1
|
Stefanutti D, Serva L, Berlanda M, Bonsembiante F, Gabai G, Franceschinis E, Cavazzoni M, Morelli G, Ricci R. Effect of a weight loss diet with or without Spirulina supplementation on serum lipids and antioxidant capacity of overweight dogs. Sci Rep 2024; 14:29293. [PMID: 39592737 PMCID: PMC11599939 DOI: 10.1038/s41598-024-80843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a major health issue in dogs associated with disturbances in lipid metabolism and oxidative stress. Spirulina has been shown to have hypolipidemic and antioxidant effects in various animal species. No such data regarding dogs are available, however. The present study aimed to investigate the effect of a therapeutic high-protein, high-fiber weight loss diet, with or without Spirulina supplementation, on biochemical parameters of overweight dogs, with particular reference to serum lipids and plasma antioxidant capacity. Thirty-two dogs completed a double-blind randomized placebo-controlled trial in which they received either Spirulina (S) or placebo (P) tablets in a body weight-dependent amount for 12 weeks; at the same time, both groups were fed the same calorie-restricted diet. Dogs were weighed weekly and calorie restriction was adjusted accordingly to ensure a 1% body weight loss per week. Blood samples were collected at baseline (T0), after 6 weeks (T1), and after 12 weeks (T2). No difference in body weight loss (S: -11.9 ± 0.8%, P: -10.6 ± 0.8%, p = 0.229) was detected between groups at T2. After 6 weeks and an average weight loss of around 6% (S: -6.7 ± 0.6%, P: -5.9 ± 0.6, p = 0.276), significant reductions of serum total cholesterol, glucose, alkaline phosphatase, paraxonase-1 (all p < 0.0001) and gamma-glutamyltransferase (p < 0.018) were observed in both groups, regardless of supplementation. Plasma antioxidant capacity increased significantly in both groups at T2 (p = 0.0003). Serum triglycerides decreased significantly from T0 to T1 in the Spirulina group (p < 0.0001) but not in the placebo group (p = 0.28); as for the difference between groups, a non-significant trend (p = 0.098) was detected. A significantly higher percentage of dogs (p = 0.028) in the Spirulina group achieved a serum triglycerides reduction > 15% compared to baseline at T1 and > 30% at T2. A treatment effect (p = 0.0416) was found for bilirubin, which decreased only in the Spirulina group. In conclusion, a weight loss of around 6% achieved with a high-protein, high-fiber hypocaloric diet is sufficient to induce significant positive metabolic effects and improve lipid, glucose, and liver enzyme values. Plasma antioxidant capacity was tested in dogs undergoing a weight loss program for the first time, demonstrating that overweight individuals are in a deficient status and that a weight loss of around 10% is able to restore values comparable to those of healthy individuals. The results of this study suggest that Spirulina may manifest a hypotriglyceridemic effect in dogs, even if further research is needed to infer causation. The role Spirulina that supplementation plays in bilirubin metabolism and its related beneficial effect is also worth exploring.
Collapse
Affiliation(s)
- Davide Stefanutti
- Department of Animal Medicine, Production and Health, University of Padova, 35020, Legnaro, PD, Italy.
