1
|
An Y, Raju RK, Lu T, Wheeler SE. Aromatic interactions modulate the 5'-base selectivity of the DNA-binding autoantibody ED-10. J Phys Chem B 2014; 118:5653-9. [PMID: 24802982 DOI: 10.1021/jp502069a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present detailed computational analyses of the binding of four dinucleotides to a highly sequence-selective single-stranded DNA (ssDNA) binding antibody (ED-10) and selected point mutants. Anti-DNA antibodies are central to the pathogenesis of systemic lupus erythematosus (SLE), and a more complete understanding of the mode of binding of DNA and other ligands will be necessary to elucidate the role of anti-DNA antibodies in the kidney inflammation associated with SLE. Classical molecular mechanics based molecular dynamics simulations and density functional theory (DFT) computations were applied to pinpoint the origin of selectivity for the 5'-nucleotide. In particular, the strength of interactions between each nucleotide and the surrounding residues were computed using MMGBSA as well as DFT applied to a cluster model of the binding site. The results agree qualitatively with experimental binding free energies, and indicate that π-stacking, CH/π, NH/π, and hydrogen-bonding interactions all contribute to 5'-base selectivity in ED-10. Most importantly, the selectivity for dTdC over dAdC arises primarily from differences in the strength of π-stacking and XH/π interactions with the surrounding aromatic residues; hydrogen bonds play little role. These data suggest that a key Tyr residue, which is not present in other anti-DNA antibodies, plays a key role in the 5'-base selectivity, while we predict that the mutation of a single Trp residue can tune the selectivity for dTdC over dAdC.
Collapse
Affiliation(s)
- Yi An
- Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | | | | | | |
Collapse
|
2
|
Role of Structure-Based Changes due to Somatic Mutation in Highly Homologous DNA-Binding and DNA-Hydrolyzing Autoantibodies Exemplified by A23P Substitution in the VH Domain. Autoimmune Dis 2012. [PMID: 23193442 PMCID: PMC3502752 DOI: 10.1155/2012/683829] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Anti-DNA autoantibodies are responsible for tissue injury in lupus. A subset of DNA-specific antibodies capable of DNA cleavage can be even more harmful after entering the living cells by destroying nuclear DNA. Origins of anti-DNA autoantibodies are not fully understood, and the mechanism of induction of DNA-cleaving activity remains speculative. The autoantibody BV04-01 derived from lupus-prone mouse is the only DNA-hydrolyzing immunoglobulin with known 3D structure. Identification and analysis of antibodies homologous to BV04-01 may help to understand molecular bases and origins of DNA-cleaving activity of autoantibodies. BLAST search identified murine anti-DNA autoantibody MRL-4 with sequences of variable region genes highly homologous to those of autoantibody BV04-01. Despite significant homology to BV04-01, not only MRL-4 had no DNA-cleaving activity, but also reversion of its unusual P23 mutation to the germline alanine resulted in a dramatic loss of affinity to DNA. Contrary to this effect, transfer of the P23 mutation to the BV04-01 has resulted in a significant drop in DNA binding and almost complete loss of catalytic activity. In the present paper we analyzed the properties of two homologous autoantibodies and mutants thereof and discussed the implications of unusual somatic mutations for the development of autoantibodies with DNA-binding and DNA-hydrolyzing activity.
Collapse
|
3
|
Bobeck MJ, Cleary J, Beckingham JA, Ackroyd PC, Glick GD. Effect of somatic mutation on DNA binding properties of anti-DNA autoantibodies. Biopolymers 2007; 85:471-80. [PMID: 17252585 DOI: 10.1002/bip.20691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Autoantibodies that bind DNA are a hallmark of systemic lupus erythematosus. A subset of autoantibody*DNA complexes localize to kidney tissue and lead to damage and even death. 11F8, 9F11, and 15B10 are clonally related anti-DNA autoantibodies isolated from an autoimmune mouse. 11F8 binds ssDNA in a sequence-specific manner and causes tissue damage, while 9F11 and 15B10 bind ssDNA non-specifically and are benign. Among these antibodies, DNA binding properties are mediated by five amino acid differences in primary sequence. Thermodynamic and kinetic parameters associated with recognition of structurally different DNA sequences were determined for each antibody to provide insight toward recognition strategies, and to explore a link between binding properties and disease pathogenesis. A model of 11F8 bound to its high affinity consensus sequence provides a foundation for understanding the differences in thermodynamic and kinetic parameters between the three mAbs. Our data suggest that 11F8 utilizes the proposed ssDNA recognition motif including (Y32)V(L), a hydrogen bonding residue at (91)V(L), and an aromatic residue at the tip of the third heavy chain complementarity determining region. Interestingly, a somatic mutation to arginine at (31)V(H) in 11F8 may afford additional binding site contacts including (R31)V(H), (R96)V(H), and (R98)V(H) that could determine specificity.
