase, activation of a p38 MAP kinase-dependent pathway, and a regulatory site of Cx subunit C-terminus. The FGF-1-induced rise in membrane permeability is also associated with a late increase in intracellular free Ca(2+) concentration, suggesting that responsive HCs allow Ca(2+) influx. The cell density of Cx26 and Cx43 HeLa transfectants cultured in serum-free medium was differentially affected by FGF-1. Thus, the FGF-1-induced cell permeabilization and derived consequences depend on the Cx composition of HCs.
Collapse
Affiliation(s)
- Kurt A Schalper
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
8
|
Phosphorylation of fibroblast growth factor (FGF) receptor 1 at Ser777 by p38 mitogen-activated protein kinase regulates translocation of exogenous FGF1 to the cytosol and nucleus. Mol Cell Biol 2008; 28:4129-41. [PMID: 18411303 DOI: 10.1128/mcb.02117-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exogenous fibroblast growth factor 1 (FGF1) signals through activation of transmembrane FGF receptors (FGFRs) but may also regulate cellular processes after translocation to the cytosol and nucleus of target cells. Translocation of FGF1 occurs across the limiting membrane of intracellular vesicles and is a regulated process that depends on the C-terminal tail of the FGFR. Here, we report that translocation of FGF1 requires activity of the alpha isoform of p38 mitogen-activated protein kinase (MAPK). FGF1 translocation was inhibited after chemical inhibition of p38 MAPK or after small interfering RNA knockdown of p38alpha. Translocation was increased after stimulation of p38 MAPK with anisomycin, mannitol, or H2O2. The activity level of p38 MAPK was not found to affect endocytosis or intracellular sorting of FGF1/FGFR1. Instead, we found that p38 MAPK regulates FGF1 translocation by phosphorylation of FGFR1 at Ser777. The FGFR1 mutation S777A abolished FGF1 translocation, while phospho-mimetic mutations of Ser777 to Asp or Glu allowed translocation to take place and bypassed the requirement for active p38 MAPK. Ser777 in FGFR1 was directly phosphorylated by p38alpha in a cell-free system. These data demonstrate a crucial role for p38alpha MAPK in the regulated translocation of exogenous FGF1 into the cytosol/nucleus, and they reveal a specific role for p38alpha MAPK-mediated serine phosphorylation of FGFR1.
Collapse
|
9
|
LP B, C W, EM B, Gassman A, A S, J C, W W, CL H, WH V, WH B, HP G. Construction and characterization of a thrombin-resistant designer FGF-based collagen binding domain angiogen. Biomaterials 2008; 29:327-36. [PMID: 17950455 PMCID: PMC2169381 DOI: 10.1016/j.biomaterials.2007.09.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 09/23/2007] [Indexed: 11/21/2022]
Abstract
Humans demonstrate limited spontaneous endothelialization of prosthetic bypass grafts. However the local application of growth factors to prosthetic grafts or to injured blood vessels can provide an immediate effect on endothelialization. Novel chimeric proteins combining potent angiogens with extracellular matrix binding domains may localize to exposed matrices and provide sustained activity to promote endothelial regeneration after vascular interventions. We have ligated a thrombin-resistant mutant of fibroblast growth factor (FGF)-1 (R136K) with a collagen binding domain (CBD) in order to direct this growth factor to sites of exposed vascular collagen or selected bioengineered scaffolds. While FGF-1 and R136K are readily attracted to a variety of matrix proteins, R136K-CBD demonstrated selective and avid binding to collagen approximately 4x that of FGF-1 or R136K alone (P<0.05). The molecular stability of R136K-CBD was superior to FGF-1 and R136K. Its chemotactic activity was superior to R136K and FGF-1 (11+/-1% vs. 6+/-2% and 4+/-1%; P<0.01). Its angiogenic activity was similar to R136K and significantly greater than control by day 2 (P<0.01). After day 3, FGF-1-treated endothelial cell's (EC) sprouts had regressed back to levels insignificant compared to the control group (P=0.17), while both R136K and R136K-CBD continued to demonstrate greater sprout lengthening as compared to control (P<0.0002). The mitogenic activity of all growth factors was greater than control groups (20% PBS); in all comparisons (P<0.0001). This dual functioning angiogen provides proof of concept for the application of designer angiogens to matrix binding proteins to intelligently promote endothelial regeneration of selected matrices.
Collapse
Affiliation(s)
- Brewster LP
- Loyola University Medical Center, Department of Surgery, 2160 South First Avenue, Maywood, IL, 60153
- Loyola University Medical Center, Department of Cell Biology, Neurobiology, and Anatomy, 2160 South First Avenue, Maywood, IL, 60153
| | - Washington C
- University of Nebraska, Department of Chemical and Biomolecular Engineering, Lincoln, NE, 68588
| | - Brey EM
- Edward J. Hines, Jr. VA Hospital, Research Services, 5th avenue & Roosevelt road, Hines, IL, 60141
- Illinois Institute of Technology, Department of Biomedical Engineering, 10 West 32nd Street, Chicago, IL, 60616
| | - Andrew Gassman
- Loyola University Medical Center, Department of Surgery, 2160 South First Avenue, Maywood, IL, 60153
| | - Subramanian A
- University of Nebraska, Department of Chemical and Biomolecular Engineering, Lincoln, NE, 68588
| | - Calceterra J
- University of Nebraska, Department of Chemical and Biomolecular Engineering, Lincoln, NE, 68588
| | - Wolf W
- Edward J. Hines, Jr. VA Hospital, Research Services, 5th avenue & Roosevelt road, Hines, IL, 60141
| | - Hall CL
- Illinois Institute of Technology, Department of Biomedical Engineering, 10 West 32nd Street, Chicago, IL, 60616
| | - Velander WH
- University of Nebraska, Department of Chemical and Biomolecular Engineering, Lincoln, NE, 68588
| | | | - Greisler HP
- Loyola University Medical Center, Department of Surgery, 2160 South First Avenue, Maywood, IL, 60153
- Loyola University Medical Center, Department of Cell Biology, Neurobiology, and Anatomy, 2160 South First Avenue, Maywood, IL, 60153
- Edward J. Hines, Jr. VA Hospital, Research Services, 5th avenue & Roosevelt road, Hines, IL, 60141
- Edward J. Hines, Jr. VA Hospital, Surgical Services, 5th avenue & Roosevelt road, Hines, IL, 60141
| |
Collapse
|
10
|
Zhen Y, Sørensen V, Jin Y, Suo Z, Wiedłocha A. Indirubin-3'-monoxime inhibits autophosphorylation of FGFR1 and stimulates ERK1/2 activity via p38 MAPK. Oncogene 2007; 26:6372-85. [PMID: 17533378 DOI: 10.1038/sj.onc.1210473] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Indirubin-3'-monoxime is a derivative of the bis-indole alkaloid indirubin, an active ingredient of a traditional Chinese medical preparation that exhibits anti-inflammatory and anti-leukemic activities. Indirubin-3'-monoxime is mainly recognized as an inhibitor of cyclin-dependent kinases (CDKs) and glycogen synthase kinase-3. It inhibits proliferation of cultured cells, mainly through arresting the cells in the G1/S or G2/M phase of the cell cycle. Here, we report that indirubin-3'-monoxime is able to inhibit proliferation of NIH/3T3 cells by specifically inhibiting autophosphorylation of fibroblast growth factor receptor 1 (FGFR1), blocking in this way the receptor-mediated cell signaling. Indirubin-3'-monoxime inhibits the activity of FGFR1 at a concentration lower than that required for inhibition of phosphorylation of CDK2 and retinoblastoma protein and cell proliferation stimulated by fetal calf serum. The ability of indirubin-3'-monoxime to inhibit FGFR1 signaling was similar to that of the FGFR1 inhibitor SU5402. In addition, we found that indirubin-3'-monoxime activates long-term p38 mitogen-activated protein kinase activity, which stimulates extracellular signal-regulated kinase 1/2 in a way unrelated to the activity of FGFR1. Furthermore, we show that indirubin-3'-monoxime can inhibit proliferation of the myeloid leukemia cell line KG-1a through inhibition of the activity of the FGFR1 tyrosine kinase. The data presented here demonstrate previously unknown activities of indirubin-3'-monoxime that may have clinical implications.
Collapse
Affiliation(s)
- Y Zhen
- Department of Biochemistry, Institute for Cancer Research at The National Hospital - The Norwegian Radium Hospital, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
11
|
Arnoys EJ, Wang JL. Dual localization: proteins in extracellular and intracellular compartments. Acta Histochem 2007; 109:89-110. [PMID: 17257660 DOI: 10.1016/j.acthis.2006.10.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 10/01/2006] [Accepted: 10/09/2006] [Indexed: 12/24/2022]
Abstract
The goal of this article is to provide a comprehensive catalog of those proteins documented to exhibit dual localization, being found in both the extracellular compartment (cell surface and extracellular medium) as well as the intracellular compartment (cytosol and nucleus). A large subset of these proteins that show dual localization is found both in the nucleus and outside of cells. Proteins destined to be secreted out of the cell or to be expressed at the cell surface usually enter the endomembrane pathway on the basis of a signal sequence that targets them into the endoplasmic reticulum. Proteins destined for import into the nucleus, on the other hand, usually carry a nuclear localization signal. We have organized our catalog in terms of the presence and absence of these trafficking signals: (a) proteins that contain a signal sequence but no nuclear localization signal; (b) proteins that contain both a signal sequence as well as a nuclear localization signal; (c) proteins that contain a nuclear localization signal but lack a signal sequence; and (d) proteins containing neither a signal sequence nor a nuclear localization signal. Novel insights regarding the activities of several classes of proteins exhibiting dual localization can be derived when one targeting signal is experimentally abrogated. For example, the mitogenic activity of both fibroblasts growth factor-1 and schwannoma-derived growth factor clearly requires nuclear localization, independent of the activation of the receptor tyrosine kinase signaling pathway. In addition, there is a growing list of integral membrane receptors that undergo translocation to the nucleus, with bona fide nuclear localization signals and transcription activation activity. The information provided in this descriptive catalog will, hopefully, stimulate investigations into the pathways and mechanisms of transport between these compartments and the physiological significance of dual localization.
