1
|
Uzun HD, Malysenko E, Justesen BH, Pomorski TG. Functional reconstitution of plant plasma membrane H +-ATPase into giant unilamellar vesicles. Sci Rep 2025; 15:8541. [PMID: 40074791 PMCID: PMC11903852 DOI: 10.1038/s41598-025-92663-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Membrane transporters are essential for numerous biological processes by controlling the movement of ions and molecules across cell membranes. However, dissecting their molecular dynamics in complex cellular environments presents significant challenges. Reconstitution of membrane transporters in model systems offers a powerful solution. In this study, we focused on the reconstitution conditions suitable for the P3 ATPase Arabidopsis thaliana H+-ATPase isoform 2 and compatible with various giant unilamellar vesicle generation techniques. Among the methods evaluated for GUV formation, including electroformation, gel-assisted formation, and charge-mediated fusion, only the gel-assisted approach successfully generated AHA2-containing giant unilamellar vesicles while preserving the pump activity. Our findings underscore the importance of carefully managing the reconstitution conditions, including the presence of ions, and selecting the appropriate lipid composition to enhance the stability and activity of AHA2 in proteoliposomes. Addressing these factors is essential for the successful formation and functional analysis of AHA2 and other P-type ATPases in experimental settings.
Collapse
Affiliation(s)
- Huriye D Uzun
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ekaterina Malysenko
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Bo H Justesen
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
2
|
Havshøi NW, Nielsen J, Fuglsang AT. The mechanism behind tenuazonic acid-mediated inhibition of plant plasma membrane H +-ATPase and plant growth. J Biol Chem 2024; 300:107167. [PMID: 38490436 PMCID: PMC11002603 DOI: 10.1016/j.jbc.2024.107167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
The increasing prevalence of herbicide-resistant weeds has led to a search for new herbicides that target plant growth processes differing from those targeted by current herbicides. In recent years, some studies have explored the use of natural compounds from microorganisms as potential new herbicides. We previously demonstrated that tenuazonic acid (TeA) from the phytopathogenic fungus Stemphylium loti inhibits the plant plasma membrane (PM) H+-ATPase, representing a new target for herbicides. In this study, we further investigated the mechanism by which TeA inhibits PM H+-ATPase and the effect of the toxin on plant growth using Arabidopsis thaliana. We also studied the biochemical effects of TeA on the PM H+-ATPases from spinach (Spinacia oleracea) and A. thaliana (AHA2) by examining PM H+-ATPase activity under different conditions and in different mutants. Treatment with 200 μM TeA-induced cell necrosis in larger plants and treatment with 10 μM TeA almost completely inhibited cell elongation and root growth in seedlings. We show that the isoleucine backbone of TeA is essential for inhibiting the ATPase activity of the PM H+-ATPase. Additionally, this inhibition depends on the C-terminal domain of AHA2, and TeA binding to PM H+-ATPase requires the Regulatory Region I of the C-terminal domain in AHA2. TeA likely has a higher binding affinity toward PM H+-ATPase than the phytotoxin fusicoccin. Finally, our findings show that TeA retains the H+-ATPase in an inhibited state, suggesting that it could act as a lead compound for creating new herbicides targeting the PM H+-ATPase.
Collapse
Affiliation(s)
- Nanna Weise Havshøi
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - John Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Anja Thoe Fuglsang
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
3
|
Popova LG, Khramov DE, Nedelyaeva OI, Volkov VS. Yeast Heterologous Expression Systems for the Study of Plant Membrane Proteins. Int J Mol Sci 2023; 24:10768. [PMID: 37445944 DOI: 10.3390/ijms241310768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Researchers are often interested in proteins that are present in cells in small ratios compared to the total amount of proteins. These proteins include transcription factors, hormones and specific membrane proteins. However, sufficient amounts of well-purified protein preparations are required for functional and structural studies of these proteins, including the creation of artificial proteoliposomes and the growth of protein 2D and 3D crystals. This aim can be achieved by the expression of the target protein in a heterologous system. This review describes the applications of yeast heterologous expression systems in studies of plant membrane proteins. An initial brief description introduces the widely used heterologous expression systems of the baker's yeast Saccharomyces cerevisiae and the methylotrophic yeast Pichia pastoris. S. cerevisiae is further considered a convenient model system for functional studies of heterologously expressed proteins, while P. pastoris has the advantage of using these yeast cells as factories for producing large quantities of proteins of interest. The application of both expression systems is described for functional and structural studies of membrane proteins from plants, namely, K+- and Na+-transporters, various ATPases and anion transporters, and other transport proteins.
Collapse
Affiliation(s)
- Larissa G Popova
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| | - Dmitrii E Khramov
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| | - Olga I Nedelyaeva
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| | - Vadim S Volkov
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| |
Collapse
|
4
|
Yang Y, Liu X, Wang X, Lv W, Liu X, Ma L, Fu H, Song S, Lei X. Screening of protonstatin-1 (PS-1) analogs for improved inhibitors of plant plasma membrane H +-ATPase activity. FRONTIERS IN PLANT SCIENCE 2022; 13:973471. [PMID: 36311099 PMCID: PMC9597486 DOI: 10.3389/fpls.2022.973471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
We previously identified protonstatin-1 (PS-1) as a selective inhibitor of plasma membrane H+-ATPase (PM H+-ATPase) activity and used it as a tool to validate the chemiosmotic model for polar auxin transport. Here, to obtain compounds with higher affinity than PS-1 for PM H+-ATPase, we synthesized 34 PS-1 analogs and examined their ability to inhibit PM H+-ATPase activity. The 34 analogs showed varying inhibitory effects on the activity of this enzyme. The strongest effect was observed for the small molecule PS-2, which was approximately five times stronger than PS-1. Compared to PS-1, PS-2 was also a stronger inhibitor of auxin uptake as well as acropetal and basipetal polar auxin transport in Arabidopsis thaliana seedlings. Because PS-2 is a more potent inhibitor of PM H+-ATPase than PS-1, we believe that this compound could be used as a tool to study the functions of this key plant enzyme.
Collapse
Affiliation(s)
- Yongqing Yang
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaohui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Wanjia Lv
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiao Liu
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liang Ma
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haiqi Fu
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shu Song
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
5
|
Yang Y, Liu X, Guo W, Liu W, Shao W, Zhao J, Li J, Dong Q, Ma L, He Q, Li Y, Han J, Lei X. Testing the polar auxin transport model with a selective plasma membrane H + -ATPase inhibitor. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1229-1245. [PMID: 35352470 DOI: 10.1111/jipb.13256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Auxin is unique among plant hormones in that its function requires polarized transport across plant cells. A chemiosmotic model was proposed to explain how polar auxin transport is derived by the H+ gradient across the plasma membrane (PM) established by PM H+ -adenosine triphosphatases (ATPases). However, a classical genetic approach by mutations in PM H+ -ATPase members did not result in the ablation of polar auxin distribution, possibly due to functional redundancy in this gene family. To confirm the crucial role of PM H+ -ATPases in the polar auxin transport model, we employed a chemical genetic approach. Through a chemical screen, we identified protonstatin-1 (PS-1), a selective small-molecule inhibitor of PM H+ -ATPase activity that inhibits auxin transport. Assays with transgenic plants and yeast strains showed that the activity of PM H+ -ATPases affects auxin uptake as well as acropetal and basipetal polar auxin transport. We propose that PS-1 can be used as a tool to interrogate the function of PM H+ -ATPases. Our results support the chemiosmotic model in which PM H+ -ATPase itself plays a fundamental role in polar auxin transport.
Collapse
Affiliation(s)
- Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaohui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Wei Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei Liu
- Department of Dermatology, Peking University First Hospital, Beijing, 100034, China
| | - Wei Shao
- Iomics Biosciences Inc., Beijing, 100102, China
| | - Jun Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Junhong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qing Dong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qun He
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yingzhang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jianyong Han
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
6
|
Development and quantitative analysis of a biosensor based on the Arabidopsis SWEET1 sugar transporter. Proc Natl Acad Sci U S A 2022; 119:2119183119. [PMID: 35046045 PMCID: PMC8794804 DOI: 10.1073/pnas.2119183119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 01/01/2023] Open
Abstract
Transporters are the gatekeepers of the cell. Transporters facilitate the exchange of ions and metabolites between cellular and subcellular compartments, thus controlling processes from bacterial chemotaxis to the release of neurotransmitters. In plants, transporters have key roles in the allocation of carbon to nonphotosynthetic organs. Biosensors derived from transporters have been generated to monitor the activity of these proteins within the complex environment of the cell. However, a quantitative framework that reconciles molecular and cellular-level events to help interpret the response of biosensors is still lacking. Here, we created a sugar transporter biosensor and formulated a mathematical model to explain its response. These types of models can help realize multiscale, dynamic simulations of metabolite allocation to guide crop improvement. SWEETs are transporters with homologs in Archeae, plants, some fungi, and animals. As the only transporters known to facilitate the cellular release of sugars in plants, SWEETs play critical roles in the allocation of sugars from photosynthetic leaves to storage tissues in seeds, fruits, and tubers. Here, we report the design and use of genetically encoded biosensors to measure the activity of SWEETs. We created a SweetTrac1 sensor by inserting a circularly permutated green fluorescent protein into the Arabidopsis SWEET1, resulting in a chimera that translates substrate binding during the transport cycle into detectable changes in fluorescence intensity. We demonstrate that a combination of cell sorting and bioinformatics can accelerate the design of biosensors and formulate a mass action kinetics model to correlate the fluorescence response of SweetTrac1 with the transport of glucose. Our analysis suggests that SWEETs are low-affinity, symmetric transporters that can rapidly equilibrate intra- and extracellular concentrations of sugars. This approach can be extended to SWEET homologs and other transporters.