Collapse
Affiliation(s)
- Melissa J Bobeck
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | |
Collapse
|
4
|
Schuermann JP, Prewitt SP, Davies C, Deutscher SL, Tanner JJ. Evidence for Structural Plasticity of Heavy Chain Complementarity-determining Region 3 in Antibody–ssDNA Recognition. J Mol Biol 2005; 347:965-78. [PMID: 15784256 DOI: 10.1016/j.jmb.2005.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 12/28/2004] [Accepted: 02/01/2005] [Indexed: 11/19/2022]
Abstract
Anti-DNA antibodies play important roles in the pathogenesis of autoimmune diseases. They also represent a unique and relatively unexplored class of DNA-binding protein. Here, we present a study of conformational changes induced by DNA binding to an anti-ssDNA Fab known as DNA-1. Three crystal structures are reported: a complex of DNA-1 bound to dT3, and two structures of the ligand-free Fab. One of the ligand-free structures was determined from crystals exhibiting perfect hemihedral twinning, and the details of structure determination are provided. Unexpectedly, five residues (H97-H100A) in the apex of heavy chain complementarity-determining region 3 (HCDR3) are disordered in both ligand-free structures. Ligand binding also caused a 2-4A shift of the backbone of Tyr L92 and ordering of the L92 side-chain. In contrast, these residues are highly ordered in the Fab/dT3 complex, where Tyr H100 and Tyr H100A form intimate stacking interactions with DNA bases, and L92 forms the 5' end of the binding site. The structures suggest that HCDR3 is very flexible and adopts multiple conformations in the ligand-free state. These results are discussed in terms of induced fit and pre-existing equilibrium theories of ligand binding. Our results allow new interpretations of existing thermodynamic and mutagenesis data in terms of conformational entropy and the volume of conformational space accessible to HCDR3 in the ligand-free state. In the context of autoimmune disease, plasticity of the ligand-free antibody could provide a mechanism by which anti-DNA antibodies bind diverse host ligands, and thereby contribute to pathogenicity.
Collapse
|
5
|
Kumar S, Kalsi JK, Ravirajan CT, Latchman DS, Pearl LH, Isenberg DA. Molecular expression systems for anti-DNA antibodies--2. Lupus 2003; 11:833-42. [PMID: 12529048 DOI: 10.1191/0961203302lu304rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Antibodies to double-stranded DNA are the best-known serological markers of systemic lupus erythematosus, and are closely associated with its renal pathogenesis. How these antibodies recognize DNA is not fully understood. An understanding of the relationship between the functional attributes of an antibody with the three-dimensional structure of its antigen-combining site would allow an insight into the rules that dictate auto-antibody-nucleic acid interaction and consequent pathogenicity of the autoantibody. Data from such studies could assist the development of novel drugs as an approach to specific therapies that can inhibit or disrupt protein-nucleic acid interactions. A full understanding of the binding specificities can be achieved only by experimental determination of detailed three-dimensional structure of these antibodies alone, and of their complexes with specific DNA antigens. A prerequisite of such a study is the ability to produce multimilligram quantities of the antibody protein. However, these antibodies are particularly difficult to express, probably due to their DNA-binding activity. This review attempts to focus on the recent developments on the over-expression of anti-DNA antibody fragments in heterologous cell expression systems and their purification to homogeneity that would in turn allow their structural studies via crystallization.
Collapse
Affiliation(s)
- S Kumar
- Centre for Rheumatology, Bloomsbury Rheumatology Unit, Department of Medicine, University College London Hospital, London, UK.
| | | | | | | | | | | |
Collapse
|
6
|
Cleary J, Glick GD. Mutational analysis of a sequence-specific ssDNA binding lupus autoantibody. Biochemistry 2003; 42:30-41. [PMID: 12515537 DOI: 10.1021/bi0203942] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
11F8 is a murine anti-ssDNA monoclonal autoantibody isolated from a lupus prone autoimmune mouse. This mAb binds sequence specifically, and prior studies have defined the thermodynamic and kinetic basis for sequence-specific recognition of ssDNA (Ackroyd, P. C., et al. (2001) Biochemistry 40, 2911-2922; Beckingham, J. A. and Glick, G. D. (2001) Bioorg. Med. Chem. 9, 2243-2252). Here we present experiments designed to identify the residues on 11F8 that mediate sequence-specific, noncognate, and nonspecific recognition of ssDNA and their contribution to the overall binding thermodynamics. Site-directed mutagenesis of an 11F8 single-chain construct reveals that six residues within the complementarity determining regions of 11F8 account for ca. 80% of the binding free energy and that there is little cooperativity between these residues. Germline-encoded aromatic and hydrophobic side chains provides the basis for nonspecific recognition of single-stranded thymine nucleobases. Sequence-specific recognition is controlled by a tyrosine in the heavy chain along with a somatically mutated arginine residue. Our data show that the manner in which 11F8 achieves sequence-specific recognition more closely resembles RNA-binding proteins such as U1A than other types of nucleic acid binding proteins. In addition, comparing the primary sequence of 11F8 with clonally related antibodies that differ by less than five amino acids suggests that somatic mutations which confer sequence specificity may be a feature that distinguishes glomerulotrophic pathogenic anti-DNA from those that are benign.
Collapse
Affiliation(s)
- Joanne Cleary
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | |
Collapse
|
7
|
Abstract
This article describes the use of optical spectroscopy in studying antibody-hapten interactions and in determining the equilibrium binding constants. Along with equilibrium binding data, spectroscopic tools often deliver structural information on binding-induced conformational changes of antibodies (or haptens). Structural implications of results from example antibody-hapten systems are included. Fluorescence spectroscopy has been particularly useful in the area of ligand binding, and thus steady-state fluorescence quenching and fluorescence polarization are the primary techniques under discussion. A brief description of fluorescence correlation spectroscopy is also provided. Absorption techniques, including circular dichroism, are mentioned to a lesser extent. A basic description of the mathematical models involved in the analysis of binding equilibria is provided along with references to more complete works. Simulated and experimental data are used to illustrate the various experimental protocols and the appropriate analytical methods. Typical sources of errors and experimental precautions are indicated throughout the general discussion.