Collapse
Affiliation(s)
- Eric J Arnoys
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | | |
Collapse
|
12
|
Sørensen V, Wiedlocha A, Haugsten EM, Khnykin D, Wesche J, Olsnes S. Different abilities of the four FGFRs to mediate FGF-1 translocation are linked to differences in the receptor C-terminal tail. J Cell Sci 2006; 119:4332-41. [PMID: 17003104 DOI: 10.1242/jcs.03209] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Members of the fibroblast growth factor family bind to one or more of the four closely related membrane-spanning FGF receptors. In addition to signaling through the receptors, exogenous FGF-1 and FGF-2 are endocytosed and translocated to the cytosol and nucleus where they stimulate RNA and DNA synthesis. Here we have studied the ability of the four FGF receptors to facilitate translocation of exogenous FGF-1 to the cytosol and nucleus. FGFR1 and FGFR4 were able to mediate translocation, whereas FGFR2 and FGFR3 completely lacked this ability. By analyzing mutant FGFRs we found that the tyrosine kinase domain could be deleted from FGFR1 without abolishing translocation, whereas the C-terminal tail of the FGFRs, constituted by approximately 50 amino acids downstream of the kinase domain, plays a crucial role in FGF-1 translocation. Three amino acids residues within the C-terminal tail were found to be of particular importance for translocation. For FGFR2, the two amino acid substitutions Q774M and P800H were sufficient to enable the receptor to support FGF-1 translocation. The results demonstrate a striking diversity in function of the four FGFRs determined by their C-terminal domain.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Western
- COS Cells
- Cattle
- Chlorocebus aethiops
- Electrophoresis, Polyacrylamide Gel
- Fibroblast Growth Factor 1/metabolism
- HeLa Cells
- Humans
- Kinetics
- Mice
- Molecular Sequence Data
- Mutation/genetics
- Phosphorylation
- Protein Transport/physiology
- Rats
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/physiology
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/physiology
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/physiology
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Receptor, Fibroblast Growth Factor, Type 4/physiology
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Receptors, Fibroblast Growth Factor/physiology
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Vigdis Sørensen
- The Department of Biochemistry, Institute for Cancer Research, The University of Oslo, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
13
|
Zhang D, Kosman J, Carmean N, Grady R, Bassuk JA. FGF-10 and its receptor exhibit bidirectional paracrine targeting to urothelial and smooth muscle cells in the lower urinary tract. Am J Physiol Renal Physiol 2006; 291:F481-94. [PMID: 16597614 DOI: 10.1152/ajprenal.00025.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Control of the regenerative properties of urothelial tissue would greatly aid the clinician in the management of urinary tract disease and disorders. Fibroblast growth factor 10 (FGF-10) is a mitogen which is particularly promising as a protein therapy for urothelial injury. The spatial synthesis, transport, targeting, and mechanistic pathway of FGF-10 and its receptor were studied in a human urothelial cell culture model and in fixed sections of lower urinary tract tissue. Synthesis of FGF-10 was restricted to mesenchymal fibroblasts, and secreted FGF-10 exhibited paracrine transport to two proximal sites, transitional epithelium and smooth muscle cell bundles, both of which were also the exclusive sites of FGF-10 receptor synthesis. The addition of recombinant FGF-10 to quiescent urothelial cells in vitro was sufficient to stimulate DNA synthesis. This stimulation was through a pathway independent of the epidermal growth factor receptor pathway. Deconvolution, light and transmission electron microscopic studies captured FGF-10 and its receptor in association with the urothelial cell surface, in cytoplasm, and within nuclei, observations that describe the mechanism that transduces the mitogenic signal in these tissues. Localization of the FGF-10 receptor to the superficial urothelial layer is clinically significant because intravesical administration of FGF-10 may provide the clinician a means to control the turnover of transitional epithelium in bladder disorders such as interstitial cystitis.
Collapse
MESH Headings
- Cells, Cultured
- DNA/biosynthesis
- Fibroblast Growth Factor 10/analysis
- Fibroblast Growth Factor 10/genetics
- Fibroblast Growth Factor 10/physiology
- Fibroblasts/chemistry
- Fibroblasts/cytology
- Fibroblasts/physiology
- Gene Expression Regulation
- Humans
- Microscopy, Electron, Transmission
- Mucous Membrane/chemistry
- Mucous Membrane/cytology
- Mucous Membrane/physiology
- Myocytes, Smooth Muscle/chemistry
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/physiology
- Paracrine Communication/physiology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Receptor Cross-Talk/physiology
- Receptor, Fibroblast Growth Factor, Type 2/analysis
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/physiology
- Receptors, Fibroblast Growth Factor/analysis
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/physiology
- Urinary Tract Physiological Phenomena
- Urothelium/chemistry
- Urothelium/cytology
- Urothelium/physiology
- Urothelium/ultrastructure
Collapse
Affiliation(s)
- Dianzhong Zhang
- Program in Human Urothelial Biology, Children's Hospital and Regional Medical Center, 4800 NE Sand Point Way, Mail Stop A8938, Seattle, WA 98105, USA
| | | | | | | | | |
Collapse
|
14
|
Levenstein ME, Ludwig TE, Xu RH, Llanas RA, VanDenHeuvel-Kramer K, Manning D, Thomson JA. Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 2006; 24:568-74. [PMID: 16282444 PMCID: PMC4615709 DOI: 10.1634/stemcells.2005-0247] [Citation(s) in RCA: 315] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human embryonic stem (ES) cells have most commonly been cultured in the presence of basic fibroblast growth factor (FGF2) either on fibroblast feeder layers or in fibroblast-conditioned medium. It has recently been reported that elevated concentrations of FGF2 permit the culture of human ES cells in the absence of fibroblasts or fibroblast-conditioned medium. Herein we compare the ability of unconditioned medium (UM) supplemented with 4, 24, 40, 80, 100, and 250 ng/ml FGF2 to sustain low-density human ES cell cultures through multiple passages. In these stringent culture conditions, 4, 24, and 40 ng/ml FGF2 failed to sustain human ES cells through three passages, but 100 ng/ml sustained human ES cells with an effectiveness comparable to conditioned medium (CM). Two human ES cell lines (H1 and H9) were maintained for up to 164 population doublings (7 and 4 months) in UM supplemented with 100 ng/ml FGF2. After prolonged culture, the cells formed teratomas when injected into severe combined immunodeficient beige mice and expressed markers characteristic of undifferentiated human ES cells. We also demonstrate that FGF2 is degraded more rapidly in UM than in CM, partly explaining the need for higher concentrations of FGF2 in UM. These results further facilitate the large-scale, routine culture of human ES cells and suggest that fibroblasts and fibro-blast-conditioned medium sustain human ES cells in part by stabilizing FGF signaling above a critical threshold.
Collapse
Affiliation(s)
| | - Tenneille E. Ludwig
- Wisconsin National Primate Research Center, University of Wisconsin-Madison Medical School and The Genome Center of Wisconsin, Madison, WI 53706
| | - Ren-He Xu
- WiCell Research Institute, Madison, WI 53707-7365
| | | | | | | | - James A. Thomson
- WiCell Research Institute, Madison, WI 53707-7365
- Wisconsin National Primate Research Center, University of Wisconsin-Madison Medical School and The Genome Center of Wisconsin, Madison, WI 53706
- Department of Anatomy, University of Wisconsin-Madison Medical School and The Genome Center of Wisconsin, Madison, WI 53706
| |
Collapse
|
15
|
Sue SC, Chen JY, Lee SC, Wu WG, Huang TH. Solution Structure and Heparin Interaction of Human Hepatoma-derived Growth Factor. J Mol Biol 2004; 343:1365-77. [PMID: 15491618 DOI: 10.1016/j.jmb.2004.09.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Revised: 09/03/2004] [Accepted: 09/08/2004] [Indexed: 11/18/2022]
Abstract
Hepatoma-derived growth factor (HDGF)-related proteins (HRPs) comprise a new protein family that has been implicated in nephrogenesis, tumorigenesis, vascular development, cell proliferation, and transcriptional activation. All HRPs share a conserved N-terminal homologous to the amino terminus of HDGF (HATH) domain, but vary significantly in the C-terminal region. Here, we show that in solution the N and C termini of human HDGF form two structurally independent domains. The 100 amino acid residue N-terminal HATH domain is well-structured while the 140 amino acid residue C-terminal domain is disordered. We determined the solution structure of the HATH domain by NMR. The core structure of the HATH domain is a five-stranded beta-barrel followed by two alpha-helices, similar to those of PWWP domains of known structures. Surface plasmon resonance results showed that the HATH domain is primarily responsible for heparin binding. On the basis of the chemical shift perturbation induced by binding of heparin-derived hexasaccharide, we identified a prominent, highly positively charged region as the putative heparin-binding site. Sequence comparison and structure prediction suggest that all HRPs are likely to adapt a similar modular structure.
