1
|
Yuan X, An G. Characterizing the Nonlinear Pharmacokinetics and Pharmacodynamics of BI 187004, an 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitor, in Humans by a Target-Mediated Drug Disposition Model. J Clin Pharmacol 2024; 64:993-1005. [PMID: 38652112 DOI: 10.1002/jcph.2438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
BI 187004, a selective small-molecule inhibitor of 11β-hydroxysteroid dehydrogenase-1 (11β-HSD1), displayed complex nonlinear pharmacokinetics (PK) in humans. Following nine single oral doses, BI 187004 exhibited nonlinear PK at low doses and linear PK at higher doses. Notably, substantial hepatic 11β-HSD1 inhibition (50%) was detected in a very low-dose group, achieving a consistent 70% hepatic enzyme inhibition in subsequent ascending doses without any dose-dependent effects. The unusual PK and PD profiles of BI 187004 suggest the presence of pharmacological target-mediated drug disposition (TMDD), arising from the saturable binding of BI 187004 compound to its high-affinity and low-capacity target 11β-HSD1. The non-intuitive dose, exposure, and response relationship for BI 187004 pose a significant challenge in rational dose selection. This study aimed to construct a TMDD model to explain the complex nonlinear PK behavior and underscore the importance of recognizing TMDD in this small-molecule compound. Among the various models explored, the best model was a two-compartment TMDD model with three transit absorption components. The final model provides insights into 11β-HSD1 binding-related parameters for BI 187004, including the total amount of 11β-HSD1 in the liver (estimated to be 8000 nmol), the second order association rate constant (estimated to be 0.102 nM-1h-1), and the first-order dissociation rate constant (estimated to be 0.11 h-1). Our final population PK model successfully characterized the intricate nonlinear PK of BI 187004 across a wide dose range. This modeling work serves as a valuable reference for the rational selection of the dose regimens for BI 187004's future clinical trials.
Collapse
Affiliation(s)
- Xuanzhen Yuan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Guohua An
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
2
|
Kley M, Moser SO, Winter DV, Odermatt A. In vitro methods to assess 11β-hydroxysteroid dehydrogenase type 1 activity. Methods Enzymol 2023; 689:121-165. [PMID: 37802569 DOI: 10.1016/bs.mie.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) converts inactive 11-keto-glucocorticoids to their active 11β-hydroxylated forms. It also catalyzes the oxoreduction of other endogenous and exogenous substrates. The ubiquitously expressed 11β-HSD1 shows high levels in liver and other metabolically active tissues such as brain and adipose tissue. Pharmacological inhibition of 11β-HSD1 was found to ameliorate adverse metabolic effects of elevated glucocorticoids in rodents and humans, improve wound healing and delay skin aging, and enhance memory and cognition in rodent Alzheimer's disease models. Thus, there is an interest to develop 11β-HSD1 inhibitors for therapeutic purposes. This chapter describes in vitro methods to assess 11β-HSD1 enzyme activity for different purposes, be it in disease models, for the assessment of the kinetics of novel substrates or for the screening and characterization of inhibitors. 11β-HSD1 protein expression and preparations of the different biological samples are discussed first, followed by a description of a well-established and easily adaptable 11β-HSD1 enzyme activity assay. Finally, different readout methods are shortly described. This chapter should provide the reader with a toolbox of methods to assess 11β-HSD1 activity with instructions in the form of a decision tree for the choice and implementation of an appropriate enzyme activity assay.
Collapse
Affiliation(s)
- Manuel Kley
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Seraina O Moser
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Denise V Winter
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Gomez-Sanchez EP, Gomez-Sanchez CE. 11β-hydroxysteroid dehydrogenases: A growing multi-tasking family. Mol Cell Endocrinol 2021; 526:111210. [PMID: 33607268 PMCID: PMC8108011 DOI: 10.1016/j.mce.2021.111210] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
This review briefly addresses the history of the discovery and elucidation of the three cloned 11β-hydroxysteroid dehydrogenase (11βHSD) enzymes in the human, 11βHSD1, 11βHSD2 and 11βHSD3, an NADP+-dependent dehydrogenase also called the 11βHSD1-like dehydrogenase (11βHSD1L), as well as evidence for yet identified 11βHSDs. Attention is devoted to more recently described aspects of this multi-functional family. The importance of 11βHSD substrates other than glucocorticoids including bile acids, 7-keto sterols, neurosteroids, and xenobiotics is discussed, along with examples of pathology when functions of these multi-tasking enzymes are disrupted. 11βHSDs modulate the intracellular concentration of glucocorticoids, thereby regulating the activation of the glucocorticoid and mineralocorticoid receptors, and 7β-27-hydroxycholesterol, an agonist of the retinoid-related orphan receptor gamma (RORγ). Key functions of this nuclear transcription factor include regulation of immune cell differentiation, cytokine production and inflammation at the cell level. 11βHSD1 expression and/or glucocorticoid reductase activity are inappropriately increased with age and in obesity and metabolic syndrome (MetS). Potential causes for disappointing results of the clinical trials of selective inhibitors of 11βHSD1 in the treatment of these disorders are discussed, as well as the potential for more targeted use of inhibitors of 11βHSD1 and 11βHSD2.
Collapse
Affiliation(s)
| | - Celso E Gomez-Sanchez
- Department of Pharmacology and Toxicology, Jackson, MS, USA; Medicine (Endocrinology), Jackson, MS, USA; University of Mississippi Medical Center and G.V. (Sonny) Montgomery VA Medical Center(3), Jackson, MS, USA
| |
Collapse
|
4
|
Arthritis and the role of endogenous glucocorticoids. Bone Res 2020; 8:33. [PMID: 32963891 PMCID: PMC7478967 DOI: 10.1038/s41413-020-00112-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis and osteoarthritis, the most common forms of arthritis, are chronic, painful, and disabling conditions. Although both diseases differ in etiology, they manifest in progressive joint destruction characterized by pathological changes in the articular cartilage, bone, and synovium. While the potent anti-inflammatory properties of therapeutic (i.e., exogenous) glucocorticoids have been heavily researched and are widely used in clinical practice, the role of endogenous glucocorticoids in arthritis susceptibility and disease progression remains poorly understood. Current evidence from mouse models suggests that local endogenous glucocorticoid signaling is upregulated by the pro-inflammatory microenvironment in rheumatoid arthritis and by aging-related mechanisms in osteoarthritis. Furthermore, these models indicate that endogenous glucocorticoid signaling in macrophages, mast cells, and chondrocytes has anti-inflammatory effects, while signaling in fibroblast-like synoviocytes, myocytes, osteoblasts, and osteocytes has pro-inflammatory actions in rheumatoid arthritis. Conversely, in osteoarthritis, endogenous glucocorticoid signaling in both osteoblasts and chondrocytes has destructive actions. Together these studies provide insights into the role of endogenous glucocorticoids in the pathogenesis of both inflammatory and degenerative joint disease.
Collapse
|
5
|
Wang Y, Li H, Zhu Q, Li X, Lin Z, Ge RS. The cross talk of adrenal and Leydig cell steroids in Leydig cells. J Steroid Biochem Mol Biol 2019; 192:105386. [PMID: 31152782 DOI: 10.1016/j.jsbmb.2019.105386] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
Glucocorticoid is secreted by adrenal cortex, which binds to intracellular glucocorticoid and mineralocorticoid receptors to regulate steroidogenesis-related gene expression and testosterone production in Leydig cells. Glucocorticoid receptor activity shows inhibitory action on Leydig cell steroidogenesis, while mineralocorticoid receptor activity shows the stimulatory action. Leydig cells contain two important glucocorticoid-metabolizing enzymes, 11β-hydroxysteroid dehydrogenase type 1 and type 2, regulating the intracellular levels of glucocorticoids by a pre-receptor mechanism. 11β-Hydroxysteroid dehydrogenase type 1 is a bidirectional enzyme, and its direction is regulated by intracellular NADP+/NADPH redox potential. Leydig cells contain many steroidogenic enzymes, possibly regulating NADP+/NADPH redox potential by coupling with 11β-hydroxysteroid dehydrogenase type 1. Here, we review the 11β-hydroxysteroid dehydrogenase regulation and possible consequences in Leydig cell biology and pathology.
Collapse
Affiliation(s)
- Yiyan Wang
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huitao Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiqi Zhu
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoheng Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenkun Lin
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
6
|
Metabolic and Epigenetic Action Mechanisms of Antidiabetic Medicinal Plants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3583067. [PMID: 31191707 PMCID: PMC6525884 DOI: 10.1155/2019/3583067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
Diabetes is a predominant metabolic disease nowadays due to the off-beam lifestyle of diet and reduced physical activity. Complications of the illness include the gene-environment interactions and the downstream genetic and epigenetic consequences, e.g., cardiovascular diseases, tumor progression, retinopathy, nephropathy, neuropathy, polydipsia, polyphagia, polyuria, and weight loss. This review sheds the light on the mechanistic insights of antidiabetic medicinal plants in targeting key organs and tissues involved in regulating blood glucose homeostasis including the pancreas, liver, muscles, adipose tissues, and glucose absorption in the intestine. Diabetes is also involved in modulating major epigenetic pathways such as DNA methylation and histone modification. In this respect, we will discuss the phytochemicals as current and future epigenetic drugs in the treatment of diabetes. In addition, several proteins are common targets for the treatment of diabetes. Some phytochemicals are expected to directly interact with these targets. We lastly uncover modeling studies that predict such plausible interactions. In conclusion, this review article presents the mechanistic insight of phytochemicals in the treatment of diabetes by combining both the cellular systems biology and molecular modeling.
Collapse
|
7
|
Zhu Q, Dong Y, Li X, Ni C, Huang T, Sun J, Ge RS. Dehydroepiandrosterone and Its CYP7B1 Metabolite 7α-Hydroxydehydroepiandrosterone Regulates 11β-Hydroxysteroid Dehydrogenase 1 Directions in Rat Leydig Cells. Front Endocrinol (Lausanne) 2019; 10:886. [PMID: 32038478 PMCID: PMC6993528 DOI: 10.3389/fendo.2019.00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/04/2019] [Indexed: 11/17/2022] Open
Abstract
Background: The purpose of this study was to investigate cytochrome P450-7B1 (CYP7B1) in the human and rat testes to regulate 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity. We hypothesized that dehydroepiandrosterone (DHEA) and its product 7α-hydroxydehydroepiandrosterone (7αOHD) after catalysis of CYP7B1 played a critical role in driving the direction of 11β-HSD1, because 7αOHD is an alternative substrate for 11β-HSD1. Methods: We examined the influence of DHEA and 7αOHD on 11β-HSD1 activities in both intact Leydig cells and microsomes using radioactive substrates and identified the location of CYP7B1 in Leydig cells using immunohistochemical staining, Western blot, and qPCR. Results: We found that DHEA stimulated 11β-HSD1 oxidase activity in intact cells (EC50 = 0.97 ± 0.11 μM) and inhibited its reductase activity (IC50 = 1.04 ± 0.06 μM). In microsomes, DHEA was a competitive inhibitor of the reductase activity. The 11β-HSD1 oxidase activity in intact cells was inhibited by 7αOHD (IC50 = 1.18 ± 0.12 μM), and the reductase activity was enhanced (EC50 = 0.7 ± 0.04 μM). 7αOHD was a competitive inhibitor of 11β-HSD1 oxidase. CYP7B1 was present in rat Leydig cells, as shown by immunohistochemistry, Western blotting, and qPCR analysis. Conclusion: Our results are consistent with a conclusion that DHEA in the circulation driving 11β-HSD1 toward an oxidase in Leydig cells mainly through inhibiting the reductase of the enzyme, while 7αOHD (CYP7B1 catalytic product of DHEA) drives the enzyme toward the opposite direction.