Collapse
Affiliation(s)
- S Y Tetin
- Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, Illinois 60064, USA.
| | | |
Collapse
|
8
|
O'Connor KC, Ghatak S, Stollar BD. Use of hydrophobic interaction chromatography to separate recombinant antibody fragments from associated bacterial chaperone protein GroEL. Anal Biochem 2000; 278:239-41. [PMID: 10660472 DOI: 10.1006/abio.1999.4465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- K C O'Connor
- Department of Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
9
|
Komissarov AA, Deutscher SL. Thermodynamics of Fab-ssDNA interactions: contribution of heavy chain complementarity determining region 3. Biochemistry 1999; 38:14631-7. [PMID: 10545187 DOI: 10.1021/bi991347l] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The recombinant anti-ssDNA Fab, DNA-1, and 16 heavy chain complementarity determining region 3 (HCDR3) mutant variants were selected for thermodynamic characterization of ssDNA binding. The affinity of Fab to (dT)(15) under different temperatures and cation concentrations was measured by equilibrium fluorescence quenching titration. Changes in the standard Gibbs free binding energy (DeltaG degrees ), enthalpy (DeltaH degrees ), entropy (DeltaS degrees ), and the number of ionic pairs (Z) formed upon interaction were determined. All Fab possessed an enthalpic nature of interaction with ssDNA, that was opposite to the previously reported entropically driven binding to dsDNA [Tanha, J., and Lee, J. S. (1997) Nucleic Acids Res. 25, 1442-1449]. The contribution of separate residues of HCDR3 to ssDNA interaction was investigated. Analysis of the changes in DeltaH degrees and TDeltaS degrees, induced by substitutions in HCDR3, revealed a complete entropy/enthalpy compensation. Mutations R98A and D108A at the ends of the HCDR3 loop produced increases in TDeltaS degrees ( )()by 10.4 and 15.9 kcal/mol, respectively. Substitution of proline for arginine at the top of HCDR3 resulted in a new electrostatic contact with (dT)(15). The observed linear correlation of Z and DeltaG degrees ( )()of nonelectrostatic interactions (DeltaG degrees (nonel)) at the anti-ssDNA combining site was used for the estimation of the specific DeltaG degrees (nonel) [-20 to -25 cal/(mol.A(2))], the average contact area (450-550 A(2)), the maximal Z (6-7), and the limit in affinity under standard cation concentrations [(0.5-1) x 10(8) M(-)(1)] for this family of Fab. Results suggested that rational engineering of HCDR3 could be utilized to control the affinity and likely the specificity of Ab-DNA interactions.
Collapse
Affiliation(s)
- A A Komissarov
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, Missouri 65212, USA
| | | |
Collapse
|
10
|
Cocca BA, Seal SN, Radic MZ. Tandem affinity tags for the purification of bivalent anti-DNA single-chain Fv expressed in Escherichia coli. Protein Expr Purif 1999; 17:290-8. [PMID: 10545278 DOI: 10.1006/prep.1999.1148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antibodies to DNA define an important autospecificity that arises in systemic lupus erythematosus (SLE). To elucidate the molecular features that may explain the pathogenesis of SLE, a heterologous system for expression of cloned V genes is often desirable. Here, a single-chain Fv coding domain was constructed by using the heavy- and light-chain V genes of a high-affinity site-directed mutant of the murine anti-dsDNA autoantibody, 3H9. This scFv was joined in frame to the c-jun leucine zipper for dimerization, and to two affinity tags, domain B of the staphylococcal protein A and a pentahistidine peptide, for purification. Dimerization of the scFv was determined by size-exclusion chromatography. The yields of the scFv following affinity purification on IgG agarose or Ni-NTA agarose were compared, and the activities of the resulting protein fractions were determined. A two-step purification of periplasmic extracts on Ni-NTA agarose and IgG agarose, followed by elution with 3.5 M MgCl(2), yielded scFv with the highest specific activity. The final purified material bound DNA by ELISA, electrophoretic mobility shift assay, and immunofluorescence of fixed Hep-2 cells. Antibodies purified in this fashion should have applications in structure/function studies in which it is essential to generate highly purified antigen-combining sites.
Collapse
Affiliation(s)
- B A Cocca
- Department of Microbiology and Immunology, MCP Hahnemann University, Philadelphia, Pennsylvania, 19129, USA
| | | | | |
Collapse
|
11
|
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that affects most of the organs and tissues of the body, causing glomerulonephritis, arthritis, and cerebritis. SLE can be fatal with nephritis, in particular, predicting a poor outcome for patients. In this review, we highlight what has been learned about SLE from the study of mouse models, and pay particular attention to anti-DNA autoantibodies, both as pathological agents of lupus nephritis and as DNA-binding proteins. We summarize the current approaches used to treat SLE and discuss the targeting of anti-DNA autoantibodies as a new treatment for lupus nephritis.