Collapse
Affiliation(s)
- Shih-Che Sue
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, Taiwan 115, ROC
| | | | | | | | | |
Collapse
|
16
|
Sørensen V, Brech A, Khnykin D, Kolpakova E, Citores L, Olsnes S. Deletion mutant of FGFR4 induces onion-like membrane structures in the nucleus. J Cell Sci 2004; 117:1807-19. [PMID: 15075241 DOI: 10.1242/jcs.01047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of several deletion mutants of fibroblast growth factor receptor 4 (FGFR4) was studied in COS-1 cells. FGFR4-mutants lacking most of the extracellular region did not efficiently reach the plasma membrane but accumulated in the endoplasmic reticulum (ER) and Golgi body. A mutant FGFR4 lacking the kinase domain as well as most of the extracellular region (DeltaExt/R4Tth) had a distinct intracellular distribution. It localized in part to the nucleus, where it exhibited a striking spotted pattern. Ultrastructural studies showed that the nuclear spots consisted of several layers of membrane that were folded into onion-like structures at the nucleoplasmic side of the nuclear envelope. These intranuclear structures did not contain nuclear pores but were positive for the ER proteins calreticulin and protein disulfide isomerase, in addition to abundant DeltaExt/R4Tth. Formation of the intranuclear structures was sensitive to inhibition of protein kinase C. Live microscopy of a green-fluorescent-protein/DeltaExt/R4Tth fusion protein showed that the intranuclear structures were stable and immobile, suggesting that they function as deposits of the overexpressed mutant and associated membrane. The DeltaExt/R4Tth protein also induced formation of densely packed membrane stacks in the cytosol and we suggest a model were the intranuclear structures are formed by invagination of ER-derived membrane stacks into the nucleus.
Collapse
Affiliation(s)
- Vigdis Sørensen
- Institute for Cancer Research, The Norwegian Radium Hospital, Department of Biochemistry, Montebello, 0310 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
17
|
Wiedłocha A, Sørensen V. Signaling, internalization, and intracellular activity of fibroblast growth factor. Curr Top Microbiol Immunol 2004; 286:45-79. [PMID: 15645710 DOI: 10.1007/978-3-540-69494-6_3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The fibroblast growth factor (FGF) family contains 23 members in mammals including its prototype members FGF-1 and FGF-2. FGFs have been implicated in regulation of many key cellular responses involved in developmental and physiological processes. These includes proliferation, differentiation, migration, apoptosis, angiogenesis, and wound healing. FGFs bind to five related, specific cell surface receptors (FGFRs). Four of these have intrinsic tyrosine kinase activity. Dimerization of the receptor is a prerequisite for receptor transphosphorylation and activation of downstream signaling molecules. All members of the FGF family have a high affinity for heparin and for cell surface heparan sulfate proteoglycans, which participate in formation of stable and active FGF-FGFR complexes. FGF-mediated signaling is an evolutionarily conserved signaling module operative in invertebrates and vertebrates. It seems that some members of the family have a dual mode of action. FGF-1, FGF-2, FGF-3, and FGF-11-14 have been found intranuclearly as endogenous proteins. Exogenous FGF-1 and FGF-2 are internalized by receptor-mediated endocytosis, in a clathrin-dependent and -independent way. Internalized FGF-1 and FGF-2 are able to cross cellular membranes to reach the cytosol and the nuclear compartment. The role of FGF internalization and the intracellular activity of some FGFs are discussed in the context of the known signaling induced by FGF.
Collapse
Affiliation(s)
- A Wiedłocha
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway.
| | | |
Collapse
|
18
|
Andreeva V, Prudovsky I, Thomas M. Stimulation of quiescent cells by individual polypeptide growth factors is limited to one cell cycle. Eur J Cell Biol 2004; 83:327-35. [PMID: 15503856 DOI: 10.1078/0171-9335-00390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Since little is known about the function of polypeptide growth factors as regulators of multiple cell cycles, we compared the ability of FGF1, PDGF-AB and serum to induce a second round of DNA synthesis in Swiss 3T3 cells previously exposed to either FGF1, PDGF-AB or serum during the first cell cycle using [14C]- and [3H]thymidine in a double labeling system to distinguish between the first and second cell cycles. Surprisingly, we observed that cells exposed to either FGF1 or PDGF-AB in the first cell cycle were unable to synthesize DNA in response to FGF1 or PDGF-AB in the second cell cycle; yet these cells responded well to serum as a second cycle mitogen. Interestingly, while cells exposed to either FGF1 or PDGF-AB in the second cycle displayed normal receptor-mediated signaling and expressed cyclin D and E, they, like senescent fibroblasts and endothelial cells, failed to express cyclin A, and the continuous exposure of cells to either FGF1 or PDGF-AB resulted in a decrease in the kinase activity of the cyclin E/cdk2 complex. In addition, an increased association of this complex was observed with p21 CIP in an FGF1-dependent manner as well as with p27 KIP in a PDGF-AB-dependent manner. Lastly, the downregulation of p21 expression using an antisense strategy was able to partially rescue the replicative response of Swiss 3T3 cells to FGF1 in the second cycle. These data suggest that (i) FGF1 and PDGF-AB may limit their mitogenic effect to a single cell cycle, (ii) entry into the second round of replication is serum dependent and (iii) the self-limiting nature of FGF1 and PDGF-AB correlates with the accumulation of the cdk inhibitors, p21 and p27, respectively.
Collapse
Affiliation(s)
- Viktoria Andreeva
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| | | | | |
Collapse
|
19
|
Małecki J, Wesche J, Skjerpen CS, Wiedłocha A, Olsnes S. Translocation of FGF-1 and FGF-2 across vesicular membranes occurs during G1-phase by a common mechanism. Mol Biol Cell 2003; 15:801-14. [PMID: 14657241 PMCID: PMC329394 DOI: 10.1091/mbc.e03-08-0589] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The entry of exogenous fibroblast growth factor 2 (FGF-2) to the cytosolic/nuclear compartment was studied and compared with the translocation mechanism used by FGF-1. To differentiate between external and endogenous growth factor, we used FGF-2 modified to contain a farnesylation signal, a CaaX-box. Because farnesylation occurs only in the cytosol and nucleoplasm, farnesylation of exogenous FGF-2-CaaX was taken as evidence that the growth factor had translocated across cellular membranes. We found that FGF-2 translocation occurred in endothelial cells and fibroblasts, which express FGF receptors, and that the efficiency of translocation was increased in the presence of heparin. Concomitantly with translocation, the 18-kDa FGF-2 was N-terminally cleaved to yield a 16-kDa form. Translocation of FGF-2 required PI3-kinase activity but not transport through the Golgi apparatus. Inhibition of endosomal acidification did not prevent translocation, whereas dissipation of the vesicular membrane potential completely blocked it. The data indicate that translocation occurs from intracellular vesicles containing proton pumps and that an electrical potential across the vesicle membrane is required. Translocation of both FGF-1 and FGF-2 occurred during most of G(1) but decreased shortly before the G(1)-->S transition. A common mechanism for FGF-1 and FGF-2 translocation into cells is postulated.
Collapse
Affiliation(s)
- Jedrzej Małecki
- The Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | | | |
Collapse
|
20
|
Sahni A, Altland OD, Francis CW. FGF-2 but not FGF-1 binds fibrin and supports prolonged endothelial cell growth. J Thromb Haemost 2003; 1:1304-10. [PMID: 12871334 DOI: 10.1046/j.1538-7836.2003.00250.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Endothelial cell viability and growth are dependent on both polypeptide growth factors, and integrin-mediated matrix interactions. We have now examined the ability of fibrin-binding and non-binding growth factors to support long-term endothelial cell growth in the presence or absence of the soluble form. Endothelial cells were cultured on a fibrin surface, with or without FGF-1 or FGF-2, and proliferation was determined by (3)H-thymidine incorporation. Cells cultured on fibrin with no growth factor showed minimal proliferation up to 96 h. In contrast, when FGF-2 was incorporated into fibrin, proliferation was increased 6.5 +/- 0.6-fold, equal to growth on a fibrin surface with FGF-2 continually present in the medium. Thymidine incorporation was similar when cells were cultured on a fibrin surface that had been incubated with FGF-2 and then the growth factor removed (8.6 +/- 0.5-fold). In contrast to results with FGF-2, a surface of fibrin exposed to FGF-1 supported minimal growth, whereas growth was comparable to either FGF-1 or FGF-2 present in the medium. Comparable results were observed when proliferation was quantitated by cell counting at times up to 48 h. Binding studies demonstrated no high-affinity interaction of FGF-1 with fibrinogen or fibrin. We conclude that FGF-2 bound to fibrin supports prolonged endothelial cell growth as well as soluble FGF-2, whereas FGF-1 does not bind to fibrin and can support endothelial cell growth only if continually present in soluble form. Fibrin may serve as a matrix reservoir for FGF-2 to support cell growth at sites of injury or thrombosis.