| | - Lorenzo Serva
- Department of Animal Medicine, Production and Health, University of Padova, 35020, Legnaro, PD, Italy
| | - Michele Berlanda
- Department of Animal Medicine, Production and Health, University of Padova, 35020, Legnaro, PD, Italy
| | - Federico Bonsembiante
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, PD, Italy
| | - Gianfranco Gabai
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, PD, Italy
| | - Erica Franceschinis
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Padova, Italy
| | | | - Giada Morelli
- Department of Animal Medicine, Production and Health, University of Padova, 35020, Legnaro, PD, Italy
| | - Rebecca Ricci
- Department of Animal Medicine, Production and Health, University of Padova, 35020, Legnaro, PD, Italy
- Vetekipp S.R.L, Via Della Croce Rossa 112, 35129, Padova, Italy
| |
Collapse
|
2
|
Sokary S, Bawadi H, Zakaria ZZ, Al-Asmakh M. The Effects of Spirulina Supplementation on Cardiometabolic Risk Factors: A Narrative Review. J Diet Suppl 2024; 21:527-542. [PMID: 38251049 DOI: 10.1080/19390211.2023.2301366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Spirulina (Arthrospira platensis) is a cyanobacterium associated with multiple health benefits. Cardiometabolic diseases such as cardiovascular disease, nonalcoholic fatty liver disease, and diabetes are prevalent yet usually preventable non-communicable diseases. Modifiable risk factors for cardiometabolic diseases include excessive body weight, body inflammation, atherogenic lipid profile, and imbalanced glucose metabolism. This review explores the effects of spirulina on cardiometabolic diseases risk factors. Spirulina was effective in reducing body weight, body mass index, and waist circumference, with a potential dose-dependent effect. It also decreased interleukin 6, an important biomarker of body inflammation, by inhibiting NADPH oxidase enzyme, and lowering insulin resistance. spirulina supplementation also reduced triglycerides, low-density lipoprotein cholesterol, and increased high-density lipoprotein cholesterol. Additionally, spirulina reduced fasting blood sugar and post-prandial blood sugar and increased insulin sensitivity, but no effect was observed on glycated hemoglobin A1c. The diverse nutrients, such as phycocyanin, gamma-linolenic acid, and vitamin B12, present in spirulina contribute to its cardiometabolic benefits. The doses used are heterogeneous for most studies, ranging from 1 to 8 grams daily, but most studies administered spirulina for 3 months to observe an effect. The collective evidence suggests that spirulina supplements may help improve risk factors for cardiometabolic diseases, thus, preventing its development. However, due to the heterogeneity of the results, more randomized clinical trials are needed to draw robust conclusions about spirulina's therapeutic potential in ameliorating risk factors for cardiometabolic diseases and fully elucidate the mechanisms by which it exerts its effects.
Collapse
Affiliation(s)
- Sara Sokary
- Department of Human Nutrition, College of Health Science, QU-Health, Qatar University, Doha, Qatar
| | - Hiba Bawadi
- Department of Human Nutrition, College of Health Science, QU-Health, Qatar University, Doha, Qatar
| | - Zain Zaki Zakaria
- Vice President for Medical and Health Sciences Office, Health Cluster, Qatar University, Doha, Qatar
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Science, QU-Health, Qatar University, Doha, Qatar
- Biomedical Research Centre, Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Jayanti S, Vitek L, Verde CD, Llido JP, Sukowati C, Tiribelli C, Gazzin S. Role of Natural Compounds Modulating Heme Catabolic Pathway in Gut, Liver, Cardiovascular, and Brain Diseases. Biomolecules 2024; 14:63. [PMID: 38254662 PMCID: PMC10813662 DOI: 10.3390/biom14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The crucial physiological process of heme breakdown yields biliverdin (BV) and bilirubin (BR) as byproducts. BV, BR, and the enzymes involved in their production (the "yellow players-YP") are increasingly documented as endogenous modulators of human health. Mildly elevated serum bilirubin concentration has been correlated with a reduced risk of multiple chronic pro-oxidant and pro-inflammatory diseases, especially in the elderly. BR and BV per se have been demonstrated to protect against neurodegenerative diseases, in which heme oxygenase (HMOX), the main enzyme in the production of pigments, is almost always altered. HMOX upregulation has been interpreted as a tentative defense against the ongoing pathologic mechanisms. With the demonstration that multiple cells possess YP, their propensity to be modulated, and their broad spectrum of activity on multiple signaling pathways, the YP have assumed the role of an adjustable system that can promote health in adults. Based on that, there is an ongoing effort to induce their activity as a therapeutic option, and natural compounds are an attractive alternative to the goal, possibly requiring only minimal changes in the life style. We review the most recent evidence of the potential of natural compounds in targeting the YP in the context of the most common pathologic condition of adult and elderly life.
