1
|
Gao S, Liu B, Yuan S, Quan Y, Song S, Jin W, Wang Y, Wang Y. Cross-talk between signal transduction systems and metabolic networks in antibiotic resistance and tolerance. Int J Antimicrob Agents 2025; 65:107479. [PMID: 40024604 DOI: 10.1016/j.ijantimicag.2025.107479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/19/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
The comprehensive antibiotic resistance of pathogens signifies the oneset of the "post-antibiotic era", and the myriad treatment challenges posed by "superbugs" have emerged as the primary threat to human health. Recent studies indicate that bacterial resistance and tolerance development are mediated at the metabolic level by various signalling networks (e.g., quorum sensing systems, second messenger systems, and two-component systems), resulting in metabolic rearrangements and alterations in bacterial community behaviour. This review focuses on current research, highlighting the intrinsic link between signalling and metabolic networks in bacterial resistance and tolerance.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Baobao Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Shenao Song
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China.
| |
Collapse
|
2
|
Zhu Y, Yao S, Wang X, Wang J, Cao H, Tao Y. Variable cyanobacterial death modes caused by ciprofloxacin in the aquatic environment: Prioritizing antibiotic-photosynthetic protein interactions for risk assessment. WATER RESEARCH 2025; 271:122885. [PMID: 39642793 DOI: 10.1016/j.watres.2024.122885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Antibiotics continuously discharged into the aquatic environment pose threats to phototrophs via high-affinity binding to photosynthetic apparatuses and interfering with their energy metabolism and growth. However, studies attributed the sublethal effects of antibiotics on phototrophs to damaging photosystem (PS) II (PSII) proteins while neglecting PSI proteins as potential targets. Herein, we report that frequently detected ciprofloxacin (CIP) with concentrations of 3-8 μg/L was lethal to Microcystis aeruginosa, the widely distributed phytoplankton in freshwater, via damaging DNA. Besides, CIP damages on different photosynthetic proteins at different exposure levels were evidenced to influence the cyanobacterial death phenotypes. In detail, CIP at 3 μg/L bound to PSII D1 protein exclusively, activating the tricarboxylic acid cycle for energy and proline catabolism. This favored the execution of apoptosis-like regulated cell death (RCD). However, CIP at 8 μg/L exhibited additional binding to the PSI iron-sulfur reaction center, apart from PSII, inducing carbon and arginine starvation. This shifted the RCD from apoptosis-like RCD to mazEF-mediated RCD. Furthermore, microcystin-LR risks were elevated after CIP exposure with enhanced microcystin-LR release and biosynthesis for apoptosis-like and mazEF-mediated RCD, respectively. Thus, the present study underscores the intricate interactions between antibiotics and different photosynthetic apparatuses, which alter antibiotic lethal effects at different exposure levels. This could provide new perspectives on the risk assessment and prediction of antibiotics from the standpoint of chemical-photosynthesis interactions.
Collapse
Affiliation(s)
- Yinjie Zhu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Tsinghua University-Kunming Joint Research Center for Dianchi Plateau Lake, Tsinghua University, Beijing 100084, PR China
| | - Shishi Yao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Xiaoxiong Wang
- Institute for Ocean Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Jian Wang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Tsinghua University-Kunming Joint Research Center for Dianchi Plateau Lake, Tsinghua University, Beijing 100084, PR China
| | - Huansheng Cao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu 215300, PR China
| | - Yi Tao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Tsinghua University-Kunming Joint Research Center for Dianchi Plateau Lake, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
3
|
Hamm CW, Gray MJ. Inorganic polyphosphate and the stringent response coordinately control cell division and cell morphology in Escherichia coli. mBio 2025; 16:e0351124. [PMID: 39727417 PMCID: PMC11796413 DOI: 10.1128/mbio.03511-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Bacteria encounter numerous stressors in their constantly changing environments and have evolved many methods to deal with stressors quickly and effectively. One well-known and broadly conserved stress response in bacteria is the stringent response, mediated by the alarmone (p)ppGpp. (p)ppGpp is produced in response to amino acid starvation and other nutrient limitations and stresses and regulates both the activity of proteins and expression of genes. Escherichia coli also makes inorganic polyphosphate (polyP), an ancient molecule evolutionary conserved across most bacteria and other cells, in response to a variety of stress conditions, including amino acid starvation. PolyP can act as an energy and phosphate storage pool, metal chelator, regulatory signal, and chaperone, among other functions. Here we report that E. coli lacking both (p)ppGpp and polyP have a complex phenotype indicating previously unknown overlapping roles for (p)ppGpp and polyP in regulating cell division, cell morphology, and metabolism. Disruption of either (p)ppGpp or polyP synthesis led to the formation of filamentous cells, but simultaneous disruption of both pathways resulted in cells with heterogenous cell morphologies, including highly branched cells, severely mislocalized Z-rings, and cells containing substantial void spaces. These mutants also failed to grow when nutrients were limited, even when amino acids were added. These results provide new insights into the relationship between polyP synthesis and the stringent response in bacteria and point toward their having a joint role in controlling metabolism, cell division, and cell growth.IMPORTANCECell division is a fundamental biological process, and the mechanisms that control it in Escherichia coli have been the subject of intense research scrutiny for many decades. Similarly, both the (p)ppGpp-dependent stringent response and inorganic polyphosphate (polyP) synthesis are well-studied, evolutionarily ancient, and widely conserved pathways in diverse bacteria. Our results indicate that these systems, normally studied as stress-response mechanisms, play a coordinated and novel role in regulating cell division, morphology, and metabolism even under non-stress conditions.
Collapse
Affiliation(s)
- Christopher W. Hamm
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J. Gray
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
4
|
Maciąg-Dorszyńska M, Olszewski P, Karczewska M, Boss L. Toxin-antitoxin genes are differentially expressed in Escherichia coli relA and spoT mutans cultured under nitrogen, fatty acid, or carbon starvation conditions. Front Microbiol 2025; 15:1528825. [PMID: 39895937 PMCID: PMC11783221 DOI: 10.3389/fmicb.2024.1528825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025] Open
Abstract
Introduction The stringent response is one of the fundamental mechanisms that control and modulate bacterial adaptation to stress conditions, such as nutrient limitation. The accumulation of stringent response effectors, (p)ppGpp, causes differential expression of approximately 500 genes, including genes of bacterial endogenous toxin-antitoxin (TA) systems. However, the exact link between (p)ppGpp and toxin-antitoxin systems' activation, as well as toxin-antitoxin role in stress adaptation remains disputed. Methods In this study, we performed a complex analysis of changes (RNA-Seq) in the toxin-antitoxin operons' transcription in response to nitrogen, fatty acid, or carbon starvation, in bacteria with different abilities of (p)ppGpp accumulation. Results and discussion Although we observed that in some cases (p)ppGpp accumulation appears to be crucial for transcriptional activation of TA genes (e.g., ghoST, ryeA), our data indicates that the general pattern of chromosomally encoded TA gene expression in E. coli differs depending on the nutrient distribution in the environment, regardless of the alarmone accumulation.
Collapse
Affiliation(s)
- Monika Maciąg-Dorszyńska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Paweł Olszewski
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Monika Karczewska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Lidia Boss
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
5
|
Tanabe T, Miyamoto K, Nagaoka K, Tsujibo H, Funahashi T. Effect of (p)ppGpp on the Expression of the Vibrioferrin-Mediated Iron Acquisition System in Vibrio parahaemolyticus. Biol Pharm Bull 2025; 48:188-194. [PMID: 40024720 DOI: 10.1248/bpb.b24-00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Bacteria have a stringent response system mediated by guanosine pentaphosphate and tetraphosphate ((p)ppGpp), which suppresses the expression of genes involved in cell growth and promotes the expression of genes involved in nutrient uptake and metabolism under nutrient-limited stress. In environments with limited availability of iron, an essential trace element, bacteria generally produce and secrete siderophores to efficiently utilize water-insoluble ferric iron (Fe3+) in the environment. In Vibrio parahaemolyticus, Fur (iron-responsive repressor) and RyhB (Fur-regulated small RNA) regulate the expression of genes involved in the utilization of vibrioferrin (VF), a siderophore produced by this bacterium. In this study, we examined whether (p)ppGpp is also involved in regulating the expression of genes related to the VF utilization system. Results of the chrome azurol S plate assay revealed that the strain in which 3 (p)ppGpp synthetases were deleted (∆relA∆spoT∆relV) produced less VF than the parental strain. Growth test results showed that the growth rate of ∆relA∆spoT∆relV in an iron-limited medium was suppressed compared with that of the parental strain but was restored with the addition of VF. Furthermore, RT-quantitative (q)PCR results showed that the expression levels of pvsA (VF biosynthesis gene) and pvuA2 (ferric VF receptor gene) in ∆relA∆spoT∆relV under iron limitation were significantly reduced compared with those in the parental strain. Western blot results demonstrated that the expression level of PvuA2 in ∆relA∆spoT∆relV was lower than that in the parental strain. These results suggest that (p)ppGpp promotes the expression of genes related to VF biosynthesis and the ferric VF uptake system under iron limitation.
Collapse
Affiliation(s)
- Tomotaka Tanabe
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Katsushiro Miyamoto
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kenjiro Nagaoka
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Hiroshi Tsujibo
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Tatsuya Funahashi
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| |
Collapse
|
6
|
Mäkelä J, Papagiannakis A, Lin WH, Lanz MC, Glenn S, Swaffer M, Marinov GK, Skotheim JM, Jacobs-Wagner C. Genome concentration limits cell growth and modulates proteome composition in Escherichia coli. eLife 2024; 13:RP97465. [PMID: 39714909 DOI: 10.7554/elife.97465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Defining the cellular factors that drive growth rate and proteome composition is essential for understanding and manipulating cellular systems. In bacteria, ribosome concentration is known to be a constraining factor of cell growth rate, while gene concentration is usually assumed not to be limiting. Here, using single-molecule tracking, quantitative single-cell microscopy, and modeling, we show that genome dilution in Escherichia coli cells arrested for DNA replication limits total RNA polymerase activity within physiological cell sizes across tested nutrient conditions. This rapid-onset limitation on bulk transcription results in sub-linear scaling of total active ribosomes with cell size and sub-exponential growth. Such downstream effects on bulk translation and cell growth are near-immediately detectable in a nutrient-rich medium, but delayed in nutrient-poor conditions, presumably due to cellular buffering activities. RNA sequencing and tandem-mass-tag mass spectrometry experiments further reveal that genome dilution remodels the relative abundance of mRNAs and proteins with cell size at a global level. Altogether, our findings indicate that chromosome concentration is a limiting factor of transcription and a global modulator of the transcriptome and proteome composition in E. coli. Experiments in Caulobacter crescentus and comparison with eukaryotic cell studies identify broadly conserved DNA concentration-dependent scaling principles of gene expression.
Collapse
Affiliation(s)
- Jarno Mäkelä
- Howard Hughes Medical Institute, Stanford University, Stanford, United States
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Alexandros Papagiannakis
- Howard Hughes Medical Institute, Stanford University, Stanford, United States
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
| | - Wei-Hsiang Lin
- Howard Hughes Medical Institute, Stanford University, Stanford, United States
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
| | - Michael Charles Lanz
- Department of Biology, Stanford University, Stanford, United States
- Chan Zuckerberg Biohub, Stanford, United Kingdom
| | - Skye Glenn
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
- Department of Biology, Stanford University, Stanford, United States
| | - Matthew Swaffer
- Department of Biology, Stanford University, Stanford, United States
| | - Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, United States
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, United States
- Chan Zuckerberg Biohub, Stanford, United Kingdom
| | - Christine Jacobs-Wagner
- Howard Hughes Medical Institute, Stanford University, Stanford, United States
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
- Department of Biology, Stanford University, Stanford, United States
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, United States
| |
Collapse
|
7
|
Singh V, Harinarayanan R. (p)ppGpp Buffers Cell Division When Membrane Fluidity Decreases in Escherichia coli. Mol Microbiol 2024; 122:847-865. [PMID: 39461000 DOI: 10.1111/mmi.15323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024]
Abstract
Fluidity is an inherent property of biological membranes and its maintenance (homeoviscous adaptation) is important for optimal functioning of membrane-associated processes. The fluidity of bacterial cytoplasmic membrane increases with temperature or an increase in the proportion of unsaturated fatty acids and vice versa. We found that strains deficient in the synthesis of guanine nucleotide analogs (p)ppGpp and lacking FadR, a transcription factor involved in fatty acid metabolism exhibited a growth defect that was rescued by an increase in growth temperature or unsaturated fatty acid content. The strain lacking (p)ppGpp was sensitive to genetic or chemical perturbations that decrease the proportion of unsaturated fatty acids over saturated fatty acids. Microscopy showed that the growth defect was associated with cell filamentation and lysis and rescued by combined expression of cell division genes ftsQ, ftsA, and ftsZ from plasmid or the gain-of-function ftsA* allele but not over-expression of ftsN. The results implicate (p)ppGpp in positive regulation of cell division during membrane fluidity loss through enhancement of FtsZ proto-ring stability. To our knowledge, this is the first report of a (p)ppGpp-mediated regulation needed for adaptation to membrane fluidity loss in bacteria.