Collapse
Affiliation(s)
- A Sahni
- Hematology/Oncology Unit, Department of Medicine, University of Rochester School of Medicine & Dentistry, University Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
21
|
Jiao J, Greendorfer JS, Zhang P, Zinn KR, Diglio CA, Thompson JA. Alternatively spliced FGFR-1 isoform signaling differentially modulates endothelial cell responses to peroxynitrite. Arch Biochem Biophys 2003; 410:187-200. [PMID: 12573278 DOI: 10.1016/s0003-9861(02)00681-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mounting experimental evidence has suggested that the trophic environment of cells in culture is an important determinant of their vulnerability to the cytotoxic effects of reactive oxidants such as peroxynitrite (ONOO(-)). However, acidic fibroblast growth factor (FGF-1)-induced signaling renders some cells more sensitive and others resistant to the cytotoxic effects of ONOO(-). To determine whether alternatively spliced fibroblast growth factor receptor (FGFR-1) isoforms are responsible for this differential response, we have stably transfected FGFR-negative rat brain-derived resistant vessel endothelial cells (RVEC) with human cDNA sequences encoding either FGFR-1 alpha or FGFR-1 beta. FGF-1 treatment of RVEC(R-1 alpha) transfectants enhanced ONOO(-)-mediated cell death in a manner dependent upon FGFR-1 tyrosine kinase, MEK/Erk 1/2 kinase, and p38 MAP kinase activities and independent of Src-family kinase (SFK) activity. FGF-1 treatment of RVEC(R-1 beta) transfectants inhibited the cytotoxic effects of ONOO(-) in a manner dependent upon FGFR-1 tyrosine kinase, MEK/Erk 1/2 kinase, and SFK activities and independent of p38 MAP kinase activity. FGF-1-induced preactivation of both FGFR-1 tyrosine and Erk 1/2 kinases was detected in both RVEC(R-1 alpha) and RVEC(R-1 beta) transfectants. FGF-1-induced preactivation of p38 MAPK was restricted to RVEC(R-1 alpha) transfectants, whereas, ligand-induced preactivation of SFK was limited to RVEC(R-1 beta) transfectants. Collectively, these results both reemphasize the role of extracellular trophic factors and their receptor-mediated signaling pathways during cellular responses to oxidant stress and provide a first indication that the alternatively spliced FGFR-1 isoforms induce differential signal transduction pathways.
Collapse
Affiliation(s)
- Jing Jiao
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
22
|
Kishima Y, Yamamoto H, Izumoto Y, Yoshida K, Enomoto H, Yamamoto M, Kuroda T, Ito H, Yoshizaki K, Nakamura H. Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. J Biol Chem 2002; 277:10315-10322. [PMID: 11751870 DOI: 10.1074/jbc.m111122200] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hepatoma-derived growth factor (HDGF) is the original member of the HDGF family of proteins, which contains a well-conserved N-terminal amino acid sequence (homologous to the amino terminus of HDGF; hath) and nuclear localization signals (NLSs) in gene-specific regions other than the hath region. In addition to a bipartite NLS in a gene-specific region, an NLS-like sequence is also found in the hath region. In cells expressing green fluorescence protein (GFP)-HDGF, green fluorescence was observed in the nucleus, whereas it was detected in the cytoplasm of cells expressing GFP-HDGF with both NLSs mutated or deleted. GFP-hath protein (GFP-HATH) was distributed mainly in the nucleus, although some was present in the cytoplasm, whereas GFP-HDGF with a deleted hath region (HDGFnonHATH) was found only in the nucleus. Exogenously supplied GFP-HDGF was internalized and translocated to the nucleus. GFP-HATH was internalized, whereas GFP-HDGFnonHATH was not. Overexpression of HDGF stimulated DNA synthesis and cellular proliferation, although HDGF with both NLSs deleted did not. Overexpression of HDGFnonHATH caused a significant stimulation of DNA synthesis, whereas that of hath protein did not. HDGF containing the NLS sequence of p53 instead of the bipartite NLS did not stimulate DNA synthesis, and truncated forms without the C- or N-terminal side of NLS2 did not. These findings suggest that the gene-specific region, at least the bipartite NLS sequence and the N- and C-terminal neighboring portions, is essential for the mitogenic activity of HDGF after nuclear translocation.
Collapse
Affiliation(s)
- Yoshihiko Kishima
- Department of Molecular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Small D, Kovalenko D, Kacer D, Liaw L, Landriscina M, Di Serio C, Prudovsky I, Maciag T. Soluble Jagged 1 represses the function of its transmembrane form to induce the formation of the Src-dependent chord-like phenotype. J Biol Chem 2001; 276:32022-30. [PMID: 11427524 DOI: 10.1074/jbc.m100933200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have previously demonstrated that the expression of the soluble extracellular domain of the transmembrane ligand for Notch receptors, Jagged 1 (sJ1), in NIH 3T3 cells results in the formation of a matrix-dependent chord-like phenotype, the loss of contact inhibition of growth, and an inhibition of pro-alpha 1(I) collagen expression. In an effort to define the mechanism by which sJ1 induces this phenotype, we report that sJ1 transfectants display biochemical and cytoskeletal alterations consistent with the activation of Src. Indeed, cotransfection of sJ1 transfectants with a dominant-negative mutant of Src resulted in the loss of matrix-dependent chord formation and correlated with the restoration of type I collagen expression and contact inhibition of growth. We also report that the sJ1-mediated induction of Src activity and related phenotypes, including chord formation, may result from the inhibition of endogenous Jagged 1-mediated Notch signaling since it was not possible to detect an sJ1-dependent induction of CSL-dependent transcription in these cells. Interestingly, NIH 3T3 cells transfected with dominant-negative (but not constitutively active) mutants of either Notch 1 or Notch 2 displayed a similar Src-related phenotype as the sJ1 transfectants. These data suggest that the ability of sJ1 to mediate chord formation is Src-dependent and requires the repression of endogenous Jagged 1-mediated Notch signaling, which is tolerant to the destabilization of the actin cytoskeleton, a mediator of cell migration.
Collapse
Affiliation(s)
- D Small
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Prudovsky I, Landriscina M, Soldi R, Bellum S, Small D, Andreeva V, Maciag T. Fusions to members of fibroblast growth factor gene family to study nuclear translocation and nonclassic exocytosis. Methods Enzymol 2001; 327:369-82. [PMID: 11044997 DOI: 10.1016/s0076-6879(00)27290-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- I Prudovsky
- Center for Molecular Medicine, Maine Medical Center Research Institute, South Portland 04106, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Mizukoshi E, Suzuki M, Misono T, Loupatov A, Munekata E, Kaul SC, Wadhwa R, Imamura T. Cell-cycle dependent tyrosine phosphorylation on mortalin regulates its interaction with fibroblast growth factor-1. Biochem Biophys Res Commun 2001; 280:1203-9. [PMID: 11162655 DOI: 10.1006/bbrc.2001.4225] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported that endogenously expressed, intracellularly localized fibroblast growth factor (FGF)-1 interacts with mortalin. Here we report that FGF-1 added to the culture medium of quiescent BALB/c3T3 cells is taken up by the cells and interacts with mortalin in the cells in a regulated manner. Although both the internalized FGF-1 and mortalin were present at high levels throughout the FGF-1-initiated cell cycle, their interaction became apparent only in late G1 phase. Interestingly, mortalin was preferentially tyrosine phosphorylated at the same time, and when its normally weak phosphorylation in early G1 phase was augmented by treating the cells with vanadate, a strong interaction between mortalin and FGF-1 was established. Conversely, when phosphorylated mortalin was treated with tyrosine phosphatase, its interaction with FGF-1 was abrogated. These results indicate that FGF-1 taken up by cells preferentially interacts with mortalin in late G1 phase of the cell cycle, and that tyrosine phosphorylation of mortalin regulates this interaction.
Collapse
Affiliation(s)
- E Mizukoshi
- National Institute of Bioscience and Human Technology, Tsukuba, Ibaraki, 305-8566, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Landriscina M, Prudovsky I, Mouta Carreira C, Soldi R, Tarantini F, Maciag T. Amlexanox reversibly inhibits cell migration and proliferation and induces the Src-dependent disassembly of actin stress fibers in vitro. J Biol Chem 2000; 275:32753-62. [PMID: 10921913 DOI: 10.1074/jbc.m002336200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amlexanox binds S100A13 and inhibits the release of fibroblast growth factor 1 (FGF1). Because members of the S100 gene family are known to be involved with the function of the cytoskeleton, we examined the ability of amlexanox to modify the cytoskeleton and report that amlexanox induces a dramatic reduction in the presence of actin stress fibers and the appearance of a random, non-oriented distribution of focal adhesion sites. Correspondingly, amlexanox induces the complete and reversible non-apoptotic inhibition of cell migration and proliferation, and although amlexanox does not induce either the down-regulation of F-actin levels or the depolymerization of actin filaments, it does induce the tyrosine phosphorylation of cortactin, a Src substrate known to regulate actin bundling. In addition, a dominant negative form of Src is able to partially rescue cells from the effect of amlexanox on both the actin cytoskeleton and cell migration. In contrast, the inhibition of cell proliferation by amlexanox correlates with the inhibition of cyclin D1 expression without interference of the receptor tyrosine kinase/mitogen-activated protein kinase signaling pathway. Last, the ability of amlexanox to inhibit FGF1 release is reversible and correlates with the restoration of the actin cytoskeleton, suggesting a role for the actin cytoskeleton in the FGF1 release pathway.