Collapse
Affiliation(s)
- Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yaoyao Dong
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaobo Ni
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tongliang Huang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianliang Sun
- Department of Anesthesia, Hangzhou Hospital Affiliated to Zhejiang University, Hangzhou First People's Hospital, Hangzhou, China
- *Correspondence: Jianliang Sun
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Ren-Shan Ge
| |
Collapse
|
8
|
Boudon S, Heidl M, Vuorinen A, Wandeler E, Campiche R, Odermatt A, Jackson E. Design, synthesis, and biological evaluation of novel selective peptide inhibitors of 11β-hydroxysteroid dehydrogenase 1. Bioorg Med Chem 2018; 26:5128-5139. [PMID: 30245006 DOI: 10.1016/j.bmc.2018.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 11/17/2022]
Abstract
The enzyme 11β-HSD1 plays a crucial role in the tissue-specific regulation of cortisol levels and it has been associated with various diseases. Inhibition of 11β-HSD1 is an attractive intervention strategy and the discovery of novel selective 11β-HSD1 inhibitors is of high relevance. In this study, we identified and evaluated a new series of selective peptide 11β-HSD1 inhibitors with potential for skin care applications. This novel scaffold was designed with the aid of molecular modeling and two previously reported inhibitors. SAR optimization yielded highly active peptides (IC50 below 400 nM) that were inactive at 1 µM concentration against structurally related enzymes (11β-HSD2, 17β-HSD1 and 17β-HSD2). The best performing peptides inhibited the conversion of cortisone into cortisol in primary human keratinocytes and the most active compound, 5d, was further shown to reverse cortisone-induced collagen damage in human ex-vivo tissue.
Collapse
Affiliation(s)
- Stephanie Boudon
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Marc Heidl
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Anna Vuorinen
- Division of Molecular and Systems Toxicology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Eliane Wandeler
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Remo Campiche
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Eileen Jackson
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303 Kaiseraugst, Switzerland.
| |
Collapse
|
9
|
Zhu Q, Ge F, Li X, Deng HS, Xu M, Bu T, Li J, Wang Y, Shan Y, Ge RS, Yao M. Dehydroepiandrosterone Antagonizes Pain Stress-Induced Suppression of Testosterone Production in Male Rats. Front Pharmacol 2018; 9:322. [PMID: 29713278 PMCID: PMC5911460 DOI: 10.3389/fphar.2018.00322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/20/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Leydig cells secrete the steroid hormone, testosterone, which is essential for male fertility and reproductive health. Stress increases the secretion of glucocorticoid [corticosterone, (CORT) in rats] that decreases circulating testosterone levels in part through a direct action on its receptors in Leydig cells. Intratesticular CORT level is dependent on oxidative inactivation of CORT by 11β-hydroxysteroid dehydrogenase 1 (HSD11B1) in rat Leydig cells. Pain may cause the stress, thus affecting testosterone production in Leydig cells. Methods: Adult male Sprague–Dawley rats orally received vehicle control or 5 or 10 mg/kg dehydroepiandrosterone (DHEA) 0.5 h before being subjected to pain stimulation for 1, 3, and 6 h. In the present study, we investigated the time-course changes of steroidogenic gene expression levels after acute pain-induced stress in rats and the possible mechanism of DHEA that prevented it. Plasma CORT, luteinizing hormone (LH), and testosterone (T) levels were measured, and Leydig cell gene expression levels were determined. The direct regulation of HSD11B1 catalytic direction by DHEA was detected in purified rat Leydig, liver, and rat Hsd11b1-transfected COS1 cells. Results: Plasma CORT levels were significantly increased at hour 1, 3, and 6 during the pain stimulation, while plasma T levels were significantly decreased starting at hour 3 and 6. Pain-induced stress also decreased Star, Hsd3b1, and Cyp17a1 expression levels at hour 3. When 5 and 10 mg/kg DHEA were orally administered to rats 0.5 h before starting pain stimulation, DHEA prevented pain-mediated decrease in plasma T levels and the expression of Star, Hsd3b1, and Cyp17a1 without affecting plasma CORT levels. DHEA was found to modulate HSD11B1 activities by increasing its oxidative activity and decreasing its reductive activity, thus decreasing the intracellular CORT levels in Leydig cells. Conclusion: Stress induced by acute pain can inhibit Leydig cell T production by upregulation of corticosterone. DHEA can prevent the negative effects of excessive corticosterone by modulating HSD11B1 activity.
Collapse
Affiliation(s)
- Qiqi Zhu
- Department of Anesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fei Ge
- Department of Anesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Anesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hou-Sheng Deng
- Department of Anesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Miao Xu
- Department of Anesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Tiao Bu
- General Hospital of Guangzhou Military Command of PLA, Guangzhou, China
| | - Jingyang Li
- Department of Neonatology, Xi'an No.4 Hospital, Xi'an, China
| | - Yiyan Wang
- Department of Anesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Shan
- Department of Anesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Anesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ming Yao
- Department of Anesthesiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Zhu Q, Ge F, Dong Y, Sun W, Wang Z, Shan Y, Chen R, Sun J, Ge RS. Comparison of flavonoids and isoflavonoids to inhibit rat and human 11β-hydroxysteroid dehydrogenase 1 and 2. Steroids 2018; 132:25-32. [PMID: 29425740 DOI: 10.1016/j.steroids.2018.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 01/29/2023]
Abstract
Many flavonoids and isoflavonoids have anti-diabetic effects in animal models. However, the mechanisms that are involved are generally unclear. Since 11β-hydroxysteroid dehydrogenases (HSD11Bs) play important roles in diabetes, we hypothesize that flavonoids and isoflavonoids may affect diabetes by targeting two isoforms of HSD11B differently. The inhibitory effects of flavonoids (apigenin and quercetin) and isoflavonoids [genistein and (±) equol] on rat and human HSD11B1 and HSD11B2 were analyzed. The potencies of inhibition on human HSD11B1 reductase was in the order of apigenin > quercetin > genistein > (±) equol, with IC50 values of 2.19, 5.36, 11.00, and over 100 μM, respectively. Genistein also inhibited rat HSD11B1 reductase with IC50 value of 24.58 μM, while other three chemicals showed no effects on the enzyme activity with IC50 values over 100 μM. However, apigenin and (±) equol did not inhibit human HSD11B2 at concentrations as high as 100 μM, while genistein and quercetin inhibited human HSD11B2 by 60% and 50% at 100 μM, respectively. The effective flavonoids and isoflavonoids are noncompetitive inhibitors of HSD11B1 when steroid substrates were used. Docking analysis showed that they bound to the steroid-binding site of the human HSD11B1. These data indicate that apigenin is a selective inhibitor of human HSD11B1 of two HSD11B isoforms, which may be useful in managing symptoms of the metabolic syndrome.
Collapse
Affiliation(s)
- Qiqi Zhu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China
| | - Fei Ge
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China
| | - Yaoyao Dong
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China
| | - Wei Sun
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China
| | - Zhe Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China
| | - Yuanyuan Shan
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China
| | - Ruijie Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China
| | - Jianliang Sun
- Department of Anesthesia, Hangzhou Hospital Affiliated to Nanjing Medical University, Hangzhou First People's Hospital, Hangzhou 310006, PR China.
| | - Ren-Shan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China.
| |
Collapse
|
11
|
Abstract
A new concept is emerging in biomedical sciences: the gut microbiota is a virtual 'organ' with endocrine function. Here, we explore the literature pertaining to the role of gut microbial metabolism of endogenous adrenocorticosteroids as a contributing factor in the etiology of essential hypertension. A body of literature demonstrates that bacterial products of glucocorticoid metabolism are absorbed into the portal circulation, and pass through the kidney before excretion into urine. Apparent mineralocorticoid excess (AME) syndrome patients were found to have congenital mutations resulting in non-functional renal 11β-hydroxysteroid dehydrogenase-2 (11β-HSD2) and severe hypertension often lethal in childhood. 11β-HSD2 acts as a "guardian" enzyme protecting the mineralocorticoid receptor from excess cortisol, preventing sodium and water retention in the normotensive state. Licorice root, whose active ingredient, glycerrhetinic acid (GA), inhibits renal 11β-HSD2, and thereby causes hypertension in some individuals. Bacterially derived glucocorticoid metabolites may cause hypertension in some patients by a similar mechanism. Parallel observations in gut microbiology coupled with screening of endogenous steroids as inhibitors of 11β-HSD2 have implicated particular gut bacteria in essential hypertension through the production of glycerrhetinic acid-like factors (GALFs). A protective role of GALFs produced by gut bacteria in the etiology of colorectal cancer is also explored.
Collapse
Affiliation(s)
- David J Morris
- Department of Pathology and Laboratory Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States.
| | - Jason M Ridlon
- Department of Animal Sciences, Division of Nutritional Sciences, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL, United States; Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
12
|
Yao F, Chen L, Fan Z, Teng F, Zhao Y, Guan F, Zhang M, Liu Y. Interplay between H6PDH and 11β-HSD1 implicated in the pathogenesis of type 2 diabetes mellitus. Bioorg Med Chem Lett 2017; 27:4107-4113. [PMID: 28751144 DOI: 10.1016/j.bmcl.2017.07.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/08/2017] [Accepted: 07/14/2017] [Indexed: 11/19/2022]
Abstract
Extensive studies have been performed on the role of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in metabolic diseases. Our previous study reported glucose could directly regulate hexose-6-phosphate dehydrogenase (H6PDH) and 11β-HSD1. Recently, we further investigated the interplay of H6PDH and 11β-HSD1 and their roles in hepatic gluconeogenesis and insulin resistance to elucidate the importance of H6PDH and 11β-HSD1 in pathogenesis of type 2 diabetes mellitus (T2DM). T2DM rats model and H6PDH or 11β-HSD1 siRNA transfected in CBRH-7919 cells were used to explore the effect of H6PDH and 11β-HSD1 in T2DM. The results showed that the expression and activity of H6PDH and 11β-HSD1 in livers of diabetic rats were increased, with the expressions of PEPCK and G6Pase or liver corticosterone increased apparently. It also showed that H6PDH siRNA and 11β-HSD1 siRNA could inhibit the protein expression and enzyme activity by each other. With H6PDH siRNA, the enhancement of gluconeogenesis was blocked and insulin resistance stimulated by corticosterone was reduced. H6PDH and 11β-HSD1 might be the effective and prospective targets for T2DM and metabolic syndromes, based on the interplay between these two enzymes.