Collapse
Affiliation(s)
- Vani Singh
- Center for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Manipal Academy of Higher Education, Manipal, India
| | | |
Collapse
|
8
|
Jiang H, Dong Y, Jiao X, Tang B, Feng T, Li P, Fang J. In vivo fitness of sul gene-dependent sulfonamide-resistant Escherichia coli in the mammalian gut. mSystems 2024; 9:e0083624. [PMID: 39140732 PMCID: PMC11406977 DOI: 10.1128/msystems.00836-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
The widespread sulfonamide resistance genes sul1, sul2, and sul3 in food and gut bacteria have attracted considerable attention. In this study, we assessed the in vivo fitness of sul gene-dependent sulfonamide-resistant Escherichia coli, using a murine model. High fitness costs were incurred for sul1 and sul3 gene-dependent E. coli strains in vivo. A fitness advantage was found in three of the eight mice after intragastric administration of sul2 gene-dependent E. coli strains. We isolated three compensatory mutant strains (CMSs) independently from three mice that outcompeted the parent strain P2 in vivo. Whole-genome sequencing revealed seven identical single nucleotide polymorphism (SNP) mutations in the three CMSs compared with strain P2, an additional SNP mutation in strain S2-2, and two additional SNP mutations in strain S2-3. Furthermore, tandem mass tag-based quantitative proteomic analysis revealed abundant differentially expressed proteins (DEPs) in the CMSs compared with P2. Of these, seven key fitness-related DEPs distributed in two-component systems, galactose and tryptophan metabolism pathways, were verified using parallel reaction monitoring analysis. The DEPs in the CMSs influenced bacterial motility, environmental stress tolerance, colonization ability, carbohydrate utilization, cell morphology maintenance, and chemotaxis to restore fitness costs and adapt to the mammalian gut environment.IMPORTANCESulfonamides are traditional synthetic antimicrobial agents used in clinical and veterinary medical settings. Their long-term excessive overuse has resulted in widespread microbial resistance, limiting their application for medical interventions. Resistance to sulfonamides is primarily conferred by the alternative genes sul1, sul2, and sul3 encoding dihydropteroate synthase in bacteria. Studying the potential fitness cost of these sul genes is crucial for understanding the evolution and transmission of sulfonamide-resistant bacteria. In vitro studies have been conducted on the fitness cost of sul genes in bacteria. In this study, we provide critical insights into bacterial adaptation and transmission using an in vivo approach.
Collapse
Affiliation(s)
- Han Jiang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Yuzhi Dong
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Xue Jiao
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Biao Tang
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Tao Feng
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Jiehong Fang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Hamm CW, Gray MJ. Inorganic polyphosphate and the stringent response coordinately control cell division and cell morphology in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612536. [PMID: 39314361 PMCID: PMC11419118 DOI: 10.1101/2024.09.11.612536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Bacteria encounter numerous stressors in their constantly changing environments and have evolved many methods to deal with stressors quickly and effectively. One well known and broadly conserved stress response in bacteria is the stringent response, mediated by the alarmone (p)ppGpp. (p)ppGpp is produced in response to amino acid starvation and other nutrient limitations and stresses and regulates both the activity of proteins and expression of genes. Escherichia coli also makes inorganic polyphosphate (polyP), an ancient molecule evolutionary conserved across most bacteria and other cells, in response to a variety of stress conditions, including amino acid starvation. PolyP can act as an energy and phosphate storage pool, metal chelator, regulatory signal, and chaperone, among other functions. Here we report that E. coli lacking both (p)ppGpp and polyP have a complex phenotype indicating previously unknown overlapping roles for (p)ppGpp and polyP in regulating cell division, cell morphology, and metabolism. Disruption of either (p)ppGpp or polyP synthesis led to formation of filamentous cells, but simultaneous disruption of both pathways resulted in cells with heterogenous cell morphologies, including highly branched cells, severely mislocalized Z-rings, and cells containing substantial void spaces. These mutants also failed to grow when nutrients were limited, even when amino acids were added. These results provide new insights into the relationship between polyP synthesis and the stringent response in bacteria and point towards their having a joint role in controlling metabolism, cell division, and cell growth.
Collapse
Affiliation(s)
- Christopher W. Hamm
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J. Gray
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
10
|
Karczewska M, Wang AY, Narajczyk M, Słomiński B, Szalewska-Pałasz A, Nowicki D. Antibacterial activity of t-cinnamaldehyde: An approach to its mechanistic principle towards enterohemorrhagic Escherichia coli (EHEC). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155845. [PMID: 38964154 DOI: 10.1016/j.phymed.2024.155845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Compounds of natural origin are potent source of drugs with unique mechanisms of action. Among phytochemicals, trans-cinnamaldehyde (t-CA) exhibits a wide range of biological activity, thus has been used for centuries to fight bacterial and fungal infections. However, the molecular basis of these properties has not been fully covered. Considering that difficult-to-control infections are becoming a rising global problem, there is a need to elucidate the molecular potential of t-CA. PURPOSE To evaluate the antibacterial activity of t-CA against Shiga-toxigenic E. coli strains and elucidate its mechanism of action based on the inhibition of the virulence factor expression. METHODS The antimicrobial potential of t-CA was assessed with two-fold microdilution and time-kill assays. Further evaluation included bioluminescence suppression assays, quantification of reactive oxygen species (ROS) and assessment of NAD+/NADH ratios. Morphological changes post t-CA exposure were examined using transmission electron microscopy. RNA sequencing and radiolabeling of nucleotides elucidated the metabolic alterations induced by t-CA. Toxin expression level was monitored through the application of fusion proteins, monitoring of bacteriophage development, and fluorescence microscopy studies. Lastly, the therapeutic efficacy in vivo was assessed using Galleria mellonella infection model. RESULTS A comprehensive study of t-CA's bioactivity showed unique properties affecting bacterial metabolism and morphology, resulting in significant bacterial cell deformation and effective virulence inhibition. Elucidation of the underlying mechanisms indicated that t-CA activates the global regulatory system, the stringent response, manifested by its alarmone, (p)ppGpp, overproduction mediated by the RelA enzyme, thereby inhibiting bacterial proliferation. Intriguingly, t-CA effectively downregulates Shiga toxin gene expression via alarmone molecules, indicating its potential for therapeutic effect. In vivo validation demonstrated a significant improvement in larval survival rates post- t-CA treatment with 50 mg/kg (p < 0.05), akin to the efficacy observed with azithromycin, thus indicating its effectiveness against EHEC infections (p < 0.05). CONCLUSIONS Collectively, these results reveal the robust antibacterial capabilities of t-CA, warranting its further exploration as a viable anti-infective agent.
Collapse
Affiliation(s)
- Monika Karczewska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Ai Yan Wang
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Magdalena Narajczyk
- Bioimaging Laboratory, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Bartosz Słomiński
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Szalewska-Pałasz
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Dariusz Nowicki
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| |
Collapse
|
11
|
Pedraza-Reyes M, Abundiz-Yañez K, Rangel-Mendoza A, Martínez LE, Barajas-Ornelas RC, Cuéllar-Cruz M, Leyva-Sánchez HC, Ayala-García VM, Valenzuela-García LI, Robleto EA. Bacillus subtilis stress-associated mutagenesis and developmental DNA repair. Microbiol Mol Biol Rev 2024; 88:e0015823. [PMID: 38551349 PMCID: PMC11332352 DOI: 10.1128/mmbr.00158-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
SUMMARYThe metabolic conditions that prevail during bacterial growth have evolved with the faithful operation of repair systems that recognize and eliminate DNA lesions caused by intracellular and exogenous agents. This idea is supported by the low rate of spontaneous mutations (10-9) that occur in replicating cells, maintaining genome integrity. In contrast, when growth and/or replication cease, bacteria frequently process DNA lesions in an error-prone manner. DNA repairs provide cells with the tools needed for maintaining homeostasis during stressful conditions and depend on the developmental context in which repair events occur. Thus, different physiological scenarios can be anticipated. In nutritionally stressed bacteria, different components of the base excision repair pathway may process damaged DNA in an error-prone approach, promoting genetic variability. Interestingly, suppressing the mismatch repair machinery and activating specific DNA glycosylases promote stationary-phase mutations. Current evidence also suggests that in resting cells, coupling repair processes to actively transcribed genes may promote multiple genetic transactions that are advantageous for stressed cells. DNA repair during sporulation is of interest as a model to understand how transcriptional processes influence the formation of mutations in conditions where replication is halted. Current reports indicate that transcriptional coupling repair-dependent and -independent processes operate in differentiating cells to process spontaneous and induced DNA damage and that error-prone synthesis of DNA is involved in these events. These and other noncanonical ways of DNA repair that contribute to mutagenesis, survival, and evolution are reviewed in this manuscript.
Collapse
Affiliation(s)
- Mario Pedraza-Reyes
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Karen Abundiz-Yañez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Alejandra Rangel-Mendoza
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Lissett E. Martínez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Rocío C. Barajas-Ornelas
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Mayra Cuéllar-Cruz
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | | | | | - Luz I. Valenzuela-García
- Department of Sustainable Engineering, Advanced Materials Research Center (CIMAV), Arroyo Seco, Durango, Mexico
| | | |
Collapse
|
12
|
Snoeck S, Guidi C, De Mey M. "Metabolic burden" explained: stress symptoms and its related responses induced by (over)expression of (heterologous) proteins in Escherichia coli. Microb Cell Fact 2024; 23:96. [PMID: 38555441 PMCID: PMC10981312 DOI: 10.1186/s12934-024-02370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Engineering bacterial strains to redirect the metabolism towards the production of a specific product has enabled the development of industrial biotechnology. However, rewiring the metabolism can have severe implications for a microorganism, rendering cells with stress symptoms such as a decreased growth rate, impaired protein synthesis, genetic instability and an aberrant cell size. On an industrial scale, this is reflected in processes that are not economically viable. MAIN TEXT In literature, most stress symptoms are attributed to "metabolic burden", however the actual triggers and stress mechanisms involved are poorly understood. Therefore, in this literature review, we aimed to get a better insight in how metabolic engineering affects Escherichia coli and link the observed stress symptoms to its cause. Understanding the possible implications that chosen engineering strategies have, will help to guide the reader towards optimising the envisioned process more efficiently. CONCLUSION This review addresses the gap in literature and discusses the triggers and effects of stress mechanisms that can be activated when (over)expressing (heterologous) proteins in Escherichia coli. It uncovers that the activation of the different stress mechanisms is complex and that many are interconnected. The reader is shown that care has to be taken when (over)expressing (heterologous) proteins as the cell's metabolism is tightly regulated.