Collapse
MESH Headings
- 3T3 Cells
- Actins/chemistry
- Actins/drug effects
- Actins/physiology
- Aminopyridines/pharmacology
- Animals
- Anti-Inflammatory Agents/pharmacology
- Aorta
- Apoptosis/drug effects
- Cell Division/drug effects
- Cell Movement/drug effects
- Cortactin
- Cytoskeleton/drug effects
- Cytoskeleton/physiology
- Cytoskeleton/ultrastructure
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Fibroblast Growth Factor 1
- Fibroblast Growth Factor 2/genetics
- Fibroblast Growth Factor 2/physiology
- Genes, src
- Humans
- L Cells
- Mice
- Microfilament Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Phosphorylation
- Rats
- Receptors, Cell Surface/drug effects
- Receptors, Cell Surface/physiology
- Steroids
- Transfection
- Umbilical Veins
- Xenopus laevis
Collapse
Affiliation(s)
- M Landriscina
- Center for Molecular Medicine, Maine Medical Center Research Institute, South Portland, Maine 04106, USA
| | | | | | | | | | | |
Collapse
|
27
|
Bryckaert M, Guillonneau X, Hecquet C, Perani P, Courtois Y, Mascarelli F. Regulation of proliferation-survival decisions is controlled by FGF1 secretion in retinal pigmented epithelial cells. Oncogene 2000; 19:4917-29. [PMID: 11039909 DOI: 10.1038/sj.onc.1203872] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fibroblast growth factor 1 (FGF1) induces proliferation and differentiation in a wide variety of cells of mesodermal and neuroectodermal origin. FGF1 has no 'classical' signal sequence to direct its secretion, and there has been considerable debate concerning FGF1 secretion and its role in the biological activities of FGF1. We investigated the effects of FGF1 secretion and the signalling induced by signal peptide (SP)-containing FGFI and SP-less FGF1, on the proliferation and the apoptosis in retinal pigmented epithelial (RPE) cells. Primary RPE cell cultures were transfected with FGF1 (FGF1 cells) and SP-FGF1 (SP-FGF1 cells) cDNAs. SP-FGF1 cells secreted large amount of FGF1 and actively proliferated, whereas FGF1 and control cells did not. Secreted FGF1 induced short-term activation of both FGFR1 and ERK2, which were required for cell proliferation. In contrast, SP-FGF1 cells stopped secreting FGF1 and died rapidly, if cultured in the absence of serum. Surprisingly, FGF1 cells, but not control cells, secreted FGF1 and were resistant to apoptosis induced by serum depletion. Secreted FGF1 induced long-term activation of FGFR1 and ERK2, which was necessary to induce a constant and high level of Bcl-x production, and to induce cell survival in FGFI cells. Downregulation of ERK2 and Bcl-x increased apoptosis. Thus, the proliferation and survival activities of FGF1 depend on the secretion of FGF1 which is determined by the cell culture conditions. Cell proliferation was SP-dependent, whereas cell survival was not. The signal peptide controls the level and duration, 'whispering or shouting', of ERK2 activation cells which determines FGF1 biological function and may have important implications for anti-degenerative and anti-proliferative treatments.
Collapse
Affiliation(s)
- M Bryckaert
- INSERM U. 348, IFR Circulation, Paris, France
| | | | | | | | | | | |
Collapse
|
28
|
Vaccarino FM. Stem Cells and Neuronal Progenitors and Their Diversity in the CNS: Are Time and Place Important? Neuroscientist 2000. [DOI: 10.1177/107385840000600508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stem cells are multilineage progenitor cells that are capable of self-regenerating and giving rise to different cell types. The proper assembly of the CNS into functionally relevant circuits requires that stem cells produce the right types of cells in the right number and position at the appropriate time. We suggest that the positional specification of stem cells is provided by the pattern of expression of early transcriptional regulators along the body axes. These mechanisms restrict the competence of stem cells to programming a local cellular repertoire. Conversely, we argue that the specification of different cell types in the appropriate number and sequence is independently carried out within CNS domains by subprograms that progressively change the intrinsic properties of the stem cells. Temporal changes in proliferation and differentiation of stem cells are controlled by cascades of extracellular signals and basic helix-loop-helix (bHlH) transcription factors. These regulators in turn may activate homeodomain transcription factors with more restricted effector functions. Fibroblast growth factors (FGF) are among the earliest acting signals providing local changes in growth within the developing CNS. Basic FGF (FGF2) increases the proliferation of either stem cells or their immediate progeny, increasing the number of founder cells in the developing cerebral cortex.
Collapse
Affiliation(s)
- Flora M. Vaccarino
- Child Study Center and Section of Neurobiology, Yale University, New Haven, Connecticut,
| |
Collapse
|
29
|
Klingenberg O, Wiedlocha A, Rapak A, Khnykin D, Citores L, Olsnes S. Requirement for C-terminal end of fibroblast growth factor receptor 4 in translocation of acidic fibroblast growth factor to cytosol and nucleus. J Cell Sci 2000; 113 ( Pt 10):1827-38. [PMID: 10769213 DOI: 10.1242/jcs.113.10.1827] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of COS cells to bind and internalise acidic fibroblast growth factor (aFGF) was studied after transient transfection of the cells with wild-type and mutated fibroblast growth factor receptor 4. In one case the tyrosine kinase of the receptor was inactivated by a point mutation in the active site, whereas in other cases parts of the receptor were deleted to remove various parts of the cytoplasmic domain. In all cases the receptors were expressed at the cell surface at a high level and the cells bound labelled growth factor efficiently and internalised it by endocytosis. Translocation of externally added aFGF across cellular membranes to reach the cytosol and nucleus was measured as transport of labelled growth factor to the nuclear fraction obtained by centrifugation, by farnesylation of growth factor modified to carry a CAAX motif, and by phosphorylation of the growth factor at a site specific for protein kinase C. Whereas both full-length receptors (with and without an active kinase domain) facilitated translocation of the growth factor to the cytosol and nucleus, as assessed by these methods, the mutants of the receptor where the C terminus was deleted, were unable to do so. In contrast, a receptor containing only the 57 most C-terminal amino acids of the cytoplasmic domain in addition to the juxtamembrane, transmembrane and extracellular domains, was in fact able to mediate translocation of aFGF to the cytosol. These data indicate that information contained in the C terminus of the receptor is required for translocation.
Collapse
Affiliation(s)
- O Klingenberg
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Norway
| | | | | | | | | | | |
Collapse
|
30
|
Klingenberg O, Wiedocha A, Citores L, Olsnes S. Requirement of phosphatidylinositol 3-kinase activity for translocation of exogenous aFGF to the cytosol and nucleus. J Biol Chem 2000; 275:11972-80. [PMID: 10766827 DOI: 10.1074/jbc.275.16.11972] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Acidic fibroblast growth factor (aFGF) is a potent mitogen for many cells. Exogenous aFGF is able to enter the cytosol and nucleus of sensitive cells. There are indications that both activation of the receptor tyrosine kinase and translocation of aFGF to the nucleus are of importance for mitogenesis. However, the mechanism of transport of aFGF from the cell surface to the nucleus is poorly understood. In this work we demonstrate that inhibition of phosphatidylinositol (PI) 3-kinase by chemical inhibitors and by expression of a dominant negative mutant of PI 3-kinase blocks translocation of aFGF to the cytosol and nucleus. Translocation to the cytosol and nucleus was monitored by cell fractionation, by farnesylation of aFGF modified to contain a farnesylation signal, and by phosphorylation by protein kinase C of aFGF added externally to cells. If aFGF is fused to diphtheria toxin A-fragment, it can be artificially translocated from the cell surface to the cytoplasm by the diphtheria toxin pathway. Upon further incubation, the fusion protein enters the nucleus due to a nuclear localization sequence in aFGF. We demonstrate here that upon inhibition of PI 3-kinase the fusion protein remains in the cytosol. We also provide evidence that the phosphorylation status of the fusion protein does not regulate its nucleocytoplasmic distribution.
Collapse
Affiliation(s)
- O Klingenberg
- Department of Biochemistry at The Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | |
Collapse
|
31
|
Liu J, Huang C, Zhan X. Src is required for cell migration and shape changes induced by fibroblast growth factor 1. Oncogene 1999; 18:6700-6. [PMID: 10597276 DOI: 10.1038/sj.onc.1203050] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fibroblast growth factor 1 (FGF-1) is a potent chemotactic factor and induces tyrosine phosphorylation of a cortical actin-associated protein (cortactin). The tyrosine phosphorylation of cortactin induced by FGF-1 requires the tyrosine residues 421, 482 and 466, which are targeted by the protein tyrosine kinase Src in vitro. Furthermore, FGF-1 is unable to induce tyrosine phosphorylation of cortactin within the cells derived from Src knockout mice (Src-/-), indicating that Src is required for the tyrosine phosphorylation of cortactin induced by FGF-1. Although Src-/- cells are able to undergo rapid proliferation, they are impaired to respond to FGF-1 for the shape change and cell migration. Morphological analysis further reveals that FGF-1 fails to induce the formation of polarized lamellipodia and the translocation of cortactin into the leading edge of Src-/- cells. Consistent with the mitogenic response to FGF-1, the lack of Src does not affect the tyrosine phosphorylation of Snt (or Frs2), a FGF-1 early signaling protein that links to Ras. Therefore, our data support the notion that Src and cortactin participate in a FGF signal pathway for cell migration and shape change rather than mitogenesis.
Collapse
Affiliation(s)
- J Liu
- Department of Experimental Pathology, Holland Laboratory of American Red Cross, Rockville, MD 20855, USA
| | | | | |
Collapse
|
32
|
Citores L, Wesche J, Kolpakova E, Olsnes S. Uptake and intracellular transport of acidic fibroblast growth factor: evidence for free and cytoskeleton-anchored fibroblast growth factor receptors. Mol Biol Cell 1999; 10:3835-48. [PMID: 10564275 PMCID: PMC25683 DOI: 10.1091/mbc.10.11.3835] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Endocytic uptake and intracellular transport of acidic FGF was studied in cells transfected with FGF receptor 4 (FGFR4). Acidification of the cytosol to block endocytic uptake from coated pits did not inhibit endocytosis of the growth factor in COS cells transfected with FGFR4, indicating that it is to a large extent taken up by an alternative endocytic pathway. Fractionation of the cells demonstrated that part of the growth factor receptor was present in a low-density, caveolin-containing fraction, but we were unable to demonstrate binding to caveolin in immunoprecipitation studies. Upon treatment of the cells with acidic FGF, the activated receptor, together with the growth factor, moved to a juxtanuclear compartment, which was identified as the recycling endosome compartment. When the cells were lysed with Triton X-100, 3-([3-chloramidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfona te, or 2-octyl glucoside, almost all surface-exposed and endocytosed FGFR4 was solubilized, but only a minor fraction of the total FGFR4 in the cells was found in the soluble fraction. The data indicate that the major part of FGFR4 is anchored to detergent-insoluble structures, presumably cytoskeletal elements associated with the recycling endosome compartment.