Collapse
Affiliation(s)
- Fan Yao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; School of Nursing, Jilin University, Changchun 130021, China
| | - Zheng Fan
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fei Teng
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yali Zhao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fengying Guan
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Yanjun Liu
- Division of Endocrinology, Metabolism and Molecular Medicine, Charles R. Drew University of Medicine and Sciences, UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
13
|
Liu Y, Coughtrie MWH. Revisiting the Latency of Uridine Diphosphate-Glucuronosyltransferases (UGTs)-How Does the Endoplasmic Reticulum Membrane Influence Their Function? Pharmaceutics 2017; 9:E32. [PMID: 28867809 PMCID: PMC5620573 DOI: 10.3390/pharmaceutics9030032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 11/18/2022] Open
Abstract
Uridine diphosphate-glucuronosyltransferases (UGTs) are phase 2 conjugation enzymes mainly located in the endoplasmic reticulum (ER) of the liver and many other tissues, and can be recovered in artificial ER membrane preparations (microsomes). They catalyze glucuronidation reactions in various aglycone substrates, contributing significantly to the body's chemical defense mechanism. There has been controversy over the last 50 years in the UGT field with respect to the explanation for the phenomenon of latency: full UGT activity revealed by chemical or physical disruption of the microsomal membrane. Because latency can lead to inaccurate measurements of UGT activity in vitro, and subsequent underprediction of drug clearance in vivo, it is important to understand the mechanisms behind this phenomenon. Three major hypotheses have been advanced to explain UGT latency: compartmentation, conformation, and adenine nucleotide inhibition. In this review, we discuss the evidence behind each hypothesis in depth, and suggest some additional studies that may reveal more information on this intriguing phenomenon.
Collapse
Affiliation(s)
- Yuejian Liu
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Michael W H Coughtrie
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
14
|
Yang K, Shearman K, Asano H, Richardson BS. Effects of Hypoxemia on 11β-Hydroxysteroid Dehydrogenase Types 1 and 2 Gene Expression in Preterm Fetal Sheep. ACTA ACUST UNITED AC 2017. [DOI: 10.1177/193371919700400310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- K. Yang
- Lawson Research Institute, St. Joseph's Hospital, Departments of Obstetrics and Gynecology and Physiology, MRC Group in Fetal and Neonatal Health and Development, University of Western Ontario, London, Ontario, Canada
| | - K. Shearman
- Lawson Research Institute, St. Joseph's Hospital, Departments of Obstetrics and Gynecology and Physiology, MRC Group in Fetal and Neonatal Health and Development, University of Western Ontario, London, Ontario, Canada
| | - H. Asano
- Lawson Research Institute, St. Joseph's Hospital, Departments of Obstetrics and Gynecology and Physiology, MRC Group in Fetal and Neonatal Health and Development, University of Western Ontario, London, Ontario, Canada
| | - B. S. Richardson
- Lawson Research Institute, St. Joseph's Hospital, Departments of Obstetrics and Gynecology and Physiology, MRC Group in Fetal and Neonatal Health and Development, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
15
|
Ye L, Li X, Li L, Chen H, Ge RS. Insights into the Development of the Adult Leydig Cell Lineage from Stem Leydig Cells. Front Physiol 2017; 8:430. [PMID: 28701961 PMCID: PMC5487449 DOI: 10.3389/fphys.2017.00430] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/06/2017] [Indexed: 02/06/2023] Open
Abstract
Adult Leydig cells (ALCs) are the steroidogenic cells in the testes that produce testosterone. ALCs develop postnatally from a pool of stem cells, referred to as stem Leydig cells (SLCs). SLCs are spindle-shaped cells that lack steroidogenic cell markers, including luteinizing hormone (LH) receptor and 3β-hydroxysteroid dehydrogenase. The commitment of SLCs into the progenitor Leydig cells (PLCs), the first stage in the lineage, requires growth factors, including Dessert Hedgehog (DHH) and platelet-derived growth factor-AA. PLCs are still spindle-shaped, but become steroidogenic and produce mainly androsterone. The next transition in the lineage is from PLC to the immature Leydig cell (ILC). This transition requires LH, DHH, and androgen. ILCs are ovoid cells that are competent for producing a different form of androgen, androstanediol. The final stage in the developmental lineage is ALC. The transition to ALC involves the reduced expression of 5α-reductase 1, a step that is necessary to make the cells to produce testosterone as the final product. The transitions along the Leydig cell lineage are associated with the progressive down-regulation of the proliferative activity, and the up-regulation of steroidogenic capacity, with each step requiring unique regulatory signaling.
Collapse
Affiliation(s)
- Leping Ye
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Xiaoheng Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Haolin Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Ren-Shan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| |
Collapse
|
16
|
Funder JW. Apparent mineralocorticoid excess. J Steroid Biochem Mol Biol 2017; 165:151-153. [PMID: 26956190 DOI: 10.1016/j.jsbmb.2016.03.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/26/2016] [Accepted: 03/03/2016] [Indexed: 11/30/2022]
Abstract
Apparent mineralocorticoid excess is a syndrome reflecting the absent or impaired activity of the enzyme 11β-hydroxysteroid dehydrogenase Type 2. It may be mild when the mutant enzyme retains some activity, or severe when activity is absolutely or essentially absent. Diagnosis relies on a triad of hypertension, hypokalemia and suppressed plasma aldosterone levels, plus an abnormal urinary cortisol to cortisone ratio, either free steroid or metabolites. Treatment is symptomatic in the mild form - correction of hypertension and hypokalemia - but needs to be prompt, vigorous and sustained in the severe form, which usually presents in neonates/infancy. Elucidation of the pathogenesis of apparent mineralocorticoid excess is an example of 'reverse translation', in that it proved prismatic for the demonstration of the physiologic mechanisms underlying the selective activation of epithelial mineralocorticoid receptors by aldosterone.
Collapse
Affiliation(s)
- John W Funder
- Hudson Institute of Medical Research and Monash University, Clayton 27-31 Wright Street, Clayton, Victoria 3168, Australia.
| |
Collapse
|
17
|
Gray GA, White CI, Castellan RFP, McSweeney SJ, Chapman KE. Getting to the heart of intracellular glucocorticoid regeneration: 11β-HSD1 in the myocardium. J Mol Endocrinol 2017; 58:R1-R13. [PMID: 27553202 PMCID: PMC5148800 DOI: 10.1530/jme-16-0128] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 12/11/2022]
Abstract
Corticosteroids influence the development and function of the heart and its response to injury and pressure overload via actions on glucocorticoid (GR) and mineralocorticoid (MR) receptors. Systemic corticosteroid concentration depends largely on the activity of the hypothalamic-pituitary-adrenal (HPA) axis, but glucocorticoid can also be regenerated from intrinsically inert metabolites by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), selectively increasing glucocorticoid levels within cells and tissues. Extensive studies have revealed the roles for glucocorticoid regeneration by 11β-HSD1 in liver, adipose, brain and other tissues, but until recently, there has been little focus on the heart. This article reviews the evidence for glucocorticoid metabolism by 11β-HSD1 in the heart and for a role of 11β-HSD1 activity in determining the myocardial growth and physiological function. We also consider the potential of 11β-HSD1 as a therapeutic target to enhance repair after myocardial infarction and to prevent the development of cardiac remodelling and heart failure.
Collapse
Affiliation(s)
- Gillian A Gray
- University/BHF Centre for Cardiovascular ScienceQueen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Christopher I White
- University/BHF Centre for Cardiovascular ScienceQueen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Raphael F P Castellan
- University/BHF Centre for Cardiovascular ScienceQueen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Sara J McSweeney
- University/BHF Centre for Cardiovascular ScienceQueen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Karen E Chapman
- University/BHF Centre for Cardiovascular ScienceQueen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
18
|
Bird IM, Abbott DH. The hunt for a selective 17,20 lyase inhibitor; learning lessons from nature. J Steroid Biochem Mol Biol 2016; 163:136-46. [PMID: 27154414 PMCID: PMC5046225 DOI: 10.1016/j.jsbmb.2016.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 01/10/2023]
Abstract
Given prostate cancer is driven, in part, by its responsiveness to androgens, treatments historically employ methods for their removal from circulation. Approaches as crude as castration, and more recently blockade of androgen synthesis or receptor binding, are still of limited use long term, since other steroids of adrenal origin or tumor origin can supersede that role as the 'castration resistant' tumor re-emerges. Broader inhibition of steroidogenesis using relatively nonselective P450 inhibitors such as ketoconazole is not an alternative since a general disruption of steroid biosynthesis is neither safe nor effective. The recent emergence of drugs more selectively targeting CYP17 have been more effective, and yet extension of life has been on the scale of months rather than years. It is now becoming clear this shortcoming arises from the adaptive capabilities of many tumors to initiate local steroid synthesis and/or become responsive to novel early pathway adrenal steroids that are synthesized when lyase activity is not selectively blocked, and ACTH rises in the face of declining cortisol feedback. Abiraterone has been described as a lyase selective inhibitor, yet its use still requires co-administration of prednisone to suppress such a rise of ACTH and fall in cortisol. So is creation of a selective lyase inhibitor even possible? Can C19 steroid production be achieved without a prominent decline in cortisol and corresponding rise in ACTH? Decades of scientific study of CYP17 in humans and nonhuman primates, as well as nature's own experiments of gene mutations in humans, reveal 'true' or 'isolated' 17,20 lyase deficiency does quite selectively prevent C19 steroid biosynthesis whereas simple 17 hydroxylase deficiency also suppresses cortisol. We propose these known outcomes of natural mutations should be used to guide analysis of clinical trials and long term outcomes of CYP17 targeted drugs. In this review, we use that framework to re-evaluate the basic and clinical outcomes of many compounds being used or in development for treatment of castration resistant prostate cancer. Specifically, we include the nonselective drug ketoconazole, and then the CYP17 targeted drugs abiraterone, orteronel (TAK-700), galaterone (TOK-001), and seviteronel (VT-464). Using this framework, we can fully discriminate the clinical outcomes for ketoconazole, a drug with broad specificity, yet clinically ineffective, from that of abiraterone, the first CYP17 targeted therapy that is limited by its need for prednisone co-therapy. We also can identify potential next generation CYP17 targeted drugs now emerging that show signs of being far more 17,20 lyase selective. We conclude that a future for improved therapy without substantial cortisol decline, thus avoiding prednisone co-administration, seems possible at long last.