Collapse
Affiliation(s)
- Sri Jayanti
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16915, Indonesia
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics, and 4th Department of Internal Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, 12000 Prague, Czech Republic;
| | - Camilla Dalla Verde
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Department of Life Sciences, University of Trieste, 34139 Trieste, Italy
| | - John Paul Llido
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Department of Life Sciences, University of Trieste, 34139 Trieste, Italy
- Department of Science and Technology, Philippine Council for Health Research and Development, Bicutan, Taguig City 1631, Philippines
| | - Caecilia Sukowati
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16915, Indonesia
| | - Claudio Tiribelli
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
| | - Silvia Gazzin
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
| |
Collapse
|
4
|
Schluchter WM, Babin CH, Liu X, Bieller A, Shen G, Alvey RM, Bryant DA. Loss of Biliverdin Reductase Increases Oxidative Stress in the Cyanobacterium Synechococcus sp. PCC 7002. Microorganisms 2023; 11:2593. [PMID: 37894251 PMCID: PMC10608806 DOI: 10.3390/microorganisms11102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Oxygenic photosynthesis requires metal-rich cofactors and electron-transfer components that can produce reactive oxygen species (ROS) that are highly toxic to cyanobacterial cells. Biliverdin reductase (BvdR) reduces biliverdin IXα to bilirubin, which is a potent scavenger of radicals and ROS. The enzyme is widespread in mammals but is also found in many cyanobacteria. We show that a previously described bvdR mutant of Synechocystis sp. PCC 6803 contained a secondary deletion mutation in the cpcB gene. The bvdR gene from Synechococcus sp. PCC 7002 was expressed in Escherichia coli, and recombinant BvdR was purified and shown to reduce biliverdin to bilirubin. The bvdR gene was successfully inactivated in Synechococcus sp. PCC 7002, a strain that is naturally much more tolerant of high light and ROS than Synechocystis sp. PCC 6803. The bvdR mutant strain, BR2, had lower total phycobiliprotein and chlorophyll levels than wild-type cells. As determined using whole-cell fluorescence at 77 K, the photosystem I levels were also lower than those in wild-type cells. The BR2 mutant had significantly higher ROS levels compared to wild-type cells after exposure to high light for 30 min. Together, these results suggest that bilirubin plays an important role as a scavenger for ROS in Synechococcus sp. PCC 7002. The oxidation of bilirubin by ROS could convert bilirubin to biliverdin IXα, and thus BvdR might be important for regenerating bilirubin. These results further suggest that BvdR is a key component of a scavenging cycle by which cyanobacteria protect themselves from the toxic ROS byproducts generated during oxygenic photosynthesis.
Collapse
Affiliation(s)
- Wendy M. Schluchter
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA; (C.H.B.); (X.L.); (A.B.)
| | - Courtney H. Babin
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA; (C.H.B.); (X.L.); (A.B.)
| | - Xindi Liu
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA; (C.H.B.); (X.L.); (A.B.)
| | - Amori Bieller
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA; (C.H.B.); (X.L.); (A.B.)
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA (R.M.A.); (D.A.B.)
| | - Richard M. Alvey
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA (R.M.A.); (D.A.B.)
- Biology Department, Bloomington, Illinois Wesleyan University, Bloomington, IL 61702, USA
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA (R.M.A.); (D.A.B.)
| |
Collapse
|
5
|
Ziyaei K, Abdi F, Mokhtari M, Daneshmehr MA, Ataie Z. Phycocyanin as a nature-inspired antidiabetic agent: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154964. [PMID: 37544212 DOI: 10.1016/j.phymed.2023.154964] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Nutraceuticals have been important for more than two decades for their safety, efficacy, and outstanding effects. Diabetes is a major metabolic syndrome, which may be improved using nutritional pharmaceuticals. Some microalgae species, such as spirulina, stand out by providing biomass with exceptional nutritional properties. Spirulina has a wide range of pharmacological effects, mostly related to phycocyanin. Phycocyanin is a protein compound with antidiabetic properties, known as a nutraceutical. OBJECTIVE This review delves into phycocyanin applications in diabetes and its complications and ascertains the mechanisms involved. METHODS Scopus, PubMed, Cochrane Library, Web of Science, and ProQuest databases were systematically reviewed (up to April 30, 2023), in which only animal and cellular studies were found. RESULTS According to animal studies, the administration of phycocyanin affected biochemical parameters (primary outcome) related to diabetes. These results showed an increase in fasting insulin serum and a decrease in fasting blood glucose, glycosylated serum protein, and glycosylated hemoglobin. In cellular studies, though, phycocyanin prevented methylglyoxal and human islet amyloid polypeptide-induced dysfunction in β-cells and induced apoptosis through different molecular pathways (secondary outcome), including activation of Nrf2, PI3K/Akt, and suppression of JNK and p38. Also, phycocyanin exerted its antidiabetic effect by affecting the pathways regulating hepatic glucose metabolism. CONCLUSIONS Thus, based on the available information and literature, targeting these pathways by phycocyanin may unleash an array of benefits, including positive outcomes of the antidiabetic effects of phycocyanin as a nutraceutical. OTHER This systematic review was registered in the International Prospective Register of Systematic Reviews (PROSPERO) at the National Institute of Health. The registration number is CRD42022307522.
