1
|
Mishima E, Nakamura T, Doll S, Proneth B, Fedorova M, Pratt DA, Friedmann Angeli JP, Dixon SJ, Wahida A, Conrad M. Recommendations for robust and reproducible research on ferroptosis. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00843-2. [PMID: 40204928 DOI: 10.1038/s41580-025-00843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2025] [Indexed: 04/11/2025]
Abstract
Ferroptosis is a necrotic, non-apoptotic cell death modality triggered by unrestrained iron-dependent lipid peroxidation. By unveiling the regulatory mechanisms of ferroptosis and its relevance to various diseases, research over the past decade has positioned ferroptosis as a promising therapeutic target. The rapid growth of this research field presents challenges, associated with potentially inadequate experimental approaches that may lead to misinterpretations in the assessment of ferroptosis. Typical examples include assessing whether an observed phenotype is indeed linked to ferroptosis, and selecting appropriate animal models and small-molecule modulators of ferroptotic cell death. This Expert Recommendation outlines state-of-the-art methods and tools to reliably study ferroptosis and increase the reproducibility and robustness of experimental results. We present highly validated compounds and animal models, and discuss their advantages and limitations. Furthermore, we provide an overview of the regulatory mechanisms and the best-studied players in ferroptosis regulation, such as GPX4, FSP1, SLC7A11 and ACSL4, discussing frequent pitfalls in experimental design and relevant guidance. These recommendations are intended for researchers at all levels, including those entering the expanding and exciting field of ferroptosis research.
Collapse
Affiliation(s)
- Eikan Mishima
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshitaka Nakamura
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Sebastian Doll
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Bettina Proneth
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Dresden, Germany
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Adam Wahida
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany.
- Translational Redox Biology, TUM Natural School of Sciences, Technical University of Munich, Garching, Germany.
| |
Collapse
|
2
|
Xu H, Brown JL, Bhaskaran S, Van Remmen H. Reactive oxygen species in the pathogenesis of sarcopenia. Free Radic Biol Med 2025; 227:446-458. [PMID: 39613046 PMCID: PMC11816180 DOI: 10.1016/j.freeradbiomed.2024.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
One of the most critical factors impacting healthspan in the elderly is the loss of muscle mass and function, clinically referred to as sarcopenia. Muscle atrophy and weakness lead to loss of mobility, increased risk of injury, metabolic changes and loss of independence. Thus, defining the underlying mechanisms of sarcopenia is imperative to enable the development of effective interventions to preserve muscle function and quality in the elderly and improve healthspan. Over the past few decades, understanding the roles of mitochondrial dysfunction and oxidative stress has been a major focus of studies seeking to reveal critical molecular pathways impacted during aging. In this review, we will highlight how oxidative stress might contribute to sarcopenia by discussing the impact of oxidative stress on the loss of innervation and alteration in the neuromuscular junction (NMJ), on muscle mitochondrial function and atrophy pathways, and finally on muscle contractile function.
Collapse
Affiliation(s)
- Hongyang Xu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States
| | - Jacob L Brown
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States; Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, United States
| | - Shylesh Bhaskaran
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States; Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, United States.
| |
Collapse
|
3
|
Rafieerad A, Saleth LR, Khanahmadi S, Amiri A, Alagarsamy KN, Dhingra S. Periodic Table of Immunomodulatory Elements and Derived Two-Dimensional Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406324. [PMID: 39754328 PMCID: PMC11809427 DOI: 10.1002/advs.202406324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Indexed: 01/06/2025]
Abstract
Periodic table of chemical elements serves as the foundation of material chemistry, impacting human health in many different ways. It contributes to the creation, growth, and manipulation of functional metallic, ceramic, metalloid, polymeric, and carbon-based materials on and near an atomic scale. Recent nanotechnology advancements have revolutionized the field of biomedical engineering to tackle longstanding clinical challenges. The use of nano-biomaterials has gained traction in medicine, specifically in the areas of nano-immunoengineering to treat inflammatory and infectious diseases. Two-dimensional (2D) nanomaterials have been found to possess high bioactive surface area and compatibility with human and mammalian cells at controlled doses. Furthermore, these biomaterials have intrinsic immunomodulatory properties, which is crucial for their application in immuno-nanomedicine. While significant progress has been made in understanding their bioactivity and biocompatibility, the exact immunomodulatory responses and mechanisms of these materials are still being explored. Current work outlines an innovative "immunomodulatory periodic table of elements" beyond the periodic table of life, medicine, and microbial genomics and comprehensively reviews the role of each element in designing immunoengineered 2D biomaterials in a group-wise manner. It recapitulates the most recent advances in immunomodulatory nanomaterials, paving the way for the development of new mono, hybrid, composite, and hetero-structured biomaterials.
Collapse
Affiliation(s)
- Alireza Rafieerad
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Soofia Khanahmadi
- Institute for Molecular BiosciencesJohann Wolfgang Goethe Universität60438Frankfurt am MainGermany
| | - Ahmad Amiri
- Russell School of Chemical EngineeringThe University of TulsaTulsaOK74104USA
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| |
Collapse
|
4
|
Wei J, Zhang Y, Shi W, Lu L, Zhou Q, Pu Y, Yin L. Copper exposure induces neurotoxicity through ferroptosis in C. elegans. Chem Biol Interact 2025; 407:111369. [PMID: 39753188 DOI: 10.1016/j.cbi.2024.111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Copper, as a vital trace element and ubiquitous environmental pollutant, exhibits a positive correlation with the neurodegenerative diseases. Recent studies have highlighted ferroptosis's significance in heavy metal-induced neurodegenerative diseases, yet its role in copper-related neurotoxicity remains unclear. This study aimed to investigate the role of ferroptosis in copper-induced neurotoxicity. Previously, we established that copper induced motor behaviors inhibition and neuronal degeneration through oxidative stress in Caenorhabditis elegans (C. elegans). This study revealed that the behavior inhibition (head thrash, body bends, pumping frequency and defecation interval) and neuronal degeneration (GABAergic neurons and dopaminergic neurons) in copper-treated nematodes were reversed by the ferroptosis inhibitor Fer-1. Additionally, copper treatment increased the Fe2+ level and MDA content, and decreased GSH content, suggesting copper activated the ferroptosis in C. elegans. Furthermore, studies found that copper exposure altered the expression of ferroptosis-related genes gpx-1, ftn-1, and acs-17 in C. elegans. The results showed RNAi of gpx-1 and RNAi of ftn-1 significantly promoted Cu-induced neurotoxicity, while the RNAi of acs-17 appeared to rescue the Cu-induced ferroptosis and neurotoxicity. In conclusion, Cu might induce behavior inhibition and neuronal degeneration through ferroptosis in C. elegans. The findings of this study provided new insights in the mechanisms underlying Cu-induced neurotoxicity.
Collapse
Affiliation(s)
- Jianglan Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Wei Shi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Lu Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Qian Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
5
|
Korbelik M, Heger M, Girotti AW. Participation of lipids in the tumor response to photodynamic therapy and its exploitation for therapeutic gain. J Lipid Res 2025; 66:100729. [PMID: 39675508 PMCID: PMC11911859 DOI: 10.1016/j.jlr.2024.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/19/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Hydroperoxides of unsaturated membrane lipids (LOOHs) are the most abundant non-radical intermediates generated by photodynamic therapy (PDT) of soft tissues such as tumors and have far longer average lifetimes than singlet oxygen or oxygen radicals formed during initial photodynamic action. LOOH-initiated post-irradiation damage to remaining membrane lipids (chain peroxidation) or to membrane-associated proteins remains largely unrecognized. Such after-light processes could occur during clinical oncological PDT, but this is not well-perceived by practitioners of this therapy. In general, the pivotal influence of lipids in tumor responses to PDT needs to be better appreciated. Of related importance is the fact that most malignant tumors have dramatically different lipid metabolism compared with healthy tissues, and this too is often ignored. The response of tumors to PDT appears especially vulnerable to manipulations within the tumor lipid microenvironment. This can be exploited for therapeutic gain with PDT, as exemplified here by the combined treatment with the antitumor lipid edelfosine.
Collapse
Affiliation(s)
- Mladen Korbelik
- Department of Integrative Oncology, BC Cancer, Vancouver, BC, Canada
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, P. R. China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
6
|
Wei Z, Hao C, Radeen KR, Hao Z, Kettimuthu K, Maner-Smith K, Toyokuni S, Fan X. Deficiency in glutathione peroxidase 4 (GPX4) results in abnormal lens development and newborn cataract. Proc Natl Acad Sci U S A 2024; 121:e2407842121. [PMID: 39560644 PMCID: PMC11621771 DOI: 10.1073/pnas.2407842121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/03/2024] [Indexed: 11/20/2024] Open
Abstract
The human lens is composed of a monolayer of lens epithelial cells (LECs) and elongated fibers that align tightly but are separated by the plasma membrane. The integrity of the lens plasma membrane is crucial for maintaining lens cellular structure, homeostasis, and transparency. Glutathione peroxidase 4 (GPX4), a selenoenzyme, plays a critical role in protecting against lipid peroxidation. This study aims to elucidate the role of GPX4 in lens plasma membrane stability during lens development using in vitro, ex vivo, and in vivo systems. Our findings reveal that GPX4 deficiency triggers lens epithelial apoptosis-independent but ferroptosis-mediated cell death. Blocking lens GPX4 activity during ex vivo culture induces lens opacification, LEC death, and disruption of lens fiber cell arrangement. Deletion of lens-specific Gpx4 results in significant unsaturated phospholipid loss and an increase in oxidized phospholipids. Consequently, lenses with Gpx4 deficiency exhibit massive disruption of lens fiber cell structure, significant loss of LECs via ferroptosis, and formation of newborn cataracts. Remarkably, administering the lipid peroxidation inhibitor, liproxstatin-1, to pregnant mothers at embryonic days 9.5 significantly prevents lipid peroxidation, LEC death, and lens developmental defects. Our study unveils the crucial role of GPX4 in lens development and transparency, and also provides a successful intervention approach to prevent lens developmental defects through lipid peroxidation inhibition.