Collapse
Affiliation(s)
- Sofie Snoeck
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium
| | - Chiara Guidi
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium.
| |
Collapse
|
13
|
Kago G, Turnbough CL, Salazar JC, Payne SM. (p)ppGpp is required for virulence of Shigella flexneri. Infect Immun 2024; 92:e0033423. [PMID: 38099658 PMCID: PMC10790822 DOI: 10.1128/iai.00334-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/16/2023] [Indexed: 01/17/2024] Open
Abstract
Infection by the enteric pathogen Shigella flexneri requires transit through the gastrointestinal tract and invasion of and replication within the cells of the host colonic epithelium. This process exposes the pathogen to a range of diverse microenvironments. Furthermore, the unique composition and physical environment of the eukaryotic cell cytosol represents a stressful environment for S. flexneri, and extensive physiological adaptations are needed for the bacterium to thrive. In this work, we show that disrupting synthesis of the stringent response alarmone (p)ppGpp in S. flexneri diminished expression of key virulence genes, including ipaA, ipaB, ipaC, and icsA, and it reduced bacterial invasion and intercellular spread. Deletion of the (p)ppGpp synthase gene relA alone had no effect on S. flexneri virulence, but disruption of both relA and the (p)ppGpp synthase/hydrolase gene spoT resulted in loss of (p)ppGpp synthesis and virulence. While the relA spoT deletion mutant was able to invade a cultured human epithelial cell monolayer, albeit at reduced levels, it was unable to maintain the infection and spread to adjacent cells, as indicated by loss of plaque formation. Complementation with spoT on a plasmid vector restored plaque formation. Thus, SpoT alone is sufficient to provide the necessary level of (p)ppGpp for virulence. These results indicate that (p)ppGpp is required for S. flexneri virulence and adaptation to the intracellular environment, adding to the repertoire of signaling pathways that affect Shigella pathogenesis.
Collapse
Affiliation(s)
- Grace Kago
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Charles L. Turnbough
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Juan Carlos Salazar
- Programa de Microbiología y Micología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Shelley M. Payne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
- John Ring LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
14
|
Anderson SE, Vadia SE, McKelvy J, Levin PA. The transcription factor DksA exerts opposing effects on cell division depending on the presence of ppGpp. mBio 2023; 14:e0242523. [PMID: 37882534 PMCID: PMC10746185 DOI: 10.1128/mbio.02425-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Cell division is a key step in the bacterial lifecycle that must be appropriately regulated to ensure survival. This work identifies the alarmone (p)ppGpp (ppGpp) as a general regulator of cell division, extending our understanding of the role of ppGpp beyond a signal for starvation and other stress. Even in nutrient-replete conditions, basal levels of ppGpp are essential for division to occur appropriately and for cell size to be maintained. This study establishes ppGpp as a "switch" that controls whether the transcription factor DksA behaves as a division activator or inhibitor. This unexpected finding enhances our understanding of the complex regulatory mechanisms employed by bacteria to coordinate division with diverse aspects of cell growth and stress response. Because division is an essential process, a better understanding of the mechanisms governing the assembly and activation of the division machinery could contribute to the development of novel therapeutics to treat bacterial infections.
Collapse
Affiliation(s)
- Sarah E. Anderson
- Department of Biology, Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Stephen E. Vadia
- Department of Biology, Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Jane McKelvy
- Department of Biology, Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Petra Anne Levin
- Department of Biology, Washington University in St. Louis, Saint Louis, Missouri, USA
| |
Collapse
|
15
|
Guiraud P, Germain E, Byrne D, Maisonneuve E. The YmgB-SpoT interaction triggers the stringent response in Escherichia coli. J Biol Chem 2023; 299:105429. [PMID: 37926282 PMCID: PMC10704370 DOI: 10.1016/j.jbc.2023.105429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
Virtually all bacterial species synthesize (p)ppGpp (guanosine penta- or tetraphosphate), a pleiotropic regulator of the so-called stringent response, which controls many aspects of cellular physiology and metabolism. In Escherichia coli, (p)ppGpp levels are controlled by two homologous enzymes: the (p)ppGpp synthetase RelA and the bifunctional synthetase/hydrolase SpoT. We recently identified several protein candidates that can modulate (p)ppGpp levels in E. coli. In this work, we show that the putative two-component system connector protein YmgB can promote SpoT-dependent accumulation of ppGpp in E. coli. Importantly, we determined that the control of SpoT activities by YmgB is independent of its proposed role in the two-component Rcs system, and these two functions can be uncoupled. Using genetic and structure-function analysis, we show that the regulation of SpoT activities by YmgB occurs by functional and direct binding in vivo and in vitro to the TGS and Helical domains of SpoT. These results further support the role of these domains in controlling the reciprocal enzymatic states.
Collapse
Affiliation(s)
- Paul Guiraud
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille Univ (UMR7283), Marseille, France
| | - Elsa Germain
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille Univ (UMR7283), Marseille, France
| | - Deborah Byrne
- Protein Expression Facility, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille Univ, Marseille, France
| | - Etienne Maisonneuve
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille Univ (UMR7283), Marseille, France.
| |
Collapse
|
16
|
Grucela PK, Zhang YE. Basal level of ppGpp coordinates Escherichia coli cell heterogeneity and ampicillin resistance and persistence. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:248-260. [PMID: 37933276 PMCID: PMC10625690 DOI: 10.15698/mic2023.11.808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/20/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
The universal stringent response alarmone ppGpp (guanosine penta and tetra phosphates) plays a crucial role in various aspects of fundamental cell physiology (e.g., cell growth rate, cell size) and thus bacterial tolerance to and survival of external stresses, including antibiotics. Besides transient antibiotic tolerance (persistence), ppGpp was recently found to contribute to E. coli resistance to ampicillin. How ppGpp regulates both the persistence and resistance to antibiotics remains incompletely understood. In this study, we first clarified that the absence of ppGpp in E. coli (ppGpp0 strain) resulted in a decreased minimal inhibition concentration (MIC) value of ampicillin but, surprisingly, a higher persistence level to ampicillin during exponential growth in MOPS rich medium. High basal ppGpp levels, thus lower growth rate, did not produce high ampicillin persistence. Importantly, we found that the high ampicillin persistence of the ppGpp0 strain is not due to dormant overnight carry-over cells. Instead, the absence of ppGpp produced higher cell heterogeneity, propagating during the regrowth and the killing phases, leading to higher ampicillin persistence. Consistently, we isolated a suppressor mutation of the ppGpp0 strain that restored the standard MIC value of ampicillin and reduced its cell heterogeneity and the ampicillin persistence level concomitantly. Altogether, we discussed the fundamental role of basal level of ppGpp in regulating cell homogeneity and ampicillin persistence.
Collapse
Affiliation(s)
| | - Yong Everett Zhang
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
17
|
Bartoli J, Tempier AC, Guzzi NL, Piras CM, Cascales E, Viala JPM. Characterization of a (p)ppApp Synthetase Belonging to a New Family of Polymorphic Toxin Associated with Temperate Phages. J Mol Biol 2023; 435:168282. [PMID: 37730083 DOI: 10.1016/j.jmb.2023.168282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Polymorphic toxins (PTs) are a broad family of toxins involved in interbacterial competition and pathogenesis. PTs are modular proteins that are comprised of a conserved N-terminal domain responsible for its transport, and a variable C-terminal domain bearing toxic activity. Although the mode of transport has yet to be elucidated, a new family of putative PTs containing an N-terminal MuF domain, resembling the Mu coliphage F protein, was identified in prophage genetic elements. The C-terminal toxin domains of these MuF PTs are predicted to bear nuclease, metallopeptidase, ADP-ribosyl transferase and RelA_SpoT activities. In this study, we characterized the MuF-RelA_SpoT toxin associated with the temperate phage of Streptococcus pneumoniae SPNA45. We show that the RelA_SpoT domain has (p)ppApp synthetase activity, which is bactericidal under our experimental conditions. We further determine that the two genes located downstream encode two immunity proteins, one binding to and inactivating the toxin and the other detoxifying the cell via a pppApp hydrolase activity. Finally, based on protein sequence alignments, we propose a signature for (p)ppApp synthetases that distinguishes them from (p)ppGpp synthetases.
Collapse
Affiliation(s)
- Julia Bartoli
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR 7255), Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ., CNRS - 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Audrey C Tempier
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR 7255), Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ., CNRS - 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Noa L Guzzi
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR 7255), Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ., CNRS - 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France. https://twitter.com/NoaGzzi
| | - Chloé M Piras
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR 7255), Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ., CNRS - 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR 7255), Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ., CNRS - 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France. https://twitter.com/CascalesLab
| | - Julie P M Viala
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR 7255), Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ., CNRS - 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France.
| |
Collapse
|
18
|
Cordell WT, Avolio G, Takors R, Pfleger BF. Milligrams to kilograms: making microbes work at scale. Trends Biotechnol 2023; 41:1442-1457. [PMID: 37271589 DOI: 10.1016/j.tibtech.2023.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
If biomanufacturing can become a sustainable route for producing chemicals, it will provide a critical step in reducing greenhouse gas emissions to fight climate change. However, efforts to industrialize microbial synthesis of chemicals have met with varied success, due, in part, to challenges in translating laboratory successes to industrial scale. With a particular focus on Escherichia coli, this review examines the lessons learned when studying microbial physiology and metabolism under conditions that simulate large-scale bioreactors and methods to minimize cellular waste through reduction of maintenance energy, optimizing the stress response and minimizing culture heterogeneity. With general strategies to overcome these challenges, biomanufacturing process scale-up could be de-risked and the time and cost of bringing promising syntheses to market could be reduced.
Collapse
Affiliation(s)
- William T Cordell
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gennaro Avolio
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart 70569, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart 70569, Germany
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Center Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
19
|
Wang M, Tang NY, Xie S, Watt RM. Functional Characterization of Small Alarmone Synthetase and Small Alarmone Hydrolase Proteins from Treponema denticola. Microbiol Spectr 2023; 11:e0510022. [PMID: 37289081 PMCID: PMC10434055 DOI: 10.1128/spectrum.05100-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
The stringent response enables bacteria to survive nutrient starvation, antibiotic challenge, and other threats to cellular survival. Two alarmone (magic spot) second messengers, guanosine pentaphosphate (pppGpp) and guanosine tetraphosphate (ppGpp), which are synthesized by RelA/SpoT homologue (RSH) proteins, play central roles in the stringent response. The pathogenic oral spirochete bacterium Treponema denticola lacks a long-RSH homologue but encodes putative small alarmone synthetase (Tde-SAS, TDE1711) and small alarmone hydrolase (Tde-SAH, TDE1690) proteins. Here, we characterize the respective in vitro and in vivo activities of Tde-SAS and Tde-SAH, which respectively belong to the previously uncharacterized RSH families DsRel and ActSpo2. The tetrameric 410-amino acid (aa) Tde-SAS protein preferentially synthesizes ppGpp over pppGpp and a third alarmone, pGpp. Unlike RelQ homologues, alarmones do not allosterically stimulate the synthetic activities of Tde-SAS. The ~180 aa C-terminal tetratricopeptide repeat (TPR) domain of Tde-SAS acts as a brake on the alarmone synthesis activities of the ~220-aa N-terminal catalytic domain. Tde-SAS also synthesizes "alarmone-like" nucleotides such as adenosine tetraphosphate (ppApp), albeit at considerably lower rates. The 210-aa Tde-SAH protein efficiently hydrolyzes all guanosine and adenosine-based alarmones in a Mn(II) ion-dependent manner. Using a growth assays with a ΔrelAΔspoT strain of Escherichia coli that is deficient in pppGpp/ppGpp synthesis, we demonstrate that Tde-SAS can synthesize alarmones in vivo to restore growth in minimal media. Taken together, our results add to our holistic understanding of alarmone metabolism across diverse bacterial species. IMPORTANCE The spirochete bacterium Treponema denticola is a common component of the oral microbiota. However, it may play important pathological roles in multispecies oral infectious diseases such as periodontitis: a severe and destructive form of gum disease, which is a major cause of tooth loss in adults. The operation of the stringent response, a highly conserved survival mechanism, is known to help many bacterial species cause persistent or virulent infections. By characterizing the biochemical functions of the proteins putatively responsible for the stringent response in T. denticola, we may gain molecular insight into how this bacterium can survive within harsh oral environments and promote infection. Our results also expand our general understanding of proteins that synthesize nucleotide-based intracellular signaling molecules in bacteria.