Collapse
|
7
|
Cellular Models for Primary CoQ Deficiency Pathogenesis Study. Int J Mol Sci 2021; 22:ijms221910211. [PMID: 34638552 PMCID: PMC8508219 DOI: 10.3390/ijms221910211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
Primary coenzyme Q10 (CoQ) deficiency includes a heterogeneous group of mitochondrial diseases characterized by low mitochondrial levels of CoQ due to decreased endogenous biosynthesis rate. These diseases respond to CoQ treatment mainly at the early stages of the disease. The advances in the next generation sequencing (NGS) as whole-exome sequencing (WES) and whole-genome sequencing (WGS) have increased the discoveries of mutations in either gene already described to participate in CoQ biosynthesis or new genes also involved in this pathway. However, these technologies usually provide many mutations in genes whose pathogenic effect must be validated. To functionally validate the impact of gene variations in the disease’s onset and progression, different cell models are commonly used. We review here the use of yeast strains for functional complementation of human genes, dermal skin fibroblasts from patients as an excellent tool to demonstrate the biochemical and genetic mechanisms of these diseases and the development of human-induced pluripotent stem cells (hiPSCs) and iPSC-derived organoids for the study of the pathogenesis and treatment approaches.
Collapse
|
8
|
A conserved, buried cysteine near the P-site is accessible to cysteine modifications and increases ROS stability in the P-type plasma membrane H+-ATPase. Biochem J 2021; 478:619-632. [DOI: 10.1042/bcj20200559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/16/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Sulfur-containing amino acid residues function in antioxidative responses, which can be induced by the reactive oxygen species generated by excessive copper and hydrogen peroxide. In all Na+/K+, Ca2+, and H+ pumping P-type ATPases, a cysteine residue is present two residues upstream of the essential aspartate residue, which is obligatorily phosphorylated in each catalytic cycle. Despite its conservation, the function of this cysteine residue was hitherto unknown. In this study, we analyzed the function of the corresponding cysteine residue (Cys-327) in the autoinhibited plasma membrane H+-ATPase isoform 2 (AHA2) from Arabidopsis thaliana by mutagenesis and heterologous expression in a yeast host. Enzyme kinetics of alanine, serine, and leucine substitutions were identical with those of the wild-type pump but the sensitivity of the mutant pumps was increased towards copper and hydrogen peroxide. Peptide identification and sequencing by mass spectrometry demonstrated that Cys-327 was prone to oxidation. These data suggest that Cys-327 functions as a protective residue in the plasma membrane H+-ATPase, and possibly in other P-type ATPases as well.
Collapse
|
9
|
Frøsig MM, Costa SR, Liesche J, Østerberg JT, Hanisch S, Nintemann S, Sørensen H, Palmgren M, Pomorski TG, López-Marqués RL. Pseudohyphal growth in Saccharomyces cerevisiae involves protein kinase-regulated lipid flippases. J Cell Sci 2020; 133:jcs235994. [PMID: 32661085 DOI: 10.1242/jcs.235994] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Lipid flippases of the P4 ATPase family establish phospholipid asymmetry in eukaryotic cell membranes and are involved in many essential cellular processes. The yeast Saccharomyces cerevisiae contains five P4 ATPases, among which Dnf3p is poorly characterized. Here, we demonstrate that Dnf3p is a flippase that catalyzes translocation of major glycerophospholipids, including phosphatidylserine, towards the cytosolic membrane leaflet. Deletion of the genes encoding Dnf3p and the distantly related P4 ATPases Dnf1p and Dnf2p results in yeast mutants with aberrant formation of pseudohyphae, suggesting that the Dnf1p-Dnf3p proteins have partly redundant functions in the control of this specialized form of polarized growth. Furthermore, as previously demonstrated for Dnf1 and Dnf2p, the phospholipid flipping activity of Dnf3p is positively regulated by flippase kinase 1 (Fpk1p) and Fpk2p. Phylogenetic analyses demonstrate that Dnf3p belongs to a subfamily of P4 ATPases specific for fungi and are likely to represent a hallmark of fungal evolution.
Collapse
Affiliation(s)
- Merethe Mørch Frøsig
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Sara Rute Costa
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Johannes Liesche
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Jeppe Thulin Østerberg
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Susanne Hanisch
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Sebastian Nintemann
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Helle Sørensen
- Data Science Lab, Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Thomas Günther Pomorski
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Rosa L López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| |
Collapse
|
10
|
Hoffmann RD, Portes MT, Olsen LI, Damineli DSC, Hayashi M, Nunes CO, Pedersen JT, Lima PT, Campos C, Feijó JA, Palmgren M. Plasma membrane H +-ATPases sustain pollen tube growth and fertilization. Nat Commun 2020; 11:2395. [PMID: 32409656 PMCID: PMC7224221 DOI: 10.1038/s41467-020-16253-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/23/2020] [Indexed: 01/18/2023] Open
Abstract
Pollen tubes are highly polarized tip-growing cells that depend on cytosolic pH gradients for signaling and growth. Autoinhibited plasma membrane proton (H+) ATPases (AHAs) have been proposed to energize pollen tube growth and underlie cell polarity, however, mechanistic evidence for this is lacking. Here we report that the combined loss of AHA6, AHA8, and AHA9 in Arabidopsis thaliana delays pollen germination and causes pollen tube growth defects, leading to drastically reduced fertility. Pollen tubes of aha mutants had reduced extracellular proton (H+) and anion fluxes, reduced cytosolic pH, reduced tip-to-shank proton gradients, and defects in actin organization. Furthermore, mutant pollen tubes had less negative membrane potentials, substantiating a mechanistic role for AHAs in pollen tube growth through plasma membrane hyperpolarization. Our findings define AHAs as energy transducers that sustain the ionic circuit defining the spatial and temporal profiles of cytosolic pH, thereby controlling downstream pH-dependent mechanisms essential for pollen tube elongation, and thus plant fertility.
Collapse
Affiliation(s)
- Robert D Hoffmann
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Maria Teresa Portes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Lene Irene Olsen
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Daniel Santa Cruz Damineli
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 01246-903, Brazil
| | - Maki Hayashi
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Custódio O Nunes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Jesper T Pedersen
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Pedro T Lima
- Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal
| | - Cláudia Campos
- Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
- Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal.
| | - Michael Palmgren
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
11
|
Bjørk PK, Rasmussen SA, Gjetting SK, Havshøi NW, Petersen TI, Ipsen JØ, Larsen TO, Fuglsang AT. Tenuazonic acid from Stemphylium loti inhibits the plant plasma membrane H + -ATPase by a mechanism involving the C-terminal regulatory domain. THE NEW PHYTOLOGIST 2020; 226:770-784. [PMID: 31880817 PMCID: PMC7187312 DOI: 10.1111/nph.16398] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/15/2019] [Indexed: 05/25/2023]
Abstract
Pathogenic fungi often target the plant plasma membrane (PM) H+ -ATPase during infection. To identify pathogenic compounds targeting plant H+ -ATPases, we screened extracts from 10 Stemphylium species for their effect on H+ -ATPase activity. We identified Stemphylium loti extracts as potential H+ -ATPase inhibitors, and through chemical separation and analysis, tenuazonic acid (TeA) as a potent H+ -ATPase inhibitor. By assaying ATP hydrolysis and H+ pumping, we confirmed TeA as a H+ -ATPase inhibitor both in vitro and in vivo. To visualize in planta inhibition of the H+ -ATPase, we treated pH-sensing Arabidopsis thaliana seedlings with TeA and quantified apoplastic alkalization. TeA affected both ATPase hydrolysis and H+ pumping, supporting a direct effect on the H+ -ATPase. We demonstrated apoplastic alkalization of A. thaliana seedlings after short-term TeA treatment, indicating that TeA effectively inhibits plant PM H+ -ATPase in planta. TeA-induced inhibition was highly dependent on the regulatory C-terminal domain of the plant H+ -ATPase. Stemphylium loti is a phytopathogenic fungus. Inhibiting the plant PM H+ -ATPase results in membrane potential depolarization and eventually necrosis. The corresponding fungal H+ -ATPase, PMA1, is less affected by TeA when comparing native preparations. Fungi are thus able to target an essential plant enzyme without causing self-toxicity.
Collapse
Affiliation(s)
- Peter K. Bjørk
- Department of Plant and Environmental SciencesFaculty of ScienceUniversity of CopenhagenThorvaldsensvej 401870Frederiksberg CDenmark
| | - Silas A. Rasmussen
- Department of Biotechnology and BiomedicineTechnical University of Denmark Søltofts PladsB. 2212800Kongens LyngbyDenmark
| | - Sisse K. Gjetting
- Department of Plant and Environmental SciencesFaculty of ScienceUniversity of CopenhagenThorvaldsensvej 401870Frederiksberg CDenmark
| | - Nanna W. Havshøi
- Department of Plant and Environmental SciencesFaculty of ScienceUniversity of CopenhagenThorvaldsensvej 401870Frederiksberg CDenmark
| | - Thomas Isbrandt Petersen
- Department of Biotechnology and BiomedicineTechnical University of Denmark Søltofts PladsB. 2212800Kongens LyngbyDenmark
| | - Johan Ø. Ipsen
- Department of Plant and Environmental SciencesFaculty of ScienceUniversity of CopenhagenThorvaldsensvej 401870Frederiksberg CDenmark
| | - Thomas O. Larsen
- Department of Biotechnology and BiomedicineTechnical University of Denmark Søltofts PladsB. 2212800Kongens LyngbyDenmark
| | - Anja T. Fuglsang
- Department of Plant and Environmental SciencesFaculty of ScienceUniversity of CopenhagenThorvaldsensvej 401870Frederiksberg CDenmark
| |
Collapse
|
12
|
Hoffmann RD, Olsen LI, Ezike CV, Pedersen JT, Manstretta R, López-Marqués RL, Palmgren M. Roles of plasma membrane proton ATPases AHA2 and AHA7 in normal growth of roots and root hairs in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2019; 166:848-861. [PMID: 30238999 PMCID: PMC7379730 DOI: 10.1111/ppl.12842] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 05/18/2023]
Abstract
Plasma membrane H+ -ATPase pumps build up the electrochemical H+ gradients that energize most other transport processes into and out of plant cells through channel proteins and secondary active carriers. In Arabidopsis thaliana, the AUTOINHIBITED PLASMA MEMBRANE H+ -ATPases AHA1, AHA2 and AHA7 are predominant in root epidermal cells. In contrast to other H+ -ATPases, we find that AHA7 is autoinhibited by a sequence present in the extracellular loop between transmembrane segments 7 and 8. Autoinhibition of pump activity was regulated by extracellular pH, suggesting negative feedback regulation of AHA7 during establishment of an H+ gradient. Due to genetic redundancy, it has proven difficult to test the role of AHA2 and AHA7, and mutant phenotypes have previously only been observed under nutrient stress conditions. Here, we investigated root and root hair growth under normal conditions in single and double mutants of AHA2 and AHA7. We find that AHA2 drives root cell expansion during growth but that, unexpectedly, restriction of root hair elongation is dependent on AHA2 and AHA7, with each having different roles in this process.