Collapse
Affiliation(s)
- N B Blatt
- Department of Chemistry, University of Michigan, Ann Arbor 48109-1055, USA
| | | |
Collapse
|
12
|
Robinson CR, Sauer RT. Optimizing the stability of single-chain proteins by linker length and composition mutagenesis. Proc Natl Acad Sci U S A 1998; 95:5929-34. [PMID: 9600894 PMCID: PMC34497 DOI: 10.1073/pnas.95.11.5929] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Linker length and composition were varied in libraries of single-chain Arc repressor, resulting in proteins with effective concentrations ranging over six orders of magnitude (10 microM-10 M). Linkers of 11 residues or more were required for biological activity. Equilibrium stability varied substantially with linker length, reaching a maximum for glycine-rich linkers containing 19 residues. The effects of linker length on equilibrium stability arise from significant and sometimes opposing changes in folding and unfolding kinetics. By fixing the linker length at 19 residues and varying the ratio of Ala/Gly or Ser/Gly in a 16-residue-randomized region, the effects of linker flexibility were examined. In these libraries, composition rather than sequence appears to determine stability. Maximum stability in the Ala/Gly library was observed for a protein containing 11 alanines and five glycines in the randomized region of the linker. In the Ser/Gly library, the most stable protein had seven serines and nine glycines in this region. Analysis of folding and unfolding rates suggests that alanine acts largely by accelerating folding, whereas serine acts predominantly to slow unfolding. These results demonstrate an important role for linker design in determining the stability and folding kinetics of single-chain proteins and suggest strategies for optimizing these parameters.
Collapse
Affiliation(s)
- C R Robinson
- Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, USA
| | | |
Collapse
|
13
|
Komissarov AA, Marchbank MT, Calcutt MJ, Quinn TP, Deutscher SL. Site-specific mutagenesis of a recombinant anti-single-stranded DNA Fab. Role of heavy chain complementarity-determining region 3 residues in antigen interaction. J Biol Chem 1997; 272:26864-70. [PMID: 9341118 DOI: 10.1074/jbc.272.43.26864] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The heavy chain complementarity-determining region 3 (HCDR3) of the anti-oligo(dT) recombinant antibody fragment, DNA-1, contributes significantly to antigen binding (Komissarov, A. A., Calcutt, M. J., Marchbank, M. T., Peletskaya, E. N., and Deutscher, S. L. (1996) J. Biol. Chem. 271, 12241-12246). In the present study, the role of separate HCDR3 residues of DNA-1 in interaction with oligo(dT) was elucidated. Based on a molecular model of the combining site, residues at the base (Arg98 and Asp108) and in the middle (Tyr101-Arg-Pro-Tyr-Tyr105) of HCDR3 were predicted to support the loop conformation and directly contact the ligand, respectively. Twenty-five site-specific mutants were produced as hexahistidine-tagged proteins, purified, and examined for binding to (dT)15 using two independent methods. All mutations in the middle of HCDR3 led to either abolished or diminished affinity. Tyr101 likely participates in hydrogen bonding, while Tyr104 and Tyr105 may be involved in aromatic-aromatic interactions with the ligand. The residues Arg102 and Pro103 were not as critical as the tyrosines. It is speculated that HCDR3 interacts with the thymines, rather than the phosphates, of the ligand. A 3-fold increase in affinity was observed by mutation of Asp108 to alanine. The highly conserved Arg98 and Asp108 do not appear to form a salt bridge.
Collapse
Affiliation(s)
- A A Komissarov
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, Missouri 65212, USA
| | | | | | | | | |
Collapse
|
14
|
Gololobov GV, Rumbley CA, Rumbley JN, Schourov DV, Makarevich OI, Gabibov AG, Voss EW, Rodkey LS. DNA hydrolysis by monoclonal anti-ssDNA autoantibody BV 04-01: origins of catalytic activity. Mol Immunol 1997; 34:1083-93. [PMID: 9519766 DOI: 10.1016/s0161-5890(97)00129-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Monoclonal anti-DNA autoantibody BV 04-01 catalyzed hydrolysis of DNA in the presence of Mg2+ ions. DNA hydrolyzing activity was associated with BV 04-01 IgG, Fab, and SCA 04-01 proteins. Pronounced cleavage specificity for both ss and dsDNA was observed with efficient hydrolysis of the C-rich region of the oligonucleotide A7C7ATATAGCGCGT7 as well as preference for cleavage within CG-rich regions of double-stranded DNA. Data on specificity of ssDNA hydrolysis and kinetic data obtained from wild-type SCA 04-01 and two SCA 04-01 mutants (L32Phe and L27dHis) were used to model the catalytically active antibody site utilizing the previously resolved X-ray structure of (dT)3 liganded Fab 04-01. The resulting model suggested that BV 04-01 activates the target phosphodiester bond by induction of conformational strain. In addition, the antibody-DNA complex contained a potential Mg2+ ion coordination site composed of the L32Tyr and L27dHis amino acid side chains and a DNA 3'-phosphodiester group. Induction of strain and metal coordination could be constituents of a mechanism by which this antibody catalyzed DNA hydrolysis. Sequence data for BV 04-01 VH and VL genes suggested that the proposed catalytic antibody active site was germ-line encoded. This observation suggests the hypothesis that catalytic activity might represent an important but unspecified function of some antibody molecules.