Collapse
Affiliation(s)
- Miao Wang
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Nga-Yeung Tang
- Department of Pathology and Laboratory Medicine, Beaumont Health, Royal Oak, Michigan, USA
- Department of Pathology and Laboratory Medicine, Oakland University William Beaumont School of Medicine, Auburn Hills, Michigan, USA
| | - Shujie Xie
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Rory M. Watt
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| |
Collapse
|
20
|
Riffaud CM, Rucks EA, Ouellette SP. Persistence of obligate intracellular pathogens: alternative strategies to overcome host-specific stresses. Front Cell Infect Microbiol 2023; 13:1185571. [PMID: 37284502 PMCID: PMC10239878 DOI: 10.3389/fcimb.2023.1185571] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
In adapting to the intracellular niche, obligate intracellular bacteria usually undergo a reduction of genome size by eliminating genes not needed for intracellular survival. These losses can include, for example, genes involved in nutrient anabolic pathways or in stress response. Living inside a host cell offers a stable environment where intracellular bacteria can limit their exposure to extracellular effectors of the immune system and modulate or outright inhibit intracellular defense mechanisms. However, highlighting an area of vulnerability, these pathogens are dependent on the host cell for nutrients and are very sensitive to conditions that limit nutrient availability. Persistence is a common response shared by evolutionarily divergent bacteria to survive adverse conditions like nutrient deprivation. Development of persistence usually compromises successful antibiotic therapy of bacterial infections and is associated with chronic infections and long-term sequelae for the patients. During persistence, obligate intracellular pathogens are viable but not growing inside their host cell. They can survive for a long period of time such that, when the inducing stress is removed, reactivation of their growth cycles resumes. Given their reduced coding capacity, intracellular bacteria have adapted different response mechanisms. This review gives an overview of the strategies used by the obligate intracellular bacteria, where known, which, unlike model organisms such as E. coli, often lack toxin-antitoxin systems and the stringent response that have been linked to a persister phenotype and amino acid starvation states, respectively.
Collapse
|
21
|
Anderson SE, Vadia SE, McKelvy J, Levin PA. The transcription factor DksA exerts opposing effects on cell division depending on the presence of ppGpp. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540843. [PMID: 37293059 PMCID: PMC10245573 DOI: 10.1101/2023.05.15.540843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial cell size is a multifactorial trait that is influenced by variables including nutritional availability and the timing of cell division. Prior work revealed a negative correlation between the alarmone (p)ppGpp (ppGpp) and cell length in Escherichia coli , suggesting that ppGpp may promote assembly of the division machinery (divisome) and cytokinesis in this organism. To clarify this counterintuitive connection between a starvation induced stress response effector and cell proliferation, we undertook a systematic analysis of growth and division in E. coli cells defective in ppGpp synthesis and/or engineered to overproduce the alarmone. Our data indicate that ppGpp acts indirectly on divisome assembly through its role as a global mediator of transcription. Loss of either ppGpp (ppGpp 0 ) or the ppGpp-associated transcription factor DksA led to increased average length, with ppGpp 0 mutants also exhibiting a high frequency of extremely long filamentous cells. Using heat-sensitive division mutants and fluorescently labeled division proteins, we confirmed that ppGpp and DksA are cell division activators. We found that ppGpp and DksA regulate division through their effects on transcription, although the lack of known division genes or regulators in available transcriptomics data strongly suggests that this regulation is indirect. Surprisingly, we also found that DksA inhibits division in ppGpp 0 cells, contrary to its role in a wild-type background. We propose that the ability of ppGpp to switch DksA from a division inhibitor to a division activator helps tune cell length across different concentrations of ppGpp. Importance Cell division is a key step in the bacterial lifecycle that must be appropriately regulated to ensure survival. This work identifies the alarmone ppGpp as a general regulator of cell division, extending our understanding of the role of ppGpp beyond a signal for starvation and other stress. Even in nutrient replete conditions, basal levels of ppGpp are essential for division to occur appropriately and for cell size to be maintained. This study establishes ppGpp as a "switch" that controls whether the transcription factor DksA behaves as a division activator or inhibitor. This unexpected finding enhances our understanding of the complex regulatory mechanisms employed by bacteria to coordinate division with diverse aspects of cell growth and stress response. Because division is an essential process, a better understanding the mechanisms governing assembly and activation of the division machinery could contribute to the development of novel therapeutics to treat bacterial infections.
Collapse
|
22
|
Weaver JW, Proshkin S, Duan W, Epshtein V, Gowder M, Bharati BK, Afanaseva E, Mironov A, Serganov A, Nudler E. Control of transcription elongation and DNA repair by alarmone ppGpp. Nat Struct Mol Biol 2023; 30:600-607. [PMID: 36997761 PMCID: PMC10191844 DOI: 10.1038/s41594-023-00948-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/27/2023] [Indexed: 04/01/2023]
Abstract
Second messenger (p)ppGpp (collectively guanosine tetraphosphate and guanosine pentaphosphate) mediates bacterial adaptation to nutritional stress by modulating transcription initiation. More recently, ppGpp has been implicated in coupling transcription and DNA repair; however, the mechanism of ppGpp engagement remained elusive. Here we present structural, biochemical and genetic evidence that ppGpp controls Escherichia coli RNA polymerase (RNAP) during elongation via a specific site that is nonfunctional during initiation. Structure-guided mutagenesis renders the elongation (but not initiation) complex unresponsive to ppGpp and increases bacterial sensitivity to genotoxic agents and ultraviolet radiation. Thus, ppGpp binds RNAP at sites with distinct functions in initiation and elongation, with the latter being important for promoting DNA repair. Our data provide insights on the molecular mechanism of ppGpp-mediated adaptation during stress, and further highlight the intricate relationships between genome stability, stress responses and transcription.
Collapse
Affiliation(s)
- Jacob W Weaver
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Sergey Proshkin
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow, Russia
| | - Wenqian Duan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Vitaly Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Manjunath Gowder
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Binod K Bharati
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Elena Afanaseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow, Russia
| | - Alexander Mironov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow, Russia
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
23
|
Ospino K, Spira B. Glyphosate affects persistence and tolerance but not antibiotic resistance. BMC Microbiol 2023; 23:61. [PMID: 36882692 PMCID: PMC9990207 DOI: 10.1186/s12866-023-02804-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Glyphosate is a herbicide widely used in food production that blocks the synthesis of aromatic amino acids in plants and in microorganisms and also induces the accumulation of the alarmone (p)ppGpp. The purpose of this study was to investigate whether glyphosate affects the resistance, tolerance or persistence of bacteria towards three different classes of antibiotics and the possible role of (p)ppGpp in this activity. Glyphosate did not affect the minimum inhibitory concentration of the tested antibiotics, but enhanced bacterial tolerance and/or persistence towards them. The upshift in ciprofloxacin and kanamycin tolerance was partially dependent on the presence of relA that promotes (p)ppGpp accumulation in response to glyphosate. Conversely, the strong increase in ampicillin tolerance caused by glyphosate was independent of relA. We conclude that by inducing aromatic amino acid starvation glyphosate contributes to the temporary increase in E. coli tolerance or persistence, but does not affect antibiotic resistance.
Collapse
Affiliation(s)
- Katia Ospino
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Beny Spira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
24
|
Tamman H, Ernits K, Roghanian M, Ainelo A, Julius C, Perrier A, Talavera A, Ainelo H, Dugauquier R, Zedek S, Thureau A, Pérez J, Lima-Mendez G, Hallez R, Atkinson GC, Hauryliuk V, Garcia-Pino A. Structure of SpoT reveals evolutionary tuning of catalysis via conformational constraint. Nat Chem Biol 2023; 19:334-345. [PMID: 36470996 PMCID: PMC9974481 DOI: 10.1038/s41589-022-01198-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/05/2022] [Indexed: 12/12/2022]
Abstract
Stringent factors orchestrate bacterial cell reprogramming through increasing the level of the alarmones (p)ppGpp. In Beta- and Gammaproteobacteria, SpoT hydrolyzes (p)ppGpp to counteract the synthetase activity of RelA. However, structural information about how SpoT controls the levels of (p)ppGpp is missing. Here we present the crystal structure of the hydrolase-only SpoT from Acinetobacter baumannii and uncover the mechanism of intramolecular regulation of 'long'-stringent factors. In contrast to ribosome-associated Rel/RelA that adopt an elongated structure, SpoT assumes a compact τ-shaped structure in which the regulatory domains wrap around a Core subdomain that controls the conformational state of the enzyme. The Core is key to the specialization of long RelA-SpoT homologs toward either synthesis or hydrolysis: the short and structured Core of SpoT stabilizes the τ-state priming the hydrolase domain for (p)ppGpp hydrolysis, whereas the longer, more dynamic Core domain of RelA destabilizes the τ-state priming the monofunctional RelA for efficient (p)ppGpp synthesis.
Collapse
Affiliation(s)
- Hedvig Tamman
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium.
| | - Karin Ernits
- Department of Experimental Medicine, University of Lund, Lund, Sweden
- Department of Chemistry, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Mohammad Roghanian
- Department of Experimental Medicine, University of Lund, Lund, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Departement of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Andres Ainelo
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
| | | | - Anthony Perrier
- Biology of Microorganisms Research Unit, Namur Research Institute for Life Science, University of Namur, Namur, Belgium
- Bacterial Cell Cycle and Development, Biology of Microorganisms Research Unit, Namur Research Institute for Life Science, University of Namur, Namur, Belgium
| | - Ariel Talavera
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
| | - Hanna Ainelo
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
| | - Rémy Dugauquier
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
- Biology of Microorganisms Research Unit, Namur Research Institute for Life Science, University of Namur, Namur, Belgium
| | - Safia Zedek
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
| | | | - Javier Pérez
- Synchrotron SOLEIL, Saint-Aubin - BP 48, Gif sur Yvette, France
| | - Gipsi Lima-Mendez
- Biology of Microorganisms Research Unit, Namur Research Institute for Life Science, University of Namur, Namur, Belgium
| | - Régis Hallez
- Biology of Microorganisms Research Unit, Namur Research Institute for Life Science, University of Namur, Namur, Belgium
- Bacterial Cell Cycle and Development, Biology of Microorganisms Research Unit, Namur Research Institute for Life Science, University of Namur, Namur, Belgium
- WELBIO, Brussels, Belgium
| | - Gemma C Atkinson
- Department of Experimental Medicine, University of Lund, Lund, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Vasili Hauryliuk
- Department of Experimental Medicine, University of Lund, Lund, Sweden.
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- University of Tartu, Institute of Technology, Tartu, Estonia.
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium.
- WELBIO, Brussels, Belgium.
| |
Collapse
|
25
|
tRNAs Are Stable After All: Pitfalls in Quantification of tRNA from Starved Escherichia coli Cultures Exposed by Validation of RNA Purification Methods. mBio 2023; 14:e0280522. [PMID: 36598190 PMCID: PMC9973347 DOI: 10.1128/mbio.02805-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
tRNAs and ribosomal RNAs are often considered stable RNAs. In contrast to this view, we recently proposed that tRNAs are degraded during amino acid starvation and drug-induced transcription inhibition. However, reevaluation of our experimental approach revealed that common RNA extraction methods suffer from alarming extraction and size biases that can lead to gross underestimation of RNA levels in starved Escherichia coli populations. Quantification of tRNAs suffers additional biases due to differing fractions of tRNAs with base modifications in growing versus starved bacteria. Applying an improved methodology, we measured tRNA levels after starvation for amino acids, glucose, phosphate, or ammonium and transcription inhibition by rifampicin. We report that tRNA levels remain largely unaffected in all tested conditions, including several days of starvation. This confirms that tRNAs are remarkably stable RNAs and serves as a cautionary tale about quantification of RNA from cells cultured outside the steady-state growth regime. rRNA, conversely, is extensively degraded during starvation. Thus, E. coli downregulates the translation machinery in response to starvation by reducing the ribosome pool through rRNA degradation, while a high concentration of tRNAs available to supply amino acids to the remaining ribosomes is maintained. IMPORTANCE We show that E. coli tRNAs are remarkably stable during several days of nutrient starvation, although rRNA is degraded extensively under these conditions. The levels of these two major RNA classes are considered to be strongly coregulated at the level of transcription. We demonstrate that E. coli can control the ratio of tRNAs per ribosome under starvation by means of differential degradation rates. The question of tRNA stability in stressed E. coli cells has become subject to debate. Our in-depth analysis of RNA quantification methods reveals hidden technical pitfalls at every step of the analysis, from RNA extraction to target detection and normalization. Most importantly, starved E. coli populations were more resilient to RNA extraction than unstarved populations. The current results underscore that the seemingly trivial task of quantifying an abundant RNA species is not straightforward for cells cultured outside the exponential growth regime.