Collapse
Affiliation(s)
- Robert D. Hoffmann
- Department of Plant and Environmental SciencesUniversity of CopenhagenDK‐1871FrederiksbergDenmark
| | - Lene I. Olsen
- Department of Plant and Environmental SciencesUniversity of CopenhagenDK‐1871FrederiksbergDenmark
| | - Chukwuebuka V. Ezike
- Department of Plant and Environmental SciencesUniversity of CopenhagenDK‐1871FrederiksbergDenmark
| | - Jesper T. Pedersen
- Department of Plant and Environmental SciencesUniversity of CopenhagenDK‐1871FrederiksbergDenmark
| | - Raffaele Manstretta
- Department of Plant and Environmental SciencesUniversity of CopenhagenDK‐1871FrederiksbergDenmark
| | - Rosa L. López-Marqués
- Department of Plant and Environmental SciencesUniversity of CopenhagenDK‐1871FrederiksbergDenmark
| | - Michael Palmgren
- Department of Plant and Environmental SciencesUniversity of CopenhagenDK‐1871FrederiksbergDenmark
| |
Collapse
|
13
|
Serrano-Bueno G, Madroñal JM, Manzano-López J, Muñiz M, Pérez-Castiñeira JR, Hernández A, Serrano A. Nuclear proteasomal degradation of Saccharomyces cerevisiae inorganic pyrophosphatase Ipp1p, a nucleocytoplasmic protein whose stability depends on its subcellular localization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1019-1033. [DOI: 10.1016/j.bbamcr.2019.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 12/29/2022]
|
14
|
Palmgren M, Morsomme P. The plasma membrane H + -ATPase, a simple polypeptide with a long history. Yeast 2019; 36:201-210. [PMID: 30447028 PMCID: PMC6590192 DOI: 10.1002/yea.3365] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 11/11/2022] Open
Abstract
The plasma membrane H+ -ATPase of fungi and plants is a single polypeptide of fewer than 1,000 residues that extrudes protons from the cell against a large electric and concentration gradient. The minimalist structure of this nanomachine is in stark contrast to that of the large multi-subunit FO F1 ATPase of mitochondria, which is also a proton pump, but under physiological conditions runs in the reverse direction to act as an ATP synthase. The plasma membrane H+ -ATPase is a P-type ATPase, defined by having an obligatory phosphorylated reaction cycle intermediate, like cation pumps of animal membranes, and thus, this pump has a completely different mechanism to that of FO F1 ATPases, which operates by rotary catalysis. The work that led to these insights in plasma membrane H+ -ATPases of fungi and plants has a long history, which is briefly summarized in this review.
Collapse
Affiliation(s)
- Michael Palmgren
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Pierre Morsomme
- Louvain Institute of Biomolecular Science and Technology (LIBST)UCLouvainLouvain‐la‐NeuveBelgium
| |
Collapse
|
15
|
Zhang S, Habets M, Breuninger H, Dolan L, Offringa R, van Duijn B. Evolutionary and Functional Analysis of a Chara Plasma Membrane H +-ATPase. FRONTIERS IN PLANT SCIENCE 2019; 10:1707. [PMID: 32038681 PMCID: PMC6985207 DOI: 10.3389/fpls.2019.01707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/04/2019] [Indexed: 05/12/2023]
Abstract
H+-ATPases are the main transporters in plant and fungal plasma membranes (PMs), comparable to the Na+/K+ ATPases in animal cells. At the molecular level, most studies on the PM H+-ATPases have been focused on land plants and fungi (yeast). The research of PM H+-ATPases in green algae falls far behind due to the lack of genetic information. Here we studied a potential PM H+-ATPase (CHA1) from Chara australis, a species of green algae belonging to the division Charophyta, members of which are considered to be one of the closest ancestors of land plants. The gene encodes a 107 kDa protein with all 6 P-type ATPase-specific motifs and a long, diverse C-terminal domain. A new amino acid sequence motif R*****Q in transmembrane segment 5 was identified among the known PM H+-ATPases from Charophyta and Chlorophyta algae, which is different from the typical PM H+-ATPases in yeast or land plants. Complementation analysis in yeast showed that CHA1 could successfully reach the PM, and that proton pump activity was obtained when the last 77 up to 87 amino acids of the C-terminal domain were deleted. PM localization was confirmed in Arabidopsis protoplasts; however, deletion of more than 55 amino acids at the N-terminus or more than 98 amino acids at the C-terminus resulted in failure of CHA1 to reach the PM in yeast. These results suggest that an auto-inhibition domain is located in the C-terminal domain, and that CHA1 is likely to have a different regulation mechanism compared to the yeast and land plant PM H+-ATPases.
Collapse
Affiliation(s)
- Suyun Zhang
- Plant Biodynamics Laboratory, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Myckel Habets
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Holger Breuninger
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Bert van Duijn
- Plant Biodynamics Laboratory, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
- Research Department, Fytagoras BV, Leiden, Netherlands
- *Correspondence: Bert van Duijn,
| |
Collapse
|
16
|
Strauss J, Wilkinson C, Vidilaseris K, Harborne SPD, Goldman A. A Simple Strategy to Determine the Dependence of Membrane-Bound Pyrophosphatases on K + as a Cofactor. Methods Enzymol 2018; 607:131-156. [PMID: 30149856 DOI: 10.1016/bs.mie.2018.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Membrane-bound pyrophosphatases (mPPases) couple pyrophosphate hydrolysis to H+ and/or Na+ pumping across membranes and are found in all domains of life except for multicellular animals including humans. They are important for development and stress resistance in plants. Furthermore, mPPases play a role in virulence of human pathogens that cause severe diseases such as malaria and African sleeping sickness. Sequence analysis, functional studies, and recently solved crystal structures have contributed to the understanding of the mPPase catalytic cycle. However, several key mechanistic features remain unknown. During evolution, several subgroups of mPPases differing in their pumping specificity and cofactor dependency arose. mPPases are classified into one of five subgroups, usually by sequence analysis. However, classification based solely on sequence has been inaccurate in several instances due to our limited understanding of the molecular mechanism of mPPases. Thus, pumping specificity and cofactor dependency of mPPases require experimental confirmation. Here, we describe a simple method for the determination of K+ dependency in mPPases using a hydrolytic activity assay. By coupling these dependency studies with site-directed mutagenesis, we have begun to build a better understanding of the molecular mechanisms of mPPases. We optimized the assay for thermostable mPPases that are commonly used as model systems in our lab, but the method is equally applicable to mesophilic mPPases with minor modifications.
Collapse
Affiliation(s)
- Jannik Strauss
- Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom
| | - Craig Wilkinson
- Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom
| | - Keni Vidilaseris
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Steven P D Harborne
- Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom.
| | - Adrian Goldman
- Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom; Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
17
|
Harborne SPD, Strauss J, Turku A, Watson MA, Tuma R, Harris SA, Goldman A. Defining Dynamics of Membrane-Bound Pyrophosphatases by Experimental and Computational Single-Molecule FRET. Methods Enzymol 2018; 607:93-130. [PMID: 30149870 DOI: 10.1016/bs.mie.2018.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Membrane-bound pyrophosphatases couple the hydrolysis of inorganic pyrophosphate to the pumping of ions (sodium or protons) across a membrane in order to generate an electrochemical gradient. This class of membrane protein is widely conserved across plants, fungi, archaea, and bacteria, but absent in multicellular animals, making them a viable target for drug design against protozoan parasites such as Plasmodium falciparum. An excellent understanding of many of the catalytic states throughout the enzymatic cycle has already been afforded by crystallography. However, the dynamics and kinetics of the catalytic cycle between these static snapshots remain to be elucidated. Here, we employ single-molecule Förster resonance energy transfer (FRET) measurements to determine the dynamic range and frequency of conformations available to the enzyme in a lipid bilayer during the catalytic cycle. First, we explore issues related to the introduction of fluorescent dyes by cysteine mutagenesis; we discuss the importance of residue selection for dye attachment, and the balance between mutating areas of the protein that will provide useful dynamics while not altering highly conserved residues that could disrupt protein function. To complement and guide the experiments, we used all-atom molecular dynamics simulations and computational methods to estimate FRET efficiency distributions for dye pairs at different sites in different protein conformational states. We present preliminary single-molecule FRET data that points to insights about the binding modes of different membrane-bound pyrophosphatase substrates and inhibitors.
Collapse
Affiliation(s)
- Steven P D Harborne
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Jannik Strauss
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Ainoleena Turku
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Matthew A Watson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Sarah A Harris
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Adrian Goldman
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
18
|
Dao TT, Sehgal P, Tung TT, Møller JV, Nielsen J, Palmgren M, Christensen SB, Fuglsang AT. Demethoxycurcumin Is A Potent Inhibitor of P-Type ATPases from Diverse Kingdoms of Life. PLoS One 2016; 11:e0163260. [PMID: 27644036 PMCID: PMC5028038 DOI: 10.1371/journal.pone.0163260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/05/2016] [Indexed: 12/25/2022] Open
Abstract
P-type ATPases catalyze the active transport of cations and phospholipids across biological membranes. Members of this large family are involved in a range of fundamental cellular processes. To date, a substantial number of P-type ATPase inhibitors have been characterized, some of which are used as drugs. In this work a library of natural compounds was screened and we first identified curcuminoids as plasma membrane H+-ATPases inhibitors in plant and fungal cells. We also found that some of the commercial curcumins contain several curcuminoids. Three of these were purified and, among the curcuminoids, demethoxycurcumin was the most potent inhibitor of all tested P-type ATPases from fungal (Pma1p; H+-ATPase), plant (AHA2; H+-ATPase) and animal (SERCA; Ca2+-ATPase) cells. All three curcuminoids acted as non-competitive antagonist to ATP and hence may bind to a highly conserved allosteric site of these pumps. Future research on biological effects of commercial preparations of curcumin should consider the heterogeneity of the material.