Collapse
Affiliation(s)
- Zongbo Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA30912
| | - Caili Hao
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA30912
| | - Kazi Rafsan Radeen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA30912
| | - Zheng Hao
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Aichi464-0083, Japan
| | - Kavitha Kettimuthu
- School of Medicine, Emory Integrated Metabolomics and Lipidomics Core, Emory University, Atlanta, GA30322
| | - Kristal Maner-Smith
- School of Medicine, Emory Integrated Metabolomics and Lipidomics Core, Emory University, Atlanta, GA30322
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Aichi464-0083, Japan
| | - Xingjun Fan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA30912
| |
Collapse
|
7
|
Sedghi M, Javanmard F, Amoozmehr A, Zamany S, Mohammadi I, Kim W, Choppa VSR. Lysophospholipid Supplementation in Broiler Breeders' Diet Benefits Offspring's Productive Performance, Blood Parameters, and Hepatic β-Oxidation Genes. Animals (Basel) 2024; 14:3066. [PMID: 39518789 PMCID: PMC11545463 DOI: 10.3390/ani14213066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
The present study aimed to investigate whether supplementation of modified lysophospholipids (LPLs) in the diet of broiler breeders can benefit their offspring. A total of 264 49-week-old breeders (Ross 308) were allocated and fed based on a 2 × 2 factorial arrangement with two levels of dietary energy (normal energy = 2800 kcal/kg and low energy = 2760 kcal/kg) and two LPL levels (0 and 0.5 g/kg) for periods of 8 and 12 weeks. The offspring were assessed for growth performance, serum parameters, hepatic antioxidative capability, and expression of genes involved in liver β-oxidation at 7 days old. The LPL inclusion improved (p < 0.01) average body weight (ABW), average daily gain (ADG), and feed conversion ratio (FCR). The offspring of 61-week-old breeders fed with LPL exhibited reduced serum triglyceride levels (p < 0.01) but an increase in hepatic glutathione peroxidase (p < 0.05). The LPL increased (p < 0.001) the mRNA expression of the PGC-1α gene in the liver. Supplementing LPL in low-energy diets resulted in higher FABP1 gene expression (p < 0.05) in the intestine. In conclusion, LPL supplementation in the breeders' diet improved offspring performance by enhancing fatty acid absorption, hepatic indices, and the expression of genes involved in liver β-oxidation.
Collapse
Affiliation(s)
- Mohammad Sedghi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; (F.J.); (S.Z.); (I.M.)
| | - Fatemeh Javanmard
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; (F.J.); (S.Z.); (I.M.)
| | - Anvar Amoozmehr
- Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agricultural Sciences and Natural Resources, Shahid Beheshti Ave, Gorgan 49138-15739, Iran;
| | - Saeid Zamany
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; (F.J.); (S.Z.); (I.M.)
| | - Ishmael Mohammadi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; (F.J.); (S.Z.); (I.M.)
| | - Woo Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (W.K.); (V.S.R.C.)
| | | |
Collapse
|
8
|
Zhang Q, Li Z, Liu T, Li J, Bai C. Synthesis of Plasmalogen Derivatives with Unnatural Fatty Acids as Substrates for Ferroptosis Induction. ACS Chem Biol 2024; 19:1883-1887. [PMID: 39116319 DOI: 10.1021/acschembio.4c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Lipid peroxidation, the key step in the ferroptosis process, requires the oxidation of the double bonds of phospholipids in cellular membrane structures. Current research on ferroptosis mechanisms and new drug development has focused on naturally occurring phospholipids with internal double bonds. However, whether unnatural terminal double bonds can be involved in ferroptosis remains to be elucidated. In this study, we introduced terminal double bonds at the sn-2 position of phospholipids (Terminal Olefin Fatty Acids, TOFA) and discovered that these artificial phospholipids can kill cells alone, without ferroptosis inducers, and can be inhibited only by some ferroptosis inhibitors, such as ferrostatin-1, liproxstatin-1, alpha-tocopherol, but not deferoxamine mesylate. Our results reveal that phospholipids with terminal double bonds can participate in ferroptosis through an atypical mechanism. Moreover, further mechanistic studies could confirm that controlling the double bond position could be useful to maneuver ferroptosis and develop new drugs.
Collapse
Affiliation(s)
- Qiliang Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ziwen Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Tao Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jun Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chuan Bai
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
9
|
Lapoot L, Jabeen S, O’Connor RM, Korytowski W, Girotti A, Greer A. Photosensitized Oxidative Damage from a New Perspective: The Influence of Before-Light and After-Light Reaction Conditions. J Org Chem 2024; 89:12873-12885. [PMID: 39231123 PMCID: PMC11421024 DOI: 10.1021/acs.joc.4c01305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/17/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Photooxidative damage is heavily influenced by the presence of bioactive agents. Conversely, bioactive agents influence the local environment, which in turn is perturbed by photooxidative damage. These sorts of processes give rise to a version of the "chicken-and-egg" quandary. In this Perspective, we probe this issue by referring to photooxidative damage in one direction as the light-dark (L-D) sequence and in a second direction as the dark-light (D-L) sequence with a reversed cause and effect. The L-D sequence can lead to the downstream production of reactive molecular species (RMS) in the dark, whereas the D-L sequence can be a pre-irradiation period, such as an additive to limit cellular iron levels to enhance biosynthesized amounts of a protoporphyrin sensitizer. A third direction comes from L-D or D-L sequences, or both simultaneously, which can also be useful for optimizing photodynamics. Photodynamic optimization will benefit from understanding and quantitating unidirectional L-D and D-L pathways, and bidirectional L-D/D-L pathways, for improved control over photooxidative damage. Photooxidative damage, which occurs during anticancer photodynamic therapy (PDT), will be shown to involve RMS. Such RMS include persulfoxides (R2S+OO-), NO2•, peroxynitrate (O2NOO-), OOSCN-, SO3•-, selenocyanogen [(SeCN)2], the triselenocyanate anion [(SeCN)3-], I•, I2•-, I3-, and HOOI, as well as additives to destabilize membranes (e.g., caspofungin and saponin A16), inhibit DNA synthesis (5-fluorouracil), or sequester iron (desferrioxamine). In view of the success that additive natural products and repurposed drugs have had in PDT, a Perspective of additive types is expected to reveal mechanistic details for enhanced photooxidation reactions in general. Indeed, strategies for how to potentiate photooxidations with additives remain highly underexplored.
Collapse
Affiliation(s)
- Lloyd Lapoot
- Department
of Chemistry, Brooklyn College of the City
University of New York, Brooklyn, New York 11210, United States
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Shakeela Jabeen
- Department
of Chemistry, Brooklyn College of the City
University of New York, Brooklyn, New York 11210, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Ryan M. O’Connor
- Department
of Chemistry, Brooklyn College of the City
University of New York, Brooklyn, New York 11210, United States
| | - Witold Korytowski
- Department
of Biophysics, Jagiellonian University, Gołębia 24 Street, 31-007 Kraków, Poland
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Albert Girotti
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Alexander Greer
- Department
of Chemistry, Brooklyn College of the City
University of New York, Brooklyn, New York 11210, United States
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
10
|
Odatsu T, Valanezhad A, Shinohara A, Takase K, Naito M, Sawase T. Bioactivity and antibacterial effects of zinc-containing bioactive glass on the surface of zirconia abutments. J Dent 2024; 145:105033. [PMID: 38697505 DOI: 10.1016/j.jdent.2024.105033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVES This study aimed to enhance gingival fibroblast function and to achieve antibacterial activity around the implant abutment by using a zinc (Zn)-containing bioactive glass (BG) coating. METHODS 45S5 BG containing 0, 5, and 10 wt.% Zn were coated on zirconia disks. The release of silica and Zn ions in physiological saline and their antibacterial effects were measured. The effects of BG coatings on human gingival fibroblasts (hGFs) were assessed using cytotoxicity assays and by analyzing the gene expression of various genes related to antioxidant enzymes, wound healing, and fibrosis. RESULTS BG coatings are capable of continuous degradation and simultaneous ion release. The antibacterial effect of BG coatings increased with the addition of Zn, while the cytotoxicity remained unchanged compared to the group without coatings. BG coating enhances the expression of angiogenesis genes, while the Zn-containing BG enhances the expression of antioxidant genes at an early time point. BG coating enhances the expression of collagen genes at later time points. CONCLUSIONS The antibacterial effect of BG improved with the increase in Zn concentration, without inducing cytotoxicity. BG coating enhances the expression of angiogenesis genes, and Zn-containing BG enhances the expression of antioxidant genes at an early time point. BG coating enhances the expression of collagen genes at later time points. CLINICAL SIGNIFICANCE Adding 10 wt% Zn to BG could enhance the environment around implant abutments by providing antibacterial, antioxidant, and anti-fibrotic effects, having potential for clinical use.
Collapse
Affiliation(s)
- Tetsurou Odatsu
- Department of Applied Prosthodontics, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan.
| | - Alireza Valanezhad
- Department of Dental and Biomaterials Science, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| | - Ayano Shinohara
- Department of Applied Prosthodontics, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| | - Kazuma Takase
- Department of Prosthetic Dentistry, Institute of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| | - Takashi Sawase
- Department of Applied Prosthodontics, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
11
|
Kalyanaraman B, Cheng G, Hardy M. Gut microbiome, short-chain fatty acids, alpha-synuclein, neuroinflammation, and ROS/RNS: Relevance to Parkinson's disease and therapeutic implications. Redox Biol 2024; 71:103092. [PMID: 38377788 PMCID: PMC10891329 DOI: 10.1016/j.redox.2024.103092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024] Open
Abstract
In this review, we explore how short-chain fatty acids (SCFAs) produced by the gut microbiome affect Parkinson's disease (PD) through their modulatory interactions with alpha-synuclein, neuroinflammation, and oxidative stress mediated by reactive oxygen and nitrogen species (ROS/RNS). In particular, SCFAs-such as acetate, propionate, and butyrate-are involved in gut-brain communication and can modulate alpha-synuclein aggregation, a hallmark of PD. The gut microbiome of patients with PD has lower levels of SCFAs than healthy individuals. Probiotics may be a potential strategy to restore SCFAs and alleviate PD symptoms, but the underlying mechanisms are not fully understood. Also in this review, we discuss how alpha-synuclein, present in the guts and brains of patients with PD, may induce neuroinflammation and oxidative stress via ROS/RNS. Alpha-synuclein is considered an early biomarker for PD and may link the gut-brain axis to the disease pathogenesis. Therefore, elucidating the role of SCFAs in the gut microbiome and their impact on alpha-synuclein-induced neuroinflammation in microglia and on ROS/RNS is crucial in PD pathogenesis and treatment.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States
| | - Micael Hardy
- Aix-Marseille Univ, CNRS, ICR, UMR 7273, Marseille, 13013, France
| |
Collapse
|
12
|
Pabisz P, Bazak J, Sabat M, Girotti AW, Korytowski W. Cholesterol Hydroperoxide Co-trafficking in Testosterone-generating Leydig Cells: GPx4 Inhibition of Cytotoxic and Anti-steroidogenic Effects. Cell Biochem Biophys 2024; 82:213-222. [PMID: 37995086 PMCID: PMC10866752 DOI: 10.1007/s12013-023-01194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023]
Abstract
Trafficking of intracellular cholesterol (Ch) to and into mitochondria of steroidogenic cells is required for steroid hormone biosynthesis. This trafficking is typically mediated by one or more proteins of the steroidogenic acute regulatory (StAR) family. Our previous studies revealed that 7-OOH, a redox-active cholesterol hydroperoxide, could be co-trafficked with Ch to/into mitochondria of MA-10 Leydig cells, thereby inducing membrane lipid peroxidation (LPO) which impaired progesterone biosynthesis. These negative effects of 7-OOH were inhibited by endogenous selenoperoxidase GPx4, indicating that this enzyme could protect against 7-OOH-induced oxidative damage/dysfunction. In the present study, we advanced our Leydig focus to cultured murine TM3 cells and then to primary cells from rat testis, both of which produce testosterone. Using a fluorescent probe, we found that extensive free radical-mediated LPO occurred in mitochondria of stimulated primary Leydig cells during treatment with liposomal Ch+7-OOH, resulting in a significant decline in testosterone output relative to that with Ch alone. Strong enhancement of LPO and testosterone shortfall by RSL3 (a GPx4 inhibitor) and reversal thereof by Ebselen (a GPx4 mimetic), suggested that endogenous GPx4 was playing a key antioxidant role. 7-OOH in increasing doses was also cytotoxic to these cells, RSL3 exacerbating this in Ebselen-reversable fashion. Moreover, GPx4 knockdown increased cell sensitivity to LPO with reduced testosterone output. These findings, particularly with primary Leydigs (which best represent cells in intact testis) suggest that GPx4 plays a key protective role against peroxidative damage/dysfunction induced by 7-OOH co-trafficking with Ch.