Collapse
|
26
|
Ainelo A, Caballero-Montes J, Bulvas O, Ernits K, Coppieters ‘t Wallant K, Takada H, Craig SZ, Mazzucchelli G, Zedek S, Pichová I, Atkinson GC, Talavera A, Martens C, Hauryliuk V, Garcia-Pino A. The structure of DarB in complex with Rel NTD reveals nonribosomal activation of Rel stringent factors. SCIENCE ADVANCES 2023; 9:eade4077. [PMID: 36652515 PMCID: PMC9848473 DOI: 10.1126/sciadv.ade4077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Rel stringent factors are bifunctional ribosome-associated enzymes that catalyze both synthesis and hydrolysis of the alarmones (p)ppGpp. Besides the allosteric control by starved ribosomes and (p)ppGpp, Rel is regulated by various protein factors depending on specific stress conditions, including the c-di-AMP-binding protein DarB. However, how these effector proteins control Rel remains unknown. We have determined the crystal structure of the DarB2:RelNTD2 complex, uncovering that DarB directly engages the SYNTH domain of Rel to stimulate (p)ppGpp synthesis. This association with DarB promotes a SYNTH-primed conformation of the N-terminal domain region, markedly increasing the affinity of Rel for ATP while switching off the hydrolase activity of the enzyme. Binding to c-di-AMP rigidifies DarB, imposing an entropic penalty that precludes DarB-mediated control of Rel during normal growth. Our experiments provide the basis for understanding a previously unknown mechanism of allosteric regulation of Rel stringent factors independent of amino acid starvation.
Collapse
Affiliation(s)
- Andres Ainelo
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles 10 (ULB), Boulevard du Triomphe, Building BC (1C4 203), 1050 Brussels, Belgium
| | - Julien Caballero-Montes
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles 10 (ULB), Boulevard du Triomphe, Building BC (1C4 203), 1050 Brussels, Belgium
| | - Ondřej Bulvas
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Karin Ernits
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Kyo Coppieters ‘t Wallant
- Centre for Structural Biology and Bioinformatics, Universite Libre de Bruxelles (ULB), Boulevard du Triomphe, Building BC, 1050 Bruxelles, Belgium
| | - Hiraku Takada
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Sophie Z. Craig
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles 10 (ULB), Boulevard du Triomphe, Building BC (1C4 203), 1050 Brussels, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, Liège Université, B-4000 Liège, Belgium
| | - Safia Zedek
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles 10 (ULB), Boulevard du Triomphe, Building BC (1C4 203), 1050 Brussels, Belgium
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Gemma C. Atkinson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Ariel Talavera
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles 10 (ULB), Boulevard du Triomphe, Building BC (1C4 203), 1050 Brussels, Belgium
| | - Chloe Martens
- Centre for Structural Biology and Bioinformatics, Universite Libre de Bruxelles (ULB), Boulevard du Triomphe, Building BC, 1050 Bruxelles, Belgium
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles 10 (ULB), Boulevard du Triomphe, Building BC (1C4 203), 1050 Brussels, Belgium
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| |
Collapse
|
27
|
Lee JB, Kim SK, Han D, Yoon JW. Mutating both relA and spoT of enteropathogenic Escherichia coli E2348/69 attenuates its virulence and induces interleukin 6 in vivo. Front Microbiol 2023; 14:1121715. [PMID: 36937293 PMCID: PMC10017862 DOI: 10.3389/fmicb.2023.1121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Here, we report for the first time that disrupting both relA and spoT genes in enteropathogenic Escherichia coli E2348/69 can attenuate its virulence and significantly induce interleukin 6 (IL-6) in vivo. Our experimental analyses demonstrated that an E2348/69 ΔrelAΔspoT double mutant strain derepressed the expression of type IV bundle forming pilus (BFP) and repressed the expression of glutamate decarboxylase (GAD) and locus of enterocyte effacement (LEE). Whole genome-scale transcriptomic analysis revealed that 1,564 EPEC genes were differentially expressed in the ΔrelAΔspoT double mutant strain (cut-off > two-fold). Such depletion of relA and spoT attenuated the virulence of E2348/69 in a Caenorhabditis elegans infection model. Surprisingly, IL-6 was highly induced in porcine macrophages infected with the ΔrelAΔspoT double mutant strain compared to those with its wildtype strain. Coinciding with these in vitro results, in vivo murine peritoneal challenge assays showed high increase of IL-6 and improved bacterial clearance in response to infection by the ΔrelAΔspoT double mutant strain. Taken together, our data suggest that relA and spoT play an essential role in regulating biological processes during EPEC pathogenesis and that their depletion can affect host immune responses by inducing IL-6.
Collapse
|
28
|
Huang C, Meng J, Li W, Chen J. Similar and Divergent Roles of Stringent Regulator (p)ppGpp and DksA on Pleiotropic Phenotype of Yersinia enterocolitica. Microbiol Spectr 2022; 10:e0205522. [PMID: 36409141 PMCID: PMC9769547 DOI: 10.1128/spectrum.02055-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
Stringent response plays an important role in the response of Enterobacteriaceae pathogens to rapid environmental changes. It has been shown that synergistic and antagonistic actions exist between the signaling molecules (p)ppGpp and DksA in several foodborne pathogens; however, the biological function of these molecules and their interactions in Yersinia are still unclear. This study systematically investigated the role of stringent response in Yersinia enterocolitica, a typical foodborne Enterobacteriaceae pathogen, by deleting the (p)ppGpp and DksA biosynthesis genes. (p)ppGpp and DksA copositively regulated most phenotypes, such as motility, antibiotic resistance, and tolerance to oxidative stress, whereas they exhibited independent and/or divergent roles in the growth and biofilm synthesis of Y. enterocolitica. Gene expression analysis revealed that (p)ppGpp- and DksA-deficiency reduced the transcription of flagellar synthesis genes (fliC and flgD) and biofilm synthesis genes (bssS and hmsHFRS), which could potentially contribute to changes in motility and biofilm formation. These results indicate that stringent response regulators (p)ppGpp and DksA have a synergistic role and independent or even completely opposite biological functions in regulating genes and phenotypes of Y. enterocolitica. Our findings revealed the biofunctional relationships between (p)ppGpp and DksA and the underlying molecular mechanisms in the regulation of the pathogenic phenotype of Y. enterocolitica. IMPORTANCE The synergetic actions between the stringent response signaling molecules, (p)ppGpp and DksA, have been widely reported. However, recent transcriptomic and phenotypic studies have suggested that independent or even opposite actions exist between them. In this study, we demonstrated that the knockout of (p)ppGpp and DksA affects the polymorphic phenotype of Yersinia enterocolitica. Although most of the tested phenotypes, such as motility, antibiotic resistance, and tolerance to oxidative stress, were copositively regulated by (p)ppGpp and DksA, it also showed inconsistencies in biofilm formation ability as well as some independent phenotypes. This study deepens our understanding of the strategies of foodborne pathogens to survive in complex environments, so as to provide theoretical basis for the control and treatment of these microorganisms.
Collapse
Affiliation(s)
- Can Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Jiao Meng
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, People’s Republic of China
| | - Wenqian Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Jingyu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
29
|
Metabolic Promiscuity of an Orphan Small Alarmone Hydrolase Facilitates Bacterial Environmental Adaptation. mBio 2022; 13:e0242222. [PMID: 36472432 PMCID: PMC9765508 DOI: 10.1128/mbio.02422-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Small alarmone hydrolases (SAHs) are alarmone metabolizing enzymes found in both metazoans and bacteria. In metazoans, the SAH homolog Mesh1 is reported to function in cofactor metabolism by hydrolyzing NADPH to NADH. In bacteria, SAHs are often identified in genomes with toxic alarmone synthetases for self-resistance. Here, we characterized a bacterial orphan SAH, i.e., without a toxic alarmone synthetase, in the phytopathogen Xanthomonas campestris pv. campestris (XccSAH) and found that it metabolizes both cellular alarmones and cofactors. In vitro, XccSAH displays abilities to hydrolyze multiple nucleotides, including pppGpp, ppGpp, pGpp, pppApp, and NADPH. In vivo, X. campestris pv. campestris cells lacking sah accumulated higher levels of cellular (pp)pGpp and NADPH compared to wild-type cells upon amino acid starvation. In addition, X. campestris pv. campestris mutants lacking sah were more sensitive to killing by Pseudomonas during interbacterial competition. Interestingly, loss of sah also resulted in reduced growth in amino acid-replete medium, a condition that did not induce (pp)pGpp or pppApp accumulation. Further metabolomic characterization revealed strong depletion of NADH levels in the X. campestris pv. campestris mutant lacking sah, suggesting that NADPH/NADH regulation is an evolutionarily conserved function of both bacterial and metazoan SAHs and Mesh1. Overall, our work demonstrates a regulatory role of bacterial SAHs as tuners of stress responses and metabolism, beyond functioning as antitoxins. IMPORTANCE Small alarmone hydrolases (SAHs) comprise a widespread family of alarmone metabolizing enzymes. In metazoans, SAHs have been reported to control multiple aspects of physiology and stress resistance through alarmone and NADPH metabolisms, but their physiological functions in bacteria is mostly uncharacterized except for a few reports as antitoxins. Here, we identified an SAH functioning independently of toxins in the phytopathogen Xanthomonas campestris pv. campestris. We found that XccSAH hydrolyzed multiple alarmones and NADPH in vitro, and X. campestris pv. campestris mutants lacking sah displayed increased alarmone levels during starvation, loss of interspecies competitive fitness, growth defects, and strong reduction in NADH. Our findings reveal the importance of NADPH hydrolysis by a bacterial SAH. Our work is also the first report of significant physiological roles of bacterial SAHs beyond functioning as antitoxins and suggests that SAHs have far broader physiological roles and share similar functions across domains of life.
Collapse
|
30
|
Feedforward growth rate control mitigates gene activation burden. Nat Commun 2022; 13:7054. [PMID: 36396941 PMCID: PMC9672102 DOI: 10.1038/s41467-022-34647-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Heterologous gene activation causes non-physiological burden on cellular resources that cells are unable to adjust to. Here, we introduce a feedforward controller that actuates growth rate upon activation of a gene of interest (GOI) to compensate for such a burden. The controller achieves this by activating a modified SpoT enzyme (SpoTH) with sole hydrolysis activity, which lowers ppGpp level and thus increases growth rate. An inducible RelA+ expression cassette further allows to precisely set the basal level of ppGpp, and thus nominal growth rate, in any bacterial strain. Without the controller, activation of the GOI decreased growth rate by more than 50%. With the controller, we could activate the GOI to the same level without growth rate defect. A cell strain armed with the controller in co-culture enabled persistent population-level activation of a GOI, which could not be achieved by a strain devoid of the controller. The feedforward controller is a tunable, modular, and portable tool that allows dynamic gene activation without growth rate defects for bacterial synthetic biology applications.
Collapse
|
31
|
Fernández-Vázquez J, Cabrer-Panes JD, Åberg A, Juárez A, Madrid C, Gaviria-Cantin T, Fernández-Coll L, Vargas-Sinisterra AF, Jiménez CJ, Balsalobre C. ppGpp, the General Stress Response Alarmone, Is Required for the Expression of the α-Hemolysin Toxin in the Uropathogenic Escherichia coli Isolate, J96. Int J Mol Sci 2022; 23:ijms232012256. [PMID: 36293122 PMCID: PMC9602796 DOI: 10.3390/ijms232012256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/08/2022] Open
Abstract
ppGpp is an intracellular sensor that, in response to different types of stress, coordinates the rearrangement of the gene expression pattern of bacteria to promote adaptation and survival to new environmental conditions. First described to modulate metabolic adaptive responses, ppGpp modulates the expression of genes belonging to very diverse functional categories. In Escherichia coli, ppGpp regulates the expression of cellular factors that are important during urinary tract infections. Here, we characterize the role of this alarmone in the regulation of the hlyCABDII operon of the UPEC isolate J96, encoding the toxin α-hemolysin that induces cytotoxicity during infection of bladder epithelial cells. ppGpp is required for the expression of the α-hemolysin encoded in hlyCABDII by stimulating its transcriptional expression. Prototrophy suppressor mutations in a ppGpp-deficient strain restore the α-hemolysin expression from this operon to wild-type levels, confirming the requirement of ppGpp for its expression. ppGpp stimulates hlyCABDII expression independently of RpoS, RfaH, Zur, and H-NS. The expression of hlyCABDII is promoted at 37 °C and at low osmolarity. ppGpp is required for the thermoregulation but not for the osmoregulation of the hlyCABDII operon. Studies in both commensal and UPEC isolates demonstrate that no UPEC specific factor is strictly required for the ppGpp-mediated regulation described. Our data further support the role of ppGpp participating in the coordinated regulation of the expression of bacterial factors required during infection.