Collapse
Affiliation(s)
- G V Gololobov
- Department of Pathology and Laboratory Medicine, University of Texas-Houston, Medical School, 77225-0708, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- R M Bill
- Department of Chemistry, University of Michigan, Ann Arbor 48109-1055, USA
| | | | | |
Collapse
|
16
|
Robinson CR, Sauer RT. Equilibrium stability and sub-millisecond refolding of a designed single-chain Arc repressor. Biochemistry 1996; 35:13878-84. [PMID: 8909284 DOI: 10.1021/bi961375t] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Arc-L1-Arc is a single-chain variant of bacteriophage P22 Arc repressor in which a 15 residue linker joins the C-terminus of one subunit to the N-terminus of an otherwise identical subunit. Spectroscopic probes indicate that the native and denatured state of the single-chain protein are similar to those of the unlinked Arc dimer. In equilibrium experiments, Arc-L1-Arc denatures in a reaction without populated intermediate states as judged by the fits of the denaturation isotherms to a two-state model and by the coincidence of denaturation curves monitored by fluorescence and circular dichroism. Comparison of the equilibrium stabilities of Arc-L1-Arc and unlinked Arc gives an effective concentration of subunits in the denatured single-chain variant of 2.7 (+/- 0.7) mM. The kinetic refolding and unfolding reactions of Arc-L1-Arc also appear to proceed without populated intermediates. The rate constant for Arc-L1-Arc unfolding is about 2-fold faster than that of unlinked Arc, indicating that the linker mediates no significant contacts in the native structure that need to be broken to allow unfolding. As expected, the major effect of the linker occurs during the refolding reaction, where the effective subunit concentration calculated from the bimolecular and unimolecular refolding rate constants is 4.5 (+/- 1.8) mM. The transition states for the unfolding and refolding reactions of Arc-L1-Arc and wild-type Arc have similar solvent exposures as measured by the urea dependencies of the equilibrium and rate constants. In the absence of urea, the single-chain protein refolds very rapidly (kf approximately 10(4) s-1) in a reaction that is essentially complete in the sub-millisecond time regime.
Collapse
Affiliation(s)
- C R Robinson
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139-4307, USA
| | | |
Collapse
|
17
|
Komissarov AA, Calcutt MJ, Marchbank MT, Peletskaya EN, Deutsher SL. Equilibrium binding studies of recombinant anti-single-stranded DNA Fab. Role of heavy chain complementarity-determining regions. J Biol Chem 1996; 271:12241-6. [PMID: 8647821 DOI: 10.1074/jbc.271.21.12241] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We previously isolated nucleic acid-binding antibody fragments (Fab) from bacteriophage display libraries representing the immunoglobulin repertoire of automimune mice to expedite the analysis of antibody-DNA recognition. In the present study, the binding properties of one such anti-DNA Fab, high affinity single-stranded (ss) DNA-binding Fab (DNA-1), were defined using equilibrium gel filtration and fluorescence titration. Results demonstrated that DNA-1 had a marked preference for oligo(dT) (100 nM dissociation constant) and required oligo(dT) >5 nucleotides in length. A detailed analysis of the involvement of the individual heavy chain (H) complementarity-determining regions (CDR) ensued using previously constructed HCDR transplantation mutants between DNA-1 and low affinity ssDNA-binding Fab (D5), a Fab that binds poorly to DNA (Calcutt, M. J. Komissarov, A. A., Marchbank, M. T., and Deutscher, S. L. (1996) Gene (Amst.) 168, 9-14). Circular dichroism studies indicated that the wild type and mutant Fab studied were of similar overall secondary structure and may contain similar combining site shapes. The conversion of D5 to a high affinity oligo(dT)-binding Fab occurred only in the presence of DNA-1 HCDR3. Results with site-specific mutants in HCDR1 further suggested a role of residue 33 in interaction with nucleic acid. The results of these studies are compared with previously published data on DNA-antibody recognition.
Collapse
Affiliation(s)
- A A Komissarov
- Department of Biochemistry, University of Missouri School of Medicine, Columbia 65212, USA
| | | | | | | | | |
Collapse
|
18
|
Mallender WD, Carrero J, Voss EW. Comparative properties of the single chain antibody and Fv derivatives of mAb 4-4-20. Relationship between interdomain interactions and the high affinity for fluorescein ligand. J Biol Chem 1996; 271:5338-46. [PMID: 8621386 DOI: 10.1074/jbc.271.10.5338] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Recombinant Fv derivative of the high affinity murine anti-fluorescein monoclonal antibody 4-4-20 was constructed and expressed in high yields, relative to the single chain antibody (SCA) derivative (2 3-fold), in Escherichia coli. Both variable heavy (VH) and variable light (VL) domains, that accumulated as insoluble inclusion bodies, were isolated, denatured, mixed, refolded, and affinity-purified to yield active Fv 4-4-20. Affinity-purified Fv 4-4-20 showed identical ligand binding properties compared with the SCA construct, both were slightly lower than the affinities expressed by Fab or IgG 4-4-20. Proper protein folding was shown to be domain-independent by in vitro mixing of individually refolded variable domains to yield functional Fv protein. In solid phase and solution phase assays, Fv 4-4-20 closely approximated the SCA derivative in terms of both idiotype and metatype, confirming identical active site structures and conformations. The equilibrium dissociation constant (Kd) for the VL/VH association (1.43 x 10(-7) M), which was determined using the change in fluorescein spectral properties upon ligand binding, was relatively low considering the high affinity displayed by the Fv protein for fluorescein (Kd, 2.9 x 10(-10) M). Thus, domain-domain stability in the Fv and SCA 4-4-20 proteins cannot be the sole cause of reduced affinity (2-3-fold) for fluorescein as compared with the Fab or IgG form of 4-4-20. With their identical ligand binding and structural properties, the decreased SCA or Fv affinity for fluorescein must be an ultimate consequence of deletion of the CH1 and CL constant domains. Collectively, these results verify the importance of constant domain interactions in antibody variable domain structure-function analyses and future antibody engineering endeavors.