Collapse
Affiliation(s)
- L Citores
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | |
Collapse
|
33
|
Vaccarino FM, Schwartz ML, Raballo R, Rhee J, Lyn-Cook R. Fibroblast growth factor signaling regulates growth and morphogenesis at multiple steps during brain development. Curr Top Dev Biol 1999; 46:179-200. [PMID: 10417880 DOI: 10.1016/s0070-2153(08)60329-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The fibroblast growth factor (FGF) family comprises several members with distinct patterns of expression in the developing central nervous system. FGFs regulate the early specification and the subsequent growth of central nervous system regions. These different actions require the coordinated activation of distinct sets of target genes by FGFs at the appropriate stage of development. The role of FGF2 in the growth and morphogenesis of the cerebral cortex is reviewed in detail. The cellular and molecular mechanisms that underlie the action of FGF2 on cortical development are discussed.
Collapse
Affiliation(s)
- F M Vaccarino
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
34
|
Klingenberg O, Wiedlocha A, Olsnes S. Effects of mutations of a phosphorylation site in an exposed loop in acidic fibroblast growth factor. J Biol Chem 1999; 274:18081-6. [PMID: 10364261 DOI: 10.1074/jbc.274.25.18081] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acidic fibroblast growth factor (aFGF) contains a phosphorylation site recognized by protein kinase C. A non-mitogenic mutant growth factor is devoid of this phosphorylation site. We have changed amino acids in and close to the phosphorylation site and studied the consequences of this for binding of the growth factor to high affinity receptors as well as to heparin. We have also studied the ability of the mutants to stimulate DNA synthesis and cell proliferation as well as phosphorylation of mitogen-activated protein kinase and the ability of the growth factor mutants to be transported to the nucleus. The results indicate that while the mutations strongly affect the ability of the growth factor to bind to heparin, they do not affect much the binding to the specific FGF receptors, activation of mitogen-activated protein kinase or transport of the growth factor to the nucleus. The mutations affect to various extents the ability of the growth factor to stimulate DNA synthesis and to induce cell multiplication. We find that phosphorylation of aFGF is not required for mitogenic activity. The data suggest that altered interaction of the growth factor with a cellular component different from the receptor, possibly a component in the nucleus, is the reason for the different mitogenicity of the different growth factor mutants.
Collapse
Affiliation(s)
- O Klingenberg
- Department of Biochemistry at The Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | |
Collapse
|
35
|
Mertani HC, Morel G, Lobie PE. Cytoplasmic and nuclear cytokine receptor complexes. VITAMINS AND HORMONES 1999; 57:79-121. [PMID: 10232047 DOI: 10.1016/s0083-6729(08)60641-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Much of our understanding on how hormones and cytokines transmit their message into the cell is based on the receptor activation at the plasma membrane. Many experimental in vitro models have established the paradigm for cytokine action based upon such activation of their cell surface receptor. The signaling from the plasma membrane activated cytokine receptor is driven to the nucleus by a rapid ricochet of protein phosphorylation, ultimately integrated as a differentiative, proliferative, or transcriptional message. The Janus kinase (JAK)--signal transducers and activators of transcription (STAT) pathway that was first thought to be cytokine receptor specific now appears to be activated by other noncytokine receptors. Also, evidence is accumulating showing that cytokines modulate the signal transduction machinery of the tyrosine kinase receptors and that of the heterotrimeric guanosine triphosphate (GTP)-binding protein-coupled receptors. Thus cytokine receptor signaling has become much more complex than originally hypothesized, challenging the established model of specificity of the action of a given cytokine. This review is focused on another level of complexity emerging within cytokine receptor superfamily signaling. Over the past 10 years, data from different laboratories have shown that cytokines and their receptors localize to intracellular compartments including the nucleus, and, in some cases, biological responses have been correlated with this unexpected location, raising the possibility that cytokines act as their own messenger through inter-actions with nuclear proteins. Thus, the interplay between cytokine receptor engagement and cellular signaling turns out to be more dynamic than originally suspected. The mechanisms and regulations of intracellular translocation of the cytokines, their receptors, and their signaling proteins are discussed in the context that such compartmentalization provides some of the specificity of the responses mediated by each cytokine.
Collapse
Affiliation(s)
- H C Mertani
- Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | | | | |
Collapse
|
36
|
Affiliation(s)
- J S Biscardi
- Department of Microbiology and Cancer Center, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | |
Collapse
|
37
|
Vaccarino FM, Schwartz ML, Raballo R, Nilsen J, Rhee J, Zhou M, Doetschman T, Coffin JD, Wyland JJ, Hung YT. Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nat Neurosci 1999; 2:246-53. [PMID: 10195217 DOI: 10.1038/6350] [Citation(s) in RCA: 282] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We show that fibroblast growth factor 2 (FGF2) and FGF receptors are transiently expressed by cells of the pseudostratified ventricular epithelium (PVE) during early neurogenesis. A single microinjection of FGF2 into cerebral ventricles of rat embryos at E15.5 increased the volume and total number of neurons in the adult cerebral cortex by 18% and 87%, respectively. Microinjection of FGF2 by the end of neurogenesis, at E20.5, selectively increased the number of glia. Mice lacking the FGF2 gene had fewer cortical neurons and glia at maturity. BrdU studies in FGF2-microinjected and FGF2-null animals suggested that FGF2 increases the proportion of dividing cells in the PVE without affecting the cell-cycle length. Thus, FGF2 increases the number of rounds of division of cortical progenitors.
Collapse
Affiliation(s)
- F M Vaccarino
- Child Study Center, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Uruno T, Oki J, Ozawa K, Miyakawa K, Ueno H, Imamura T. Distinct regulation of myoblast differentiation by intracellular and extracellular fibroblast growth factor-1. Growth Factors 1999; 17:93-113. [PMID: 10595310 DOI: 10.3109/08977199909103519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We studied the role of fibroblast growth factor (FGF)-1 in the physiology of myoblast differentiation. We found that, while endogenous FGF-1 in L6-10 rat myoblasts did not suppress the progress of differentiation, the addition of FGF-1 to the culture medium suppressed it. Moreover, L6-10 cells stably transfected with full length FGF-1 undergo enhanced differentiation. The latter was well correlated with myogenin expression and myotube formation. Constitutive expression of a mutant FGF-1 (FGF-1U) that lacked a nuclear localization signal, promoted the differentiation of the myoblasts even more strongly. Furthermore, the expression of FGF-1U in an inducible expression system enhanced myogenin expression promptly. In L6-10 transfectants expressing a dominant-negative mutant of FGF receptor, stable transfection of FGF-1 promoted differentiation as it did in parent cells. Studies with FGF receptors and MAP kinase suggest that both are involved in the effect of FGF-1 when it is supplemented to culture medium but not during the effect of endogenous FGF-1 synthesized in cells. We conclude that intracellular (endogenous) and extracellular (exogenous) FGF-1 have differential effects on the regulation of myogenic differentiation of L6-10 cells.
Collapse
Affiliation(s)
- T Uruno
- Biosignaling Department, National Institute of Bioscience and Human Technology, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Zalecki P, Radzikowski C, Olsnes S, Wiedłocha A. Modulation by interleukin-2 of cellular response to fibroblast growth factor-1 in F69-3 fibrosarcoma cells. Exp Cell Res 1998; 244:61-70. [PMID: 9770349 DOI: 10.1006/excr.1998.4187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
FGF-1 stimulated DNA synthesis and induced expression of IL-2 receptors in the murine fibrosarcoma cell line, F69-3. Concomitant treatment with IL-2 abolished the stimulation of DNA synthesis, but not binding of FGF-1 to the FGF-receptors or subsequent endocytosis of the bound growth factor. Also, it did not inhibit activation of the FGF-receptor tyrosine kinase or stimulation of the downstream effector, MAP kinase. Treatment with IL-2 prevented transport of FGF-1 to the nuclear fraction in a time- and dose-dependent manner that parallelled the inhibition of FGF-1 stimulated DNA synthesis. The data support our earlier finding that transport of FGF-1 to the nucleus is an important event in the mechanism of stimulation of DNA synthesis induced by the growth factor, and they demonstrate that treatment with a cytokine can modulate the cellular response to FGF-1.
Collapse
Affiliation(s)
- P Zalecki
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | |
Collapse
|
40
|
Murakami-Mori K, Mori S, Nakamura S. Endogenous Basic Fibroblast Growth Factor Is Essential for Cyclin E-CDK2 Activity in Multiple External Cytokine-Induced Proliferation of AIDS-Associated Kaposi’s Sarcoma Cells: Dual Control of AIDS-Associated Kaposi’s Sarcoma Cell Growth and Cyclin E-CDK2 Activity by Endogenous and External Signals. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.4.1694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
AIDS-associated Kaposi’s sarcoma (KS) cell, a key element for development of KS lesions, proliferates in response to external cytokines, such as oncostatin M, the soluble IL-6R-IL-6 complex, TNF-α, and IL-1β. In addition, the KS cell-produced basic fibroblast growth factor (bFGF) was reported to function as an autocrine growth factor. However, little is known of the exact roles of these external growth factors and endogenous bFGF on proliferation of KS cells, and underlying intracellular events have remained to be defined. We obtained evidence that anti-bFGF Ab abolished growth of KS cells by preventing S phase entry of the cell cycle, even in the presence of the external growth factors. Blockade of the FGF action profoundly inhibited cyclin E expression and cyclin-dependent kinase-2 (CDK2) activity, but not D-type cyclin expression and CDK4 activity. Exogenously added acidic FGF (aFGF), which generated a rapid tyrosine phosphorylation of FGFR1 and FGFR2 on KS cells, reversed the inhibitory effects of anti-bFGF Ab. Thus, FGF actions are essential for cyclin E-CDK2 activity and S phase entry. We also observed that the presence of external growth factors markedly induced cyclin E-CDK2 activity and S phase entrance, while the addition of aFGF or bFGF alone was insufficient to induce these responses. All this evidence shows that integration of the activities of external growth factors and endogenous bFGF is required for full activation of cyclin E-CDK2 activity and KS cell proliferation.