Collapse
Affiliation(s)
- Pawel Pabisz
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| | - Jerzy Bazak
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| | - Michal Sabat
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | |
Collapse
|
13
|
Saito Y, Noguchi N, Niki E. Cholesterol is more readily oxidized than phospholipid linoleates in cell membranes to produce cholesterol hydroperoxides. Free Radic Biol Med 2024; 211:89-95. [PMID: 38101585 DOI: 10.1016/j.freeradbiomed.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Cholesterol is an essential component of cell membranes and serves as an important precursor of steroidal hormones and bile acids, but elevated levels of cholesterol and its oxidation products have been accepted as a risk factor for maintenance of health. The free and ester forms of cholesterol and fatty acids are the two major biological lipids. The aim of this hypothesis paper is to address the long-standing dogma that cholesterol is less susceptible to free radical peroxidation than polyunsaturated fatty acids (PUFAs). It has been observed that cholesterol is peroxidized much slower than PUFAs in plasma but that, contrary to expectations from chemical reactivity toward peroxyl radicals, cholesterol appears to be more readily autoxidized than linoleates in cell membranes. The levels of oxidation products of cholesterol and linoleates observed in humans support this notion. It is speculated that this discrepancy is ascribed to the fact that cholesterol and phospholipids bearing PUFAs are localized apart in raft and non-raft domains of cell membranes respectively and that the antioxidant vitamin E distributed predominantly in the non-raft domains cannot suppress the oxidation of cholesterol lying in raft domains which are relatively deficient in antioxidant.
Collapse
Affiliation(s)
- Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan.
| | - Noriko Noguchi
- The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Etsuo Niki
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba, Tokyo, Japan.
| |
Collapse
|
14
|
Li X, Meng F, Wang H, Sun L, Chang S, Li G, Chen F. Iron accumulation and lipid peroxidation: implication of ferroptosis in hepatocellular carcinoma. Front Endocrinol (Lausanne) 2024; 14:1319969. [PMID: 38274225 PMCID: PMC10808879 DOI: 10.3389/fendo.2023.1319969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Ferroptosis is a type of controlled cell death caused by lipid peroxidation, which results in the rupture of the cell membrane. ferroptosis has been repeatedly demonstrated over the past ten years to be a significant factor in a number of diseases. The liver is a significant iron storage organ, thus ferroptosis will have great potential in the treatment of liver diseases. Ferroptosis is particularly prevalent in HCC. In the opening section of this article, we give a general summary of the pertinent molecular mechanisms, signaling pathways, and associated characteristics of ferroptosis. The primary regulating mechanisms during ferroptosis are then briefly discussed, and we conclude by summarizing the development of a number of novel therapeutic strategies used to treat HCC in recent years. Ferroptosis is a crucial strategy for the treatment of HCC and offers new perspectives on the treatment of liver cancer.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, Jinan, China
- Graduate School, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Fanguang Meng
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, Jinan, China
- Graduate School, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hankang Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, Jinan, China
- Graduate School, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Liwei Sun
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, Jinan, China
- Graduate School, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shulin Chang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, Jinan, China
- Graduate School, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guijie Li
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, Jinan, China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, Jinan, China
| |
Collapse
|
15
|
Erhunmwunse NO, Tongo I, Ezemonye LI. Multiple biomarker responses in female Clarias gariepinus exposed to acetaminophen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122437-122457. [PMID: 37973782 DOI: 10.1007/s11356-023-30721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Several authors have documented the presences of acetaminophen (APAP) in both surface and groundwater and have received attention from government agencies and basic authorities across the globe. The impacts of such pharmaceutical products on non-target organism like fish are underestimated as a result of selected investigation using few biomarkers. We evaluated the sub-chronic impacts of APAP in female catfish (Clarias gariepinus) using multiple biomarkers. The exposure of female catfish to APAP induced oxidative stress. Markers such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and total antioxidant capacity (TAC) were significantly higher in all exposed groups. Exposure of Clarias gariepinus to APAPA caused histological alterations in the gills (fusion and shortening of some filaments, hyperplasia of the epithelial gill cells, aneurism, congestion, and epithelial rupture of the gills), liver (apoptotic hyperplasia, sinusoidal congestion, and necrosis of the hepatocytes), and gonad (degenerated follicles and ovarian apoptosis). Furthermore, multivariate results indicated that there was a distinct response from the acetaminophen-exposed female catfish, with over 95% of the biomarkers significantly contributing to the discrimination between the acetaminophen-exposed female catfish and the control groups. Our research provides evidence supporting the use of a multiple biomarker approach to evaluate the impacts of drugs on the health status of exposed fish.
Collapse
Affiliation(s)
- Nosakhare Osazee Erhunmwunse
- Laboratory for Ecotoxicology and Environmental Forensics, Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, Nigeria.
- Igbinedion University Okada, PMB0001, Okada, Ovia North East LGA, Edo State, Nigeria.
| | - Isioma Tongo
- Laboratory for Ecotoxicology and Environmental Forensics, Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, Nigeria
- Igbinedion University Okada, PMB0001, Okada, Ovia North East LGA, Edo State, Nigeria
| | - Lawrence Ikechukwu Ezemonye
- Laboratory for Ecotoxicology and Environmental Forensics, Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, Nigeria
- Igbinedion University Okada, PMB0001, Okada, Ovia North East LGA, Edo State, Nigeria
| |
Collapse
|
16
|
Dos Santos AF, Fazeli G, Xavier da Silva TN, Friedmann Angeli JP. Ferroptosis: mechanisms and implications for cancer development and therapy response. Trends Cell Biol 2023; 33:1062-1076. [PMID: 37230924 DOI: 10.1016/j.tcb.2023.04.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
As cancer cells develop resistance to apoptosis, non-apoptotic cell death modalities, such as ferroptosis, have emerged as promising strategies to combat therapy-resistant cancers. Cells that develop resistance to conventional therapies or metastatic cancer cells have been shown to have increased sensitivity to ferroptosis. Therefore, targeting the regulatory elements of ferroptosis in cancer could offer novel therapeutic opportunities. In this review, we first provide an overview of the known ferroptosis regulatory networks and discuss recent findings on how they contribute to cancer plasticity. We then expand into the critical role of selenium metabolism in regulating ferroptosis. Finally, we highlight specific cases where induction of ferroptosis could be used to sensitize cancer cells to this form of cell death.
Collapse
Affiliation(s)
- Ancély Ferreira Dos Santos
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Chair of Translational Cell Biology, University of Würzburg, Würzburg, Germany
| | - Gholamreza Fazeli
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Chair of Translational Cell Biology, University of Würzburg, Würzburg, Germany
| | - Thamara Nishida Xavier da Silva
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Chair of Translational Cell Biology, University of Würzburg, Würzburg, Germany
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Chair of Translational Cell Biology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
17
|
Perpiñán E, Sanchez-Fueyo A, Safinia N. Immunoregulation: the interplay between metabolism and redox homeostasis. FRONTIERS IN TRANSPLANTATION 2023; 2:1283275. [PMID: 38993920 PMCID: PMC11235320 DOI: 10.3389/frtra.2023.1283275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/13/2023] [Indexed: 07/13/2024]
Abstract
Regulatory T cells are fundamental for the induction and maintenance of immune homeostasis, with their dysfunction resulting in uncontrolled immune responses and tissue destruction predisposing to autoimmunity, transplant rejection and several inflammatory and metabolic disorders. Recent discoveries have demonstrated that metabolic processes and mitochondrial function are critical for the appropriate functioning of these cells in health, with their metabolic adaptation, influenced by microenvironmental factors, seen in several pathological processes. Upon activation regulatory T cells rearrange their oxidation-reduction (redox) system, which in turn supports their metabolic reprogramming, adding a layer of complexity to our understanding of cellular metabolism. Here we review the literature surrounding redox homeostasis and metabolism of regulatory T cells to highlight new mechanistic insights of these interlinked pathways in immune regulation.