Collapse
Affiliation(s)
- Kobra Ziyaei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Fatemeh Abdi
- Non-communicable Diseases Research Centre, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Mokhtari
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran; Department of Bioinformatics, Personalized Precision Medicine Institute, Tehran, Iran
| | - Mohammad Ali Daneshmehr
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ataie
- Evidence-based Phytotherapy & Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
6
|
Taniguchi M, Lindsey JS. Absorption and Fluorescence Spectra of Open-chain Tetrapyrrole Pigments–Bilirubins, Biliverdins, Phycobilins, and Synthetic Analogues. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2023. [DOI: 10.1016/j.jphotochemrev.2023.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
7
|
Oda S, Sato-Ebine E, Nakamura A, Kimura KD, Aoki K. Optical Control of Cell Signaling with Red/Far-Red Light-Responsive Optogenetic Tools in Caenorhabditis elegans. ACS Synth Biol 2023; 12:700-708. [PMID: 36802521 DOI: 10.1021/acssynbio.2c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Optogenetic techniques have been intensively applied to the nematode Caenorhabditis elegans to investigate its neural functions. However, as most of these optogenetics are responsive to blue light and the animal exhibits avoidance behavior to blue light, the application of optogenetic tools responsive to longer wavelength light has been eagerly anticipated. In this study, we report the implementation in C. elegans of a phytochrome-based optogenetic tool that responds to red/near-infrared light and manipulates cell signaling. We first introduced the SynPCB system, which enabled us to synthesize phycocyanobilin (PCB), a chromophore for phytochrome, and confirmed the biosynthesis of PCB in neurons, muscles, and intestinal cells. We further confirmed that the amount of PCBs synthesized by the SynPCB system was sufficient for photoswitching of phytochrome B (PhyB)-phytochrome interacting factor 3 (PIF3). In addition, optogenetic elevation of intracellular Ca2+ levels in intestinal cells induced a defecation motor program. These SynPCB system and phytochrome-based optogenetic techniques would be of great value in elucidating the molecular mechanisms underlying C. elegans behaviors.
Collapse
Affiliation(s)
- Shigekazu Oda
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Emi Sato-Ebine
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Akinobu Nakamura
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Koutarou D Kimura
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Kazuhiro Aoki
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan.,Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan.,Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki 444-8787, Japan
| |
Collapse
|
8
|
Rashed SA, Hammad SF, Eldakak MM, Khalil IA, Osman A. Assessment of the Anticancer Potentials of the Free and Metal-Organic Framework (UiO-66) - Delivered Phycocyanobilin. J Pharm Sci 2023; 112:213-224. [PMID: 36087776 DOI: 10.1016/j.xphs.2022.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Phycocyanin (C-PC) is a constitutive chromoprotein of Arthrospira platensis, which exhibits promising efficacy against different types of cancer. In this study, we cleaved C-PC's chromophore phycocyanobilin (PCB) and demonstrated its ability as an anti-cancer drug for Colorectal cancer (CRC). PCB displayed an anti-cancer effect for CRC (HT-29) cells with IC50 of 108 µg/ml. Assessing the transcripts levels of some biomarkers revealed that the PCB caused an upregulation in the anti-metastatic gene NME1 level and downregulation of the COX-2 level. The flow cytometric results showed the effect of PCB on the arrest of the cell cycle's G1 phase. In addition, we successfully synthesized the UiO-66 (Zr-MOF). We incorporated the PCB into UiO-66 nanoparticles with a loading percentage of 46 %. Assessment of the cytotoxic effects of UiO-66@PCB showed a 2-fold improvement in the IC50 compared to the free PCB. In conclusion, we have shown that PCB displayed a promising potential as an anti-cancer agent. Yet, it is considered a safe and natural substance that can help to mitigate cancer spread and symptoms. In the meantime, UiO-66 can be used as a safe nano-delivery tool for PCB.