Collapse
Affiliation(s)
- Jorge Fernández-Vázquez
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Juan David Cabrer-Panes
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Anna Åberg
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Antonio Juárez
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Cristina Madrid
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Tania Gaviria-Cantin
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Llorenç Fernández-Coll
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | | | - Carlos Jonay Jiménez
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Carlos Balsalobre
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-034-622
| |
Collapse
|
32
|
Bai K, Jiang N, Chen X, Xu X, Li J, Luo L. RNA-Seq Analysis Discovers the Critical Role of Rel in ppGpp Synthesis, Pathogenicity, and the VBNC State of Clavibacter michiganensis. PHYTOPATHOLOGY 2022; 112:1844-1858. [PMID: 35341314 DOI: 10.1094/phyto-01-22-0023-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The viable but nonculturable (VBNC) state is a unique survival strategy of bacteria in response to stress conditions. It was confirmed that Clavibacter michiganensis, the causal agent of bacterial canker in tomato, could be induced into the VBNC state by exposure to CuSO4 in an oligotrophic solution. RNA-sequencing analysis was used to monitor the mechanisms of the VBNC state during CuSO4 induction in C. michiganensis. The results identified that numerous genes involved in stringent response, copper resistance, and stress resistance were upregulated, and some involved in cell division were downregulated significantly. The study investigated the importance of Rel, which is an essential enzyme in the synthesis of the molecular alarmone ppGpp, via the generation of a Δrel mutant and its complementation strain. Biological characterization revealed that deficiency of rel reduced the bacterial growth, production of exopolysaccharides, and pathogenicity as well as ppGpp production. The Δrel mutant increased the sensitivity to environmental stress, exhibiting reduced growth on minimal media and a propensity to enter the VBNC state in response to CuSO4. These findings have important implications for the understanding of survival mechanism and management of C. michiganensis and other phytopathogenic bacteria.
Collapse
Affiliation(s)
- Kaihong Bai
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Na Jiang
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Xing Chen
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Xiaoli Xu
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Jianqiang Li
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| | - Laixin Luo
- Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, 100193, P.R. China
| |
Collapse
|
33
|
Wu C, Balakrishnan R, Braniff N, Mori M, Manzanarez G, Zhang Z, Hwa T. Cellular perception of growth rate and the mechanistic origin of bacterial growth law. Proc Natl Acad Sci U S A 2022; 119:e2201585119. [PMID: 35544692 PMCID: PMC9171811 DOI: 10.1073/pnas.2201585119] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/30/2022] [Indexed: 02/08/2023] Open
Abstract
Many cellular activities in bacteria are organized according to their growth rate. The notion that ppGpp measures the cell’s growth rate is well accepted in the field of bacterial physiology. However, despite decades of interrogation and the identification of multiple molecular interactions that connects ppGpp to some aspects of cell growth, we lack a system-level, quantitative picture of how this alleged “measurement” is performed. Through quantitative experiments, we show that the ppGpp pool responds inversely to the rate of translational elongation in Escherichia coli. Together with its roles in inhibiting ribosome biogenesis and activity, ppGpp closes a key regulatory circuit that enables the cell to perceive and control the rate of its growth across conditions. The celebrated linear growth law relating the ribosome content and growth rate emerges as a consequence of keeping a supply of ribosome reserves while maintaining elongation rate in slow growth conditions. Further analysis suggests the elongation rate itself is detected by sensing the ratio of dwelling and translocating ribosomes, a strategy employed to collapse the complex, high-dimensional dynamics of the molecular processes underlying cell growth to perceive the physiological state of the whole.
Collapse
Affiliation(s)
- Chenhao Wu
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Rohan Balakrishnan
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Nathan Braniff
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Matteo Mori
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Gabriel Manzanarez
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Zhongge Zhang
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Terence Hwa
- Department of Physics, University of California San Diego, La Jolla, CA 92093
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
34
|
Adenosine Awakens Metabolism to Enhance Growth-Independent Killing of Tolerant and Persister Bacteria across Multiple Classes of Antibiotics. mBio 2022; 13:e0048022. [PMID: 35575513 PMCID: PMC9239199 DOI: 10.1128/mbio.00480-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Metabolic and growth arrest are primary drivers of antibiotic tolerance and persistence in clinically diverse bacterial pathogens. We recently showed that adenosine (ADO) suppresses bacterial growth under nutrient-limiting conditions. In the current study, we show that despite the growth-suppressive effect of ADO, extracellular ADO enhances antibiotic killing in both Gram-negative and Gram-positive bacteria by up to 5 orders of magnitude. The ADO-potentiated antibiotic activity is dependent on purine salvage and is paralleled with a suppression of guanosine tetraphosphate synthesis and the massive accumulation of ATP and GTP. These changes in nucleoside phosphates coincide with transient increases in rRNA transcription and proton motive force. The potentiation of antibiotic killing by ADO is manifested against bacteria grown under both aerobic and anaerobic conditions, and it is exhibited even in the absence of alternative electron acceptors such as nitrate. ADO potentiates antibiotic killing by generating proton motive force and can occur independently of an ATP synthase. Bacteria treated with an uncoupler of oxidative phosphorylation and NADH dehydrogenase-deficient bacteria are refractory to the ADO-potentiated killing, suggesting that the metabolic awakening induced by this nucleoside is intrinsically dependent on an energized membrane. In conclusion, ADO represents a novel example of metabolite-driven but growth-independent means to reverse antibiotic tolerance. Our investigations identify the purine salvage pathway as a potential target for the development of therapeutics that may improve infection clearance while reducing the emergence of antibiotic resistance. IMPORTANCE Antibiotic tolerance, which is a hallmark of persister bacteria, contributes to treatment-refractory infections and the emergence of heritable antimicrobial resistance. Drugs that reverse tolerance and persistence may become part of the arsenal to combat antimicrobial resistance. Here, we demonstrate that salvage of extracellular ADO reduces antibiotic tolerance in nutritionally stressed Escherichia coli, Salmonella enterica, and Staphylococcus aureus. ADO potentiates bacterial killing under aerobic and anaerobic conditions and takes place in bacteria lacking the ATP synthase. However, the sensitization to antibiotic killing elicited by ADO requires an intact NADH dehydrogenase, suggesting a requirement for an energized electron transport chain. ADO antagonizes antibiotic tolerance by activating ATP and GTP synthesis, promoting proton motive force and cellular respiration while simultaneously suppressing the stringent response. These investigations reveal an unprecedented role for purine salvage stimulation as a countermeasure of antibiotic tolerance and the emergence of antimicrobial resistance.
Collapse
|
35
|
Reyes-González D, De Luna-Valenciano H, Utrilla J, Sieber M, Peña-Miller R, Fuentes-Hernández A. Dynamic proteome allocation regulates the profile of interaction of auxotrophic bacterial consortia. ROYAL SOCIETY OPEN SCIENCE 2022; 9:212008. [PMID: 35592760 PMCID: PMC9066302 DOI: 10.1098/rsos.212008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/25/2022] [Indexed: 05/03/2023]
Abstract
Microbial ecosystems are composed of multiple species in constant metabolic exchange. A pervasive interaction in microbial communities is metabolic cross-feeding and occurs when the metabolic burden of producing costly metabolites is distributed between community members, in some cases for the benefit of all interacting partners. In particular, amino acid auxotrophies generate obligate metabolic inter-dependencies in mixed populations and have been shown to produce a dynamic profile of interaction that depends upon nutrient availability. However, identifying the key components that determine the pair-wise interaction profile remains a challenging problem, partly because metabolic exchange has consequences on multiple levels, from allocating proteomic resources at a cellular level to modulating the structure, function and stability of microbial communities. To evaluate how ppGpp-mediated resource allocation drives the population-level profile of interaction, here we postulate a multi-scale mathematical model that incorporates dynamics of proteome partition into a population dynamics model. We compare our computational results with experimental data obtained from co-cultures of auxotrophic Escherichia coli K12 strains under a range of amino acid concentrations and population structures. We conclude by arguing that the stringent response promotes cooperation by inhibiting the growth of fast-growing strains and promoting the synthesis of metabolites essential for other community members.
Collapse
Affiliation(s)
- D. Reyes-González
- Synthetic Biology Program, Center for Genomic Sciences, Universidad Autónoma de México, 62220 Cuernavaca, Mexico
| | - H. De Luna-Valenciano
- Synthetic Biology Program, Center for Genomic Sciences, Universidad Autónoma de México, 62220 Cuernavaca, Mexico
- Systems Biology Program, Center for Genomic Sciences, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mexico
| | - J. Utrilla
- Synthetic Biology Program, Center for Genomic Sciences, Universidad Autónoma de México, 62220 Cuernavaca, Mexico
| | - M. Sieber
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - R. Peña-Miller
- Systems Biology Program, Center for Genomic Sciences, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mexico
| | - A. Fuentes-Hernández
- Synthetic Biology Program, Center for Genomic Sciences, Universidad Autónoma de México, 62220 Cuernavaca, Mexico
| |
Collapse
|
36
|
Ge Z, Yuan P, Chen L, Chen J, Shen D, She Z, Lu Y. New Global Insights on the Regulation of the Biphasic Life Cycle and Virulence Via ClpP-Dependent Proteolysis in Legionella pneumophila. Mol Cell Proteomics 2022; 21:100233. [PMID: 35427813 PMCID: PMC9112007 DOI: 10.1016/j.mcpro.2022.100233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/17/2022] [Accepted: 04/07/2022] [Indexed: 01/11/2023] Open
Abstract
Legionella pneumophila, an environmental bacterium that parasitizes protozoa, causes Legionnaires’ disease in humans that is characterized by severe pneumonia. This bacterium adopts a distinct biphasic life cycle consisting of a nonvirulent replicative phase and a virulent transmissive phase in response to different environmental conditions. Hence, the timely and fine-tuned expression of growth and virulence factors in a life cycle–dependent manner is crucial for survival and replication. Here, we report that the completion of the biphasic life cycle and bacterial pathogenesis is greatly dependent on the protein homeostasis regulated by caseinolytic protease P (ClpP)-dependent proteolysis. We characterized the ClpP-dependent dynamic profiles of the regulatory and substrate proteins during the biphasic life cycle of L. pneumophila using proteomic approaches and discovered that ClpP-dependent proteolysis specifically and conditionally degraded the substrate proteins, thereby directly playing a regulatory role or indirectly controlling cellular events via the regulatory proteins. We further observed that ClpP-dependent proteolysis is required to monitor the abundance of fatty acid biosynthesis–related protein Lpg0102/Lpg0361/Lpg0362 and SpoT for the normal regulation of L. pneumophila differentiation. We also found that the control of the biphasic life cycle and bacterial virulence is independent. Furthermore, the ClpP-dependent proteolysis of Dot/Icm (defect in organelle trafficking/intracellular multiplication) type IVB secretion system and effector proteins at a specific phase of the life cycle is essential for bacterial pathogenesis. Therefore, our findings provide novel insights on ClpP-dependent proteolysis, which spans a broad physiological spectrum involving key metabolic pathways that regulate the transition of the biphasic life cycle and bacterial virulence of L. pneumophila, facilitating adaptation to aquatic and intracellular niches. ClpP is the major determinant of biphasic life cycle–dependent protein turnover. ClpP-dependent proteolysis monitors SpoT abundance for cellular differentiation. ClpP-dependent regulation of life cycle and bacterial virulence is independent. ClpP-dependent proteolysis of T4BSS and effector proteins is vital for virulence.