Collapse
Affiliation(s)
- Trong Tuan Dao
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Pankaj Sehgal
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Truong Thanh Tung
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - John Nielsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Anja Thoe Fuglsang
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
19
|
Klein RD, Geary TG. Recombinant Microorganisms as Tools for High Throughput Screening for Nonantibiotic Compounds. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/108705719700200108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Microorganisms were among the first tools used for the discovery of biologically active compounds. Their utility reached a zenith during the era of antibiotic development in the 1950s and 1960s, then declined. Subsequently, a substantial role for microorganisms in the pharmaceutical industry developed with the realization that microbial fermentations were intriguing sources of nonantibiotic natural products. From recombinant DNA technology emerged another important role for microorganisms in pharmaceutical research: the expression of heterologous proteins for therapeutic products or for in vitro high throughput screens (HTSs). Recent developments in cloning, genetics, and expression systems have opened up new applications for recombinant microorganisms in screening for nonantibiotic compounds in HTSs. These screens employ microorganisms that depend upon the function of a heterologous protein for survival under defined nutritional conditions. Compounds that specifically target the heterologous protein can be identified by measuring viability of the microorganism under different nutrient selection. Advantages of this approach include a built-in selection for target selectivity, an easily measured end point that can be used for a multitude of different targets, and compatibility with automation required for HTSs. Mechanism-based HTSs using recombinant microorganisms can also address drug targets that are not readily approachable in other HTS formats, including certain enzymes; ion channels and transporters; and protein::protein, protein::DNA, and protein::RNA interactions.
Collapse
Affiliation(s)
- Ronald D. Klein
- Animal Health Discovery Research, Pharmacia & Upjohn Co., Kalamazoo, Michigan 49007
| | - Timothy G. Geary
- Animal Health Discovery Research, Pharmacia & Upjohn Co., Kalamazoo, Michigan 49007
| |
Collapse
|
20
|
Costa SR, Marek M, Axelsen KB, Theorin L, Pomorski TG, López-Marqués RL. Role of post-translational modifications at the β-subunit ectodomain in complex association with a promiscuous plant P4-ATPase. Biochem J 2016; 473:1605-15. [PMID: 27048590 PMCID: PMC4888458 DOI: 10.1042/bcj20160207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/14/2022]
Abstract
P-type ATPases of subfamily IV (P4-ATPases) constitute a major group of phospholipid flippases that form heteromeric complexes with members of the Cdc50 (cell division control 50) protein family. Some P4-ATPases interact specifically with only one β-subunit isoform, whereas others are promiscuous and can interact with several isoforms. In the present study, we used a site-directed mutagenesis approach to assess the role of post-translational modifications at the plant ALIS5 β-subunit ectodomain in the functionality of the promiscuous plant P4-ATPase ALA2. We identified two N-glycosylated residues, Asn(181) and Asn(231) Whereas mutation of Asn(231) seems to have a small effect on P4-ATPase complex formation, mutation of evolutionarily conserved Asn(181) disrupts interaction between the two subunits. Of the four cysteine residues located in the ALIS5 ectodomain, mutation of Cys(86) and Cys(107) compromises complex association, but the mutant β-subunits still promote complex trafficking and activity to some extent. In contrast, disruption of a conserved disulfide bond between Cys(158) and Cys(172) has no effect on the P4-ATPase complex. Our results demonstrate that post-translational modifications in the β-subunit have different functional roles in different organisms, which may be related to the promiscuity of the P4-ATPase.
Collapse
Affiliation(s)
- Sara R Costa
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease-PUMPKin, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| | - Magdalena Marek
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease-PUMPKin, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| | - Kristian B Axelsen
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease-PUMPKin, University of Copenhagen, DK-1871, Frederiksberg C, Denmark SIB Swiss Institute of Bioinformatics, CMU, CH-1211, Geneva, Switzerland
| | - Lisa Theorin
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease-PUMPKin, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| | - Thomas G Pomorski
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease-PUMPKin, University of Copenhagen, DK-1871, Frederiksberg C, Denmark Faculty of Chemistry and Biochemistry, Department of Molecular Biochemistry, Ruhr University Bochum, Universitätstrasse 150, D-44780 Bochum, Germany
| | - Rosa L López-Marqués
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease-PUMPKin, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
21
|
Safiarian MJ, Pertl-Obermeyer H, Lughofer P, Hude R, Bertl A, Obermeyer G. Lost in traffic? The K(+) channel of lily pollen, LilKT1, is detected at the endomembranes inside yeast cells, tobacco leaves, and lily pollen. FRONTIERS IN PLANT SCIENCE 2015; 6:47. [PMID: 25713578 PMCID: PMC4322604 DOI: 10.3389/fpls.2015.00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/16/2015] [Indexed: 05/26/2023]
Abstract
Fertilization in plants relies on fast growth of pollen tubes through the style tissue toward the ovules. This polarized growth depends on influx of ions and water to increase the tube's volume. K(+) inward rectifying channels were detected in many pollen species, with one identified in Arabidopsis. Here, an Arabidopsis AKT1-like channel (LilKT1) was identified from Lilium longiflorum pollen. Complementation of K(+) uptake deficient yeast mutants was only successful when the entire LilKT1 C-terminus was replaced by the AKT1 C-terminus. No signals were observed in the plasma membrane (PM) of pollen tubes after expression of fluorescence-tagged LilKT1 nor were any LilKT1-derived peptides detectable in the pollen PM by mass spectrometry analysis. In contrast, fluorescent LilKT1 partly co-localized with the lily PM H(+) ATPase LilHA2 in the PM of tobacco leaf cells, but exhibited a punctual fluorescence pattern and also sub-plasma membrane localization. Thus, incorporation of LilKT1 into the pollen PM seems tighter controlled than in other cells with still unknown trafficking signals in LilKT1's C-terminus, resulting in channel densities below detection limits. This highly controlled incorporation might have physiological reasons: an uncontrolled number of K(+) inward channels in the pollen PM will give an increased water influx due to the raising cytosolic K(+) concentration, and finally, causing the tube to burst.
Collapse
Affiliation(s)
- Minou J. Safiarian
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| | - Heidi Pertl-Obermeyer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
- Plant Systems Biology, University of HohenheimStuttgart, Germany
| | - Peter Lughofer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| | - Rene Hude
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| | - Adam Bertl
- Yeast Membrane Biology, Department of Biology, Darmstadt University of TechnologyDarmstadt, Germany
| | - Gerhard Obermeyer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| |
Collapse
|
22
|
Kongstad KT, Wubshet SG, Johannesen A, Kjellerup L, Winther AML, Jäger AK, Staerk D. High-resolution screening combined with HPLC-HRMS-SPE-NMR for identification of fungal plasma membrane H(+)-ATPase inhibitors from plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5595-5602. [PMID: 24830509 DOI: 10.1021/jf501605z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Crude extracts of 33 plant species were assessed for fungal plasma membrane (PM) H(+)-ATPase inhibition. This led to identification of 18 extracts showing more than 95% inhibition at a concentration of 7.5 mg/mL and/or a concentration-dependent activity profile. These extracts were selected for semi-high-resolution fungal PM H(+)-ATPase inhibition screening, and, on the basis of these results, Haplocoelum foliolosum (Hiern) Bullock and Sauvagesia erecta L. were selected for investigation by high-resolution fungal PM H(+)-ATPase inhibition screening. Structural analysis performed by high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy (HPLC-HRMS-SPE-NMR) led to identification of chebulagic acid (1) and tellimagrandin II (2) from H. foliolosum. Preparative-scale isolation of the two metabolites allowed determination of IC50 values for PM H(+)-ATPase, and growth inhibition of Saccharomyces cerevisiae and Candida albicans. Chebulagic acid and tellimagrandin II are both potent inhibitors of the PM H(+)-ATPase with inhibitory effect on the growth of S. cerevisiae.
Collapse
Affiliation(s)
- Kenneth T Kongstad
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
23
|
Lang V, Pertl-Obermeyer H, Safiarian MJ, Obermeyer G. Pump up the volume - a central role for the plasma membrane H(+) pump in pollen germination and tube growth. PROTOPLASMA 2014; 251:477-88. [PMID: 24097309 DOI: 10.1007/s00709-013-0555-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/19/2013] [Indexed: 05/10/2023]
Abstract
The plasma membrane H(+) ATPase is a member of the P-ATPase family transporting H(+) from the cytosol to the extracellular space and thus energizing the plasma membrane for the uptake of ions and nutrients. As a housekeeping gene, this protein can be detected in almost every plant cell including the exclusive expression of specific isoforms in pollen grains and tubes where its activity is a prerequisite for successful germination and growth of pollen tubes. This review summarizes the current knowledge on pollen PM H(+) ATPases and hypothesizes a central role for pollen-specific isoforms of this protein in tube growth. External as well as cytosolic signals from signal transduction and metabolic pathways are integrated by the PM H(+) ATPase and directly translated to tube growth rates, allocating the PM H(+) ATPase to an essential node in the signalling network of pollen tubes in their race to the ovule.
Collapse
Affiliation(s)
- Veronika Lang
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of Salzburg, Billrothstr. 11, 5020, Salzburg, Austria
| | | | | | | |
Collapse
|
24
|
Pallucca R, Visconti S, Camoni L, Cesareni G, Melino S, Panni S, Torreri P, Aducci P. Specificity of ε and non-ε isoforms of arabidopsis 14-3-3 proteins towards the H+-ATPase and other targets. PLoS One 2014; 9:e90764. [PMID: 24603559 PMCID: PMC3946203 DOI: 10.1371/journal.pone.0090764] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 02/04/2014] [Indexed: 11/17/2022] Open
Abstract
14-3-3 proteins are a family of ubiquitous dimeric proteins that modulate many cellular functions in all eukaryotes by interacting with target proteins. 14-3-3s exist as a number of isoforms that in Arabidopsis identifies two major groups named ε and non-ε. Although isoform specificity has been demonstrated in many systems, the molecular basis for the selection of specific sequence contexts has not been fully clarified. In this study we have investigated isoform specificity by measuring the ability of different Arabidopsis 14-3-3 isoforms to activate the H+-ATPase. We observed that GF14 isoforms of the non-ε group were more effective than ε group isoforms in the interaction with the H+-ATPase and in the stimulation of its activity. Kinetic and thermodynamic parameters of the binding of GF14ε and GF14ω isoforms, representative of ε and non-ε groups respectively, with the H+-ATPase, have been determined by Surface Plasmon Resonance analysis demonstrating that the higher affinity of GF14ω is mainly due to slower dissociation. The role of the C-terminal region and of a Gly residue located in the loop 8 and conserved in all non-ε isoforms has also been studied by deletion and site-specific mutagenesis. The C-terminal domains, despite their high divergence, play an auto-inhibitory role in both isoforms and they, in addition to a specific residue located in the loop 8, contribute to isoform specificity. To investigate the generality of these findings, we have used the SPOT-synthesis technology to array a number of phosphopeptides matching known or predicted 14-3-3 binding sites present in a number of clients. The results of this approach confirmed isoform specificity in the recognition of several target peptides, suggesting that the isoform specificity may have an impact on the modulation of a variety of additional protein activities, as suggested by probing of a phosphopeptide array with members of the two 14-3-3 groups.