Collapse
Affiliation(s)
- Ian M Bird
- Department Ob/Gyn, University of Wisconsin-Madison SMPH, Madison, WI, USA.
| | - David H Abbott
- Department Ob/Gyn, University of Wisconsin-Madison SMPH, Madison, WI, USA; Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
19
|
Bissonnette J, Chambers S, Collins P, Lockwood C, Mendelson C, Myatt L, Polan ML, Shen WH, Szal S. Strengthening Research in Departments of Obstetrics and Gynecology. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155769700400302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Sara Szal
- Departments of Obstetrics and Gynecology at Oregon Health Sciences University, Yale University, Case Western Reserve University, New York University, University of Texas-Southwestern, University of Cincinnati, Stanford University, and University of California, San Francisco
| |
Collapse
|
20
|
Zhu Q, Zuo R, He Y, Wang Y, Chen ZJ, Sun Y, Sun K. Local Regeneration of Cortisol by 11β-HSD1 Contributes to Insulin Resistance of the Granulosa Cells in PCOS. J Clin Endocrinol Metab 2016; 101:2168-77. [PMID: 26934392 DOI: 10.1210/jc.2015-3899] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CONTEXT Insulin resistance (IR) of the granulosa cells may account for the ovarian dysfunctions observed in polycystic ovarian syndrome (PCOS). The underlying mechanism remains largely unresolved. OBJECTIVE The objective of the study was to investigate the relationship of IR of the granulosa cells with cortisol in the follicular fluid and 11β-hydroxysteroid dehydrogenase 1 and 2 (11β-HSD1 and -2) in the granulosa cells in PCOS. DESIGN Follicular fluid and granulosa cells were collected from non-PCOS and PCOS patients with and without IR to measure cortisol concentration and the amounts of 11β-HSD1 and -2, which were then correlated with IR status. The effects of cortisol on the expression of genes pertinent to IR were studied in cultured human granulosa cells. RESULTS Cortisol concentration in the follicular fluid, 11β-HSD1 but not 11β-HSD2 mRNA in the granulosa cells were significantly elevated in PCOS with IR. Increased reductase and decreased oxidase activities of 11β-HSD were observed in granulosa cells in PCOS with IR. In cultured granulosa cells, insulin-induced Akt phosphorylation was significantly attenuated by cortisol. Cortisol not only increased phosphatase and tensin homolog deleted on chromosome 10, an inhibitor of Akt phosphorylation, but also 11β-HSD1 in the cells. CONCLUSIONS Increased 11β-HSD1 expression and its reductase activity in granulosa cells are the major causes of increased cortisol concentration in the follicular fluid of PCOS with IR. The consequent excessive cortisol might contribute to IR of the granulosa cells in PCOS patients by attenuating Akt phosphorylation via induction of phosphatase and tensin homolog deleted on chromosome 10 expression, which might be further exacerbated by the induction of 11β-HSD1.
Collapse
Affiliation(s)
- Qinling Zhu
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, and Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, People's Republic of China
| | - Rujuan Zuo
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, and Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, People's Republic of China
| | - Yaqiong He
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, and Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, People's Republic of China
| | - Yuan Wang
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, and Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, People's Republic of China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, and Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, People's Republic of China
| | - Yun Sun
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, and Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, People's Republic of China
| | - Kang Sun
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, and Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, People's Republic of China
| |
Collapse
|
21
|
Weitnauer M, Mijošek V, Dalpke AH. Control of local immunity by airway epithelial cells. Mucosal Immunol 2016; 9:287-98. [PMID: 26627458 DOI: 10.1038/mi.2015.126] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/25/2015] [Indexed: 02/04/2023]
Abstract
The lung is ventilated by thousand liters of air per day. Inevitably, the respiratory system comes into contact with airborne microbial compounds, most of them harmless contaminants. Airway epithelial cells are known to have innate sensor functions, thus being able to detect microbial danger. To avoid chronic inflammation, the pulmonary system has developed specific means to control local immune responses. Even though airway epithelial cells can act as proinflammatory promoters, we propose that under homeostatic conditions airway epithelial cells are important modulators of immune responses in the lung. In this review, we discuss epithelial cell regulatory functions that control reactivity of professional immune cells within the microenvironment of the airways and how these mechanisms are altered in pulmonary diseases. Regulation by epithelial cells can be divided into two mechanisms: (1) mediators regulate epithelial cells' innate sensitivity in cis and (2) factors are produced that limit reactivity of immune cells in trans.
Collapse
Affiliation(s)
- M Weitnauer
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - V Mijošek
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - A H Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
22
|
Li X, Mao B, Dong Y, Li Y, Zhan M, Bai Y, Lian Q, Ge RS, Ye L. Effects of Ziram on Rat and Human 11β-Hydroxysteroid Dehydrogenase Isoforms. Chem Res Toxicol 2016; 29:398-405. [PMID: 26859423 DOI: 10.1021/acs.chemrestox.5b00527] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoheng Li
- Center of Scientific Research, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Baiping Mao
- Department of Anesthesiology, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yaoyao Dong
- Center of Scientific Research, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuan Li
- Department of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Meizheng Zhan
- Department of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yanfang Bai
- Center of Scientific Research, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Leping Ye
- Department of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
23
|
Cornelius RJ, Wang B, Wang-France J, Sansom SC. Maintaining K + balance on the low-Na +, high-K + diet. Am J Physiol Renal Physiol 2016; 310:F581-F595. [PMID: 26739887 DOI: 10.1152/ajprenal.00330.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/29/2015] [Indexed: 02/07/2023] Open
Abstract
A low-Na+, high-K+ diet (LNaHK) is considered a healthier alternative to the "Western" high-Na+ diet. Because the mechanism for K+ secretion involves Na+ reabsorptive exchange for secreted K+ in the distal nephron, it is not understood how K+ is eliminated with such low Na+ intake. Animals on a LNaHK diet produce an alkaline load, high urinary flows, and markedly elevated plasma ANG II and aldosterone levels to maintain their K+ balance. Recent studies have revealed a potential mechanism involving the actions of alkalosis, urinary flow, elevated ANG II, and aldosterone on two types of K+ channels, renal outer medullary K+ and large-conductance K+ channels, located in principal and intercalated cells. Here, we review these recent advances.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Bangchen Wang
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jun Wang-France
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Steven C Sansom
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
24
|
Morris DJ. Why do humans have two glucocorticoids: A question of intestinal fortitude. Steroids 2015; 102:32-8. [PMID: 26144050 DOI: 10.1016/j.steroids.2015.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 11/17/2022]
Abstract
The main purpose of this review article is threefold (a) to try to address the question "why are two adrenal glucocorticoids, cortisol and corticosterone, secreted by humans and other mammalian species?", (b) to outline a hypothesis that under certain physiological conditions, corticosterone has additional biochemical functions over and above those of cortisol, and (c) to emphasize the role of gastrointestinal bacteria in chemically transforming corticosterone into metabolites and that these re-cycled metabolites can be reabsorbed from the enterohepatic circuit. Cortisol and its metabolites are not secreted into the bile and thus are excluded from the enterohepatic circuit. Corticosterone was the first steroid hormone isolated from adrenal gland extracts. Many believe that corticosterone functions identically to cortisol. Yet, corticosterone causes significant sodium retention and potassium secretion in Addisonian patients, unlike cortisol. In humans, corticosterone and its metabolite, 3α,5α-TH-corticosterone, are excreted via the bile in humans where they are transformed in the intestine by anaerobic bacteria into 21-dehydroxylated products: 11β-OH-progesterone or 11β-OH-(allo)-5α-preganolones. These metabolites inhibit 11β-HSD2 and 11β-HSD1 dehydrogenase, being many-fold more potent than 3α,5α-TH-cortisol. Corticosterone has significantly lower Km's for both 11β-HSD2 and 11β-HSD1 enzymatic dehydrogenase activity, compared to cortisol. Patients diagnosed with 17α-hydroxylase deficiency have elevated blood pressure and high levels of circulating corticosterone, 3α,5α-TH-corticosterone, and their 21-dehydroxlated corticosterone derivatives. In humans, these 5α-corticosterone metabolites are likely to influence blood pressure regulation and Na(+) retention by inhibiting the rate of deactivation of cortisol by 11β-HSD isoforms.
Collapse
Affiliation(s)
- David J Morris
- Department of Laboratory Medicine and Pathology, The Miriam Hospital, Providence, RI, United States; Warren Alpert Medical School of Brown University, Providence, RI, United States.
| |
Collapse
|
25
|
Odermatt A, Klusonova P. 11β-Hydroxysteroid dehydrogenase 1: Regeneration of active glucocorticoids is only part of the story. J Steroid Biochem Mol Biol 2015; 151:85-92. [PMID: 25151952 DOI: 10.1016/j.jsbmb.2014.08.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 11/20/2022]
Abstract
11β-Hydroxysteroid dehydrogenase 1 (11β-HSD1) is an endoplasmic reticulum membrane enzyme with its catalytic site facing the luminal space. It functions primarily as a reductase, driven by the supply of its cosubstrate NADPH by hexose-6-phosphate dehydrogenase (H6PDH). Extensive research has been performed on the role of 11β-HSD1 in the regeneration of active glucocorticoids and its role in inflammation and metabolic disease. Besides its important role in the fine-tuning of glucocorticoid action, 11β-HSD1 is a multi-functional carbonyl reductase converting several 11- and 7-oxosterols into the respective 7-hydroxylated forms. Moreover, 11β-HSD1 has a role in phase I biotransformation reactions and catalyzes the carbonyl reduction of several non-steroidal xenobiotics. Recent observations from experiments using selective inhibitors and studies with transgenic mice indicated a role for 11β-HSD1 in oxysterol metabolism and in bile acid homeostasis, with evidence for glucocorticoid-independent effects on gene expression. This review focuses on the promiscuity of 11β-HSD1 to accept structurally distinct substrates and discusses recent progress mainly on non-glucocorticoid substrates. This article is part of a Special Issue entitled 'Enzyme Promiscuity and Diversity'.