Collapse
Affiliation(s)
- Kaoru Murakami-Mori
- *Institute of Molecular Medicine, Huntington Memorial Hospital, Pasadena, CA 91105; and
| | - Shunsuke Mori
- †Department of Microbiology and Immunology, University of California, Los Angeles, School of Medicine, Los Angeles, CA 90095-1747
| | - Shuji Nakamura
- *Institute of Molecular Medicine, Huntington Memorial Hospital, Pasadena, CA 91105; and
| |
Collapse
|
41
|
Tchorzewski MT, Duncan MD, Nass P, Qureshi FG, Gearhart PJ, Winchurch R, Harmon JW. Characterization of an aFGF gene expression vector with therapeutic potential. J Surg Res 1998; 77:99-103. [PMID: 9733594 DOI: 10.1006/jsre.1998.5351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Topical application of growth factors to wounds has proven to be suboptimal in achieving epithelial growth and accelerating healing. We propose transfection of fibroblasts with a gene for acidic fibroblast growth factor (aFGF) which will allow continuous, local delivery of the growth factor to wounds, ulcerative lesions, or healing tissues. METHODS We utilized a pMEXneo vector containing the human aFGF gene with a secretory signal sequence from the hst/KS3 gene to obtain continuous secretion of therapeutic doses of aFGF. NIH 3T3 fibroblasts were transfected using a liposomal transfection reagent and grown in selective media. RESULTS Dot blot hybridization with labeled complementary DNA probes revealed the presence of plasmid DNA in transfected but not wild type fibroblasts. Intracellular concentrations of aFGF remained low in transfected cells; however, the media contained high levels (32 +/- 7 nM) of aFGF as measured by ELISA. Concentrations of aFGF capable of stimulating cell proliferation were maintained for several weeks. CONCLUSIONS The aFGF cDNA was transcribed and translated into a functional polypeptide that is secreted from NIH 3T3 cells at physiologically significant concentrations. Stable transfection with a eukaryotic vector which induces secretion of aFGF at levels promoting cell growth holds promise for clinical application in wounds or healing tissue. Transfection could be achieved by topical or endoscopic injection of this type of vector.
Collapse
Affiliation(s)
- M T Tchorzewski
- Section of Surgical Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21224, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
LaVallee TM, Prudovsky IA, McMahon GA, Hu X, Maciag T. Activation of the MAP kinase pathway by FGF-1 correlates with cell proliferation induction while activation of the Src pathway correlates with migration. J Cell Biol 1998; 141:1647-58. [PMID: 9647656 PMCID: PMC2133001 DOI: 10.1083/jcb.141.7.1647] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/1997] [Revised: 05/10/1998] [Indexed: 02/08/2023] Open
Abstract
FGF regulates both cell migration and proliferation by receptor-dependent induction of immediate-early gene expression and tyrosine phosphorylation of intracellular polypeptides. Because little is known about the disparate nature of intracellular signaling pathways, which are able to discriminate between cell migration and proliferation, we used a washout strategy to examine the relationship between immediate-early gene expression and tyrosine phosphorylation with respect to the potential of cells either to migrate or to initiate DNA synthesis in response to FGF-1. We demonstrate that transient exposure to FGF-1 results in a significant decrease in Fos transcript expression and a decrease in tyrosine phosphorylation of the FGFR-1, p42(mapk), and p44(mapk). Consistent with these biochemical effects, we demonstrate that attenuation in the level of DNA synthesis such that a 1.5-h withdrawal is sufficient to return the population to a state similar to quiescence. In contrast, the level of Myc mRNA, the activity of Src, the tyrosine phosphorylation of cortactin, and the FGF-1-induced redistribution of cortactin and F-actin were unaffected by transient FGF-1 stimulation. These biochemical responses are consistent with an implied uncompromised migratory potential of the cells in response to growth factor withdrawal. These results suggest a correlation between Fos expression and the mitogen-activated protein kinase pathway with initiation of DNA synthesis and a correlation between high levels of Myc mRNA and Src kinase activity with the regulation of cell migration.
Collapse
Affiliation(s)
- T M LaVallee
- Department of Molecular Biology, Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| | | | | | | | | |
Collapse
|
43
|
Klingenberg O, Widlocha A, Rapak A, Muñoz R, Falnes P, Olsnes S. Inability of the acidic fibroblast growth factor mutant K132E to stimulate DNA synthesis after translocation into cells. J Biol Chem 1998; 273:11164-72. [PMID: 9556604 DOI: 10.1074/jbc.273.18.11164] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acidic fibroblast growth factor (aFGF) is a potent mitogen. It acts through activation of specific cell surface receptors leading to intracellular tyrosine phosphorylation cascades, but several reports also indicate that aFGF enters cells and that it has an intracellular function as well. The aFGF(K132E) mutant binds to and activates fibroblast growth factor receptors equally strongly as the wild-type, but it is a poor mitogen. We demonstrate that aFGF(K132E) enters NIH 3T3 cells and is transported to the nuclear fraction like wild-type aFGF. A fusion protein of aFGF(K132E) and diphtheria toxin A-fragment (aFGF(K132E)-DT-A) and a similar fusion protein containing wild-type aFGF (aFGF-DT-A) were reconstituted with diphtheria toxin B-fragment. Both fusion proteins were translocated to the cytosol by the diphtheria toxin pathway and subsequently recovered from the nuclear fraction. Whereas translocation of aFGF-DT-A stimulated DNA synthesis in U2OSDR1 cells lacking functional fibroblast growth factor receptors, aFGF(K132E)-DT-A did not. The mutation disrupts a protein kinase C phosphorylation site in the growth factor making it unable to be phosphorylated. The data indicate that a defect in the intracellular action of aFGF(K132E) is the reason for its strongly reduced mitogenicity, possibly due to inability to be phosphorylated.
Collapse
Affiliation(s)
- O Klingenberg
- Department of Biochemistry, The Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
44
|
Guillonneau X, Régnier-Ricard F, Dupuis C, Courtois Y, Mascarelli F. Paracrine effects of phosphorylated and excreted FGF1 by retinal pigmented epithelial cells. Growth Factors 1998; 15:95-112. [PMID: 9505166 DOI: 10.3109/08977199809117186] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have recently shown that both inhibition of endogenous Fibroblast growth factor (FGF) synthesis in non dividing lens epithelial cells (Renaud et al. J. Biol. Chem 1996, 271: 2801-2811) and inhibition of secreted FGF1 in confluent quiescent retinal pigmented epithelial (RPE) cells (Guillonneau et al., Exp. Cell. Res. 1997, in press) induce rapid cell apoptosis. In addition, FGF2-stimulated release of endogenous FGF1 is associated with reduced apoptosis in RPE cells. We now show that a single addition of exogenous FGF2 to RPE cells induces after 4 days of culture, a great accumulation of FGF1 within the cells. Concomitantly we observe that FGF1 was released into the extracellular medium. Secreted FGF1 from RPE cells, purified from culture medium and added to either Go-arrested RPE or RMG cells at low plating density induced cell proliferation, whereas when it is added once to serum-depleted confluent RPE and RMG cells it prevented apoptosis. Both endogenous and secreted FGF1 are phosphorylated. In addition, FGF2 stimulated the production and release of phosphorylated FGF1 by RPE cells. We show that this secreted form of phosphorylated FGF1 binds to the high affinity tyrosine kinase receptors of RPE and RMG cells on retinal sections and to heparan sulfate proteoglycan in RPE cell extracellular matrix. In contrast to non-phosphorylated FGF1, phosphorylated secreted FGF1 was not degraded after internalization but accumulated within RPE and RMG cells, and is rapidly translocated to the nucleus suggesting a role in signal transduction and gene expression pathways. These results show that exogenous FGF2 activities might be mediated indirectly by phosphorylation and that secretion of FGF1 may function as a paracrine trophic factor for retinal cells.
Collapse
Affiliation(s)
- X Guillonneau
- INSERM U. 450, Association Claude Bernard, Paris, France
| | | | | | | | | |
Collapse
|
45
|
Huang C, Tandon NN, Greco NJ, Ni Y, Wang T, Zhan X. Proteolysis of platelet cortactin by calpain. J Biol Chem 1997; 272:19248-52. [PMID: 9235918 DOI: 10.1074/jbc.272.31.19248] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cortactin, a substrate of pp60(c-)src and a potent filamentous actin binding and cross-linking protein, is abundant in circulating platelets. After stimulation of platelet aggregation with collagen, cortactin undergoes a dramatic increase in tyrosine phosphorylation followed by a rapid degradation. The cleavage of platelet cortactin was detected in lysates prepared using either Triton-containing buffer or SDS-sample buffer. However, the degradation of cortactin was not observed in platelets derived from a Glanzmann's patient, who lacked functional integrin alphaIIbbeta3 (GPIIb-IIIa). In addition, the proteolysis of cortactin was abolished by treating platelets before but not after collagen stimulation with EGTA or calpeptin. Furthermore, recombinant cortactin was digested by mu-calpain in vitro in a dose-dependent manner, indicating that cortactin is a substrate for calpain. We also observed that the calpain-mediated digestion in vitro is dependent on the presence of a sequence containing a proline-rich region and multiple tyrosine residues that are phosphorylated by pp60(c-)src. Tyrosine phosphorylation by pp60(c-)src up-regulates the activity of calpain toward cortactin. Our data suggest that the calpain-mediated proteolysis of tyrosine-phosphorylated cortactin may provide a mechanism to remodel irreversibly the cytoskeleton in response to platelet agonists.