Collapse
Affiliation(s)
- Roberta Pallucca
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Sabina Visconti
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Lorenzo Camoni
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Giovanni Cesareni
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy; IRCSS, Research Institute "Fondazione Santa Lucia", Rome, Italy
| | - Sonia Melino
- Department of Sciences and Chemical Technologies, University of Rome "Tor Vergata", Rome, Italy
| | - Simona Panni
- Department DiBEST, University of Calabria, Rende, Italy
| | - Paola Torreri
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Patrizia Aducci
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
25
|
Baur M, Meyer A, Heumann HG, Lützelschwab M, Michalke W. Distribution of Plasma Membrane H+-ATPase and Polar Current Patterns in Leaves and Stems ofElodea canadensis*. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1996.tb00587.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Scharff-Poulsen P, Pedersen PA. Saccharomyces cerevisiae-based platform for rapid production and evaluation of eukaryotic nutrient transporters and transceptors for biochemical studies and crystallography. PLoS One 2013; 8:e76851. [PMID: 24124599 PMCID: PMC3790737 DOI: 10.1371/journal.pone.0076851] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/02/2013] [Indexed: 11/19/2022] Open
Abstract
To produce large quantities of high quality eukaryotic membrane proteins in Saccharomyces cerevisiae, we modified a high-copy vector to express membrane proteins C-terminally-fused to a Tobacco Etch Virus (TEV) protease detachable Green Fluorescent Protein (GFP)-8His tag, which facilitates localization, quantification, quality control, and purification. Using this expression system we examined the production of a human glucose transceptor and 11 nutrient transporters and transceptors from S. cerevisiae that have not previously been overexpressed in S. cerevisiae and purified. Whole-cell GFP-fluorescence showed that induction of GFP-fusion synthesis from a galactose-inducible promoter at 15°C resulted in stable accumulation of the fusions in the plasma membrane and in intracellular membranes. Expression levels of the 12 fusions estimated by GFP-fluorescence were in the range of 0.4 mg to 1.7 mg transporter pr. liter cell culture. A detergent screen showed that n-dodecyl-ß-D-maltopyranoside (DDM) is acceptable for solubilization of the membrane-integrated fusions. Extracts of solubilized membranes were prepared with this detergent and used for purifications by Ni-NTA affinity chromatography, which yielded partially purified full-length fusions. Most of the fusions were readily cleaved at a TEV protease site between the membrane protein and the GFP-8His tag. Using the yeast oligopeptide transporter Ptr2 as an example, we further demonstrate that almost pure transporters, free of the GFP-8His tag, can be achieved by TEV protease cleavage followed by reverse immobilized metal-affinity chromatography. The quality of the GFP-fusions was analysed by fluorescence size-exclusion chromatography. Membranes solubilized in DDM resulted in preparations containing aggregated fusions. However, 9 of the fusions solubilized in DDM in presence of cholesteryl hemisuccinate and specific substrates, yielded monodisperse preparations with only minor amounts of aggregated membrane proteins. In conclusion, we developed a new effective S. cerevisiae expression system that may be used for production of high-quality eukaryotic membrane proteins for functional and structural analysis.
Collapse
Affiliation(s)
- Peter Scharff-Poulsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
27
|
Campetelli AN, Monesterolo NE, Previtali G, Santander VS, Amaiden MR, Arce CA, Valdez-Taubas J, Casale CH. Activation of H+-ATPase by glucose in Saccharomyces cerevisiae involves a membrane serine protease. Biochim Biophys Acta Gen Subj 2013; 1830:3593-603. [DOI: 10.1016/j.bbagen.2013.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/05/2013] [Accepted: 03/07/2013] [Indexed: 12/26/2022]
|
28
|
Ekberg K, Wielandt AG, Buch-Pedersen MJ, Palmgren MG. A conserved asparagine in a P-type proton pump is required for efficient gating of protons. J Biol Chem 2013; 288:9610-9618. [PMID: 23420846 DOI: 10.1074/jbc.m112.417345] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The minimal proton pumping machinery of the Arabidopsis thaliana P-type plasma membrane H(+)-ATPase isoform 2 (AHA2) consists of an aspartate residue serving as key proton donor/acceptor (Asp-684) and an arginine residue controlling the pKa of the aspartate. However, other important aspects of the proton transport mechanism such as gating, and the ability to occlude protons, are still unclear. An asparagine residue (Asn-106) in transmembrane segment 2 of AHA2 is conserved in all P-type plasma membrane H(+)-ATPases. In the crystal structure of the plant plasma membrane H(+)-ATPase, this residue is located in the putative ligand entrance pathway, in close proximity to the central proton donor/acceptor Asp-684. Substitution of Asn-106 resulted in mutant enzymes with significantly reduced ability to transport protons against a membrane potential. Sensitivity toward orthovanadate was increased when Asn-106 was substituted with an aspartate residue, but decreased in mutants with alanine, lysine, glutamine, or threonine replacement of Asn-106. The apparent proton affinity was decreased for all mutants, most likely due to a perturbation of the local environment of Asp-684. Altogether, our results demonstrate that Asn-106 is important for closure of the proton entrance pathway prior to proton translocation across the membrane.
Collapse
Affiliation(s)
- Kira Ekberg
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Alex G Wielandt
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Morten J Buch-Pedersen
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Michael G Palmgren
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark.
| |
Collapse
|
29
|
Sørensen DM, Møller AB, Jakobsen MK, Jensen MK, Vangheluwe P, Buch-Pedersen MJ, Palmgren MG. Ca2+ induces spontaneous dephosphorylation of a novel P5A-type ATPase. J Biol Chem 2012; 287:28336-48. [PMID: 22730321 DOI: 10.1074/jbc.m112.387191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
P5 ATPases constitute the least studied group of P-type ATPases, an essential family of ion pumps in all kingdoms of life. Although P5 ATPases are present in every eukaryotic genome analyzed so far, they have remained orphan pumps, and their biochemical function is obscure. We show that a P5A ATPase from barley, HvP5A1, locates to the endoplasmic reticulum and is able to rescue knock-out mutants of P5A genes in both Arabidopsis thaliana and Saccharomyces cerevisiae. HvP5A1 spontaneously forms a phosphorylated reaction cycle intermediate at the catalytic residue Asp-488, whereas, among all plant nutrients tested, only Ca(2+) triggers dephosphorylation. Remarkably, Ca(2+)-induced dephosphorylation occurs at high apparent [Ca(2+)] (K(i) = 0.25 mM) and is independent of the phosphatase motif of the pump and the putative binding site for transported ligands located in M4. Taken together, our results rule out that Ca(2+) is a transported substrate but indicate the presence of a cytosolic low affinity Ca(2+)-binding site, which is conserved among P-type pumps and could be involved in pump regulation. Our work constitutes the first characterization of a P5 ATPase phosphoenzyme and points to Ca(2+) as a modifier of its function.
Collapse
Affiliation(s)
- Danny Mollerup Sørensen
- Centre for Membrane Pumps in Cells and Disease, PUMPKIN, Danish National Research Foundation, Department of Plant Biology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | | | | | | | | | | |
Collapse
|
30
|
López-Marqués RL, Poulsen LR, Palmgren MG. A putative plant aminophospholipid flippase, the Arabidopsis P4 ATPase ALA1, localizes to the plasma membrane following association with a β-subunit. PLoS One 2012; 7:e33042. [PMID: 22514601 PMCID: PMC3326016 DOI: 10.1371/journal.pone.0033042] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/09/2012] [Indexed: 02/02/2023] Open
Abstract
Plasma membranes in eukaryotic cells display asymmetric lipid distributions with aminophospholipids concentrated in the inner leaflet and sphingolipids in the outer leaflet. This unequal distribution of lipids between leaflets is, amongst several proposed functions, hypothesized to be a prerequisite for endocytosis. P4 ATPases, belonging to the P-type ATPase superfamily of pumps, are involved in establishing lipid asymmetry across plasma membranes, but P4 ATPases have not been identified in plant plasma membranes. Here we report that the plant P4 ATPase ALA1, which previously has been connected with cold tolerance of Arabidopsis thaliana, is targeted to the plasma membrane and does so following association in the endoplasmic reticulum with an ALIS protein β-subunit.