Collapse
Affiliation(s)
- Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Petra Klusonova
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
26
|
Woods C, Tomlinson JW. The Dehydrogenase Hypothesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [DOI: 10.1007/978-1-4939-2895-8_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
An G, Liu W, Katz DA, Marek GJ, Awni W, Dutta S. Population pharmacokinetics of the 11β-hydroxysteroid dehydrogenase type 1 inhibitor ABT-384 in healthy volunteers following single and multiple dose regimens. Biopharm Drug Dispos 2014; 35:417-29. [DOI: 10.1002/bdd.1912] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Guohua An
- Department of Clinical Pharmacology and Pharmacometrics; R&D, AbbVie Inc.; North Waukegan Road North Chicago IL 60064, USA
| | - Wei Liu
- Department of Clinical Pharmacology and Pharmacometrics; R&D, AbbVie Inc.; North Waukegan Road North Chicago IL 60064, USA
| | - David A. Katz
- Neuroscience Clinical Development; R&D, AbbVie Inc.; North Waukegan Road North Chicago IL 60064, USA
| | - Gerard J. Marek
- Neuroscience Clinical Development; R&D, AbbVie Inc.; North Waukegan Road North Chicago IL 60064, USA
| | - Walid Awni
- Department of Clinical Pharmacology and Pharmacometrics; R&D, AbbVie Inc.; North Waukegan Road North Chicago IL 60064, USA
| | - Sandeep Dutta
- Department of Clinical Pharmacology and Pharmacometrics; R&D, AbbVie Inc.; North Waukegan Road North Chicago IL 60064, USA
| |
Collapse
|
28
|
Sharma M, Vikram NK, Misra A, Bhatt S, Tarique M, Parray HA, Pandey RM, Luthra K. Assessment of 11-β hydroxysteroid dehydrogenase (11-βHSD1) 4478T>G and tumor necrosis factor-α (TNF-α)-308G>A polymorphisms with obesity and insulin resistance in Asian Indians in North India. Mol Biol Rep 2014; 40:6261-70. [PMID: 24078163 DOI: 10.1007/s11033-013-2738-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
Abstract
11-β hydroxysteroid dehydrogenase (11-βHSD1), tumor necrosis factor-α (TNF-α) and their role in obesity, regional adiposity and insulin resistance has been sparsely evaluated. We determined the polymorphic status of 11-βHSD1 4478T>G and TNF-α-308G>A in Asian Indians in north India. In this cross-sectional study (n = 498; 258 males, 240 females), association of genotypes (PCR–RFLP) of 11-βHSD1 and TNF-α were analyzed with obesity [BMI ≥ 25 kg/m(2), percentage body fat (%BF by DEXA); subcutaneous and intra-abdominal fat area (L(2-3) level by single slice MRI) in a sub sample] and insulin resistance. 46 percent subjects had generalized obesity, 55 % abdominal obesity and 23.8 % were insulin resistant. Frequencies (%) of [T/T] and [T/G] genotypes of 11-βHSD1 were 89.57 and 10.43 respectively. Homozygosity for 11-βHSD1 4478G/G was absent with no association with parameters of obesity and insulin resistance. Frequencies (%) of TNF-α [G] and [A] alleles were 88 and 12 respectively. Higher frequency of variant -308[A/A] was observed in females versus males (p = 0.01). Females with at least one single A allele of TNF-α-308G>A had significantly high %BF and total skinfold, whereas higher values of waist hip ratio, total cholesterol, triglycerides and VLDL were observed in males. Subjects with even a single A allele in TNF-α genotype showed higher subscapular skinfold predisposing them to truncal subcutaneous adiposity (p = 0.02). Our findings of association of TNF-α-308G>A variant in females with obesity indices suggests a gender-specific role of this polymorphism in obesity. High truncal subcutaneous adiposity is associated with A allele of TNF-α-308G>A in this population.
Collapse
|
29
|
Stomby A, Andrew R, Walker BR, Olsson T. Tissue-specific dysregulation of cortisol regeneration by 11βHSD1 in obesity: has it promised too much? Diabetologia 2014; 57:1100-10. [PMID: 24710966 DOI: 10.1007/s00125-014-3228-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/11/2014] [Indexed: 01/24/2023]
Abstract
Cushing's syndrome, caused by increased production of cortisol, leads to metabolic dysfunction including visceral adiposity, hypertension, hyperlipidaemia and type 2 diabetes. The similarities with the metabolic syndrome are striking and major efforts have been made to find obesity-associated changes in the regulation of glucocorticoid action and synthesis, both at a systemic level and tissue level. Obesity is associated with tissue-specific alterations in glucocorticoid metabolism, with increased activity of the glucocorticoid-regenerating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) in subcutaneous adipose tissue and decreased conversion of cortisone to cortisol, interpreted as decreased 11βHSD1 activity, in the liver. In addition, genetic manipulation of 11βHSD1 activity in rodents can either induce (by overexpression of Hsd11b1, the gene encoding 11βHSD1) or prevent (by knocking out Hsd11b1) obesity and metabolic dysfunction. Taken together with earlier evidence that non-selective inhibitors of 11βHSD1 enhance insulin sensitivity, these results led to the hypothesis that inhibition of 11βHSD1 might be a promising target for treatment of the metabolic syndrome. Several selective 11βHSD1 inhibitors have now been developed and shown to improve metabolic dysfunction in patients with type 2 diabetes, but the small magnitude of the glucose-lowering effect has precluded their further commercial development.This review focuses on the role of 11βHSD1 as a tissue-specific regulator of cortisol exposure in obesity and type 2 diabetes in humans. We consider the potential of inhibition of 11βHSD1 as a therapeutic strategy that might address multiple complications in patients with type 2 diabetes, and provide our thoughts on future directions in this field.
Collapse
Affiliation(s)
- Andreas Stomby
- Department for Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden
| | | | | | | |
Collapse
|
30
|
Zhang B, Zhu DW, Hu XJ, Zhou M, Shang P, Lin SX. Human 3-alpha hydroxysteroid dehydrogenase type 3 (3α-HSD3): the V54L mutation restricting the steroid alternative binding and enhancing the 20α-HSD activity. J Steroid Biochem Mol Biol 2014; 141:135-43. [PMID: 24434280 DOI: 10.1016/j.jsbmb.2014.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/02/2014] [Accepted: 01/03/2014] [Indexed: 11/29/2022]
Abstract
Human 3-alpha hydroxysteroid dehydrogenase type 3 (3α-HSD3) has an essential role in the inactivation of 5α-dihydrotestosterone (DHT). Notably, human 3α-HSD3 shares 97.8% sequence identity with human 20-alpha hydroxysteroid dehydrogenase (20α-HSD) and there is only one amino acid difference (residue 54) that is located in their steroid binding pockets. However, 20α-HSD displays a distinctive ability in transforming progesterone to 20α-hydroxy-progesterone (20α-OHProg). In this study, to understand the role of residue 54 in the steroid binding and discrimination, the V54L mutation in human 3α-HSD3 has been created. We have solved two crystal structures of the 3α-HSD3·NADP(+)·Progesterone complex and the 3α-HSD3 V54L·NADP(+)·progesterone complex. Interestingly, progesterone adopts two different binding modes to form complexes within the wild type enzyme, with one binding mode similar to the orientation of a bile acid (ursodeoxycholate) in the reported ternary complex of human 3α-HSD3·NADP(+)·ursodeoxycholate and the other binding mode resembling the orientation of 20α-OHProg in the ternary complex of human 20α-HSD·NADP(+)·20α-OHProg. However, the V54L mutation directly restricts the steroid binding modes to a unique one, which resembles the orientation of 20α-OHProg within human 20α-HSD. Furthermore, the kinetic study has been carried out. The results show that the V54L mutation significantly decreases the 3α-HSD activity for the reduction of DHT, while this mutation enhances the 20α-HSD activity to convert progesterone.
Collapse
Affiliation(s)
- Bo Zhang
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire (CHU) de Quebec Research Center (CHUL) and Laval University, Québec City, Québec G1V4G2, Canada; Key Laboratory for Space Bioscience & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Dao-Wei Zhu
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire (CHU) de Quebec Research Center (CHUL) and Laval University, Québec City, Québec G1V4G2, Canada
| | - Xiao-Jian Hu
- School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Ming Zhou
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire (CHU) de Quebec Research Center (CHUL) and Laval University, Québec City, Québec G1V4G2, Canada
| | - Peng Shang
- Key Laboratory for Space Bioscience & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire (CHU) de Quebec Research Center (CHUL) and Laval University, Québec City, Québec G1V4G2, Canada; WHO Collaborating Center for Research in Human Reproductive Health, Shanghai 200031, PR China.
| |
Collapse
|
31
|
Akiyama N, Akiyama Y, Kato H, Kuroda T, Ono T, Imagawa K, Asakura K, Shinosaki T, Murayama T, Hanasaki K. Pharmacological evaluation of adipose dysfunction via 11β-hydroxysteroid dehydrogenase type 1 in the development of diabetes in diet-induced obese mice with cortisone pellet implantation. J Pharmacol Exp Ther 2014; 349:66-74. [PMID: 24511146 DOI: 10.1124/jpet.113.210716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Signals from intracellular glucocorticoids (GCs) via 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in adipose tissues have been reported to serve as amplifiers leading to deterioration of glucose metabolism associated with obesity. To elucidate adipose dysfunction via 11β-HSD1 activation in the development of obesity-related diabetes, we established novel diabetic mice by implanting a cortisone pellet (CP) in diet-induced obesity (DIO) mice. Cortisone pellet-implanted DIO mice (DIO/CP mice) showed hyperglycemia, insulin resistance, hyperlipidemia, and ectopic fat accumulation, whereas cortisone pellet implantation in lean mice did not induce hyperglycemia. In DIO/CP mice, indexes of lipolysis such as plasma glycerol and nonesterified fatty acids (NEFAs) increased before hyperglycemia appeared. Furthermore, the adipose mRNA level of 11β-HSD1 was up-regulated in DIO/CP mice compared with sham-operated DIO mice. RU486 (mifepristone, 11β-[p-(dimethylamino)phenyl]-17β-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one), a glucocorticoid receptor antagonist, decreased adipose mRNA levels of 11β-HSD1 as well as adipose triglyceride lipase. RU486 also improved plasma NEFA, glycerol, and glucose levels in DIO/CP mice. These results demonstrate that lipolysis in adipose tissues caused by GC activation via 11β-HSD1 serves as a trigger for diabetes with ectopic fat accumulation. Our findings also indicate the possibility of a vicious circle of GC signals via 11β-HSD1 up-regulation in adipose tissues, contributing to deterioration of glucose metabolism to result in diabetes. Our DIO/CP mouse could be a suitable model of type 2 diabetes to evaluate adipose dysfunction via 11β-HSD1.