Collapse
Affiliation(s)
| | | | - N. Safinia
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Institute of Liver Studies, James Black Centre, King’s College London, London, United Kingdom
| |
Collapse
|
18
|
Xie Y, Kang R, Klionsky DJ, Tang D. GPX4 in cell death, autophagy, and disease. Autophagy 2023; 19:2621-2638. [PMID: 37272058 PMCID: PMC10472888 DOI: 10.1080/15548627.2023.2218764] [Citation(s) in RCA: 179] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023] Open
Abstract
Selenoprotein GPX4 (glutathione peroxidase 4), originally known as PHGPX (phospholipid hydroperoxide glutathione peroxidase), is the main oxidoreductase in the use of glutathione as a reducing agent in scavenging lipid peroxidation products. There are three GPX4 isoforms: cytosolic (cGPX4), mitochondrial (mGPX4), and nuclear (nGPX4), with distinct spatiotemporal expression patterns during embryonic development and adult life. In addition to inducing the main phenotype of ferroptosis, the loss of GPX4 can in some cells trigger apoptosis, necroptosis, pyroptosis, or parthanatos, which mediates or accelerates developmental defects, tissue damage, and sterile inflammation. The interaction of GPX4 with the autophagic degradation pathway further modulates cell fate in response to oxidative stress. Impaired GPX4 function is implicated in tumorigenesis, neurodegeneration, infertility, inflammation, immune disorders, and ischemia-reperfusion injury. Additionally, the R152H mutation in GPX4 can promote the development of Sedaghatian-type spinal metaphyseal dysplasia, a rare and fatal disease in newborns. Here, we discuss the roles of classical GPX4 functions as well as emerging GPX4-regulated processes in cell death, autophagy, and disease.Abbreviations: AA: arachidonic acid; cGPX4: cytosolic GPX4; CMA: chaperone-mediated autophagy; DAMPs: danger/damage-associated molecular patterns; mGPX4: mitochondrial GPX4; nGPX4: nuclear GPX4; GSDMD-N: N-terminal fragment of GSDMD; I/R: ischemia-reperfusion; PLOOH: phospholipid hydroperoxide; PUFAs: polyunsaturated fatty acids; RCD: regulated cell death; ROS: reactive oxygen species; Se: selenium; SSMD: Sedaghatian-type spondylometaphyseal dysplasia; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Yangchun Xie
- Department of Oncology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
19
|
Terao J. Revisiting carotenoids as dietary antioxidants for human health and disease prevention. Food Funct 2023; 14:7799-7824. [PMID: 37593767 DOI: 10.1039/d3fo02330c] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Humans are unique indiscriminate carotenoid accumulators, so the human body accumulates a wide range of dietary carotenoids of different types and to varying concentrations. Carotenoids were once recognized as physiological antioxidants because of their ability to quench singlet molecular oxygen (1O2). In the 1990s, large-scale intervention studies failed to demonstrate that supplementary β-carotene intake reduces the incidence of lung cancer, although its antioxidant activity was supposed to contribute to the prevention of oxidative stress-induced carcinogenesis. Nevertheless, the antioxidant activity of carotenoids has attracted renewed attention as the pathophysiological role of 1O2 has emerged, and as the ability of dietary carotenoids to induce antioxidant enzymes has been revealed. This review focuses on six major carotenoids from fruit and vegetables and revisits their physiological functions as biological antioxidants from the standpoint of health promotion and disease prevention. β-Carotene 9',10'-oxygenase-derived oxidative metabolites trigger increases in the activities of antioxidant enzymes. Lutein and zeaxanthin selectively accumulate in human macular cells to protect against light-induced macular impairment by acting as antioxidants. Lycopene accumulates exclusively and to high concentrations in the testis, where its antioxidant activity may help to eliminate oxidative damage. Dietary carotenoids appear to exert their antioxidant activity in photo-irradiated skin after their persistent deposition in the skin. An acceptable level of dietary carotenoids for disease prevention should be established because they can have deleterious effects as prooxidants if they accumulate to excess levels. Finally, it is expected that the reason why humans are indiscriminate carotenoid accumulators will be understood soon.
Collapse
Affiliation(s)
- Junji Terao
- Faculty of Medicine, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| |
Collapse
|
20
|
Aureliano M, De Sousa-Coelho AL, Dolan CC, Roess DA, Crans DC. Biological Consequences of Vanadium Effects on Formation of Reactive Oxygen Species and Lipid Peroxidation. Int J Mol Sci 2023; 24:5382. [PMID: 36982458 PMCID: PMC10049017 DOI: 10.3390/ijms24065382] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Lipid peroxidation (LPO), a process that affects human health, can be induced by exposure to vanadium salts and compounds. LPO is often exacerbated by oxidation stress, with some forms of vanadium providing protective effects. The LPO reaction involves the oxidation of the alkene bonds, primarily in polyunsaturated fatty acids, in a chain reaction to form radical and reactive oxygen species (ROS). LPO reactions typically affect cellular membranes through direct effects on membrane structure and function as well as impacting other cellular functions due to increases in ROS. Although LPO effects on mitochondrial function have been studied in detail, other cellular components and organelles are affected. Because vanadium salts and complexes can induce ROS formation both directly and indirectly, the study of LPO arising from increased ROS should include investigations of both processes. This is made more challenging by the range of vanadium species that exist under physiological conditions and the diverse effects of these species. Thus, complex vanadium chemistry requires speciation studies of vanadium to evaluate the direct and indirect effects of the various species that are present during vanadium exposure. Undoubtedly, speciation is important in assessing how vanadium exerts effects in biological systems and is likely the underlying cause for some of the beneficial effects reported in cancerous, diabetic, neurodegenerative conditions and other diseased tissues impacted by LPO processes. Speciation of vanadium, together with investigations of ROS and LPO, should be considered in future biological studies evaluating vanadium effects on the formation of ROS and on LPO in cells, tissues, and organisms as discussed in this review.
Collapse
Affiliation(s)
- Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, 8005-139 Faro, Portugal
- CCMar, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ana Luísa De Sousa-Coelho
- Escola Superior de Saúde, Universidade do Algarve (ESSUAlg), 8005-139 Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), 8005-139 Faro, Portugal
| | - Connor C. Dolan
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Deborah A. Roess
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Cellular and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
21
|
Girotti AW, Korytowski W. Trafficking of oxidative stress-generated lipid hydroperoxides: pathophysiological implications. Free Radic Res 2023; 57:130-139. [PMID: 37171212 PMCID: PMC10405667 DOI: 10.1080/10715762.2023.2213817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Lipid hydroperoxides (LOOHs) are reactive intermediates that arise during peroxidation of unsaturated phospholipids, glycolipids and cholesterol in biological membranes and lipoproteins. Non-physiological lipid peroxidation (LPO) typically occurs under oxidative stress conditions associated with pathologies such as atherogenesis, neurodegeneration, and carcinogenesis. As key intermediates in the LPO process, LOOHs are susceptible to one-electron versus two-electron reductive turnover, the former exacerbating membrane or lipoprotein damage/dysfunction and the latter diminishing it. A third possible LOOH fate is translocation to an acceptor membrane/lipoprotein, where one- or two-electron reduction may then ensue. In the case of cholesterol (Ch)-derived hydroperoxides (ChOOHs), translocation can be specifically stimulated by StAR family trafficking proteins, which are normally involved in Ch homeostasis and Ch-mediated steroidogenesis. In this review, we discuss how these processes can be impaired by StAR-mediated ChOOH and Ch co-trafficking to mitochondria of vascular macrophages and steroidogenic cells, respectively. The protective effects of endogenous selenoperoxidase, GPx4, are also discussed. This is the first known example of detrimental ChOOH transfer via a natural Ch trafficking pathway and inhibition thereof by GPx4.
Collapse
Affiliation(s)
- Albert W. Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
22
|
Li H, Zeng Y, Luo S, Li Z, Huang F, Liu Z. GPX4 aggravates experimental autoimmune encephalomyelitis by inhibiting the functions of CD4 + T cells. Biochem Biophys Res Commun 2023; 642:57-65. [PMID: 36565564 DOI: 10.1016/j.bbrc.2022.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is a common autoimmunity disease of the central nervous system (CNS) that mostly happens in young adults. The chronic clinical features of MS include inflammatory demyelination, infiltration of immune cells, and secretion of inflammatory cytokines, which have been proved to be associated with CD4+ T cells. Ferroptosis is a newly discovered programmed cell death mediated by the massive lipid peroxidation and more sensitive to CD4+ T cells. However, the effect of ferroptosis of CD4+ T cells on the occurrence and progression of MS retains unclear. Here, the experimental autoimmune encephalomyelitis (EAE) model was used to investigate the role of GPX4, a leading inhibitor of ferroptosis, which plays in the function of CD4+ T cells. Our results showed that GPX4 was highly expressed in CD4+ T cells of MS patients based on existing databases. Strikingly, conditional knockout of GPX4 in CD4cre mice (cKO mice) significantly alleviated the average symptom scores and immunopathology of EAE. The infiltration of immune cells, including CD4+ T and CD8+ T cells, and the generation of GM-CSF, TNF-α, and IL-17A, were remarkably reduced in the CNS from cKO mice compared with WT mice. These findings further revealed the vital role of GPX4 in the expansion and function of CD4+ T cells. Moreover, GPX4-deficient CD4+ T cells were susceptible to ferroptosis in EAE model. Overall, this study provided novel insights into therapeutic strategies targeting GPX4 in CD4+ T cells for inhibiting CNS inflammation and treating MS.
Collapse
Affiliation(s)
- Haishan Li
- Faculty of Medical Science, Jinan University, Guangzhou, 510632, China
| | - Yingying Zeng
- Faculty of Medical Science, Jinan University, Guangzhou, 510632, China
| | - Shunchang Luo
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou, 510655, China
| | - Zhenhua Li
- Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, China
| | - Fang Huang
- Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, China.
| | - Zonghua Liu
- Faculty of Medical Science, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
23
|
Impact of selenium nanoparticles in the regulation of inflammation. Arch Biochem Biophys 2022; 732:109466. [DOI: 10.1016/j.abb.2022.109466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
|
24
|
Zhu J, Wang H, Jiang X. mTORC1 beyond anabolic metabolism: Regulation of cell death. J Biophys Biochem Cytol 2022; 221:213609. [PMID: 36282248 PMCID: PMC9606688 DOI: 10.1083/jcb.202208103] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 12/13/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1), a multi-subunit protein kinase complex, interrogates growth factor signaling with cellular nutrient and energy status to control metabolic homeostasis. Activation of mTORC1 promotes biosynthesis of macromolecules, including proteins, lipids, and nucleic acids, and simultaneously suppresses catabolic processes such as lysosomal degradation of self-constituents and extracellular components. Metabolic regulation has emerged as a critical determinant of various cellular death programs, including apoptosis, pyroptosis, and ferroptosis. In this article, we review the expanding knowledge on how mTORC1 coordinates metabolic pathways to impinge on cell death regulation. We focus on the current understanding on how nutrient status and cellular signaling pathways connect mTORC1 activity with ferroptosis, an iron-dependent cell death program that has been implicated in a plethora of human diseases. In-depth understanding of the principles governing the interaction between mTORC1 and cell death pathways can ultimately guide the development of novel therapies for the treatment of relevant pathological conditions.