Collapse
Affiliation(s)
- Rosa L López-Marqués
- Department of Plant Biology and Biotechnology, Centre for Membrane Pumps in Cells and Disease, PUMPKIN, University of Copenhagen, Danish National Research Foundation, Frederiksberg, Denmark.
| | | | | |
Collapse
|
31
|
Eraso P, Mazón MJ, Posas F, Portillo F. Gene expression profiling of yeasts overexpressing wild type or misfolded Pma1 variants reveals activation of the Hog1 MAPK pathway. Mol Microbiol 2011; 79:1339-52. [PMID: 21205016 DOI: 10.1111/j.1365-2958.2010.07528.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pilar Eraso
- Departamento de Bioquímica Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
32
|
Hegelund JN, Jahn TP, Baekgaard L, Palmgren MG, Schjoerring JK. Transmembrane nine proteins in yeast and Arabidopsis affect cellular metal contents without changing vacuolar morphology. PHYSIOLOGIA PLANTARUM 2010; 140:355-367. [PMID: 20681974 DOI: 10.1111/j.1399-3054.2010.01404.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Transmembrane nine (TM9) proteins are localized in the secretory pathway of eukaryotic cells and are involved in cell adhesion and phagocytosis. The mechanism by which TM9 proteins operate is, however, not well understood. Here we have utilized elemental profiling by inductively coupled plasma mass spectrometry (ICP-MS) to further investigate the physiological function of TM9 proteins. Cellular copper contents in Saccharomyces cerevisiae varied depending on the presence of TM9 homologues from both yeast and Arabidopsis thaliana. A yeast tmn1-3 triple mutant lacking all three yeast endogenous TMNs showed altered metal homeostasis with a reduction in the cellular Cu contents to 25% of that in the wild-type. Conversely, when TMN1 was overexpressed in yeast, cellular Cu concentrations were more than doubled. Both Tmn1p-GFP and Tmn2p-GFP fusion proteins localized to the tonoplast. Yeast vacuolar biogenesis was not affected by the lack or presence of TM9 proteins neither in the tmn1-3 triple mutant nor in TM9 overexpressing strains. Heterologous expression in yeast of AtTMN7, a TM9 homologue from Arabidopsis, affected Cu homeostasis similar to the overexpression of TMN1. In Arabidopsis, the two TM9 homologues AtTMN1 and AtTMN7 were ubiquitously expressed. AtTMN7 promoter constructs driving the expression of GFP showed elevated expression of AtTMN7 in the root elongation zone. It is concluded that TM9 homologues from S. cerevisiae and A. thaliana have the ability to affect the intracellular Cu balance. Tmn1p and Tmn2p operate from the yeast vacuolar membrane without influencing vacuolar biogenesis. A new physiological function of the TM9 family coupled to vacuolar Cu homeostasis is proposed.
Collapse
Affiliation(s)
- Josefine N Hegelund
- Plant and Soil Science, Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
33
|
Structural identification of cation binding pockets in the plasma membrane proton pump. Proc Natl Acad Sci U S A 2010; 107:21400-5. [PMID: 21098259 DOI: 10.1073/pnas.1010416107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The activity of P-type plasma membrane H(+)-ATPases is modulated by H(+) and cations, with K(+) and Ca(2+) being of physiological relevance. Using X-ray crystallography, we have located the binding site for Rb(+) as a K(+) congener, and for Tb(3+) and Ho(3+) as Ca(2+) congeners. Rb(+) is found coordinated by a conserved aspartate residue in the phosphorylation domain. A single Tb(3+) ion is identified positioned in the nucleotide-binding domain in close vicinity to the bound nucleotide. Ho(3+) ions are coordinated at two distinct sites within the H(+)-ATPase: One site is at the interface of the nucleotide-binding and phosphorylation domains, and the other is in the transmembrane domain toward the extracellular side. The identified binding sites are suggested to represent binding pockets for regulatory cations and a H(+) binding site for protons leaving the pump molecule. This implicates Ho(3+) as a novel chemical tool for identification of proton binding sites.
Collapse
|
34
|
Baekgaard L, Mikkelsen MD, Sørensen DM, Hegelund JN, Persson DP, Mills RF, Yang Z, Husted S, Andersen JP, Buch-Pedersen MJ, Schjoerring JK, Williams LE, Palmgren MG. A combined zinc/cadmium sensor and zinc/cadmium export regulator in a heavy metal pump. J Biol Chem 2010; 285:31243-52. [PMID: 20650903 DOI: 10.1074/jbc.m110.111260] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heavy metal pumps (P1B-ATPases) are important for cellular heavy metal homeostasis. AtHMA4, an Arabidopsis thaliana heavy metal pump of importance for plant Zn(2+) nutrition, has an extended C-terminal domain containing 13 cysteine pairs and a terminal stretch of 11 histidines. Using a novel size-exclusion chromatography, inductively coupled plasma mass spectrometry approach we report that the C-terminal domain of AtHMA4 is a high affinity Zn(2+) and Cd(2+) chelator with capacity to bind 10 Zn(2+) ions per C terminus. When AtHMA4 is expressed in a Zn(2+)-sensitive zrc1 cot1 yeast strain, sequential removal of the histidine stretch and the cysteine pairs confers a gradual increase in Zn(2+) and Cd(2+) tolerance and lowered Zn(2+) and Cd(2+) content of transformed yeast cells. We conclude that the C-terminal domain of AtHMA4 serves a dual role as Zn(2+) and Cd(2+) chelator (sensor) and as a regulator of the efficiency of Zn(2+) and Cd(2+) export. The identification of a post-translational handle on Zn(2+) and Cd(2+) transport efficiency opens new perspectives for regulation of Zn(2+) nutrition and tolerance in eukaryotes.
Collapse
Affiliation(s)
- Lone Baekgaard
- Department of Plant Biology and Biotechnology, Centre for Membrane Pumps in Cells and Disease, PUMPKIN, Danish National Research Foundation, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Eraso P, Mazón MJ, Portillo F. A dominant negative mutant of PMA1 interferes with the folding of the wild type enzyme. Traffic 2010; 11:37-47. [PMID: 19929866 DOI: 10.1111/j.1600-0854.2009.01005.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Misfolded proteins are usually arrested in the endoplasmic reticulum (ER) and degraded by the ER-associated degradation (ERAD) machinery. Several mutant alleles of PMA1, the gene coding for the plasma membrane H (+)-ATPase, render misfolded proteins that are subjected to ERAD. A subset of misfolded PMA1 mutants exhibits a dominant negative effect on yeast growth since, when co-expressed with the wild type allele, both proteins are retained in the ER and degraded. We have used a PMA1-D378T dominant lethal allele to analyse the mechanism underlying the retention of the wild type enzyme by the dominant negative mutant. A genetic screen was performed for isolation of intragenic suppressors of PMA1-D378T allele. This analysis pointed to transmembrane helix 10 (TM10) as an important element in the establishment of the dominant lethality. Deletion of the TM10 was able to suppress not only the PMA1-D378T but all the dominant lethal alleles tested. Biochemical analyses suggest that dominant lethal proteins obstruct, through TM10, the correct folding of the wild type enzyme leading to its retention and degradation by ERAD.
Collapse
Affiliation(s)
- Pilar Eraso
- Departamento de Bioquímica and Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | | | | |
Collapse
|
36
|
Ekberg K, Palmgren MG, Veierskov B, Buch-Pedersen MJ. A novel mechanism of P-type ATPase autoinhibition involving both termini of the protein. J Biol Chem 2010; 285:7344-50. [PMID: 20068040 DOI: 10.1074/jbc.m109.096123] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of many P-type ATPases is found to be regulated by interacting proteins or autoinhibitory elements located in N- or C-terminal extensions. An extended C terminus of fungal and plant P-type plasma membrane H(+)-ATPases has long been recognized to be part of a regulatory apparatus involving an autoinhibitory domain. Here we demonstrate that both the N and the C termini of the plant plasma membrane H(+)-ATPase are directly involved in controlling the pump activity state and that N-terminal displacements are coupled to secondary modifications taking place at the C-terminal end. This identifies the first group of P-type ATPases for which both ends of the polypeptide chain constitute regulatory domains, which together contribute to the autoinhibitory apparatus. This suggests an intricate mechanism of cis-regulation with both termini of the protein communicating to obtain the necessary control of the enzyme activity state.
Collapse
Affiliation(s)
- Kira Ekberg
- Plant Physiology and Anatomy Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, Danish National Research Foundation, Frederiksberg, Denmark
| | | | | | | |
Collapse
|
37
|
López-Marqués RL, Poulsen LR, Hanisch S, Meffert K, Buch-Pedersen MJ, Jakobsen MK, Pomorski TG, Palmgren MG. Intracellular targeting signals and lipid specificity determinants of the ALA/ALIS P4-ATPase complex reside in the catalytic ALA alpha-subunit. Mol Biol Cell 2010; 21:791-801. [PMID: 20053675 PMCID: PMC2828965 DOI: 10.1091/mbc.e09-08-0656] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Phospholipid flipping across cellular membranes contributes to vesicle biogenesis in eukaryotes and involves flippases (P4-ATPases). However, the minimal composition of the flippase machinery remains to be determined. We demonstrate that cellular targeting and lipid specificity of P4-ATPases require the α-subunit but are independent of the β-subunit. Members of the P4 subfamily of P-type ATPases are believed to catalyze flipping of phospholipids across cellular membranes, in this way contributing to vesicle biogenesis in the secretory and endocytic pathways. P4-ATPases form heteromeric complexes with Cdc50-like proteins, and it has been suggested that these act as β-subunits in the P4-ATPase transport machinery. In this work, we investigated the role of Cdc50-like β-subunits of P4-ATPases for targeting and function of P4-ATPase catalytic α-subunits. We show that the Arabidopsis P4-ATPases ALA2 and ALA3 gain functionality when coexpressed with any of three different ALIS Cdc50-like β-subunits. However, the final cellular destination of P4-ATPases as well as their lipid substrate specificity are independent of the nature of the ALIS β-subunit they were allowed to interact with.
Collapse
Affiliation(s)
- Rosa L López-Marqués
- Center for Membrane Pumps in Cells and Disease, PUMPKIN, Danish National Research Foundation, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Raimunda D, Bollo M, Beaugé L, Berberián G. Squid nerve Na+/Ca2+ exchanger expressed in Saccharomyces cerevisiae: Up-regulation by a phosphorylated cytosolic protein (ReP1–NCXSQ) is identical to that of native exchanger in situ. Cell Calcium 2009; 45:499-508. [DOI: 10.1016/j.ceca.2009.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/12/2009] [Accepted: 03/17/2009] [Indexed: 01/11/2023]
|
39
|
Jiménez-Hidalgo M, Santos-Ocaña C, Padilla S, Villalba JM, López-Lluch G, Martín-Montalvo A, Minor RK, Sinclair DA, de Cabo R, Navas P. NQR1 controls lifespan by regulating the promotion of respiratory metabolism in yeast. Aging Cell 2009; 8:140-51. [PMID: 19239415 DOI: 10.1111/j.1474-9726.2009.00461.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The activity and expression of plasma membrane NADH coenzyme Q reductase is increased by calorie restriction (CR) in rodents. Although this effect is well-established and is necessary for CR's ability to delay aging, the mechanism is unknown. Here we show that the Saccharomyces cerevisiae homolog, NADH-Coenzyme Q reductase 1 (NQR1), resides at the plasma membrane and when overexpressed extends both replicative and chronological lifespan. We show that NQR1 extends replicative lifespan in a SIR2-dependent manner by shifting cells towards respiratory metabolism. Chronological lifespan extension, in contrast, occurs via an SIR2-independent decrease in ethanol production. We conclude that NQR1 is a key mediator of lifespan extension by CR through its effects on yeast metabolism and discuss how these findings could suggest a function for this protein in lifespan extension in mammals.