Collapse
Affiliation(s)
- Nobuteru Akiyama
- Medicinal Research Laboratories, Shionogi & Co., Ltd., Osaka, Japan (N.A., Y.A., H.K., T.K., T.O., K.I., K.A., T.S., K.H.); and Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (N.A., T.M.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tiganescu A, Hupe M, Uchida Y, Mauro T, Elias PM, Holleran WM. Increased glucocorticoid activation during mouse skin wound healing. J Endocrinol 2014; 221:51-61. [PMID: 24464022 DOI: 10.1530/joe-13-0420] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glucocorticoid (GC) excess inhibits wound healing causing increased patient discomfort and infection risk. 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activates GCs (converting 11-dehydrocorticosterone to corticosterone in rodents) in many tissues including skin, where de novo steroidogenesis from cholesterol has also been reported. To examine the regulation of 11β-HSD1 and steroidogenic enzyme expression during wound healing, 5 mm wounds were generated in female SKH1 mice and compared at days 0, 2, 4, 8, 14, and 21 relative to unwounded skin. 11β-HSD1 expression (mRNA and protein) and enzyme activity were elevated at 2 and 4 days post-wounding, with 11β-HSD1 localizing to infiltrating inflammatory cells. 11β-HSD2 (GC-deactivating) mRNA expression and activity were undetectable. Although several steroidogenic enzymes displayed variable expression during healing, expression of the final enzyme required for the conversion of 11-deoxycorticosterone to corticosterone, 11β-hydroxylase (CYP11B1), was lacking in unwounded skin and post-wounding. Consequently, 11-deoxycorticosterone was the principal progesterone metabolite in mouse skin before and after wounding. Our findings demonstrate that 11β-HSD1 activates considerably more corticosterone than is generated de novo from progesterone in mouse skin and drives GC exposure during healing, demonstrating the basis for 11β-HSD1 inhibitors to accelerate wound repair.
Collapse
Affiliation(s)
- Ana Tiganescu
- Department of Dermatology, University of California San Francisco, 1700 Owens Street, San Francisco, California 94158, USA
| | | | | | | | | | | |
Collapse
|
33
|
Ye L, Guo J, Ge RS. Environmental pollutants and hydroxysteroid dehydrogenases. VITAMINS AND HORMONES 2014; 94:349-90. [PMID: 24388197 DOI: 10.1016/b978-0-12-800095-3.00013-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydroxysteroid dehydrogenases (HSD) are a group of steroidogenic enzymes that are involved in the steroid biosynthesis and metabolism. Four classes of HSDs, namely, 3β-, 11β-, 17β-, and 20α-HSDs, are discussed. 3β-HSDs catalyze the conversion of pregnenolone, 17α-hydroxypregnenolone, and dehydroepiandrosterone to progesterone, 17α-hydroxyprogesterone, and androstenedione, respectively. 11β-HSDs catalyze the interconversion between active cortisol and inactive cortisone. 17β-HSDs catalyze the interconversion between 17β-hydroxyl steroids and 17-ketoandrogens and estrogens. 20α-HSDs catalyze the conversion of progesterone into 20α-hydroxyprogesterone. Many environmental pollutants directly inhibit one or more enzymes of these HSDs, thus interfering with endogenous active steroid hormone levels. These chemicals include industrial materials (perfluoroalkyl compounds, phthalates, bisphenol A, and benzophenone), pesticides/biocides (methoxychlor, organotins, 1,2-dibromo-3-chloropropane, and prochloraz), and plant constituents (genistein, gossypol, and licorice). This chapter reviews these inhibitors targeting on HSDs.
Collapse
Affiliation(s)
- Leping Ye
- The 2nd Affiliated Hospital and Research Academy of Reproductive Biomedicine of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Jingjing Guo
- The 2nd Affiliated Hospital and Research Academy of Reproductive Biomedicine of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Ren-Shan Ge
- The 2nd Affiliated Hospital and Research Academy of Reproductive Biomedicine of Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
34
|
Whirledge S, Cidlowski JA. A role for glucocorticoids in stress-impaired reproduction: beyond the hypothalamus and pituitary. Endocrinology 2013; 154:4450-68. [PMID: 24064362 PMCID: PMC3836069 DOI: 10.1210/en.2013-1652] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In addition to the well-characterized role of the sex steroid receptors in regulating fertility and reproduction, reproductive events are also mediated by the hypothalamic-pituitary-adrenal axis in response to an individual's environment. Glucocorticoid secretion in response to stress contributes to the well-characterized suppression of the hypothalamic-pituitary-gonadal axis through central actions in the hypothalamus and pituitary. However, both animal and in vitro studies indicate that other components of the reproductive system are also regulated by glucocorticoids. Furthermore, in the absence of stress, it appears that homeostatic glucocorticoid signaling plays a significant role in reproduction and fertility in all tissues comprising the hypothalamic-pituitary-gonadal axis. Indeed, as central regulators of the immune response, glucocorticoids are uniquely poised to integrate an individual's infectious, inflammatory, stress, nutritional, and metabolic status through glucocorticoid receptor signaling in target tissues. Endocrine signaling between tissues regulating the immune and stress response and those determining reproductive status provides an evolutionary advantage, facilitating the trade-off between reproductive investment and offspring fitness. This review focuses on the actions of glucocorticoids in tissues important for fertility and reproduction, highlighting recent studies that show glucocorticoid signaling plays a significant role throughout the hypothalamic-pituitary-gonadal axis and characterizing these effects as permissive or inhibitory in terms of facilitating reproductive success.
Collapse
Affiliation(s)
- Shannon Whirledge
- NIEHS/NIH, MD F3-07, P.O. Box 12233, Research Triangle Park, North Carolina 27709.
| | | |
Collapse
|
35
|
Gottfried-Blackmore A, Jellinck PH, Vecchiarelli HA, Masheeb Z, Kaufmann M, McEwen BS, Bulloch K. 7α-hydroxylation of dehydroepiandrosterone does not interfere with the activation of glucocorticoids by 11β-hydroxysteroid dehydrogenase in E(t)C cerebellar neurons. J Steroid Biochem Mol Biol 2013; 138:290-7. [PMID: 23851218 DOI: 10.1016/j.jsbmb.2013.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 06/14/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022]
Abstract
The neuroprotective action of dehydroepiandrosterone (DHEA) in the absence of a known specific receptor has been attributed to its metabolism by different cell types in the brain to various steroids, with a preference to its 7-hydroxylated products. The E(t)C cerebellar granule cell line converts DHEA almost exclusively to 7α-hydroxy-DHEA (7α-OH-DHEA). It has been postulated that DHEA's 7-OH and 7-oxo metabolites can decrease glucocorticoid levels by an interactive mechanism involving 11β-hydroxysteroid dehydrogenase (11β-HSD). In order to study the relationship of 7-hydroxylation of DHEA and glucocorticoid metabolism in intact brain cells, we examined whether E(t)C cerebellar neurons, which are avid producers of 7α-OH-DHEA, could also metabolize glucocorticoids. We report that E(t)C neuronal cells exhibit 11β-HSD1 reductase activity, and are able to convert 11-dehydrocorticosterone into corticosterone, whereas they do not demonstrate 11β-HSD2 dehydrogenase activity. Consequently, E(t)C cells incubated with DHEA did not yield 7-oxo- or 7β-OH-DHEA. Our findings are supported by the reductive environment of E(t)C cells through expression of hexose-6-phosphate dehydrogenase (H6PDH), which fosters 11β-HSD1 reductase activity. To further explore the role of 7α-OH-DHEA in E(t)C neuronal cells, we examined the effect of preventing its formation using the CYP450 inhibitor ketoconazole. Treatment of the cells with this drug decreased the yield of 7α-OH-DHEA by about 75% without the formation of alternate DHEA metabolites, and had minimal effects on glucocorticoid conversion. Likewise, elevated levels of corticosterone, the product of 11β-HSD1, had no effect on the metabolic profile of DHEA. This study shows that in a single population of whole-cells, with a highly reductive environment, 7α-OH-DHEA is unable to block the reducing activity of 11β-HSD1, and that 7-hydroxylation of DHEA does not interfere with the activation of glucocorticoids. Our investigation on the metabolism of DHEA in E(t)C neuronal cells suggest that other alternate mechanisms must be at play to explain the in vivo anti-glucocorticoid properties of DHEA and its 7-OH-metabolites.
Collapse
Affiliation(s)
- Andres Gottfried-Blackmore
- Harold and Margaret Milliken Hatch, Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Vögeli I, Jung HH, Dick B, Erickson SK, Escher R, Funder JW, Frey FJ, Escher G. Evidence for a role of sterol 27-hydroxylase in glucocorticoid metabolism in vivo. J Endocrinol 2013; 219:119-29. [PMID: 24096962 DOI: 10.1530/joe-13-0141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The intracellular availability of glucocorticoids is regulated by the enzymes 11β-hydroxysteroid dehydrogenase 1 (HSD11B1) and 11β-hydroxysteroid dehydrogenase 2 (HSD11B2). The activity of HSD11B1 is measured in the urine based on the (tetrahydrocortisol+5α-tetrahydrocortisol)/tetrahydrocortisone ((THF+5α-THF)/THE) ratio in humans and the (tetrahydrocorticosterone+5α-tetrahydrocorticosterone)/tetrahydrodehydrocorticosterone ((THB+5α-THB)/THA) ratio in mice. The cortisol/cortisone (F/E) ratio in humans and the corticosterone/11-dehydrocorticosterone (B/A) ratio in mice are markers of the activity of HSD11B2. In vitro agonist treatment of liver X receptor (LXR) down-regulates the activity of HSD11B1. Sterol 27-hydroxylase (CYP27A1) catalyses the first step in the alternative pathway of bile acid synthesis by hydroxylating cholesterol to 27-hydroxycholesterol (27-OHC). Since 27-OHC is a natural ligand for LXR, we hypothesised that CYP27A1 deficiency may up-regulate the activity of HSD11B1. In a patient with cerebrotendinous xanthomatosis carrying a loss-of-function mutation in CYP27A1, the plasma concentrations of 27-OHC were dramatically reduced (3.8 vs 90-140 ng/ml in healthy controls) and the urinary ratios of (THF+5α-THF)/THE and F/E were increased, demonstrating enhanced HSD11B1 and diminished HSD11B2 activities. Similarly, in Cyp27a1 knockout (KO) mice, the plasma concentrations of 27-OHC were undetectable (<1 vs 25-120 ng/ml in Cyp27a1 WT mice). The urinary ratio of (THB+5α-THB)/THA was fourfold and that of B/A was twofold higher in KO mice than in their WT littermates. The (THB+5α-THB)/THA ratio was also significantly increased in the plasma, liver and kidney of KO mice. In the liver of these mice, the increase in the concentrations of active glucocorticoids was due to increased liver weight as a consequence of Cyp27a1 deficiency. In vitro, 27-OHC acts as an inhibitor of the activity of HSD11B1. Our studies suggest that the expression of CYP27A1 modulates the concentrations of active glucocorticoids in both humans and mice and in vitro.