Collapse
Affiliation(s)
- W D Mallender
- Department of Microbiology, University of Illinois, Urbana, 61801, USA
| | | | | |
Collapse
|
19
|
Swanson PC, Ackroyd C, Glick GD. Ligand recognition by anti-DNA autoantibodies. Affinity, specificity, and mode of binding. Biochemistry 1996; 35:1624-33. [PMID: 8634294 DOI: 10.1021/bi9516788] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Understanding the molecular basis of DNA recognition by anti-DNA autoantibodies is a key element in defining the role of antibody.DNA complexes in the pathogenesis of the autoimmune disorder systemic lupus erythematosus. As part of our efforts to relate anti-DNA affinity and specificity to antibody structure, and ultimately to disease pathogenesis, we have generated a panel of eight anti-DNA mAbs from an autoimmune MRL MpJ-lpr/lpr mouse and have assessed the binding properties of these antibodies. We find that none of our anti-DNA mAbs bind to RNA and only one low-affinity mAb cross-reacts with non-DNA antigens, albeit weakly. None of the mAbs in our panel bind double-stranded DNA exclusively. Antibodies that recognize single-stranded DNA can be categorized into two groups based on their affinity and apparent mode of binding. One group possesses relatively high affinity for oligo(dT) and may recognize single-stranded DNA ligands by accommodating thymine bases in hydrophobic pockets on the antigen binding site. The second group binds more weakly, apparently recognizes single-stranded DNA nonspecifically, and in some cases also binds double-stranded DNA. Although different mechanisms are used for binding single- and double-stranded ligands, the mode of DNA recognition appears conserved within groups of antibodies.
Collapse
Affiliation(s)
- P C Swanson
- Department of Chemistry, University of Michigan, Ann Arbor 48109-1055, USA
| | | | | |
Collapse
|
20
|
Jang YJ, Lecerf JM, Stollar BD. Heavy chain dominance in the binding of DNA by a lupus mouse monoclonal autoantibody. Mol Immunol 1996; 33:197-210. [PMID: 8649441 DOI: 10.1016/0161-5890(95)00094-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Antibodies H241 and 2C10 are lupus mouse IgG autoantibodies that bind native DNA. In previous experiments, oligonucleotide antigens affinity-labeled both H and L chains of H241 but only the H chain of antibody 2C10. Primary structures of the V regions of the 2C10 H and L chains and the H241 L chain, determined from cDNA, help to explain the previous affinity-labeling experiments. The 2C10 L chain CDRs had several Asp residues and a net negative charge of five, whereas the 2C10 H chain CDRs had four Arg residues and a net positive charge of five. The L chain CDRs of H241 had a net positive charge of one. [The H241 H chain cDNA sequence was published previously by Gangemi et al. (1993) J. Immun. 151, 4660-4671]. Plasmid vectors were used for bacterial expression of H and L chains of 2C10 alone and in combinations in single chain Fv (scFv) molecules. The H chain alone bound native DNA as well as or better than the H-plus-L chain scFv. The H chain alone also bound Z-DNA. Combination of the 2C10 H chain with the L chain of an anti-Z-DNA antibody maintained the selectivity for Z-DNA, whereas its combination with the 2C10 L chain (in the 2C10 Fab) yielded selective B-DNA binding. The results with 2C10 match other examples in which the H chain is sufficient for DNA binding but selectivity is modulated by the L chain. The H chain binding to autoantigen may reflect selective events in early stages of B cell development.
Collapse
Affiliation(s)
- Y J Jang
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
21
|
Robinson CR, Sauer RT. Covalent attachment of Arc repressor subunits by a peptide linker enhances affinity for operator DNA. Biochemistry 1996; 35:109-16. [PMID: 8555163 DOI: 10.1021/bi9521194] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
By designing a recombinant gene containing tandem copies of the arc coding sequence with intervening DNA encoding the linker sequence GGGSGGGTGGGSGGG, the two subunits of the P22 Are repressor dimer have been covalently linked to form a single-chain protein called Arc-L1-Arc. The 15-residue linker joins the C-terminus of one monomer to the N-terminus of the second, a distance of approximately 45 A in the Arc-operator cocrystal structure. Arc-L1-Arc is expressed at high levels in Escherichia coli, with no evidence of degradation or proteolytic clipping of the linker, and is more active than wild-type Arc in repression assays. The purified Arc-L1-Arc protein has the molecular weight expected for the designed protein and unfolds cooperatively, reversibly, and with no concentration dependence in thermal-denaturation studies. Arc-L1-Arc protects operator DNA in a manner indistinguishable from that of wild-type Arc in DNase I and copper-phenanthroline footprinting studies, but the covalent attachment of the two monomers results in enhanced affinity for operator DNA. Arc-L1-Arc binds operator DNA half-maximally at a concentration of 1.7 pM, compared with the wild-type value of 185 pM, and also binds DNA fragments containing the left or right operator half-sites more tightly than wild type. Because wild-type Arc is monomeric at sub-nanomolar concentrations and must dimerize before binding to the operator, it was anticipated that Arc-L1-Arc would exhibit a lower half-maximal binding concentration. However, even when the change from a monomeric to a dimeric species is taken into account, the affinity of Arc-L1-Arc for operator and half-operator DNA is greater than the wild-type affinity. This tighter binding appears to result from slower dissociation, as Arc-L1-Arc DNA complexes with full or half-site operators dissociate at rates 5-10 times slower than the corresponding Arc--DNA complexes. Hence, the activity of the designed Arc-L1-Arc protein is substantially increased relative to wild-type Arc in a variety of assays.