Collapse
Affiliation(s)
- María Jiménez-Hidalgo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, E-41013 Sevilla, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Visconti S, Camoni L, Marra M, Aducci P. Role of the 14-3-3 C-terminal region in the interaction with the plasma membrane H+-ATPase. PLANT & CELL PHYSIOLOGY 2008; 49:1887-1897. [PMID: 19001422 DOI: 10.1093/pcp/pcn172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The 14-3-3 proteins are a family of proteins present in a number of isoforms in all eukaryotes and involved in the control of many cellular functions. Regulation of different activities is achieved by binding to phosphorylated targets through a conserved mechanism. Although in many systems isoform specificity has been demonstrated, the underlying molecular basis is still unclear. The sequences of 14-3-3 isoforms are highly conserved, divergence occurring at the N- and C-terminal regions. Recently it has been suggested that the C-terminal domain of 14-3-3 may regulate protein binding to the targets. Here we study the role of the C-terminal region of maize isoform GF14-6 in the interaction with the plant plasma membrane H(+)-ATPase. Results obtained demonstrate that removal of the last 22 amino acids residues of GF14-6 increases binding to H(+)-ATPase and stimulation of its activity. C-terminal deletion, moreover, reduces 14-3-3 sensitivity to cations. We also show that a peptide reproducing the GF14-6 C-terminus is able to bind to the C-terminal domain of H(+)-ATPase and to stimulate the enzyme activity. The implications of these findings for a integrated model of 14-3-3 interaction with H(+)-ATPase are discussed.
Collapse
Affiliation(s)
- Sabina Visconti
- Department of Biology, University of Rome Tor Vergata, via della Ricerca Scientifica, 00133, Rome, Italy
| | | | | | | |
Collapse
|
41
|
Cura CI, Corradi GR, Rinaldi DE, Adamo HP. High sensibility to reactivation by acidic lipids of the recombinant human plasma membrane Ca2+-ATPase isoform 4xb purified from Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2757-64. [PMID: 18822268 DOI: 10.1016/j.bbamem.2008.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 08/25/2008] [Accepted: 08/26/2008] [Indexed: 11/17/2022]
Abstract
The human plasma membrane Ca2+ pump (isoform 4xb) was expressed in Saccharomyces cerevisiae and purified by calmodulin-affinity chromatography. Under optimal conditions the recombinant enzyme (yPMCA) hydrolyzed ATP in a Ca2+ dependent manner at a rate of 15 micromol/mg/min. The properties of yPMCA were compared to those of the PMCA purified from human red cells (ePMCA). The mobility of yPMCA in SDS-PAGE was the expected for the hPMCA4xb protein but slightly lower than that of ePMCA. Both enzymes achieved maximal activity when supplemented with acidic phospholipids. However, while ePMCA in mixed micelles of phosphatidylcholine-detergent had 30% of its maximal activity, the yPMCA enzyme was nearly inactive. Increasing the phosphatidylcholine content of the micelles did not increase the activity of yPMCA but the activity in the presence of phosphatidylcholine improved by partially removing the detergent. The reactivation of the detergent solubilized yPMCA required specifically acidic lipids and, as judged by the increase in the level of phosphoenzyme, it involved the increase in the amount of active enzyme. These results indicate that the function of yPMCA is highly sensitive to delipidation and the restitution of acidic lipids is needed for a functional enzyme.
Collapse
Affiliation(s)
- Carolina I Cura
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Ciudad de Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
42
|
Poulsen LR, López-Marqués RL, McDowell SC, Okkeri J, Licht D, Schulz A, Pomorski T, Harper JF, Palmgren MG. The Arabidopsis P4-ATPase ALA3 localizes to the golgi and requires a beta-subunit to function in lipid translocation and secretory vesicle formation. THE PLANT CELL 2008; 20:658-76. [PMID: 18344284 PMCID: PMC2329932 DOI: 10.1105/tpc.107.054767] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 01/21/2008] [Accepted: 02/25/2008] [Indexed: 05/22/2023]
Abstract
Vesicle budding in eukaryotes depends on the activity of lipid translocases (P(4)-ATPases) that have been implicated in generating lipid asymmetry between the two leaflets of the membrane and in inducing membrane curvature. We show that Aminophospholipid ATPase3 (ALA3), a member of the P(4)-ATPase subfamily in Arabidopsis thaliana, localizes to the Golgi apparatus and that mutations of ALA3 result in impaired growth of roots and shoots. The growth defect is accompanied by failure of the root cap to release border cells involved in the secretion of molecules required for efficient root interaction with the environment, and ala3 mutants are devoid of the characteristic trans-Golgi proliferation of slime vesicles containing polysaccharides and enzymes for secretion. In yeast complementation experiments, ALA3 function requires interaction with members of a novel family of plant membrane-bound proteins, ALIS1 to ALIS5 (for ALA-Interacting Subunit), and in this host ALA3 and ALIS1 show strong affinity for each other. In planta, ALIS1, like ALA3, localizes to Golgi-like structures and is expressed in root peripheral columella cells. We propose that the ALIS1 protein is a beta-subunit of ALA3 and that this protein complex forms an important part of the Golgi machinery required for secretory processes during plant development.
Collapse
Affiliation(s)
- Lisbeth Rosager Poulsen
- Danish National Research Foundation, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chintalapati S, Al Kurdi R, van Scheltinga ACT, Kühlbrandt W. Membrane structure of CtrA3, a copper-transporting P-type-ATPase from Aquifex aeolicus. J Mol Biol 2008; 378:581-95. [PMID: 18374940 DOI: 10.1016/j.jmb.2008.01.094] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 01/25/2008] [Accepted: 01/31/2008] [Indexed: 12/29/2022]
Abstract
We have produced and characterized two new copper-transporting ATPases, CtrA2 and CtrA3 from Aquifex aeolicus, that belong to the family of heavy metal ion-transporting P(IB)-type ATPases. CtrA2 has a CPC metal-binding sequence in TM6 and a CxxC metal-binding N-terminal domain, while CtrA3 has a CPH metal-binding motif in TM6 and a histidine-rich N-terminal metal-binding domain. We have cloned both copper pumps, expressed them in Escherichia coli and characterized them functionally. CtrA2 is activated by Ag(+) and Cu(+) and presumably transports reduced Cu(+), while CtrA3 is activated by, and presumably transports, the oxidized copper ion. Both CtrA2 and CtrA3 are thermophilic proteins with an activity maximum at 75 degrees C. Electron cryomicroscopy of two-dimensional crystals of CtrA3 yielded a projection map at approximately 7 A resolution with density peaks, indicating eight membrane-spanning alpha-helices per monomer. A fit of the Ca-ATPase structure to the projection map indicates that the arrangement of the six central helices surrounding the ion-binding site in the membrane is conserved, and suggests the position of the two additional N-terminal transmembrane helices that are characteristic of the heavy metal, eight-helix P(1B)-type ATPases.
Collapse
Affiliation(s)
- Sivaram Chintalapati
- Max Planck Institute of Biophysics, Max von Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
44
|
Jeong H, Herskowitz I, Kroetz DL, Rine J. Function-altering SNPs in the human multidrug transporter gene ABCB1 identified using a Saccharomyces-based assay. PLoS Genet 2007; 3:e39. [PMID: 17352537 PMCID: PMC1817653 DOI: 10.1371/journal.pgen.0030039] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 01/26/2007] [Indexed: 11/18/2022] Open
Abstract
The human ABCB1 (MDR1)-encoded multidrug transporter P-glycoprotein (P-gp) plays a major role in disposition and efficacy of a broad range of drugs including anticancer agents. ABCB1 polymorphisms could therefore determine interindividual variability in resistance to these drugs. To test this hypothesis we developed a Saccharomyces-based assay for evaluating the functional significance of ABCB1 polymorphisms. The P-gp reference and nine variants carrying amino-acid-altering single nucleotide polymorphisms (SNPs) were tested on medium containing daunorubicin, doxorubicin, valinomycin, or actinomycin D, revealing SNPs that increased (M89T, L662R, R669C, and S1141T) or decreased (W1108R) drug resistance. The R669C allele's highly elevated resistance was compromised when in combination with W1108R. Protein level or subcellular location of each variant did not account for the observed phenotypes. The relative resistance profile of the variants differed with drug substrates. This study established a robust new methodology for identification of function-altering polymorphisms in human multidrug transporter genes, identified polymorphisms affecting P-gp function, and provided a step toward genotype-determined dosing of chemotherapeutics.
Collapse
Affiliation(s)
- Hotcherl Jeong
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Ira Herskowitz
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Deanna L Kroetz
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Department of Biopharmaceutical Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Jasper Rine
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Merlot S, Leonhardt N, Fenzi F, Valon C, Costa M, Piette L, Vavasseur A, Genty B, Boivin K, Müller A, Giraudat J, Leung J. Constitutive activation of a plasma membrane H(+)-ATPase prevents abscisic acid-mediated stomatal closure. EMBO J 2007; 26:3216-26. [PMID: 17557075 PMCID: PMC1914098 DOI: 10.1038/sj.emboj.7601750] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 05/16/2007] [Indexed: 01/16/2023] Open
Abstract
Light activates proton (H(+))-ATPases in guard cells, to drive hyperpolarization of the plasma membrane to initiate stomatal opening, allowing diffusion of ambient CO(2) to photosynthetic tissues. Light to darkness transition, high CO(2) levels and the stress hormone abscisic acid (ABA) promote stomatal closing. The overall H(+)-ATPase activity is diminished by ABA treatments, but the significance of this phenomenon in relationship to stomatal closure is still debated. We report two dominant mutations in the OPEN STOMATA2 (OST2) locus of Arabidopsis that completely abolish stomatal response to ABA, but importantly, to a much lesser extent the responses to CO(2) and darkness. The OST2 gene encodes the major plasma membrane H(+)-ATPase AHA1, and both mutations cause constitutive activity of this pump, leading to necrotic lesions. H(+)-ATPases have been traditionally assumed to be general endpoints of all signaling pathways affecting membrane polarization and transport. Our results provide evidence that AHA1 is a distinct component of an ABA-directed signaling pathway, and that dynamic downregulation of this pump during drought is an essential step in membrane depolarization to initiate stomatal closure.