Collapse
Affiliation(s)
- Suzan A Rashed
- Biotechnology Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, Borg El-Arab, Egypt; Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Sherif F Hammad
- Biotechnology Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, Borg El-Arab, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Moustafa M Eldakak
- Genetics Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Islam A Khalil
- Pharmaceutics Department, Faculty of Pharmacy and Drug Manufacturing, Misr University for Science and Technology, 6 October, Egypt
| | - Ahmed Osman
- Biotechnology Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, Borg El-Arab, Egypt; Department of Biochemistry, Faculty of Science, Ain shams University, Cairo, Egypt
| |
Collapse
|
9
|
McCarty MF, DiNicolantonio JJ. Maintaining Effective Beta Cell Function in the Face of Metabolic Syndrome-Associated Glucolipotoxicity-Nutraceutical Options. Healthcare (Basel) 2021; 10:3. [PMID: 35052168 PMCID: PMC8775473 DOI: 10.3390/healthcare10010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
In people with metabolic syndrome, episodic exposure of pancreatic beta cells to elevated levels of both glucose and free fatty acids (FFAs)-or glucolipotoxicity-can induce a loss of glucose-stimulated insulin secretion (GSIS). This in turn can lead to a chronic state of glucolipotoxicity and a sustained loss of GSIS, ushering in type 2 diabetes. Loss of GSIS reflects a decline in beta cell glucokinase (GK) expression associated with decreased nuclear levels of the pancreatic and duodenal homeobox 1 (PDX1) factor that drives its transcription, along with that of Glut2 and insulin. Glucolipotoxicity-induced production of reactive oxygen species (ROS), stemming from both mitochondria and the NOX2 isoform of NADPH oxidase, drives an increase in c-Jun N-terminal kinase (JNK) activity that promotes nuclear export of PDX1, and impairs autocrine insulin signaling; the latter effect decreases PDX1 expression at the transcriptional level and up-regulates beta cell apoptosis. Conversely, the incretin hormone glucagon-like peptide-1 (GLP-1) promotes nuclear import of PDX1 via cAMP signaling. Nutraceuticals that quell an increase in beta cell ROS production, that amplify or mimic autocrine insulin signaling, or that boost GLP-1 production, should help to maintain GSIS and suppress beta cell apoptosis in the face of glucolipotoxicity, postponing or preventing onset of type 2 diabetes. Nutraceuticals with potential in this regard include the following: phycocyanobilin-an inhibitor of NOX2; agents promoting mitophagy and mitochondrial biogenesis, such as ferulic acid, lipoic acid, melatonin, berberine, and astaxanthin; myo-inositol and high-dose biotin, which promote phosphatidylinositol 3-kinase (PI3K)/Akt activation; and prebiotics/probiotics capable of boosting GLP-1 secretion. Complex supplements or functional foods providing a selection of these agents might be useful for diabetes prevention.
Collapse
Affiliation(s)
| | - James J. DiNicolantonio
- Department of Preventive Cardiology, Saint Luke’s Mid America Heart Institute, Kansas City, MO 64111, USA
| |
Collapse
|
10
|
Sakai K, Kondo Y, Fujioka H, Kamiya M, Aoki K, Goto Y. Near-infrared imaging in fission yeast using a genetically encoded phycocyanobilin biosynthesis system. J Cell Sci 2021; 134:273759. [PMID: 34806750 DOI: 10.1242/jcs.259315] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Near-infrared fluorescent protein (iRFP) is a bright and stable fluorescent protein with near-infrared excitation and emission maxima. Unlike the other conventional fluorescent proteins, iRFP requires biliverdin (BV) as a chromophore. Here, we report that phycocyanobilin (PCB) functions as a brighter chromophore for iRFP than BV, and that biosynthesis of PCB allows live-cell imaging with iRFP in the fission yeast Schizosaccharomyces pombe. We initially found that fission yeast cells did not produce BV and therefore did not show any iRFP fluorescence. The brightness of iRFP-PCB was higher than that of iRFP-BV both in vitro and in fission yeast. We introduced SynPCB2.1, a PCB biosynthesis system, into fission yeast, resulting in the brightest iRFP fluorescence. To make iRFP readily available in fission yeast, we developed an endogenous gene tagging system with iRFP and all-in-one integration plasmids carrying the iRFP-fused marker proteins together with SynPCB2.1. These tools not only enable the easy use of multiplexed live-cell imaging in fission yeast with a broader color palette, but also open the door to new opportunities for near-infrared fluorescence imaging in a wider range of living organisms. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Keiichiro Sakai
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Hiroyoshi Fujioka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