Collapse
Affiliation(s)
- Isabelle Vögeli
- Department of Nephrology, Hypertension and Clinical Pharmacology, University Hospital Berne, CH-3010 Berne, Switzerland Department of Neurology, University Hospital Zurich, Zurich, Switzerland Department of Medicine, University of California, San Francisco, California, USA Department of Internal Medicine, Emmental Hospital, Burgdorf, Switzerland Prince Henry's Institute, Clayton 3168, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Chapman K, Holmes M, Seckl J. 11β-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol Rev 2013; 93:1139-206. [PMID: 23899562 DOI: 10.1152/physrev.00020.2012] [Citation(s) in RCA: 603] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoid action on target tissues is determined by the density of "nuclear" receptors and intracellular metabolism by the two isozymes of 11β-hydroxysteroid dehydrogenase (11β-HSD) which catalyze interconversion of active cortisol and corticosterone with inert cortisone and 11-dehydrocorticosterone. 11β-HSD type 1, a predominant reductase in most intact cells, catalyzes the regeneration of active glucocorticoids, thus amplifying cellular action. 11β-HSD1 is widely expressed in liver, adipose tissue, muscle, pancreatic islets, adult brain, inflammatory cells, and gonads. 11β-HSD1 is selectively elevated in adipose tissue in obesity where it contributes to metabolic complications. Similarly, 11β-HSD1 is elevated in the ageing brain where it exacerbates glucocorticoid-associated cognitive decline. Deficiency or selective inhibition of 11β-HSD1 improves multiple metabolic syndrome parameters in rodent models and human clinical trials and similarly improves cognitive function with ageing. The efficacy of inhibitors in human therapy remains unclear. 11β-HSD2 is a high-affinity dehydrogenase that inactivates glucocorticoids. In the distal nephron, 11β-HSD2 ensures that only aldosterone is an agonist at mineralocorticoid receptors (MR). 11β-HSD2 inhibition or genetic deficiency causes apparent mineralocorticoid excess and hypertension due to inappropriate glucocorticoid activation of renal MR. The placenta and fetus also highly express 11β-HSD2 which, by inactivating glucocorticoids, prevents premature maturation of fetal tissues and consequent developmental "programming." The role of 11β-HSD2 as a marker of programming is being explored. The 11β-HSDs thus illuminate the emerging biology of intracrine control, afford important insights into human pathogenesis, and offer new tissue-restricted therapeutic avenues.
Collapse
Affiliation(s)
- Karen Chapman
- Endocrinology Unit, Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | | |
Collapse
|
38
|
Glucocorticoid mediates the transcription of OAT-PG, a kidney-specific prostaglandin transporter. Pflugers Arch 2013; 466:925-35. [PMID: 24057348 DOI: 10.1007/s00424-013-1351-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/30/2013] [Accepted: 09/07/2013] [Indexed: 10/26/2022]
Abstract
OAT-PG is a kidney-specific prostaglandin transporter and exclusively expressed at the basolateral membrane of proximal tubules in rodent kidneys. We previously reported that OAT-PG was dominantly expressed in the male kidney similar to the other SLC22 family proteins as organic anion transporter (OAT) 1 and OAT3. Recently, Wegner et al. revealed that a transcription factor, B-cell CLL/lymphoma 6 (BCL6), is associated with the male-dominant expressions of OAT1 and OAT3 in the rat kidney. Here, we performed the luciferase assay to investigate whether OAT-PG is also transcriptionally regulated by BCL6. However, the promoter activity of OAT-PG was not directly affected by BCL6 overexpression nor the testosterone treatment, suggesting that different regulatory mechanisms underlie the male-dominant transcriptional regulation of OAT-PG compared to those of OAT1 and OAT3. We newly found that adrenalectomy (Adx) of male rat caused a significant reduction of OAT-PG expression without any significant changes in the OAT1 and OAT3 expressions, and it was recovered by the dexamethasone administration. Furthermore, the renocortical PGE2 concentration was markedly increased in Adx male rat, concomitant with the downregulation of OAT-PG, and it was reduced to the basal level by dexamethasone treatment. In the luciferase assay, dexamethasone stimulated OAT-PG promoter activity but not OAT1. The luciferase activity responsiveness to dexamethasone was significantly reduced by the deletion of glucocorticoid response elements in the OAT-PG promoter region. These results suggest that glucocorticoid plays an important role in the regulation of the renocortical PGE2 concentration by the transcriptional regulation of OAT-PG in the rat kidney.
Collapse
|
39
|
Gathercole LL, Lavery GG, Morgan SA, Cooper MS, Sinclair AJ, Tomlinson JW, Stewart PM. 11β-Hydroxysteroid dehydrogenase 1: translational and therapeutic aspects. Endocr Rev 2013; 34:525-55. [PMID: 23612224 DOI: 10.1210/er.2012-1050] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) interconverts the inactive glucocorticoid cortisone and its active form cortisol. It is widely expressed and, although bidirectional, in vivo it functions predominantly as an oxoreductase, generating active glucocorticoid. This allows glucocorticoid receptor activation to be regulated at a prereceptor level in a tissue-specific manner. In this review, we will discuss the enzymology and molecular biology of 11β-HSD1 and the molecular basis of cortisone reductase deficiencies. We will also address how altered 11β-HSD1 activity has been implicated in a number of disease states, and we will explore its role in the physiology and pathologies of different tissues. Finally, we will address the current status of selective 11β-HSD1 inhibitors that are in development and being tested in phase II trials for patients with the metabolic syndrome. Although the data are preliminary, therapeutic inhibition of 11β-HSD1 is also an exciting prospect for the treatment of a variety of other disorders such as osteoporosis, glaucoma, intracranial hypertension, and cognitive decline.
Collapse
Affiliation(s)
- Laura L Gathercole
- School of Clinical and Experimental Medicine, University of Birmingham, Queen Elizabeth Hospital, Edgbaston B15 2TH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
40
|
Miller WL. A brief history of adrenal research: steroidogenesis - the soul of the adrenal. Mol Cell Endocrinol 2013; 371:5-14. [PMID: 23123735 DOI: 10.1016/j.mce.2012.10.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/19/2012] [Accepted: 10/22/2012] [Indexed: 11/23/2022]
Abstract
The adrenal is a small gland that escaped anatomic notice until the 16th century, and whose essential role in physiology was not established until the mid 19th century. Early studies were confounded by failure to distinguish the effects of the cortex from those of the medulla, but advances in steroid chemistry permitted the isolation, characterization and synthesis of many steroids by the mid 20th century. Knowledge of steroid structures, radiolabeled steroid conversions, and the identification of accumulated urinary steroids in diseases of steroidogenesis permitted a generally correct description of the steroidogenic pathways, but one confounded by the failure to distinguish species-specific differences. The advent of cloning technologies and molecular genetics rapidly corrected and clarified the understanding of steroidogenic processes. Our laboratory in San Francisco was one of several contributing to this effort, focusing on human steroidogenic enzymes, the genetic disorders in their biosynthesis and the transcriptional and post-translational mechanisms regulating enzyme activity.
Collapse
Affiliation(s)
- Walter L Miller
- University of California, San Francisco, San Francisco, USA.
| |
Collapse
|
41
|
Cabrera-Sharp V, Mirczuk SM, Shervill E, Michael AE, Fowkes RC. Regulation of glucocorticoid metabolism in the boar testis and caput epididymidis by the gonadotrophin-cAMP signalling pathway. Cell Tissue Res 2013; 352:751-60. [PMID: 23568656 DOI: 10.1007/s00441-013-1613-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 03/11/2013] [Indexed: 11/30/2022]
Abstract
In target tissues, cortisol is metabolised by two 11β-hydroxysteroid dehydrogenase (11βHSD) isoenzymes, namely 11βHSD1 and 11βHSD2, both of which are co-expressed in the boar testis and reproductive tract. The present study has assessed whether cortisol-cortisone metabolism in boar testis and caput epididymidis can be regulated via the gonadotrophin-cAMP signalling pathway. 11βHSD activities were measured by using a radiometric conversion assay in static tissue culture. In both testis and caput epididymidis, the net reduction of cortisone but not the net oxidation of cortisol, was significantly decreased by luteinising hormone (by 53 ± 20% and 45 ± 9%, respectively, P < 0.05), forskolin (by 60 ± 7% and 57 ± 9%, respectively, P < 0.01) and 8-bromo-cAMP (by 54 ± 4% and 64 ± 1%, respectively, P < 0.01). This suppression of 11-ketosteroid reductase activity in the boar testis by forskolin could be attenuated by the protein kinase A (PKA) inhibitor, H89. Hence, within the boar testis and the caput epididymidis, the local actions of glucocorticoids are modulated by gonadotrophin-cAMP-PKA signalling via their selective effects on the reductase activity of 11βHSD.
Collapse
Affiliation(s)
- Victoria Cabrera-Sharp
- Endocrine Signalling Group, Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK.
| | | | | | | | | |
Collapse
|
42
|
Guo J, Deng H, Li H, Zhu Q, Zhao B, Chen B, Chu Y, Ge RS. Effects of methoxychlor and its metabolite 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane on 11β-hydroxysteroid dehydrogenase activities in vitro. Toxicol Lett 2013; 218:18-23. [DOI: 10.1016/j.toxlet.2013.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/10/2013] [Accepted: 01/10/2013] [Indexed: 01/12/2023]
|
43
|
Antenatal steroids and the IUGR fetus: are exposure and physiological effects on the lung and cardiovascular system the same as in normally grown fetuses? J Pregnancy 2012; 2012:839656. [PMID: 23227338 PMCID: PMC3512319 DOI: 10.1155/2012/839656] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 09/06/2012] [Indexed: 02/06/2023] Open
Abstract
Glucocorticoids are administered to pregnant women at risk of preterm labour to promote fetal lung surfactant maturation. Intrauterine growth restriction (IUGR) is associated with an increased risk of preterm labour. Hence, IUGR babies may be exposed to antenatal glucocorticoids. The ability of the placenta or blood brain barrier to remove glucocorticoids from the fetal compartment or the brain is compromised in the IUGR fetus, which may have implications for lung, brain, and heart development. There is conflicting evidence on the effect of exogenous glucocorticoids on surfactant protein expression in different animal models of IUGR. Furthermore, the IUGR fetus undergoes significant cardiovascular adaptations, including altered blood pressure regulation, which is in conflict with glucocorticoid-induced alterations in blood pressure and flow. Hence, antenatal glucocorticoid therapy in the IUGR fetus may compromise regulation of cardiovascular development. The role of cortisol in cardiomyocyte development is not clear with conflicting evidence in different species and models of IUGR. Further studies are required to study the effects of antenatal glucocorticoids on lung, brain, and heart development in the IUGR fetus. Of specific interest are the aetiology of IUGR and the resultant degree, duration, and severity of hypoxemia.