Collapse
Affiliation(s)
- Zhenhuang Ge
- School of Chemistry, Sun Yat-sen University, Guangzhou, China; School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou, China
| | - Peibo Yuan
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lingming Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junyi Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou, China
| | - Dong Shen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yongjun Lu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
37
|
Genome-Wide Identification of Pseudomonas aeruginosa Genes Important for Desiccation Tolerance on Inanimate Surfaces. mSystems 2022; 7:e0011422. [PMID: 35469420 PMCID: PMC9239045 DOI: 10.1128/msystems.00114-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen prevalent in the environment and in health care settings. Transmission in the health care setting occurs through human-human interactions and/or contact with contaminated surfaces. Moist surfaces such as respirators, sink and tub drains, and even disinfectants can serve as reservoirs. Dry surfaces such as plastic and stainless steel could also serve as a reservoir but would necessitate some degree of tolerance to desiccation. Using an assay to measure P. aeruginosa tolerance to desiccation on plastic and stainless-steel surfaces, we found that only 0.05 to 0.1% of the desiccated cells could be recovered 24 h postdesiccation. We took advantage of the strong selection imposed by desiccation to identify genes important for tolerance using Tn-seq. A highly saturated Tn-seq library was desiccated on plastic and stainless-steel surfaces. NexGen sequencing of the recovered cells identified 97 genes important for survival. Comparing cells desiccated under low- and high-nutrient conditions allowed for differentiation of genes important for desiccation tolerance. The 53 genes identified in the latter analysis are involved in maintenance of cell envelope integrity, purine and pyrimidine biosynthesis, tricarboxylic acid (TCA) cycle, and the hydrolysis of misfolded proteins. The Tn-seq findings were validated by competition experiments with wild-type (WT) cells and select Tn insertion mutants. Mutants lacking carB and surA demonstrated the largest fitness defects, indicating that pyrimidine biosynthesis and outer membrane integrity are essential for desiccation tolerance. Increased understanding of desiccation tolerance could provide insight into approaches to control environmental reservoirs of P. aeruginosa. IMPORTANCE Health care-associated infections (HAIs) caused by Pseudomonas aeruginosa result in significant morbidity and mortality and are a significant economic burden. Moist environments that promote biofilm formation are an important reservoir for P. aeruginosa. Dry environments may also serve as a reservoir but would require some degree of desiccation tolerance. Here, we took a genome-wide approach to identify genes important for desiccation tolerance on plastic and stainless-steel surfaces. Genes involved in assembly of outer membrane proteins and pyrimidine biosynthesis were particularly important. Strains lacking these functions were unable to tolerate surface desiccation. These findings suggest that inhibitors of these pathways could be used to prevent P. aeruginosa survival on dry surfaces.
Collapse
|
38
|
Yin WL, Xie ZY, Zeng YH, Zhang J, Long H, Ren W, Zhang X, Cai XN, Huang AY. Two (p)ppGpp Synthetase Genes, relA and spoT, Are Involved in Regulating Cell Motility, Exopolysaccharides Production, and Biofilm Formation of Vibrio alginolyticus. Front Microbiol 2022; 13:858559. [PMID: 35422789 PMCID: PMC9002329 DOI: 10.3389/fmicb.2022.858559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
The stringent response mediated by the signal molecule (p)ppGpp is involved in response to multiple environmental stresses and control of various physiological processes. Studies have revealed that (p)ppGpp strongly affects the formation and maintenance of several bacterial biofilms. However, the specific regulatory roles of (p)ppGpp in biofilms, especially in the expression of genes related to cell motility and exopolysaccharides (EPSs) production, remain poorly understood. We recently reported two (p)ppGpp synthetase genes relA and spoT from the epizootic pathogen Vibrio alginolyticus. Herein, we found that the (p)ppGpp synthetase genes of V. alginolyticus contributed to biofilm formation at low cell density and biofilm detachment at high cell density, respectively, in polystyrene microtiter plates. Quantitative reverse transcription PCR (qRT-PCR) analysis revealed that the expression levels of both EPSs and motility associated genes were consistent with the development of biofilms. Besides, the (p)ppGpp synthetase gene spoT was found to be closely involved in the regulation of flagellum, smooth/translucent colony morphology and spotty pellicle at the air-liquid interface. Interestingly, pleiotropic phenotypes of ΔrelAΔspoT were similar to that of the rpoN (σ54) deletion mutant. Meanwhile, the absence of (p)ppGpp synthetase genes significantly reduced the expression levels of rpoN at low cell density, suggesting that (p)ppGpp may mediate the formation via positively affecting the alternative sigma factor RpoN. These findings allow us to propose (p)ppGpp as a crucial regulator for biofilm development in V. alginolyticus, in view of the regulatory roles of relA and spoT in cell motility and EPSs production.
Collapse
Affiliation(s)
- Wen-Liang Yin
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China.,College of Marine Sciences, Hainan University, Haikou, China
| | - Zhen-Yu Xie
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China.,College of Marine Sciences, Hainan University, Haikou, China.,Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, China
| | - Yan-Hua Zeng
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China
| | - Ju Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China.,College of Marine Sciences, Hainan University, Haikou, China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China
| | - Wei Ren
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China.,College of Marine Sciences, Hainan University, Haikou, China.,Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, China
| | - Xiang Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China.,College of Marine Sciences, Hainan University, Haikou, China.,Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, China
| | - Xiao-Ni Cai
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China.,College of Marine Sciences, Hainan University, Haikou, China.,Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, China
| | - Ai-You Huang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China.,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, China.,College of Marine Sciences, Hainan University, Haikou, China.,Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, China
| |
Collapse
|
39
|
How to save a bacterial ribosome in times of stress. Semin Cell Dev Biol 2022; 136:3-12. [PMID: 35331628 DOI: 10.1016/j.semcdb.2022.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022]
Abstract
Biogenesis of ribosomes is one of the most cost- and resource-intensive processes in all living cells. In bacteria, ribosome biogenesis is rate-limiting for growth and must be tightly coordinated to yield maximum fitness of the cells. Since bacteria are continuously facing environmental changes and stress conditions, they have developed sophisticated systems to sense and regulate their nutritional status. Amino acid starvation leads to the synthesis and accumulation of the nucleotide-based second messengers ppGpp and pppGpp [(p)ppGpp], which in turn function as central players of a pleiotropic metabolic adaptation mechanism named the stringent response. Here, we review our current knowledge on the multiple roles of (p)ppGpp in the stress-related modulation of the prokaryotic protein biosynthesis machinery with the ribosome as its core constituent. The alarmones ppGpp/pppGpp act as competitors of their GDP/GTP counterparts, to affect a multitude of ribosome-associated P-loop GTPases involved in the translation cycle, ribosome biogenesis and hibernation. A similar mode of inhibition has been found for the GTPases of the proteins involved in the SRP-dependent membrane-targeting machinery present in the periphery of the ribosome. In this sense, during stringent conditions, binding of (p)ppGpp restricts the membrane insertion and secretion of proteins. Altogether, we highlight the enormously resource-intensive stages of ribosome biogenesis as a critical regulatory hub of the stringent response that ultimately tunes the protein synthesis capacity and consequently the survival of the cell.
Collapse
|
40
|
Kho ZY, Azad MAK, Han ML, Zhu Y, Huang C, Schittenhelm RB, Naderer T, Velkov T, Selkrig J, Zhou Q(T, Li J. Correlative proteomics identify the key roles of stress tolerance strategies in Acinetobacter baumannii in response to polymyxin and human macrophages. PLoS Pathog 2022; 18:e1010308. [PMID: 35231068 PMCID: PMC8887720 DOI: 10.1371/journal.ppat.1010308] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/26/2022] [Indexed: 11/19/2022] Open
Abstract
The opportunistic pathogen Acinetobacter baumannii possesses stress tolerance strategies against host innate immunity and antibiotic killing. However, how the host-pathogen-antibiotic interaction affects the overall molecular regulation of bacterial pathogenesis and host response remains unexplored. Here, we simultaneously investigate proteomic changes in A. baumannii and macrophages following infection in the absence or presence of the polymyxins. We discover that macrophages and polymyxins exhibit complementary effects to disarm several stress tolerance and survival strategies in A. baumannii, including oxidative stress resistance, copper tolerance, bacterial iron acquisition and stringent response regulation systems. Using the spoT mutant strains, we demonstrate that bacterial cells with defects in stringent response exhibit enhanced susceptibility to polymyxin killing and reduced survival in infected mice, compared to the wild-type strain. Together, our findings highlight that better understanding of host-pathogen-antibiotic interplay is critical for optimization of antibiotic use in patients and the discovery of new antimicrobial strategy to tackle multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhi Ying Kho
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Mohammad A. K. Azad
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Mei-Ling Han
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Yan Zhu
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Cheng Huang
- Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ralf B. Schittenhelm
- Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Thomas Naderer
- Biomedicine Discovery Institute, Infection Program, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Joel Selkrig
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Qi (Tony) Zhou
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, United States of America
| | - Jian Li
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
41
|
Jin H, Lao YM, Zhou J, Cai ZH. Identification of a RelA/SpoT Homolog and Its Possible Role in the Accumulation of Astaxanthin in Haematococcus pluvialis. FRONTIERS IN PLANT SCIENCE 2022; 13:796997. [PMID: 35222463 PMCID: PMC8863741 DOI: 10.3389/fpls.2022.796997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
A RelA/SpoT homolog, HpRSH, was identified in Haematococcus pluvialis. HpRSH was found to catalyze Mg2+-dependent guanosine tetraphosphate (ppGpp) synthesis and Mn2+-dependent ppGpp hydrolysis, respectively. The transcription of HpRSH was significantly upregulated by environmental stresses, such as darkness, high light, nitrogen limitation, and salinity stress. The intracellular ppGpp level was also increased when exposed to these stresses. In addition, the classical initiator of stringent response, serine hydroxamate (SHX), was found to upregulate the transcription of HpRSH and increase the level of ppGpp. Moreover, stringent response induced by SHX or environmental stresses was proven to induce the accumulation of astaxanthin. These results indicated that stringent response regulatory system involved in the regulation of astaxanthin biosynthesis in H. pluvialis. Furthermore, stringent response was unable to induce astaxanthin accumulation under dark condition. This result implied that stringent response may regulate astaxanthin biosynthesis in a light-dependent manner.
Collapse
Affiliation(s)
- Hui Jin
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Institute for Ocean Engineering, Tsinghua University, Shenzhen, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yong Min Lao
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Institute for Ocean Engineering, Tsinghua University, Shenzhen, China
| | - Zhong Hua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Institute for Ocean Engineering, Tsinghua University, Shenzhen, China
| |
Collapse
|
42
|
Li H, Nian J, Fang S, Guo M, Huang X, Zhang F, Wang Q, Zhang J, Bai J, Dong G, Xin P, Xie X, Chen F, Wang G, Wang Y, Qian Q, Zuo J, Chu J, Ma X. Regulation of nitrogen starvation responses by the alarmone (p)ppGpp in rice. J Genet Genomics 2022; 49:469-480. [DOI: 10.1016/j.jgg.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/20/2022]
|
43
|
Lemma AS, Soto-Echevarria N, Brynildsen MP. Fluoroquinolone Persistence in Escherichia coli Requires DNA Repair despite Differing between Starving Populations. Microorganisms 2022; 10:286. [PMID: 35208744 PMCID: PMC8877308 DOI: 10.3390/microorganisms10020286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/04/2022] Open
Abstract
When faced with nutritional deprivation, bacteria undergo a range of metabolic, regulatory, and biosynthetic changes. Those adjustments, which can be specific or independent of the missing nutrient, often alter bacterial tolerance to antibiotics. Here, using fluoroquinolones, we quantified Escherichia coli persister levels in cultures experiencing starvation from a lack of carbon (C), nitrogen (N), phosphorous (P), or magnesium (Mg2+). Interestingly, persister levels varied significantly based on the type of starvation as well as fluoroquinolone used with N-starved populations exhibiting the highest persistence to levofloxacin, and P-starved populations exhibiting the highest persistence to moxifloxacin. However, regardless of the type of starvation or fluoroquinolone used, DNA repair was required by persisters, with ∆recA and ∆recB uniformly exhibiting the lowest persistence of the mutants assayed. These results suggest that while the type of starvation and fluoroquinolone will modulate the level of persistence, the importance of homologous recombination is consistently observed, which provides further support for efforts to target homologous recombination for anti-persister purposes.