Collapse
Affiliation(s)
- Jiajun Zhu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China,Tsinghua-Peking Center for Life Sciences, Beijing, China,Correspondence to Jiajun Zhu:
| | - Hua Wang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY,Xuejun Jiang:
| |
Collapse
|
25
|
Selenoprotein: Potential Player in Redox Regulation in Chlamydomonas reinhardtii. Antioxidants (Basel) 2022; 11:antiox11081630. [PMID: 36009349 PMCID: PMC9404770 DOI: 10.3390/antiox11081630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Selenium (Se) is an essential micro-element for many organisms, including Chlamydomonas reinhardtii, and is required in trace amounts. It is obtained from the 21st amino acid selenocysteine (Sec, U), genetically encoded by the UGA codon. Proteins containing Sec are known as selenoproteins. In eukaryotes, selenoproteins are present in animals and algae, whereas fungi and higher plants lack them. The human genome contains 25 selenoproteins, most of which are involved in antioxidant defense activity, redox regulation, and redox signaling. In algae, 42 selenoprotein families were identified using various bioinformatics approaches, out of which C. reinhardtii is known to have 10 selenoprotein genes. However, the role of selenoproteins in Chlamydomonas is yet to be reported. Chlamydomonas selenoproteins contain conserved domains such as CVNVGC and GCUG, in the case of thioredoxin reductase, and CXXU in other selenoproteins. Interestingly, Sec amino acid residue is present in a catalytically active domain in Chlamydomonas selenoproteins, similar to human selenoproteins. Based on catalytical active sites and conserved domains present in Chlamydomonas selenoproteins, we suggest that Chlamydomonas selenoproteins could have a role in redox regulation and defense by acting as antioxidants in various physiological conditions.
Collapse
|
26
|
Ursini F, Bosello Travain V, Cozza G, Miotto G, Roveri A, Toppo S, Maiorino M. A white paper on Phospholipid Hydroperoxide Glutathione Peroxidase (GPx4) forty years later. Free Radic Biol Med 2022; 188:117-133. [PMID: 35718302 DOI: 10.1016/j.freeradbiomed.2022.06.227] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/25/2022]
Abstract
The purification of a protein inhibiting lipid peroxidation led to the discovery of the selenoperoxidase GPx4 forty years ago. Thus, the evidence of the enzymatic activity was reached after identifying the biological effect and unambiguously defined the relationship between the biological function and the enzymatic activity. In the syllogism where GPx4 inhibits lipid peroxidation and its inhibition is lethal, cell death is operated by lipid peroxidation. Based on this rationale, this form of cell death emerged as regulated iron-enforced oxygen toxicity and was named ferroptosis in 2012. In the last decades, we learned that reduction of lipid hydroperoxides is indispensable and, in cooperation with prooxidant systems, controls the critical steady state of lipid peroxidation. This concept defined the GPx4 reaction as both the target for possible anti-cancer therapy and if insufficient, as cause of degenerative diseases. We know the reaction mechanism, but the details of the interaction at the membrane cytosol interface are still poorly defined. We know the gene structure, but the knowledge about expression control is still limited. The same holds true for post-transcriptional modifications. Reverse genetics indicate that GPx4 has a role in inflammation, immunity, and differentiation, but the observations emerging from these studies need a more specifically addressed biochemical evidence. Finally, the role of GPx4 in spermatogenesis disclosed an area unconnected to lipid peroxidation. In its mitochondrial and nuclear form, the peroxidase catalyzes the oxidation of protein thiols in two specific aspects of sperm maturation: stabilization of the mid-piece and chromatin compaction. Thus, although available evidence converges to the notion that GPx4 activity is vital due to the inhibition of lipid peroxidation, it is reasonable to foresee other unknown aspects of the GPx4 reaction to be disclosed.
Collapse
Affiliation(s)
- Fulvio Ursini
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | | | - Giorgio Cozza
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - Giovanni Miotto
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - Antonella Roveri
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - Stefano Toppo
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - Matilde Maiorino
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
27
|
Emerging Potential Therapeutic Targets of Ferroptosis in Skeletal Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3112388. [PMID: 35941905 PMCID: PMC9356861 DOI: 10.1155/2022/3112388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
Ferroptosis is a new programmed cell death characterized by the accumulation of lipid peroxidation mediated by iron and inflammation. Since the transcentury realization of ferroptosis as an iron-dependent modality of nonapoptotic cell death in 2012, there has been growing interest in the function of ferroptosis and its relationship to clinical diseases. Recent studies have shown that ferroptosis is associated with multiple diseases, including degenerative diseases, ischemia reperfusion injury, cardiovascular disease, and cancer. Cell death induced by ferroptosis has also been related to several skeletal diseases, such as inflammatory arthritis, osteoporosis, and osteoarthritis. Research on ferroptosis can clarify the pathogenesis of skeletal diseases and provide a novel therapeutic target for its treatment. In this review, we summarize current information about the molecular mechanism of ferroptosis and describe its emerging role and therapeutic potential in skeletal diseases.
Collapse
|
28
|
Flohé L, Toppo S, Orian L. The glutathione peroxidase family: Discoveries and mechanism. Free Radic Biol Med 2022; 187:113-122. [PMID: 35580774 DOI: 10.1016/j.freeradbiomed.2022.05.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/18/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022]
Abstract
The discoveries leading to our present understanding of the glutathione peroxidases (GPxs) are recalled. The cytosolic GPx, now GPx1, was first described by Mills in 1957 and claimed to depend on selenium by Rotruck et al., in 1972. With the determination of a stoichiometry of one selenium per subunit, GPx1 was established as the first selenoenzyme of vertebrates. In the meantime, the GPxs have grown up to a huge family of enzymes that prevent free radical formation from hydroperoxides and, thus, are antioxidant enzymes, but they are also involved in regulatory processes or synthetic functions. The kinetic mechanism of the selenium-containing GPxs is unusual in neither showing a defined KM nor any substrate saturation. More recently, the reaction mechanism has been investigated by the density functional theory and nuclear magnetic resonance of model compounds mimicking the reaction cycle. The resulting concept sees a selenolate oxidized to a selenenic acid. This very fast reaction results from a concerted dual attack on the hydroperoxide bond, a nucleophilic one by the selenolate and an electrophilic one by a proton that is unstably bound in the reaction center. Postulated intermediates have been identified either in the native enzymes or in model compounds.
Collapse
Affiliation(s)
- Leopold Flohé
- Department of Molecular Medicine, University of Padova, Italy; Departamento de Bioquímica, Universidad de la República, Montevideo, Uruguay.
| | - Stefano Toppo
- Department of Molecular Medicine, University of Padova, Italy
| | - Laura Orian
- Department of Chemical Sciences, University of Padova, Italy
| |
Collapse
|
29
|
Abstract
Ferroptosis is a type of regulated cell death characterized by an excessive lipid peroxidation of cellular membranes caused by the disruption of the antioxidant defense system and/or an imbalanced cellular metabolism. Ferroptosis differentiates from other forms of regulated cell death in that several metabolic pathways and nutritional aspects, including endogenous antioxidants (such as coenzyme Q10, vitamin E, and di/tetrahydrobiopterin), iron handling, energy sensing, selenium utilization, amino acids, and fatty acids, directly regulate the cells' sensitivity to lipid peroxidation and ferroptosis. As hallmarks of ferroptosis have been documented in a variety of diseases, including neurodegeneration, acute organ injury, and therapy-resistant tumors, the modulation of ferroptosis using pharmacological tools or by metabolic reprogramming holds great potential for the treatment of ferroptosis-associated diseases and cancer therapy. Hence, this review focuses on the regulation of ferroptosis by metabolic and nutritional cues and discusses the potential of nutritional interventions for therapy by targeting ferroptosis. Expected final online publication date for the Annual Review of Nutrition, Volume 42 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Eikan Mishima
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany; .,Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany; .,Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
30
|
Girotti AW, Korytowski W. Intermembrane Translocation of Photodynamically Generated Lipid Hydroperoxides: Broadcasting of Redox Damage. Photochem Photobiol 2022; 98:591-597. [PMID: 34633674 PMCID: PMC8995396 DOI: 10.1111/php.13537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/02/2021] [Indexed: 12/15/2022]
Abstract
Lipid hydroperoxides (LOOHs), including cholesterol- and phospholipid-derived species, are reactive intermediates that arise during photosensitized peroxidation of unsaturated lipids in biological membranes. These intermediates may appear in cancer cell membranes during anti-tumor photodynamic therapy (PDT). Photodynamically generated LOOHs have several different fates, including (a) iron-catalyzed one-electron reduction to free radical species which trigger damaging chain peroxidation reactions, (b) selenoperoxidase-catalyzed two-electron reduction to redox-inert alcohols (LOHs), and (c) spontaneous or protein-mediated translocation to other lipid membrane compartments where (a) or (b) may take place. These different LOOH fates will be described in this review, but with special attention to category (c), which the authors were the first to describe and characterize. Seminal early findings on cholesterol hydroperoxide (ChOOH) translocation and its potential negative consequences will be discussed. In reviewing this work, we wish to congratulate Jean Cadet, for his many outstanding accomplishments as a photobiologist and P&P editor.