Collapse
Affiliation(s)
- C Huang
- Department of Experimental Pathology, The Holland Laboratory, American Red Cross, Rockville, MD 20855, USA
| | | | | | | | | | | |
Collapse
|
46
|
Kee N, McTavish AJ, Papillon J, Cybulsky AV. Receptor protein tyrosine kinases in perinatal developing rat kidney. Kidney Int 1997; 52:309-17. [PMID: 9263985 DOI: 10.1038/ki.1997.336] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have identified receptor protein tyrosine kinases (PTKs) that are expressed and/or activated during kidney development. mRNA from fetal rat kidneys in late gestation (embryonic day 21), was used to prepare a cDNA template for polymerase chain reaction amplification with primers based on conserved regions of PTKs, and products were subcloned and sequenced. Among 346 clones, we identified epidermal growth factor receptor (EGF-R), Tie-2, platelet-derived growth factor receptor (PDGF-R)-alpha, PDGF-R beta, Flk-1, Flt-4, fibroblast growth factor receptor (FGF-R)-1, FGF-R3, FGF-R4, Met, and RYK/Nbtk-1. PTK expression was studied by immunoprecipitation and immunoblotting of kidney membrane proteins with specific antibodies. EGF-R, PDGF-R alpha, FGF-R1, FGF-R3, Met, and in some cases Tie-2 protein expression was greater in fetal kidneys, as compared with kidneys from 12-week-old adult rats (controls). Flk-1, PDGF-R beta, and FGF-R4 proteins were expressed comparably, however, Flt-4 was not detected. As a reflection of receptor PTK activity, we assessed endogenous tyrosine phosphorylation, and in vitro autophosphorylation. EGF-R and PDGF-R alpha displayed activity in fetal, but not adult kidneys. FGF-R3 and Flk-1 were active in some fetal kidneys, and the other PTKs were not active. Thus, in late gestational rat kidney, there are distinct patterns of receptor PTK expression and activity. EGF-R, PDGF-R alpha, FGF-R3 and Flk-1 are among the PTKs that are activated, and they may mediate perinatal development of renal epithelial, interstitial, or vascular structures.
Collapse
Affiliation(s)
- N Kee
- Department of Medicine, Royal Victoria Hospital, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
47
|
Donohue PJ, Hsu DK, Guo Y, Burgess WH, Winkles JA. Fibroblast growth factor-1 induction of delayed-early mRNA expression in NIH 3T3 cells is prolonged by heparin addition. Exp Cell Res 1997; 234:139-46. [PMID: 9223379 DOI: 10.1006/excr.1997.3598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fibroblast growth factor (FGF)-1, also known as acidic FGF, is a multifunctional heparin-binding protein that is mitogenic for a wide variety of cell types cultured in vitro and a potent angiogenic agent in vivo. These cellular responses are mediated via high-affinity binding to a family of four membrane-spanning tyrosine kinase receptors. FGF-1-stimulated mitogenesis is potentiated by heparin, a sulfated glycosaminoglycan. In this study, we examined the effect of exogenous heparin on FGF-1-inducible gene expression in murine NIH 3T3 cells using both wild-type FGF-1 and FGF-1/glu132, an FGF-1 mutant with a reduced apparent affinity for heparin. The induction levels and temporal expression kinetics of two immediate-early response mRNAs (early growth response gene-1, thrombospondin-1) as well as two delayed-early response mRNAs (proliferin, ornithine decarboxylase) were monitored by Northern blot hybridization analysis. We found that although FGF-1 alone can promote the initial induction of these four mRNAs, heparin coaddition is necessary for prolonged delayed-early mRNA expression. This heparin effect occurs when cells are stimulated with wild-type FGF-1 but not with FGF-1/glu132. Furthermore, FGF-1 and heparin must be added together at the initial time of mitogen stimulation and they must remain present in the cell culture medium for a minimum period of 8 h to promote sustained delayed-early mRNA expression. These findings are consistent with the proposal that heparin promotes a long-term FGF-1:FGFR interaction which is required for sustained delayed-early gene expression and a full mitogenic response.
Collapse
Affiliation(s)
- P J Donohue
- Department of Molecular Biology, Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| | | | | | | | | |
Collapse
|
48
|
Chen CH, Cartwright J, Li Z, Lou S, Nguyen HH, Gotto AM, Henry PD. Inhibitory effects of hypercholesterolemia and ox-LDL on angiogenesis-like endothelial growth in rabbit aortic explants. Essential role of basic fibroblast growth factor. Arterioscler Thromb Vasc Biol 1997; 17:1303-12. [PMID: 9261260 DOI: 10.1161/01.atv.17.7.1303] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hypercholesterolemic (HC) rabbits exhibit suppressed compensatory vascular growth after restriction of arterial supply. However, neovascularization is commonly found in atheromas containing inflammatory cells. We used an in vitro model to determine the effects of hypercholesterolemia on angiogenesis in the absence or presence of inflammatory cells. HC rabbit aortic explants (1 mm2) with or without (n = 90 each) lesion-forming inflammatory cells were cultured in a collagen matrix with serum-free medium. Explant-derived endothelial cell growth was organized into capillary-like microtubes (CLM) that could be videomicroscopically quantified. CLM growth from lesion-free HC explants was significantly reduced to 13 +/- 4% of the value in explants (n = 90) from normocholesterolemic (NC, n = 15) rabbits (P < .001). In contrast, in lesion-containing HC explants, the matrix was invaded by foam cells, and CLM growth was not inhibited. Immunoassayable basic fibroblast growth factor (bFGF, in pg/mL) in the culture medium was significantly lower in lesion-free HC (< 5) than NC explants (11 +/- 2, P < .01) or HC explants with lesions (14 +/- 3). In addition, CLM growth was reduced in NC explants incubated with oxidized LDL (ox-LDL, 50-100 micrograms/mL). Exogenous bFGF (10 ng/mL) reversed the inhibitory effects of hypercholesterolemia and ox-LDL, whereas bFGF-neutralizing antibody (10 micrograms/mL) abolished CLM growth in all groups. In cultured rabbit aortic endothelial cells, ox-LDL reduced DNA synthesis, but this inhibition was reversed by bFGF. We conclude that hypercholesterolemia and ox-LDL inhibit angiogenesis like endothelial growth because of a suppressed availability of endogenous bFGF. Retained responsiveness to exogenous bFGF suggests that inducing bFGF expression at targeted sites may improve collateral growth in hyperlipidemic arterial disease.
Collapse
Affiliation(s)
- C H Chen
- Department of Medicine, Baylor College of Medicine, Houston, Tex. 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Huang C, Ni Y, Wang T, Gao Y, Haudenschild CC, Zhan X. Down-regulation of the filamentous actin cross-linking activity of cortactin by Src-mediated tyrosine phosphorylation. J Biol Chem 1997; 272:13911-5. [PMID: 9153252 DOI: 10.1074/jbc.272.21.13911] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cortactin, a prominent substrate for pp60(c-src), is a filamentous actin (F-actin) binding protein. We show here that cortactin can promote sedimentation of F-actin at centrifugation forces under which F-actin is otherwise not able to be precipitated. Electron microscopic analysis after negative staining further revealed that actin filaments in the presence of cortactin are cross-linked into bundles of various degrees of thickness. Hence, cortactin is also an F-actin cross-linking protein. We also demonstrate that the optimal F-actin cross-linking activity of cortactin requires a physiological pH in a range of 7.3-7.5. Furthermore, pp60(c-src) phosphorylates cortactin in vitro, resulting in a dramatic reduction of its F-actin cross-linking activity in a manner depending on levels of tyrosine phosphorylation. In addition, pp60(c-src) moderately inhibits the F-actin binding activity of cortactin. This study presents the first evidence that pp60(c-src) can directly regulate the activity of its substrate toward the cytoskeleton and implies a role of cortactin as an F-actin modulator in tyrosine kinase-regulated cytoskeleton reorganization.
Collapse
Affiliation(s)
- C Huang
- Department of Experimental Pathology, The Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| | | | | | | | | | | |
Collapse
|
50
|
Cybulsky AV, McTavish AJ. Extracellular matrix is required for MAP kinase activation and proliferation of rat glomerular epithelial cells. Biochem Biophys Res Commun 1997; 231:160-6. [PMID: 9070241 DOI: 10.1006/bbrc.1997.6064] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study examined the role of extracellular matrix (ECM) in the regulation of glomerular epithelial cell (GEC) proliferation. Epidermal growth factor (EGF) stimulated proliferation of GEC when the cells were adherent to collagen matrices, but not plastic substratum. Significant and prolonged EGF receptor (R) tyrosine autophosphorylation (which reflects EGF-R kinase activation) was induced by EGF only in GEC adherent to collagen. In addition, EGF stimulated the activity and tyrosine phosphorylation of p42 mitogen-activated protein (MAP) kinase (ERK2) in collagen-adherent GEC, but not in cells on plastic. An inhibitor of the p-42 MAP kinase pathway, PD98059, blocked EGF-induced MAP kinase activity and proliferation. Thus, adhesion to ECM enables EGF to induce proliferation of GEC, by facilitating activation of EGF-R and the p42 MAP kinase pathway. Signals from ECM to growth factor receptor tyrosine kinases may regulate cell turnover in the glomerulus under normal conditions and during immune glomerular injury.
Collapse
Affiliation(s)
- A V Cybulsky
- Department of Medicine, Royal Victoria Hospital, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|