11
|
McCarty MF, Lerner A, DiNicolantonio JJ, Benzvi C. Nutraceutical Aid for Allergies - Strategies for Down-Regulating Mast Cell Degranulation. J Asthma Allergy 2021; 14:1257-1266. [PMID: 34737578 PMCID: PMC8558634 DOI: 10.2147/jaa.s332307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/24/2021] [Indexed: 11/23/2022] Open
Abstract
Interactions of antigens with the mast cell FcεRI-IgE receptor complex induce degranulation and boost synthesis of pro-inflammatory lipid mediators and cytokines. Activation of spleen tyrosine kinase (Syk) functions as a central hub in this signaling. The tyrosine phosphatase SHP-1 opposes Syk activity; stimulation of NADPH oxidase by FcεRI activation results in the production of oxidants that reversibly inhibit SHP-1, up-regulating the signal from Syk. Activated AMPK can suppress Syk activation by the FcεRI receptor, possibly reflecting its ability to phosphorylate the FcεRI beta subunit. Cyclic GMP, via protein kinase G II, enhances the activity of SHP-1 by phosphorylating its C-terminal region; this may explain its inhibitory impact on mast cell activation. Hydrogen sulfide (H2S) likewise opposes mast cell activation; H2S can boost AMPK activity, up-regulate cGMP production, and trigger Nrf2-mediated induction of Phase 2 enzymes - including heme oxygenase-1, whose generation of bilirubin suppresses NADPH oxidase activity. Phycocyanobilin (PCB), a chemical relative of bilirubin, shares its inhibitory impact on NADPH oxidase, rationalizing reported anti-allergic effects of PCB-rich spirulina ingestion. Phase 2 inducer nutraceuticals can likewise oppose the up-regulatory impact of NADPH oxidase on FcεRI signaling. AMPK can be activated with the nutraceutical berberine. High-dose biotin can boost cGMP levels in mast cells via direct stimulation of soluble guanylate cyclase. Endogenous generation of H2S in mast cells can be promoted by administering N-acetylcysteine and likely by taurine, which increases the expression of H2S-producing enzymes in the vascular system. Mast cell stabilization by benifuuki green tea catechins may reflect the decreased surface expression of FcεRI.
Collapse
Affiliation(s)
| | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer, Israel
| | - James J DiNicolantonio
- Saint Luke’s Mid America Heart Institute, Kansas City, MO, USA
- Advanced Ingredients for Dietary Products, AIDP, City of Industry, CA, USA
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer, Israel
| |
Collapse
|
12
|
McCarty MF, DiNicolantonio JJ, Lerner A. Review - Nutraceuticals Can Target Asthmatic Bronchoconstriction: NADPH Oxidase-Dependent Oxidative Stress, RhoA and Calcium Dynamics. J Asthma Allergy 2021; 14:685-701. [PMID: 34163181 PMCID: PMC8214517 DOI: 10.2147/jaa.s307549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
Activation of various isoforms of NADPH oxidase contributes to the pathogenesis of asthma at multiple levels: promoting hypercontractility, hypertrophy, and proliferation of airway smooth muscle; enabling lung influx of eosinophils via VCAM-1; and mediating allergen-induced mast cell activation. Free bilirubin, which functions physiologically within cells as a feedback inhibitor of NADPH oxidase complexes, has been shown to have a favorable impact on each of these phases of asthma pathogenesis. The spirulina chromophore phycocyanobilin (PhyCB), a homolog of bilirubin's precursor biliverdin, can mimic the inhibitory impact of biliverdin/bilirubin on NADPH oxidase activity, and spirulina's versatile and profound anti-inflammatory activity in rodent studies suggests that PhyCB may have potential as a clinical inhibitor of NADPH oxidase. Hence, spirulina or PhyCB-enriched spirulina extracts merit clinical evaluation in asthma. Promoting biosynthesis of glutathione and increasing the expression and activity of various antioxidant enzymes - as by supplementing with N-acetylcysteine, Phase 2 inducers (eg, lipoic acid), selenium, and zinc - may also blunt the contribution of oxidative stress to asthma pathogenesis. Nitric oxide (NO) and hydrogen sulfide (H2S) work in various ways to oppose pathogenic mechanisms in asthma; supplemental citrulline and high-dose folate may aid NO synthesis, high-dose biotin may mimic and possibly potentiate NO's activating impact on soluble guanylate cyclase, and NAC and taurine may boost H2S synthesis. The amino acid glycine has a hyperpolarizing effect on airway smooth muscle that is bronchodilatory. Insuring optimal intracellular levels of magnesium may modestly blunt the stimulatory impact of intracellular free calcium on bronchoconstriction. Nutraceutical regimens or functional foods incorporating at least several of these agents may have utility as nutraceutical adjuvants to standard clinical management of asthma.