Collapse
Affiliation(s)
- Albert W. Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | |
Collapse
|
31
|
Okazaki Y. The Role of Ferric Nitrilotriacetate in Renal Carcinogenesis and Cell Death: From Animal Models to Clinical Implications. Cancers (Basel) 2022; 14:cancers14061495. [PMID: 35326646 PMCID: PMC8946552 DOI: 10.3390/cancers14061495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 12/17/2022] Open
Abstract
Iron is essential for cellular growth, and various ferroproteins and heme-containing proteins are involved in a myriad of cellular functions, such as DNA synthesis, oxygen transport, and catalytic reactions. As a consequence, iron deficiency causes pleiotropic effects, such as hypochromic microcytic anemia and growth disturbance, while iron overload is also deleterious by oxidative injury. To prevent the generation of iron-mediated reactive oxygen species (ROS), ferritin is synthesized to store excess iron in cells that are consistent with the clinical utility of the serum ferritin concentration to monitor the therapeutic effect of iron-chelation. Among the animal models exploring iron-induced oxidative stress, ferric nitrilotriacetate (Fe-NTA) was shown to initiate hepatic and renal lipid peroxidation and the development of renal cell carcinoma (RCC) after repeated intraperitoneal injections of Fe-NTA. Here, current understanding of Fe-NTA-induced oxidative stress mediated by glutathione-cycle-dependent iron reduction and the molecular mechanisms of renal carcinogenesis are summarized in combination with a summary of the relationship between the pathogenesis of human RCC and iron metabolism. In addition to iron-mediated carcinogenesis, the ferroptosis that is triggered by the iron-dependent accumulation of lipid peroxidation and is implicated in the carcinogenesis is discussed.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathology and Biological Responses, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-Ku, Nagoya 466-8550, Japan
| |
Collapse
|
32
|
Furber KL, Lacombe RJS, Caine S, Thangaraj MP, Read S, Rosendahl SM, Bazinet RP, Popescu BF, Nazarali AJ. Biochemical Alterations in White Matter Tracts of the Aging Mouse Brain Revealed by FTIR Spectroscopy Imaging. Neurochem Res 2022; 47:795-810. [PMID: 34820737 DOI: 10.1007/s11064-021-03491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 05/31/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022]
Abstract
White matter degeneration in the central nervous system (CNS) has been correlated with a decline in cognitive function during aging. Ultrastructural examination of the aging human brain shows a loss of myelin, yet little is known about molecular and biochemical changes that lead to myelin degeneration. In this study, we investigate myelination across the lifespan in C57BL/6 mice using electron microscopy and Fourier transform infrared (FTIR) spectroscopic imaging to better understand the relationship between structural and biochemical changes in CNS white matter tracts. A decrease in the number of myelinated axons was associated with altered lipid profiles in the corpus callosum of aged mice. FTIR spectroscopic imaging revealed alterations in functional groups associated with phospholipids, including the lipid acyl, lipid ester and phosphate vibrations. Biochemical changes in white matter were observed prior to structural changes and most predominant in the anterior regions of the corpus callosum. This was supported by biochemical analysis of fatty acid composition that demonstrated an overall trend towards increased monounsaturated fatty acids and decreased polyunsaturated fatty acids with age. To further explore the molecular mechanisms underlying these biochemical alterations, gene expression profiles of lipid metabolism and oxidative stress pathways were investigated. A decrease in the expression of several genes involved in glutathione metabolism suggests that oxidative damage to lipids may contribute to age-related white matter degeneration.
Collapse
Affiliation(s)
- Kendra L Furber
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
- Division of Medical Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| | - R J Scott Lacombe
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sally Caine
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Merlin P Thangaraj
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Stuart Read
- Canadian Light Source, Saskatoon, SK, Canada
| | | | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bogdan F Popescu
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Adil J Nazarali
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
33
|
Pabisz P, Bazak J, Girotti AW, Korytowski W. Anti-steroidogenic effects of cholesterol hydroperoxide trafficking in MA-10 Leydig cells: Role of mitochondrial lipid peroxidation and inhibition thereof by selenoperoxidase GPx4. Biochem Biophys Res Commun 2022; 591:82-87. [PMID: 34999258 DOI: 10.1016/j.bbrc.2021.12.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022]
Abstract
Steroid hormone synthesis in steroidogenic cells requires cholesterol (Ch) delivery to/into mitochondria via StAR family trafficking proteins. In previous work, we discovered that 7-OOH, an oxidative stress-induced cholesterol hydroperoxide, can be co-trafficked with Ch, thereby causing mitochondrial redox damage/dysfunction. We now report that exposing MA-10 Leydig cells to Ch/7-OOH-containing liposomes (SUVs) results in (i) a progressive increase in fluorescence probe-detected lipid peroxidation in mitochondrial membranes, (ii) a reciprocal decrease in immunoassay-detected progesterone generation, and ultimately (iii) loss of cell viability with increasing 7-OOH concentration. No significant effects were observed with a phospholipid hydroperoxide over the same concentration range. Glutathione peroxidase GPx4, which can catalyze lipid hydroperoxide detoxification, was detected in mitochondria of MA-10 cells. Mitochondrial lipid peroxidation and progesterone shortfall were exacerbated when MA-10 cells were treated with Ch/7-OOH in the presence of RSL3, a GPx4 inhibitor. However, Ebselen, a selenoperoxidase mimetic, substantially reduced RSL3's negative effects, thereby partially rescuing the cells from peroxidative damage. These findings demonstrate that co-trafficking of oxidative stress-induced 7-OOH can disable steroidogenesis, and that GPx4 can significantly protect against this.
Collapse
Affiliation(s)
- Pawel Pabisz
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| | - Jerzy Bazak
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | |
Collapse
|
34
|
Han R, Wan J, Han X, Ren H, Falck JR, Munnuri S, Yang ZJ, Koehler RC. 20-HETE Participates in Intracerebral Hemorrhage-Induced Acute Injury by Promoting Cell Ferroptosis. Front Neurol 2021; 12:763419. [PMID: 34867747 PMCID: PMC8633108 DOI: 10.3389/fneur.2021.763419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a highly fatal type of stroke that leads to various types of neuronal death. Recently, ferroptosis, a form of cell death resulting from iron-dependent lipid peroxide accumulation, was observed in a mouse ICH model. N-hydroxy-N'-(4-n-butyl-2-methylphenyl)-formamidine (HET0016), which inhibits synthesis of the arachidonic acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE), has shown a protective effect after ICH. However, the underlying mechanisms of the neuroprotective effect need further investigation. We explored whether 20-HETE participates in ICH-induced ferroptosis ex vivo by using hemoglobin-treated organotypic hippocampal slice cultures (OHSCs) and in vivo by using a collagenase-induced ICH mouse model. Ex vivo, we found that the 20-HETE synthesis inhibitor HET0016 and antagonist 20-6,15-HEDGE reduced hemoglobin-induced cell death, iron deposition, and lipid reactive oxygen species levels in OHSCs. Furthermore, 20-HETE inhibition in OHSCs increased the expression of glutathione peroxidase (GPX) 4, an antioxidant enzyme that serves as a main regulator of ferroptosis. In contrast, exposure of OHSCs to the 20-HETE stable mimetic 20-5,14-HEDGE induced cell death that was significantly inhibited by the ferroptosis inhibitor ferrostatin-1. In vivo, HET0016 treatment ameliorated focal deficits, reduced lesion volume, and decreased iron accumulation around the lesion at day 3 and 7 after ICH. In addition, lipid peroxidation was decreased and expression of GPX4 was increased in the HET0016-treated ICH group. The mitogen-activated protein kinase pathway also was inhibited by HET0016 in vivo. These results indicate that 20-HETE contributes to ICH-induced acute brain injury in part by activating ferroptosis pathways, thereby providing an upstream target for inhibiting ferroptosis.
Collapse
Affiliation(s)
- Ranran Han
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, United States
| | - Jieru Wan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, United States
| | - Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, United States
| | - Honglei Ren
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, United States
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sailu Munnuri
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Zeng-Jin Yang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, United States
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
35
|
Transcriptome analysis provides the first insight into the molecular basis of temperature plasticity in Banggai cardinalfish, Pterapogon kauderni. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100909. [PMID: 34479169 DOI: 10.1016/j.cbd.2021.100909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/22/2021] [Accepted: 08/22/2021] [Indexed: 01/11/2023]
Abstract
Banggai cardinalfish, Pterapogon kauderni, is a tropical fish listed as an endangered species by IUCN. Its distribution and survival condition are extremely limited, and the changes of living environment caused by global warming may seriously threaten its geographical distribution. In order to understand the survival temperature range and the potential mechanism of temperature plasticity of P. kauderni, transcriptome analysis was performed under five temperature conditions (18 °C, 22 °C, 26 °C, 30 °C and 34 °C). A total of 432,444,497 clean reads were obtained from the mix tissues of whole head, viscera (except intestine), and muscle. All clean data were spliced into 194,832 unigenes. Compared with 26 °C, 57, 107, 187 and 174 differentially expressed genes (DEGs) were obtained at 18 °C, 22 °C, 30 °C and 34 °C, respectively. Gene Ontology (GO) analysis showed the most highly enriched in the DEGs were cellular processes, binding, metabolic processes and biological regulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated circadian rhythm, protein processing in endoplasmic reticulum, influenza A and prion disease were significantly enriched. 47 genes that may be related to temperature stress were identified, such as Per1, MLP, IGFBP1, HSP70, HSP90α, HSPA4, DNAJB1, CALR. This is the first RNA-Seq study of P. kauderni. This information should be valuable for further targeted studies on temperature tolerance, thereby assisting the protection and development of P. kauderni.
Collapse
|
36
|
Odatsu T, Kuroshima S, Shinohara A, Valanezhad A, Sawase T. Lactoferrin with Zn-ion protects and recovers fibroblast from H 2O 2-induced oxidative damage. Int J Biol Macromol 2021; 190:368-374. [PMID: 34487781 DOI: 10.1016/j.ijbiomac.2021.08.214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/02/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Lactoferrin (LF) has attracted great attention due to its various bioactivities, which depend on the degree of saturation with different cations. This study focused on the synergistic effect of LF and Zn2+ on human gingival fibroblasts (hGFs), considering antioxidant activities, cell proliferation, and collagen gene expression levels in these cells to improve the wound healing. The hGFs were cultured in an experimental medium, containing 1000 μg/mL of LF and various concentrations of ZnCl2. The cells were subjected to oxidative damage by exposure to 600 μM H2O2 for 30 min before incubation in the experimental medium. The cell proliferation rate and the relative gene expression levels of genes associated with apoptosis, antioxidant enzymes, and collagen were compared. H2O2 decomposition by LF was also measured using a colorimetric assay. LF enhanced hGF proliferation and the expression of collagen. Furthermore, LF directly scavenged H2O2 and prevented lipid peroxidation by enhancing the expression of glutathione peroxidase 4 gene expression, resulting in the prevention of apoptosis and recovery of the cells from H2O2-induced oxidative damage. The addition of ZnCl2 enhanced these results. The results indicated that LF with Zn-ion could play an important role in modulating the functions related to wound healing.