Collapse
Affiliation(s)
- C R Robinson
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139-4307, USA
| | | |
Collapse
|
22
|
Rumbley CA, Voss EW. Lupus-derived autoantibodies with dual autoactivity: anti-DNA and anti-Fc. I. Comparison of IgG autoreactivities with single-chain Fv derivatives. Clin Exp Immunol 1995; 102:341-8. [PMID: 7586688 PMCID: PMC1553421 DOI: 10.1111/j.1365-2249.1995.tb03787.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Investigations into the intrinsic affinity and reactivity of autoanti-DNA active sites were initiated through the use of purified monoclonal IgG and the synthesis of single-chain Fv derivatives of murine monoclonal anti-DNA autoantibodies BV 04-01 and BV 17-45. Results showed that relative to the respective IgG hybridomas, only the BV 04-01 SCA derivative showed demonstrable reactivity with DNA. The monovalent single-chain derivative of BV 17-45 showed no reactivity with DNA in solution or solid-phase assays, even though the parental IgG had been previously described as high affinity. However, 17-45 displayed reactivity as a bivalent single-chain derivative. In addition, upon concentration, BV 17-45 IgG formed a highly stable, papain-resistant precipitate. Investigations into the nature of the precipitate revealed that BV 17-45 possessed significant, DNA-inhibitable autobinding to its own IgG molecule. BV 04-01 also possessed similar anti-self reactivity. Thus, both monoclonal autoantibodies examined in this study possessed dual binding specificity; anti-DNa and anti-self.
Collapse
Affiliation(s)
- C A Rumbley
- Department of Cell and Structural Biology, University of Illinois, Urbana 61801, USA
| | | |
Collapse
|
23
|
Rumbley CA, Voss EW. Lupus-derived autoantibodies with dual autoactivity: anti-DNA and anti-Fc. II. Fine specificity of anti-self autoreactivity. Clin Exp Immunol 1995; 102:349-53. [PMID: 7586689 PMCID: PMC1553399 DOI: 10.1111/j.1365-2249.1995.tb03788.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The anti-immunoglobulin reactivity of two monoclonal, dual specific, autoantibodies, BV 17-45 and BV 04-01 was examined. The current study further defined the anti-immunoglobulin autoreactivity of these MoAbs to be Fc-specific. Both BV 17-45 and BV 04-01 bound their own Fc domains in addition to Fc regions of other MoAbs of similar isotype with varying levels of activity. The different anti-Fc reactivity patterns of BV 17-45 and BV 04-01 suggested that these MoAbs recognized distinct epitopes. Neither BV 17-45 nor BV 04-01 bound Fab fragments or single-chain antibody derivatives, which confirmed that the anti-immunoglobulin reactivity of these autoantibodies was Fc-specific. In addition, abrogation of anti-Fc reactivity was observed when affinity-labelled MoAbs were used as coating antigens in solid-phase ELISAs. These results implied that active-site ligand binding induced conformational changes which altered the Fc epitope(s) recognized by BV 17-45 and BV 04-01.
Collapse
Affiliation(s)
- C A Rumbley
- Department of Cell and Structural Biology, University of Illinois, Urbana 61801, USA
| | | |
Collapse
|
24
|
Miklasz SD, Gulliver GA, Voss EW. High-affinity rat anti-fluorescein monoclonal antibody with unique fine specificity properties including differential recognition of dynamic ligand analogues. J Mol Recognit 1995; 8:258-69. [PMID: 8588943 DOI: 10.1002/jmr.300080404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ability of antibodies to specifically select and stabilize through binding one or more isomers of highly dynamic ligands remains a relatively unexplored immunochemical problem. The experimental strategy employed in this study was to elicit homogeneous antibodies to polyaromatic fluorescein which exists in one isomeric form. The binding properties of a monoclonal rat antifluorescein antibody specific to a given isomer were quantitatively studied to determine the capacity to bind dynamic analogues of fluorescein which exists in multiple isomers. To generate monoclonal anti-fluorescein antibodies that reacted with specific dynamic analogues of fluorescein possessing unconjugated aromatic ring systems, immune spleenocytes from Lou/M rats immunized with FITC(I)-KLH were fused with Balb/c SP2/0-Ag14 murine myeloma cells forming rat-mouse hybridomas. Cell line P2A12-1-C8 was selected for further characterization from the original 23 stable rat hybrids, since it produced a monoclonal antibody with a binding affinity 2.0 x 10(10)/M for fluorescein based on dissociation rate measurements. P2A12-1-C8 exhibited significant reactivity with HPF and phenol red, which are dynamic structural analogues of the homologous fluorescein ligand. No reactivity was demonstrated with phenolphthalein, which based on relative chemical structures was expected to be more reactive than phenol red. Computer-based molecular modeling and energy minimization studies of fluorescein, HPF, phenol red, and phenolphthalein showed that in terms of the most energetically favorable orientation of the three aromatic rings, phenol red more closely simulated fluorescein than phenolphthalein. The results were analyzed in terms of the mechanisms of dynamic ligand stabilization and binding involving accommodation of specific ligand isomers by energetically permissible conformational states exhibited by an antibody active site. Thus, antibody reactivity of an anti-fluorescein antibody with phenol red and phenolphthalein was dictated more by ligand dynamics and aromatic orientation than by chemical structure similarities.