Collapse
Affiliation(s)
- Sylvain Merlot
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, UPR 2355, Gif-sur-Yvette, France
| | - Nathalie Leonhardt
- CEA Cadarache, DSV, UMR 6191 CEA-CNRS, DEVM, LEMS and LEMP, St Paul les Durance Cedex, France
| | - Francesca Fenzi
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, UPR 2355, Gif-sur-Yvette, France
| | - Christiane Valon
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, UPR 2355, Gif-sur-Yvette, France
| | - Miguel Costa
- CEA Cadarache, DSV, UMR 6191 CEA-CNRS, DEVM, LEMS and LEMP, St Paul les Durance Cedex, France
| | - Laurie Piette
- CEA Cadarache, DSV, UMR 6191 CEA-CNRS, DEVM, LEMS and LEMP, St Paul les Durance Cedex, France
| | - Alain Vavasseur
- CEA Cadarache, DSV, UMR 6191 CEA-CNRS, DEVM, LEMS and LEMP, St Paul les Durance Cedex, France
| | - Bernard Genty
- CEA Cadarache, DSV, UMR 6191 CEA-CNRS, DEVM, LEMS and LEMP, St Paul les Durance Cedex, France
| | - Karine Boivin
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, UPR 2355, Gif-sur-Yvette, France
| | | | - Jérôme Giraudat
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, UPR 2355, Gif-sur-Yvette, France
| | - Jeffrey Leung
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, UPR 2355, Gif-sur-Yvette, France
- CNRS Science de la Vie, Institut des Sciences du Végétal, UPR 2355, 1 Avenue de la Terrasse Bat. 23, Gif-sur-Yvette, 91190, France. Tel.: +33 1 69 82 38 12; Fax: +33 1 69 82 36 95; E-mail:
| |
Collapse
|
46
|
Orłowski J, Machula K, Janik A, Zdebska E, Palamarczyk G. Dissecting the role of dolichol in cell wall assembly in the yeast mutants impaired in early glycosylation reactions. Yeast 2007; 24:239-52. [PMID: 17397129 DOI: 10.1002/yea.1479] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Evidence is presented that temperature-sensitive Saccharomyces cerevisiae mutants, impaired in dolichol kinase (Sec59p) or dolichyl phosphate mannose synthase (Dpm1p) activity have an aberrant cell wall composition and ultrastructure. The mutants were oversensitive to Calcofluor white, an agent interacting with the cell wall chitin. In accordance with this, chemical analysis of the cell wall alkali-insoluble fraction indicated an increased amount of chitin and changes in the quantity of beta1,6- and beta1,3-glucan in sec59-1 and dpm1-6 mutants. In order to unravel the link between the formation of dolichyl phosphate and dolichyl phosphate mannose and the cell wall assembly, we screened a yeast genomic library for a multicopy suppressors of the thermosensitive phenotype. The RER2 and SRT1 genes, encoding cis-prenyltransferases, were isolated. In addition, the ROT1 gene, encoding protein involved in beta1,6-glucan synthesis (Machi et al., 2004) and protein folding (Takeuchi et al., 2006) acted as a multicopy suppressor of the temperature-sensitive phenotype of the sec59-1 mutant. The cell wall of the mutants and of mutants bearing the multicopy suppressors was analysed for carbohydrate and mannoprotein content. We also examined the glycosylation status of the plasma membrane protein Gas1p, a beta1,3-glucan elongase, and the degree of phosphorylation of the Mpk1/Slt2 protein, involved in the cell wall integrity pathway.
Collapse
Affiliation(s)
- Jacek Orłowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw, Poland
| | | | | | | | | |
Collapse
|
47
|
Luo S, Fang J, Docampo R. Molecular characterization of Trypanosoma brucei P-type H+-ATPases. J Biol Chem 2006; 281:21963-21973. [PMID: 16757482 DOI: 10.1074/jbc.m601057200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies in Trypanosoma brucei have shown that intracellular pH homeostasis is affected by inhibitors of H+-ATPases, suggesting a major role for these pumps in this process (Vander-Heyden, N., Wong, J., and Docampo, R., (2000) Biochem. J. 346, 53-62). Here, we report the cloning and sequencing of three genes (TbHA1, TbHA2, and TbHA3) present in the genome of T. brucei that encode proteins with homology to fungal and plant P-type proton-pumping ATPases. Northern and Western blot analyses revealed that these genes are up-regulated in procyclic trypomastigotes. TbHA1, TbHA2, and TbHA3 complemented a Saccharomyces cerevisiae strain deficient in P-type H+-ATPase activity, providing genetic evidence for their function. Indirect immunofluorescence analysis showed that TbHA proteins are localized mainly in the plasma membrane of procyclic forms and in the plasma membrane and flagellum of bloodstream forms. T. brucei H+-ATPase genes were functionally characterized using double-stranded RNA interference methodology. The induction of double-stranded RNA (RNA interference) caused growth inhibition, which was more accentuated in procyclic forms and when expression of all TbHA proteins was decreased. Knockdown of TbHA1 and TbHA3, but not of TbHA2, resulted in cells with a lower steady-state pH(i) and a slower rate of pH(i) recovery from acidification. No evidence was found of an intracellular P-type H+-ATPase activity. These results establish that T. brucei H+-ATPases are plasma membrane enzymes essential for parasite viability.
Collapse
Affiliation(s)
- Shuhong Luo
- Center for Tropical and Emerging Global Diseases and the Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| | - Jianmin Fang
- Center for Tropical and Emerging Global Diseases and the Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and the Department of Cellular Biology, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
48
|
Aguilera F, Peinado RA, Millán C, Ortega JM, Mauricio JC. Relationship between ethanol tolerance, H+ -ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol 2006; 110:34-42. [PMID: 16690148 DOI: 10.1016/j.ijfoodmicro.2006.02.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2005] [Revised: 12/07/2005] [Accepted: 02/28/2006] [Indexed: 11/19/2022]
Abstract
Ethanol tolerance, ATPase activity and the lipid composition of the plasma membrane to study potential relationship among them were examined in five different wine yeast strains. Yeast cells were subjected to ethanol stress (4% v/v). Principal component analysis of the results revealed that the wine yeasts studied can be distinguished in terms of ATPase activity and oleic acid (C18:1), and palmitoleic acid (C16:1), in plasma membrane. Multiple regression analysis was used to identify a potential influence of some components of the plasma membrane on ethanol tolerance and ATPase activity. Based on the results, the ergosterol, oleic acid and palmitoleic acid are highly correlated with ATPase activity and ethanol tolerance. Ethanol tolerance and the ATPase activity of the plasma membrane were correlated at the 96.64% level with the oleic acid and ergosterol in plasma membrane. The Saccharomyces cerevisiae var. capensis flor yeast strain, which exhibited the highest ergosterol concentration in plasma membrane when grown in the presence of 4% v/v ethanol, was found to be the most ethanol-tolerant.
Collapse
Affiliation(s)
- F Aguilera
- Departamento de Microbiología, Universidad de Córdoba, Edificio Severo Ochoa, Campus Universitario de Rabanales, 14014 Córdoba, Spain
| | | | | | | | | |
Collapse
|
49
|
Eraso P, Mazón MJ, Portillo F. Yeast protein kinase Ptk2 localizes at the plasma membrane and phosphorylates in vitro the C-terminal peptide of the H+-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:164-70. [PMID: 16510118 DOI: 10.1016/j.bbamem.2006.01.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 11/18/2005] [Accepted: 01/12/2006] [Indexed: 10/25/2022]
Abstract
Glucose triggers posttranslational modifications that increase the activity of the Saccharomyces cerevisiae plasma membrane H+-ATPase (Pma1). Glucose activation of yeast H+-ATPase results from the change in two kinetic parameters: an increase in the affinity of the enzyme for ATP, depending on Ser899, and an increase in the Vmax involving Thr912. Our previous studies suggested that Ptk2 mediates the Ser899-dependent part of the activation. In this study we find that Ptk2 localized to the plasma membrane in a Triton X-100 insoluble fraction. In vitro phosphorylation assays using a recombinant GST-fusion protein comprising 30 C-terminal amino acids of Pma1 suggest that Ser899 is phosphorylated by Ptk2. Furthermore, we show that the Ptk2 carboxyl terminus is essential for glucose-dependent Pma1 activation and for the phosphorylation of Ser899.
Collapse
Affiliation(s)
- Pilar Eraso
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Arturo Duperier, 4, 28029 Madrid, Spain
| | | | | |
Collapse
|
50
|
Baekgaard L, Luoni L, De Michelis MI, Palmgren MG. The plant plasma membrane Ca2+ pump ACA8 contains overlapping as well as physically separated autoinhibitory and calmodulin-binding domains. J Biol Chem 2005; 281:1058-65. [PMID: 16267044 DOI: 10.1074/jbc.m508299200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In plant Ca(2+) pumps belonging to the P(2B) subfamily of P-type ATPases, the N-terminal cytoplasmic domain is responsible for pump autoinhibition. Binding of calmodulin (CaM) to this region results in pump activation but the structural basis for CaM activation is still not clear. All residues in a putative CaM-binding domain (Arg(43) to Lys(68)) were mutagenized and the resulting recombinant proteins were studied with respect to CaM binding and the activation state. The results demonstrate that (i) the binding site for CaM is overlapping with the autoinhibitory region and (ii) the autoinhibitory region comprises significantly fewer residues than the CaM-binding region. In a helical wheel projection of the CaM-binding domain, residues involved in autoinhibition cluster on one side of the helix, which is proposed to interact with an intramolecular receptor site in the pump. Residues influencing CaM negatively are situated on the other face of the helix, likely to face the cytosol, whereas residues controlling CaM binding positively are scattered throughout. We propose that early CaM recognition is mediated by the cytosolic face and that CaM subsequently competes with the intramolecular autoinhibitor in binding to the other face of the helix.
Collapse
Affiliation(s)
- Lone Baekgaard
- Department of Plant Biology, The Royal Veterinary and Agricultural University, Frederiksberg, Copenhagen, Denmark
| | | | | | | |
Collapse
|