Collapse
Affiliation(s)
- Tetsurou Odatsu
- Department of Applied Prosthodontics, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan.
| | - Shinichiro Kuroshima
- Department of Applied Prosthodontics, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| | - Ayano Shinohara
- Department of Applied Prosthodontics, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| | - Alireza Valanezhad
- Department of Dental and Biomaterials Science, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| | - Takashi Sawase
- Department of Applied Prosthodontics, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
37
|
Shi L, Chen B, Wang X, Huang M, Qiao C, Wang J, Wang Z. Antioxidant response to severe hypoxia in Brandt's vole Lasiopodomys brandtii. Integr Zool 2021; 17:581-595. [PMID: 34713576 DOI: 10.1111/1749-4877.12602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The antioxidant defense system is essential for animals to cope with homeostasis disruption and overcome oxidative stress caused by adverse environmental conditions such as hypoxia. However, our understanding of how this system works in subterranean rodents remains limited. In this study, Brandt's vole Lasiopodomys brandtii was exposed to normoxia (21% O2 ) or hypoxia (mild or severe hypoxia: 10% or 5% O2 ) for 6 h. Changes in key enzymes of the classic enzymatic antioxidant system at both mRNA and enzyme activity levels, and tissue antioxidant levels of the low-molecular-weight antioxidant system were determined in brain, liver, and kidney. Transcript levels of the upstream regulator NF-E2-related factor 2 (Nrf2) were also measured. We found that the mRNA expression of Nrf2 and its downstream antioxidant enzyme genes in L. brandtii were relatively conserved in response to hypoxia in most tissues and genes tested, except in the liver. Hepatic Nrf2, Cu/Zn SOD, GPx1, and GPx3 levels were significantly upregulated in response to mild hypoxia, whereas Mn SOD level decreased significantly in severe hypoxia. Unmatched with changes at the RNA level, constitutively high and relatively stable antioxidant enzyme activities were maintained throughout. For the low-molecular-weight antioxidant system, an abrupt increase of cerebral ascorbic acid (AA) levels in hypoxia indicated a tissue-specific antioxidant response. Although hypoxia did not cause significant oxidative damage in most tissues tested, the significant decrease in antioxidant enzyme activities (GPX and GR) and increase in lipid peroxidation in the kidney suggest that prolonged hypoxia may pose a critical threat to this species.
Collapse
Affiliation(s)
- Luye Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Bojian Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai, China.,Jiaxing-Tongji Environmental Research Institute, Jiaxing, China
| | - Xinrui Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Maolin Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Congcong Qiao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingou Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.,Centre for Nutritional Ecology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Labrecque CL, Fuglestad B. Electrostatic Drivers of GPx4 Interactions with Membrane, Lipids, and DNA. Biochemistry 2021; 60:2761-2772. [PMID: 34492183 DOI: 10.1021/acs.biochem.1c00492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glutathione peroxidase 4 (GPx4) serves as the only enzyme that protects membranes through the reduction of lipid hydroperoxides, preventing membrane oxidative damage and cell death through ferroptosis. Recently, GPx4 has gained attention as a therapeutic target for cancer through inhibition and as a target for inflammatory diseases through activation. In addition, GPx4 isoforms perform several distinct moonlighting functions including cysteine cross-linking of protamines during sperm cell chromatin remodeling, a function for which molecular and structural details are undefined. Despite the importance in biology, disease, and potential for drug development, little is known about GPx4 functional interactions at high resolution. This study presents the first NMR assignments of GPx4, and the electrostatic interaction of GPx4 with the membrane is characterized. Mutagenesis reveals the cationic patch residues that are key to membrane binding and stabilization. The cationic patch is observed to be important in binding headgroups of highly anionic cardiolipin. A novel lipid binding site is observed adjacent to the catalytic site and may enable protection of lipid-headgroups from oxidative damage. Arachidonic acid is also found to engage with GPx4, while cholesterol did not display any interaction. The cationic patch residues were also found to enable DNA binding, the first observation of this interaction. Electrostatic DNA binding explains a mechanism for the nuclear isoform of GPx4 to target DNA-bound protamines and to potentially reduce oxidatively damaged DNA. Together, these results highlight the importance of electrostatics in the function of GPx4 and illuminate how the multifunctional enzyme is able to fill multiple biological roles.
Collapse
Affiliation(s)
- Courtney L Labrecque
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Brian Fuglestad
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States.,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| |
Collapse
|
39
|
Girotti AW, Korytowski W. Pathophysiological potential of lipid hydroperoxide intermembrane translocation: Cholesterol hydroperoxide translocation as a special case. Redox Biol 2021; 46:102096. [PMID: 34418596 PMCID: PMC8379493 DOI: 10.1016/j.redox.2021.102096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 10/29/2022] Open
Abstract
Peroxidation of unsaturated phospholipids, glycolipids, and cholesterol in biological membranes under oxidative stress conditions can underlie a variety of pathological conditions, including atherogenesis, neurodegeneration, and carcinogenesis. Lipid hydroperoxides (LOOHs) are key intermediates in the peroxidative process. Nascent LOOHs may either undergo one-electron reduction to exacerbate membrane damage/dysfunction or two-electron reduction to attenuate this. Another possibility is LOOH translocation to an acceptor site, followed by either of these competing reductions. Cholesterol (Ch)-derived hydroperoxides (ChOOHs) have several special features that will be highlighted in this review. In addition to being susceptible to one-electron vs. two-electron reduction, ChOOHs can translocate from a membrane of origin to another membrane, where such turnover may ensue. Intracellular StAR family proteins have been shown to deliver not only Ch to mitochondria, but also ChOOHs. StAR-mediated transfer of free radical-generated 7-hydroperoxycholesterol (7-OOH) results in impairment of (a) Ch utilization in steroidogenic cells, and (b) anti-atherogenic reverse Ch transport in vascular macrophages. This is the first known example of how a peroxide derivative can be recognized by a natural lipid trafficking pathway with deleterious consequences. For each example above, we will discuss the underlying mechanism of oxidative damage/dysfunction, and how this might be mitigated by antioxidant intervention.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| | | |
Collapse
|
40
|
Biernacki M, Jastrząb A, Skrzydlewska E. Changes in Hepatic Phospholipid Metabolism in Rats under UV Irradiation and Topically Treated with Cannabidiol. Antioxidants (Basel) 2021; 10:1157. [PMID: 34439405 PMCID: PMC8388943 DOI: 10.3390/antiox10081157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023] Open
Abstract
The liver is a key metabolic organ that is particularly sensitive to environmental factors, including UV radiation. As UV radiation induces oxidative stress and inflammation, natural compounds are under investigation as one method to counteract these consequences. The aim of this study was to assess the effect of topical application of phytocannabinoid-cannabidiol (CBD) on the skin of nude rats chronically irradiated with UVA/UVB, paying particular attention to its impact on the liver antioxidants and phospholipid metabolism. The results of this study indicate that CBD reaches the rat liver where it is then metabolized into decarbonylated cannabidiol, 7-hydroxy-cannabidiol and cannabidiol-glucuronide. CBD increased the levels of GSH and vitamin A after UVB radiation. Moreover, CBD prevents the increase of 4-hydroxynonenal and 8-iso-prostaglandin-F2α levels in UVA-irradiated rats. As a consequence of reductions in phospholipase A2 and cyclooxygenases activity following UV irradiation, CBD upregulates the level of 2-arachidonoylglycerol and downregulates prostaglandin E2 and leukotriene B4. Finally, CBD enhances decreased level of 15-deoxy-Δ-12,14-prostaglandin J2 after UVB radiation and 15-hydroxyeicosatetraenoic acid after UVA radiation. These data show that CBD applied to the skin prevents ROS- and enzyme-dependent phospholipid metabolism in the liver of UV-irradiated rats, suggesting that it may be used as an internal organ protector.
Collapse
Affiliation(s)
| | | | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (M.B.); (A.J.)
| |
Collapse
|
41
|
Saito Y. Lipid peroxidation products as a mediator of toxicity and adaptive response - The regulatory role of selenoprotein and vitamin E. Arch Biochem Biophys 2021; 703:108840. [PMID: 33744199 DOI: 10.1016/j.abb.2021.108840] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/14/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Lipid peroxidation and its products have been investigated extensively and their biological importance, particularly in relation to physiological and pathophysiological conditions, has received considerable attention. Lipids are oxidized by three distinct mechanisms, i.e., enzymatic oxidation, nonenzymatic, free radical-mediated oxidation, and nonenzymatic, nonradical-mediated oxidation, which respectively yield specific products. Lipid hydroperoxides are the major primary products formed and are reduced to the corresponding hydroxides by antioxidative enzymes such as selenoproteins, and/or undergo secondary oxidation, generating various products with electrophilic properties, such as 4-hydroxy-2-nonenal. Lipid peroxidation induces a loss of fine structure and natural function of lipids, and can produce cytotoxicity and/or novel biological activity. This review broadly discusses the mechanisms of lipid peroxidation and its products, its utility as a biomarker for oxidative stress, the biological effects of lipid peroxidation products, including their action as a mediator of the adaptive response, and the role of the antioxidant system, particularly selenoproteins and vitamin E, in preventing lipid peroxidation and ferroptosis.
Collapse
Affiliation(s)
- Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, C301, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| |
Collapse
|
42
|
Sharma A, Flora SJS. Positive and Negative Regulation of Ferroptosis and Its Role in Maintaining Metabolic and Redox Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9074206. [PMID: 34007410 PMCID: PMC8102094 DOI: 10.1155/2021/9074206] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Ferroptosis is a recently recognized regulated form of cell death characterized by accumulation of lipid-based reactive oxygen species (ROS), particularly lipid hydroperoxides and loss of activity of the lipid repair enzyme glutathione peroxidase 4 (GPX4). This iron-dependent form of cell death is morphologically, biochemically, and also genetically discrete from other regulated cell death processes, which include autophagy, apoptosis, necrosis, and necroptosis. Ferroptosis is defined by three hallmarks, defined as the loss of lipid peroxide repair capacity by GPX4, the bioavailability of redox-active iron, and oxidation of polyunsaturated fatty acid- (PUFA-) containing phospholipids. Experimentally, it can be induced by many compounds (e.g., erastin, Ras-selective lethal small-molecule 3, and buthionine sulfoximine) and also can be pharmacologically inhibited by iron chelators (e.g., deferoxamine and deferoxamine mesylate) and lipid peroxidation inhibitors (e.g., ferrostatin and liproxstatin). The sensitivity of a cell towards ferroptotic cell death is tightly associated with the metabolism of amino acid, iron, and polyunsaturated fatty acid metabolism, and also with the biosynthesis of glutathione, phospholipids, NADPH, and coenzyme Q10. Ferroptosis sensitivity is also governed by many regulatory proteins, which also link ferroptosis to the function of key tumour suppressor pathways. In this review, we highlight the discovery of ferroptosis, the mechanism of ferroptosis regulation, and its association with other cellular metabolic processes.
Collapse
Affiliation(s)
- Ankita Sharma
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow 226002, India
| | - Swaran Jeet Singh Flora
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow 226002, India
| |
Collapse
|
43
|
Miyamoto S, Lima RS, Inague A, Viviani LG. Electrophilic oxysterols: generation, measurement and protein modification. Free Radic Res 2021; 55:416-440. [PMID: 33494620 DOI: 10.1080/10715762.2021.1879387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cholesterol is an essential component of mammalian plasma membranes. Alterations in sterol metabolism or oxidation have been linked to various pathological conditions, including cardiovascular diseases, cancer, and neurodegenerative disorders. Unsaturated sterols are vulnerable to oxidation induced by singlet oxygen and other reactive oxygen species. This process yields reactive sterol oxidation products, including hydroperoxides, epoxides as well as aldehydes. These oxysterols, in particular those with high electrophilicity, can modify nucleophilic sites in biomolecules and affect many cellular functions. Here, we review the generation and measurement of reactive sterol oxidation products with emphasis on cholesterol hydroperoxides and aldehyde derivatives (electrophilic oxysterols) and their effects on protein modifications.