Collapse
Affiliation(s)
- S D Miklasz
- Immunology Resource Center, University of Illinois, Urbana 61801, USA
| | | | | |
Collapse
|
25
|
Tang PM, Foltz LA, Mahoney WC, Schueler PA. A high affinity digoxin-binding protein displayed on M13 is functionally identical to the native protein. J Biol Chem 1995; 270:7829-35. [PMID: 7713873 DOI: 10.1074/jbc.270.14.7829] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Phage display of peptides and proteins has successfully been employed to produce binding molecules of altered affinity. Little is known, however, regarding the impact on affinity measurements of phage-displayed molecules compared to their native freely soluble configuration. That identical affinities can be obtained was shown by Scatchard analysis of the native antibody, its single chain derivative (scFv), and its phage-displayed single chain counterpart for the ligand digoxin. No significant difference, within one standard deviation, was detected in affinity for digoxin when the phage-displayed scFv was compared to either its soluble scFv form or the purified antibody. In addition, no change in binding specificity was detected, within two standard deviations, when the binding proteins were challenged with two commonly cross-reactive compounds (dihydrodigoxin and digitoxin). That phage-display can be employed for molecules having high binding affinities (Kd of 6 x 10(-11) M) is also shown.
Collapse
Affiliation(s)
- P M Tang
- Molecular Diagnostics, Research and Development, Boehringer Mannheim Corporation, Indianapolis, Indiana 46250, USA
| | | | | | | |
Collapse
|
26
|
Characterization of four nucleic acid-binding single-chain Fv fragments by direct and competitive solid-phase radioimmunoassays. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(20)30084-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Gulliver G, Voss E. Effect of transplantation of antibody heavy chain complementarity determining regions on ligand binding. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51044-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Mallender WD, Ferreira ST, Voss EW, Coelho-Sampaio T. Inter-active-site distance and solution dynamics of a bivalent-bispecific single-chain antibody molecule. Biochemistry 1994; 33:10100-8. [PMID: 8060979 DOI: 10.1021/bi00199a038] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The solution dynamics of a bivalent bispecific single-chain antibody (BiSCA) specific against fluorescein (Fl) and single-stranded DNA (ssDNA) were investigated. Fluorescence resonance energy transfer (FRET) studies were performed in order to estimate the average distances, R, between the anti-Fl and the anti-ssDNA active sites. In separate experiments, either 2-(dimethylamino)naphthalene-5-sulfonyl chloride coupled to the 5' end of an oligothymidylate polymer of 6 residues length (2,5-DNS-dT6) served as energy donor to Fl or eosin isothiocyanate coupled to the 5' end of an oligothymidylate polymer of 6 residues length (eosin-dT6) served as energy acceptor from Fl. Labeling of dT6 with 2,5-DNS or eosin did not significantly interfere with recognition by the anti-ssDNA binding site. With the 2,5-DNS/Fl energy transfer pair, the calculated values of R(k2 = 2/3), R(min), and R(max) were 44, 37, and 54 A, respectively. With Fl/eosin (opposite direction of FRET), values of 40, 33, and 51 A, respectively, were obtained. Considering the sizes of the two SCA domains and the length of the interdomain polypeptide linker, an R value of approximately 140 A would be expected for the extended molecule. The fact that measured R distances were on average 3-fold shorter than 140 A indicated that BiSCA was not an extended and rigid molecule. The efficiency of energy transfer increased with increasing temperature in the range of 10-30 degrees C, suggesting that conformational fluctuations of the protein resulted in decreased average distance between BiSCA active sites.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W D Mallender
- Department of Microbiology, University of Illinois, Urbana 61801
| | | | | | | |
Collapse
|
29
|
Anti-metatype antibodies stabilize the fluorescein single-chain antibody 4-4-20 complex against dissociation by hydrostatic pressure. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37172-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
30
|
Conversion of an anti-single-stranded DNA active site to an anti-fluorescein active site through heavy chain complementarity determining region transplantation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37141-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
31
|
|
32
|
Weidner KM, Denzin LK, Kim ML, Mallender WD, Miklasz SD, Voss EW. Elicitation of distinct populations of monoclonal antibodies specific for the variable domains of monoclonal anti-fluorescein antibody 4-4-20. Mol Immunol 1993; 30:1003-11. [PMID: 8350870 DOI: 10.1016/0161-5890(93)90125-u] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Armenian hamsters were immunized with non-liganded, partially liganded or affinity-labeled anti-fluorescein Mab 4-4-20. Seventeen hybridoma producing monoclonal anti-4-4-20 antibodies were characterized from chemically-mediated fusions of immune hamster lymphocytes with murine Sp2/O-Ag14 myeloma cells. Distinct populations of anti-4-4-20 monoclonal antibodies were isolated from hamsters receiving immunizations with partially liganded Mab 4-4-20 relative to those receiving affinity-labeled 4-4-20. Two of the three monoclonal antibodies produced in response to partially liganded 4-4-20 were inhibited in their interaction with 4-4-20 by fluorescyl ligand. These two clones, 1F4 and 1B7, recognized unique epitopes on the 4-4-20 molecules, as demonstrated by non-reactivity with members of the 4-4-20 idiotype family. Additionally, 1F4 and 1B7 demonstrated the ability to delay the association of fluorescein with Mab 4-4-20. The 14 characterized non-ligand-inhibitable Mabs elicited to affinity-labeled 4-4-20 were classified into four separate groups based on various binding properties with members of the 4-4-20 idiotype family and binding to resolved H- and L-chains in a western blot. Members of three of the four groups showed strong reactivity with both 04-01 Ig and 04-01 SCA, which utilizes the same L-chain as Mab 4-4-20. Six non-ligand-inhibitable Mabs, 4A6, P1E11, 3A5-1, 2C3, 2C4, and 1A4, delayed the dissociation rate of ligand from Mab 4-4-20 and mutant 4-4-20 SCA L32phe.
Collapse
Affiliation(s)
- K M Weidner
- Department of Microbiology, University of Illinois, Urbana 61801
| | | | | | | | | | | |
Collapse
|