Collapse
Affiliation(s)
- Annabel S. Lemma
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA;
| | | | - Mark P. Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA;
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA;
| |
Collapse
|
44
|
Mohanty BK, Kushner SR. Inactivation of RNase P in Escherichia coli significantly changes post-transcriptional RNA metabolism. Mol Microbiol 2022; 117:121-142. [PMID: 34486768 PMCID: PMC8766891 DOI: 10.1111/mmi.14808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/03/2023]
Abstract
Ribonuclease P (RNase P), which is required for the 5'-end maturation of tRNAs in every organism, has been shown to play a limited role in other aspects of RNA metabolism in Escherichia coli. Using RNA-sequencing (RNA-seq), we demonstrate that RNase P inactivation affects the abundances of ~46% of the expressed transcripts in E. coli and provide evidence that its essential function is its ability to generate pre-tRNAs from polycistronic tRNA transcripts. The RNA-seq results agreed with the published data and northern blot analyses of 75/83 transcripts (mRNAs, sRNAs, and tRNAs). Changes in transcript abundances in the RNase P mutant also correlated with changes in their half-lives. Inactivating the stringent response did not alter the rnpA49 phenotype. Most notably, increases in the transcript abundances were observed for all genes in the cysteine regulons, multiple toxin-antitoxin modules, and sigma S-controlled genes. Surprisingly, poly(A) polymerase (PAP I) modulated the abundances of ~10% of the transcripts affected by RNase P. A comparison of the transcriptomes of RNase P, RNase E, and RNase III mutants suggests that they affect distinct substrates. Together, our work strongly indicates that RNase P is a major player in all aspects of post-transcriptional RNA metabolism in E. coli.
Collapse
Affiliation(s)
| | - Sidney R. Kushner
- Department of Genetics, University of Georgia, Athens, GA 30602,Department of Microbiology, University of Georgia, Athens, GA 30602,To whom correspondence should be addressed.
| |
Collapse
|
45
|
Lee JB, Kim SK, Yoon JW. Pathophysiology of enteropathogenic Escherichia coli during a host infection. J Vet Sci 2022; 23:e28. [PMID: 35187883 PMCID: PMC8977535 DOI: 10.4142/jvs.21160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a major cause of infantile diarrhea in developing countries. However, sporadic outbreaks caused by this microorganism in developed countries are frequently reported recently. As an important zoonotic pathogen, EPEC is being monitored annually in several countries. Hallmark of EPEC infection is formation of attaching and effacing (A/E) lesions on the small intestine. To establish A/E lesions during a gastrointestinal tract (GIT) infeciton, EPEC must thrive in diverse GIT environments. A variety of stress responses by EPEC have been reported. These responses play significant roles in helping E. coli pass through GIT environments and establishing E. coli infection. Stringent response is one of those responses. It is mediated by guanosine tetraphosphate. Interestingly, previous studies have demonstrated that stringent response is a universal virulence regulatory mechanism present in many bacterial pathogens including EPEC. However, biological signficance of a bacterial stringent response in both EPEC and its interaction with the host during a GIT infection is unclear. It needs to be elucidated to broaden our insight to EPEC pathogenesis. In this review, diverse responses, including stringent response, of EPEC during a GIT infection are discussed to provide a new insight into EPEC pathophysiology in the GIT.
Collapse
Affiliation(s)
- Jun Bong Lee
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Se Kye Kim
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Jang Won Yoon
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
46
|
Büke F, Grilli J, Cosentino Lagomarsino M, Bokinsky G, Tans SJ. ppGpp is a bacterial cell size regulator. Curr Biol 2021; 32:870-877.e5. [PMID: 34990598 DOI: 10.1016/j.cub.2021.12.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/27/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
Growth and division are central to cell size. Bacteria achieve size homeostasis by dividing when growth has added a constant size since birth, termed the adder principle, by unknown mechanisms.1,2 Growth is well known to be regulated by guanosine tetraphosphate (ppGpp), which controls diverse processes from ribosome production to metabolic enzyme activity and replication initiation and whose absence or excess can induce stress, filamentation, and small growth-arrested cells.3-6 These observations raise unresolved questions about the relation between ppGpp and size homeostasis mechanisms during normal exponential growth. Here, to untangle effects of ppGpp and nutrients, we gained control of cellular ppGpp by inducing the synthesis and hydrolysis enzymes RelA and Mesh1. We found that ppGpp not only exerts control over the growth rate but also over cell division and thus the steady state cell size. In response to changes in ppGpp level, the added size already establishes its new constant value while the growth rate still adjusts, aided by accelerated or delayed divisions. Moreover, the magnitude of the added size and resulting steady-state birth size correlate consistently with the ppGpp level, rather than with the growth rate, which results in cells of different size that grow equally fast. Our findings suggest that ppGpp serves as a key regulator that coordinates cell size and growth control.
Collapse
Affiliation(s)
- Ferhat Büke
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands; AMOLF, Amsterdam, the Netherlands
| | - Jacopo Grilli
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34014 Trieste, Italy
| | - Marco Cosentino Lagomarsino
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20143, Milan, Italy; Physics Department, University of Milan, and I.N.F.N., Via Celoria 16, 20133, Milan, Italy
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| | - Sander J Tans
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands; AMOLF, Amsterdam, the Netherlands.
| |
Collapse
|
47
|
Maki Y, Yoshida H. Ribosomal Hibernation-Associated Factors in Escherichia coli. Microorganisms 2021; 10:microorganisms10010033. [PMID: 35056482 PMCID: PMC8778775 DOI: 10.3390/microorganisms10010033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 01/30/2023] Open
Abstract
Bacteria convert active 70S ribosomes to inactive 100S ribosomes to survive under various stress conditions. This state, in which the ribosome loses its translational activity, is known as ribosomal hibernation. In gammaproteobacteria such as Escherichia coli, ribosome modulation factor and hibernation-promoting factor are involved in forming 100S ribosomes. The expression of ribosome modulation factor is regulated by (p)ppGpp (which is induced by amino acid starvation), cAMP-CRP (which is stimulated by reduced metabolic energy), and transcription factors involved in biofilm formation. This indicates that the formation of 100S ribosomes is an important strategy for bacterial survival under various stress conditions. In recent years, the structures of 100S ribosomes from various bacteria have been reported, enhancing our understanding of the 100S ribosome. Here, we present previous findings on the 100S ribosome and related proteins and describe the stress-response pathways involved in ribosomal hibernation.
Collapse
|
48
|
The Role of RelA and SpoT on ppGpp Production, Stress Response, Growth Regulation, and Pathogenicity in Xanthomonas campestris pv. campestris. Microbiol Spectr 2021; 9:e0205721. [PMID: 34935430 PMCID: PMC8693919 DOI: 10.1128/spectrum.02057-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The alarmone ppGpp plays an important role in the survival of bacteria by triggering the stringent response when exposed to environmental stress. Although Xanthomonas campestris pv. campestris (Xcc), which causes black rot disease in crucifers, is a representative species of Gram-negative phytopathogenic bacteria, relatively little is known regarding the factors influencing the stringent response in this species. However, previous studies in other Gram-negative bacteria have indicated that RelA and SpoT play a critical role in ppGpp synthesis. The current study found that these proteins also had an important role in Xcc, with a ΔrelAΔspoT double mutant being unable to produce ppGpp, resulting in changes to phenotype including reduced production of exopolysaccharides (EPS), exoenzymes, and biofilm, as well the loss of swarming motility and pathogenicity. The ppGpp-deficient mutant also exhibited greater sensitivity to environment stress, being almost incapable of growth on modified minimal medium (mMM) and having a much greater propensity to enter the viable but nonculturable (VBNC) state in response to oligotrophic conditions (0.85% NaCl). These findings much advance our understanding of the role of ppGpp in the biology of Xcc and could have important implications for more effective management of this important pathogen. IMPORTANCEXanthomonas campestris pv. campestris (Xcc) is a typical seedborne phytopathogenic bacterium that causes large economic losses worldwide, and this is the first original research article to investigate the role of ppGpp in this important species. Here, we revealed the function of RelA and SpoT in ppGpp production, physiology, pathogenicity, and stress resistance in Xcc. Most intriguingly, we found that ppGpp levels and downstream ppGpp-dependent phenotypes were mediated predominantly by SpoT, with RelA having only a supplementary role. Taken together, the results of the current study provide new insight into the role of ppGpp in the biology of Xcc, which could also have important implications for the role of ppGpp in the survival and pathogenicity of other pathogenic bacteria.
Collapse
|
49
|
Meyer L, Germain E, Maisonneuve E. Regulation of ytfK by cAMP-CRP Contributes to SpoT-Dependent Accumulation of (p)ppGpp in Response to Carbon Starvation YtfK Responds to Glucose Exhaustion. Front Microbiol 2021; 12:775164. [PMID: 34803996 PMCID: PMC8600398 DOI: 10.3389/fmicb.2021.775164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Guanosine penta- or tetraphosphate (known as (p)ppGpp) serves as second messenger to respond to nutrient downshift and other environmental stresses, a phenomenon called stringent response. Accumulation of (p)ppGpp promotes the coordinated inhibition of macromolecule synthesis, as well as the activation of stress response pathways to cope and adapt to harmful conditions. In Escherichia coli, the (p)ppGpp level is tightly regulated by two enzymes, the (p)ppGpp synthetase RelA and the bifunctional synthetase/hydrolase SpoT. We recently identified the small protein YtfK as a key regulator of SpoT-mediated activation of stringent response in E. coli. Here, we further characterized the regulation of ytfK. We observed that ytfK is subjected to catabolite repression and is positively regulated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex. Importantly, YtfK contributes to SpoT-dependent accumulation of (p)ppGpp and cell survival in response to glucose starvation. Therefore, regulation of ytfK by the cAMP-CRP appears important to adjust (p)ppGpp level and coordinate cellular metabolism in response to glucose availability.
Collapse
Affiliation(s)
- Laura Meyer
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille Univ (UMR7283), Marseille, France
| | - Elsa Germain
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille Univ (UMR7283), Marseille, France
| | - Etienne Maisonneuve
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille Univ (UMR7283), Marseille, France
| |
Collapse
|
50
|
Svenningsen MS, Svenningsen SL, Sørensen MA, Mitarai N. Existence of log-phase Escherichia coli persisters and lasting memory of a starvation pulse. Life Sci Alliance 2021; 5:5/2/e202101076. [PMID: 34795016 PMCID: PMC8605324 DOI: 10.26508/lsa.202101076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 11/24/2022] Open
Abstract
The authors characterize the growth condition dependence of survival of bacteria exposed to lethal antibiotics for a week. 1-h starvation pulse is shown to cause an increase in survival for days. The vast majority of a bacterial population is killed when treated with a lethal concentration of antibiotics. The time scale of this killing is often comparable with the bacterial generation time before the addition of antibiotics. Yet, a small subpopulation typically survives for an extended period. However, the long-term killing dynamics of bacterial cells has not been fully quantified even in well-controlled laboratory conditions. We constructed a week-long killing assay and followed the survival fraction of Escherichia coli K12 exposed to a high concentration of ciprofloxacin. We found that long-term survivors were formed during exponential growth, with some cells surviving at least 7 d. The long-term dynamics contained at least three time scales, which greatly enhances predictions of the population survival time compared with the biphasic extrapolation from the short-term behavior. Furthermore, we observed a long memory effect of a brief starvation pulse, which was dependent on the (p)ppGpp synthase relA. Specifically, 1 h of carbon starvation before antibiotics exposure increased the surviving fraction by nearly 100-fold even after 4 d of ciprofloxacin treatment.
Collapse
Affiliation(s)
| | | | | | - Namiko Mitarai
- The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|