Collapse
Affiliation(s)
- Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo S Lima
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Alex Inague
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas G Viviani
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
44
|
Girotti AW. Nitric Oxide-elicited Resistance to Antitumor Photodynamic Therapy via Inhibition of Membrane Free Radical-mediated Lipid Peroxidation. Photochem Photobiol 2021; 97:653-663. [PMID: 33369741 DOI: 10.1111/php.13373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022]
Abstract
This review focuses on the ability of nitric oxide (NO) to antagonize antitumor photodynamic therapy (PDT). NO's anti-PDT effects were recognized relatively recently and require a better mechanistic understanding for developing new strategies to improve PDT efficacy. Many PDT sensitizers (PSs) are amphiphilic and tend to localize in membrane compartments of tumor cells. Unsaturated lipids in these compartments can undergo peroxidative degradation after PS photoactivation. Primary Type I (free radical) vs. Type II (singlet oxygen) photochemistry of lipid peroxidation is discussed, along with light-independent turnover of primary lipid hydroperoxides to free radical species. Chain lipid peroxidation mediated by the latter exacerbates membrane damage and cytotoxicity after a PDT challenge. Our studies have shown that NO from chemical donors can suppress chain peroxidation by intercepting lipid-derived free radical intermediates, thereby protecting cancer cells against photokilling. More recent evidence has revealed that inducible NO synthase (iNOS) is dramatically upregulated in several cancer cell types after a photodynamic challenge, and that iNOS-derived NO enhances resistance as well as growth and migratory aggressiveness of surviving cells. Chain breaking by NO and other possible NO-based resistance mechanisms are discussed, along with novel pharmacologic approaches for overcoming these negative effects.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
45
|
Comparison of tissue level of selenium and zinc in patients with nasal polyposis and healthy people. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2021. [DOI: 10.1016/j.cegh.2020.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
46
|
Abstract
Drug metabolizing enzymes catalyze the biotransformation of many of drugs and chemicals. The drug metabolizing enzymes are distributed among several evolutionary families and catalyze a range of detoxication reactions, including oxidation/reduction, conjugative, and hydrolytic reactions that serve to detoxify potentially toxic compounds. This detoxication function requires that drug metabolizing enzymes exhibit substrate promiscuity. In addition to their catalytic functions, many drug metabolizing enzymes possess functions unrelated to or in addition to catalysis. Such proteins are termed 'moonlighting proteins' and are defined as proteins with multiple biochemical or biophysical functions that reside in a single protein. This review discusses the diverse moonlighting functions of drug metabolizing enzymes and the roles they play in physiological functions relating to reproduction, vision, cell signaling, cancer, and transport. Further research will likely reveal new examples of moonlighting functions of drug metabolizing enzymes.
Collapse
Affiliation(s)
- Philip G Board
- John Curtin School of Medical Research, ANU College of Health and Medicine, The Australian National University, Canberra, ACT, Australia
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, New York, NY, USA
| |
Collapse
|
47
|
Arslanbaeva LR, Santoro MM. Adaptive redox homeostasis in cutaneous melanoma. Redox Biol 2020; 37:101753. [PMID: 33091721 PMCID: PMC7578258 DOI: 10.1016/j.redox.2020.101753] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
Cutaneous melanoma is the most aggressive type of skin cancer. Although cutaneous melanoma accounts for a minority of all types of skin cancer, it causes the greatest number of skin cancer related deaths worldwide. Oxidative stress and redox homeostasis have been shown to be involved at each stage of a malignant melanocyte transformation, called melanomagenesis, as well as during drug resistance. Reactive oxygen species (ROS) play an important and diverse role that regulate many aspects of skin cell behaviors ranging from proliferation and stemness, to oxidative damage and cell death. On the other hand, antioxidants are associated with melanoma spread and metastasis. Overall, the contribution of redox homeostasis to melanoma development and progression is controversial and highly complex. The aim of this study is to examine the association between redox homeostasis and the melanomagenic process. To this purpose we are presenting what is currently known about the role of ROS in melanoma initiation and progression. In addition, we are discussing the role of antioxidant mechanisms during the spread of the disease and in cases of melanoma drug resistance. Although challenging, targeting redox homeostasis in melanoma progression remains to be a promising therapeutic approach, especially valid during melanoma drug resistance.
Collapse
Affiliation(s)
| | - Massimo M Santoro
- Department of Biology, University of Padua, 35131, Italy; Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129, Padua, Italy.
| |
Collapse
|
48
|
Thermozier S, Hou W, Zhang X, Shields D, Fisher R, Bayir H, Kagan V, Yu J, Liu B, Bahar I, Epperly MW, Wipf P, Wang H, Huq MS, Greenberger JS. Anti-Ferroptosis Drug Enhances Total-Body Irradiation Mitigation by Drugs that Block Apoptosis and Necroptosis. Radiat Res 2020; 193:435-450. [PMID: 32134361 PMCID: PMC7299160 DOI: 10.1667/rr15486.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitigation of total-body irradiation (TBI) in C57BL/6 mice by two drugs, which target apoptosis and necroptosis respectively, increases survival compared to one drug alone. Here we investigated whether the biomarker (signature)directed addition of a third anti-ferroptosis drug further mitigated TBI effects. C57BL/6NTac female mice (30-33 g) received 9.25 Gy TBI, and 24 h or later received JP4-039 (20 mg/kg), necrostatin-1 (1.65 mg/kg) and/or lipoxygenase-15 inhibitor (baicalein) (50 mg/kg) in single-, dual- or three-drug regimens. Some animals were sacrificed at days 0, 1, 2, 3, 4 or 7 postirradiation, while the majority in each group were maintained beyond 30 days. For those mice sacrificed at the early time points, femur bone marrow, intestine (ileum), lung and blood plasma were collected and analyzed for radiation-induced and mitigator-modified levels of 33 pro-inflammatory and stress response proteins. Each single mitigator administered [JP4-039 (24 h), necrostatin-1 (48 h) or baicalein (24 h)] improved survival at day 30 after TBI to 25% (P = 0.0432, 0.2816 or 0.1120, respectively) compared to 5% survival of 9.25 Gy TBI controls. Mice were administered the drug individually based on weight (mg/kg). Drug vehicles comprised 30% cyclodextrin for JP4-039 and baicalein, and 10% Cremphor-EL/10% ethanol/80% water for necrostatin-1; thus, dual-vehicle controls were also tested. The dual-drug combinations further enhanced survival: necrostatin-1 (delayed to 72 h) with baicalein 40% (P = 0.0359); JP4-039 with necrostatin-1 50% (P = 0.0062); and JP4-039 with baicalein 60% (P = 0.0064). The three-drug regimen, timed to signature directed evidence of onset after TBI of each death pathway in marrow and intestine, further increased the 30-day survival to 75% (P = 0.0002), and there was optimal normalization to preirradiation levels of inflammatory cytokine and stress response protein levels in plasma, intestine and marrow. In contrast, lung protein levels were minimally altered by 9.25 Gy TBI or mitigators over 7 days. Significantly, elevated intestinal proteins at day 7 after TBI were reduced by necrostatin-1-containing regimens; however, normalization of plasma protein levels at day 7 required the addition of JP4-039 and baicalein. These findings indicate that mitigator targeting to three distinct cell death pathways increases survival after TBI.
Collapse
Affiliation(s)
- Stephanie Thermozier
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Xichen Zhang
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Hulya Bayir
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Valerian Kagan
- Departments of Environmental/Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Jian Yu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Bing Liu
- Departments of Computational and Biology Systems, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Ivet Bahar
- Departments of Computational and Biology Systems, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Michael W. Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - M. Saiful Huq
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Joel S. Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| |
Collapse
|
49
|
Oluba O. Oryctes rhinoceros larva oil supplementation improves tissue antioxidant status in cholesterol-fed rats. POTRAVINARSTVO 2019. [DOI: 10.5219/1180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Experimental evidence from previous study has demonstrated the hypolipidemic effects of Oryctes rhinoceros oil (ORO) when fed as a supplement to a cholesterol-based diet. Due to renew interest in the consumption of insect derived oil, the present study was designed to elucidate the effect of Oryctes rhinoceros oil (ORO) supplementation in comparison to vitamin E on oxidative status in some tissues of rats fed a cholesterol-based diet. Forty (40) Swiss albino rats were divided into 4 groups (n = 10) and maintained on a basal diet (cholesterol free as control), a cholesterol-based diet (5% cholesterol as cholesterol), a cholesterol-based diet supplemented with ORO (cholesterol + ORO) and a cholesterol-based diet supplemented with vitamin E (Cholesterol + vit E) for 10 weeks. Animals in the cholesterol group had a significantly(p <0.05) higher malondialdehyde (MDA), conjugated diene and nitric oxide concentrations in the serum, liver, heart, kidney and lung compared to control, cholesterol + ORO and cholesterol + vit E groups. Tissue glutathione (GSH) concentration was significantly (p <0.05) higher in rats fed cholesterol-based diet supplemented with ORO and vitamin E compared to those fed cholesterol-based diet alone. Xanthine oxidase activity was significantly (p <0.05) reduced in tissues of rats fed ORO and vitamin E supplemented diets compared to cholesterol rat group. In addition, catalase and superoxide dismutase activities in the various tissues examined were significantly (p <0.05) higher in both ORO and vitamin E supplemented groups compared to the cholesterol group. No significant difference was observed between animals fed ORO and vitamin E supplemented diets. These results showed that Oryctes rhinoceros larva oil exhibited similar protective effects to vitamin E against diet-induced oxidative stress in rats. In addition, data from this study showed that Oryctes rhinoceros larva oil possessed antioxidant property. Overall, the potential nutritional benefit of Oryctes rhincoceros larva oil consumption on cardiovascular health could possibly involve its ability to upregulation of cellular antioxidant defense mechanisms.
Collapse
|
50
|
B1 and Marginal Zone B Cells but Not Follicular B2 Cells Require Gpx4 to Prevent Lipid Peroxidation and Ferroptosis. Cell Rep 2019; 29:2731-2744.e4. [DOI: 10.1016/j.celrep.2019.10.070] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
|