Collapse
Affiliation(s)
| | - James J DiNicolantonio
- Department of Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas, MO, USA
| | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer, 5262000, Israel
| |
Collapse
|
13
|
DiNicolantonio JJ, McCarty MF, Barroso-Aranda J, Assanga S, Lujan LML, O'Keefe JH. A nutraceutical strategy for downregulating TGFβ signalling: prospects for prevention of fibrotic disorders, including post-COVID-19 pulmonary fibrosis. Open Heart 2021; 8:openhrt-2021-001663. [PMID: 33879509 PMCID: PMC8061562 DOI: 10.1136/openhrt-2021-001663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- James J DiNicolantonio
- Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| | | | | | - Simon Assanga
- Department of Research and Postgraduate Studies in Food, University of Sonora, Sonora, Mexico
| | | | - James H O'Keefe
- University of Missouri-Kansas City, Saint Lukes Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
14
|
McCarty MF, Lerner A. Perspective: Prospects for Nutraceutical Support of Intestinal Barrier Function. Adv Nutr 2021; 12:316-324. [PMID: 33126251 PMCID: PMC8243597 DOI: 10.1093/advances/nmaa139] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/28/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Impairment of intestinal barrier function is linked to certain pathologies and to aging, and can be a cause of bacterial infections, systemic and hepatic inflammation, food allergies, and autoimmune disorders. The formation and maintenance of intestinal tight junctions is supported by glucagon-like peptide-2 (GLP-2), which via insulin-like growth factor I activity boosts phosphoinositide 3-kinase/Akt/mammalian target of rapamycin complex 1 (PI3K/Akt/mTORC1) signaling in enterocytes. 5'-AMP-activated protein kinase (AMPK) activity as well as estrogen receptor-β (ERβ) activity are also protective in this regard. Conversely, activation of mitogen-activated protein kinases (MAPKs) and cellular Src (c-Src) under inflammatory conditions can induce dissociation of tight junctions. Hence, nutraceuticals that promote GLP-2 secretion from L cells-effective pre/probiotics, glycine, and glutamine-as well as diets rich in soluble fiber or resistant starch, can support intestinal barrier function. AMPK activators-notably berberine and the butyric acid produced by health-promoting microflora-are also beneficial in this regard, as are soy isoflavones, which function as selective agonists for ERβ. The adverse impact of MAPK and c-Src overactivation on the intestinal barrier can be combatted with various antioxidant measures, including phycocyanobilin, phase 2-inducer nutraceuticals, and N-acetylcysteine. These considerations suggest that rationally designed functional foods or complex supplementation programs could have clinical potential for supporting and restoring healthful intestinal barrier function.