Collapse
|
44
|
Inhibition of human and rat 11β-hydroxysteroid dehydrogenases activities by bisphenol A. Toxicol Lett 2012; 215:126-30. [DOI: 10.1016/j.toxlet.2012.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/02/2012] [Accepted: 10/04/2012] [Indexed: 11/22/2022]
|
45
|
The effect of glycyrrhetinic acid on pharmacokinetics of cortisone and its metabolite cortisol in rats. J Biomed Biotechnol 2012; 2012:856324. [PMID: 23258958 PMCID: PMC3509542 DOI: 10.1155/2012/856324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 11/17/2022] Open
Abstract
The purpose of this paper is to study pharmacokinetics of cortisone (E) and its metabolite cortisol (F) in rats after administration of glycyrrhetinic acid (GA) and cortisone. Healthy male SD rats were randomized to be given 20 mg/kg E or E combined with 10 mg/kg GA. Blood samples were collected at 5, 10, 20, 40, 60, 90, 120, 150, 180, and 240 min after administration. The serum concentrations of E and F were determined by HLPC and pharmacokinetic parameters were calculated using DASver2.0 software. The parameters of AUC(0−t), AUC(0−∞), and Cmax for E in the group of E + GA were significantly higher than those in the group of E (P < 0.01); the half-time (t1/2β) was extended compared to E (P < 0.05) and CL/F was dropped obviously (P < 0.01). The rise in AUC(0−t), AUC(0−∞), and Cmax for cortisol in the group of E + GA was significantly compared to the group of E (P < 0.01). CL/F was lower than E (P < 0.01) and the half-time (t1/2β) was slightly extended. In this study, we find that GA restrains the metabolism of E and F and thus increases AUC, t1/2β, and Cmax of E and F, which may be related to its inhibition effect on 11β-hydroxysteroid dehydrogenase (11β-HSD).
Collapse
|
46
|
Abrahams L, Semjonous NM, Guest P, Zielinska A, Hughes B, Lavery GG, Stewart PM. Biomarkers of hypothalamic-pituitary-adrenal axis activity in mice lacking 11β-HSD1 and H6PDH. J Endocrinol 2012; 214:367-72. [PMID: 22718432 PMCID: PMC3427643 DOI: 10.1530/joe-12-0178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glucocorticoid concentrations are a balance between production under the negative feedback control and diurnal rhythm of the hypothalamic-pituitary-adrenal (HPA) axis and peripheral metabolism, for example by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which catalyses the reduction of inactive cortisone (11-dehydrocorticosterone (11-DHC) in mice) to cortisol (corticosterone in mice). Reductase activity is conferred upon 11β-HSD1 by hexose-6-phosphate dehydrogenase (H6PDH). 11β-HSD1 is implicated in the development of obesity, and selective 11β-HSD1 inhibitors are currently under development. We sought to address the concern regarding potential up-regulation of the HPA axis associated with inhibition of 11β-HSD1. We assessed biomarkers for allele combinations of 11β-HSD1 and H6PDH derived from double heterozygous mouse crosses. H6PDH knock out (KO) adrenals were 69% larger than WT while 11β-HSD1 KO and double KO (DKO) adrenals were ~30% larger than WT - indicative of increased HPA axis drive in KO animals. ACTH-stimulated circulating corticosterone concentrations were 2.2-fold higher in H6PDH KO animals and ~1.5-fold higher in 11β-HSD1 KO and DKO animals compared with WT, proportional to the observed adrenal hypertrophy. KO of H6PDH resulted in a substantial increase in urinary DHC metabolites in males (65%) and females (61%). KO of 11β-HSD1 alone or in combination with H6PDH led to significant increases (36 and 42% respectively) in urinary DHC metabolites in females only. Intermediate 11β-HSD1/H6PDH heterozygotes maintained a normal HPA axis. Urinary steroid metabolite profile by gas chromatography/mass spectrometry as a biomarker assay may be beneficial in assaying HPA axis status clinically in cases of congenital and acquired 11β-HSD1/H6PDH deficiency.
Collapse
|
47
|
Li G, Hernandez-Ono A, Crooke RM, Graham MJ, Ginsberg HN. Antisense reduction of 11β-hydroxysteroid dehydrogenase type 1 enhances energy expenditure and insulin sensitivity independent of food intake in C57BL/6J mice on a Western-type diet. Metabolism 2012; 61:823-35. [PMID: 22209663 PMCID: PMC3319522 DOI: 10.1016/j.metabol.2011.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/11/2011] [Accepted: 11/11/2011] [Indexed: 01/16/2023]
Abstract
We recently reported that inhibition of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) by antisense oligonucleotide (ASO) improved hepatic lipid metabolism independent of food intake. In that study, 11β-HSD1 ASO-treated mice lost weight compared with food-matched control ASO-treated mice, suggesting treatment-mediated increased energy expenditure. We have now examined the effects of 11β-HSD1 ASO treatment on adipose tissue metabolism, insulin sensitivity, and whole-body energy expenditure. We used an ASO to knock down 11β-HSD1 in C57BL/6J mice consuming a Western-type diet (WTD). The 11β-HSD1 ASO-treated mice consumed less food, so food-matched control ASO-treated mice were also evaluated. We characterized body composition, gene expression of individual adipose depots, and measures of energy metabolism. We also investigated glucose/insulin tolerance as well as acute insulin signaling in several tissues. Knockdown of 11β-HSD1 protected against WTD-induced obesity by reducing epididymal, mesenteric, and subcutaneous white adipose tissue while activating thermogenesis in brown adipose tissue. The latter was confirmed by demonstrating increased energy expenditure in 11β-HSD1 ASO-treated mice. The 11β-HSD1 ASO treatment also protected against WTD-induced glucose intolerance and insulin resistance; this protection was associated with smaller cells and fewer macrophages in epididymal white adipose tissue as well as enhanced in vivo insulin signaling. Our results indicate that ASO-mediated inhibition of 11β-HSD1 can protect against several WTD-induced metabolic abnormalities. These effects are, at least in part, mediated by increases in the oxidative capacity of brown adipose tissue.
Collapse
Affiliation(s)
- Guoping Li
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | - Rosanne M. Crooke
- Isis Pharmaceuticals, Inc., 1896 Rutherford Road, Carlsbad, CA 92008-7326, USA
| | - Mark J. Graham
- Isis Pharmaceuticals, Inc., 1896 Rutherford Road, Carlsbad, CA 92008-7326, USA
| | - Henry N. Ginsberg
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Corresponding Author: Henry N. Ginsberg, MD, Department of Medicine, PH 10-305, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY, 10032 , Phone: (212) 305-9562, Fax: (212) 305-3213
| |
Collapse
|
48
|
Veyrat-Durebex C, Deblon N, Caillon A, Andrew R, Altirriba J, Odermatt A, Rohner-Jeanrenaud F. Central glucocorticoid administration promotes weight gain and increased 11β-hydroxysteroid dehydrogenase type 1 expression in white adipose tissue. PLoS One 2012; 7:e34002. [PMID: 22479501 PMCID: PMC3316512 DOI: 10.1371/journal.pone.0034002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 02/24/2012] [Indexed: 01/03/2023] Open
Abstract
Glucocorticoids (GCs) are involved in multiple metabolic processes, including the regulation of insulin sensitivity and adipogenesis. Their action partly depends on their intracellular activation by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). We previously demonstrated that central GC administration promotes hyperphagia, body weight gain, hyperinsulinemia and marked insulin resistance at the level of skeletal muscles. Similar dysfunctions have been reported to occur upon specific overexpression of 11β-HSD1 in adipose tissue. The aim of the present study was therefore to determine whether the effects of central GC infusion may enhance local GC activation in white adipose tissue. Male Wistar and Sprague Dawley (SD) rats were intracerebroventricularly infused with GCs for 2 to 3 days. Body weight, food intake and metabolic parameters were measured, and expression of enzymes regulating 11β-HSD1, as well as that of genes regulated by GCs, were quantified. Central GC administration induced a significant increase in body weight gain and in 11β-HSD1 and resistin expression in adipose tissue. A decrease 11β-HSD1 expression was noticed in the liver of SD rats, as a partial compensatory mechanism. Such effects of GCs are centrally elicited. This model of icv dexamethasone infusion thus appears to be a valuable acute model, that helps delineating the initial metabolic defects occurring in obesity. An impaired downregulation of intracellular GC activation in adipose tissue may be important for the development of insulin resistance.
Collapse
Affiliation(s)
- Christelle Veyrat-Durebex
- Laboratory of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
49
|
Odermatt A, Kratschmar DV. Tissue-specific modulation of mineralocorticoid receptor function by 11β-hydroxysteroid dehydrogenases: an overview. Mol Cell Endocrinol 2012; 350:168-86. [PMID: 21820034 DOI: 10.1016/j.mce.2011.07.020] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 07/03/2011] [Accepted: 07/09/2011] [Indexed: 01/23/2023]
Abstract
In the last decade significant progress has been made in the understanding of mineralocorticoid receptor (MR) function and its implications for physiology and disease. The knowledge on the essential role of MR in the regulation of electrolyte concentrations and blood pressure has been significantly extended, and the relevance of excessive MR activation in promoting inflammation, fibrosis and heart disease as well as its role in modulating neuronal cell viability and brain function is now widely recognized. Despite considerable progress, the mechanisms of MR function in various cell-types are still poorly understood. Key modulators of MR function include the glucocorticoid receptor (GR), which may affect MR function by formation of heterodimers and by differential genomic and non-genomic responses on gene expression, and 11β-hydroxysteroid dehydrogenases (11β-HSDs), which determine the availability of intracellular concentrations of active glucocorticoids. In this review we attempted to provide an overview of the knowledge on MR expression with regard to the presence or absence of GR, 11β-HSD2 and 11β-HSD1/hexose-6-phosphate dehydrogenase (H6PDH) in various tissues and cell types. The consequences of cell-specific differences in the coexpression of MR with these proteins need to be further investigated in order to understand the role of this receptor in a given tissue as well as its systemic impact.
Collapse
Affiliation(s)
- Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel, Switzerland.
| | | |
Collapse
|
50
|
Zhou HY, Hu GX, Lian QQ, Morris D, Ge RS. The metabolism of steroids, toxins and drugs by 11β-hydroxysteroid dehydrogenase 1. Toxicology 2012; 292:1-12. [DOI: 10.1016/j.tox.2011.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 11/25/2022]
|