Collapse
Affiliation(s)
| | - Aaron Lerner
- Chaim Sheba Medical Center, Zabludowicz Center for Autoimmune Diseases, Tel-Hashomer, Israel
| |
Collapse
|
15
|
McCarty MF. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci 2021; 22:ijms22073321. [PMID: 33805039 PMCID: PMC8037104 DOI: 10.3390/ijms22073321] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Although well documented drug therapies are available for the management of ventricular hypertrophy (VH) and heart failure (HF), most patients nonetheless experience a downhill course, and further therapeutic measures are needed. Nutraceutical, dietary, and lifestyle measures may have particular merit in this regard, as they are currently available, relatively safe and inexpensive, and can lend themselves to primary prevention as well. A consideration of the pathogenic mechanisms underlying the VH/HF syndrome suggests that measures which control oxidative and endoplasmic reticulum (ER) stress, that support effective nitric oxide and hydrogen sulfide bioactivity, that prevent a reduction in cardiomyocyte pH, and that boost the production of protective hormones, such as fibroblast growth factor 21 (FGF21), while suppressing fibroblast growth factor 23 (FGF23) and marinobufagenin, may have utility for preventing and controlling this syndrome. Agents considered in this essay include phycocyanobilin, N-acetylcysteine, lipoic acid, ferulic acid, zinc, selenium, ubiquinol, astaxanthin, melatonin, tauroursodeoxycholic acid, berberine, citrulline, high-dose folate, cocoa flavanols, hawthorn extract, dietary nitrate, high-dose biotin, soy isoflavones, taurine, carnitine, magnesium orotate, EPA-rich fish oil, glycine, and copper. The potential advantages of whole-food plant-based diets, moderation in salt intake, avoidance of phosphate additives, and regular exercise training and sauna sessions are also discussed. There should be considerable scope for the development of functional foods and supplements which make it more convenient and affordable for patients to consume complementary combinations of the agents discussed here. Research Strategy: Key word searching of PubMed was employed to locate the research papers whose findings are cited in this essay.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, 811 B Nahant Ct., San Diego, CA 92109, USA
| |
Collapse
|
16
|
Petit L, Vernès L, Cadoret JP. Docking and in silico toxicity assessment of Arthrospira compounds as potential antiviral agents against SARS-CoV-2. JOURNAL OF APPLIED PHYCOLOGY 2021; 33:1579-1602. [PMID: 33776210 DOI: 10.21203/rs.3.rs-40890/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/03/2021] [Accepted: 01/03/2021] [Indexed: 05/23/2023]
Abstract
UNLABELLED A race is currently being launched as a result of the international health situation. This race aims to find, by various means, weapons to counter the Covid-19 pandemic now widespread on all continents. The aquatic world and in particular that of photosynthetic organisms is regularly highlighted but paradoxically little exploited in view of the tremendous possibilities it offers. Computational tools allow not only to clear the existence and activity of many molecules but also to model their relationships with receptors identified in potential hosts. On a routine basis, our laboratory carries out a research activity on functionalities of molecules derived from algae using in silico tools. We have implemented our skills in algae biology and in modeling, as tests in order to identify molecules expressed by the genus Arthrospira showing an antiviral potential and more particularly anti-SARS-CoV-2. Using consensus docking and redocking with Autodock Vina and SwissDock, we were able to identify several promising molecules from Arthrospira: phycocyanobilin, phycoerythrobilin, phycourobilin, and folic acid. These four compounds showed reliable binding energies comprised between - 6.95 and - 7.45 kcal.mol-1 in Autodock Vina and between - 9.285 and - 10.35 kcal.mol-1 with SwissDock. Toxicity prediction as well as current regulations provided promising arguments for the inclusion of these compounds in further studies to assess their ability to compete with the SARS-CoV-2/ACE2 complex both in vitro and in vivo. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10811-021-02372-9.
Collapse
Affiliation(s)
- Léna Petit
- Algama, 81 rue Réaumur, 75002 Paris, France
| | - Léa Vernès
- Algama, 81 rue Réaumur, 75002 Paris, France
| | | |
Collapse
|
17
|
McCarty MF, DiNicolantonio JJ, Lerner A. A Fundamental Role for Oxidants and Intracellular Calcium Signals in Alzheimer's Pathogenesis-And How a Comprehensive Antioxidant Strategy May Aid Prevention of This Disorder. Int J Mol Sci 2021; 22:2140. [PMID: 33669995 PMCID: PMC7926325 DOI: 10.3390/ijms22042140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress and increased cytoplasmic calcium are key mediators of the detrimental effects on neuronal function and survival in Alzheimer's disease (AD). Pathways whereby these perturbations arise, and then prevent dendritic spine formation, promote tau hyperphosphorylation, further amplify amyloid β generation, and induce neuronal apoptosis, are described. A comprehensive program of nutraceutical supplementation, comprised of the NADPH oxidase inhibitor phycocyanobilin, phase two inducers, the mitochondrial antioxidant astaxanthin, and the glutathione precursor N-acetylcysteine, may have important potential for antagonizing the toxic effects of amyloid β on neurons and thereby aiding prevention of AD. Moreover, nutraceutical antioxidant strategies may oppose the adverse impact of amyloid β oligomers on astrocyte clearance of glutamate, and on the ability of brain capillaries to export amyloid β monomers/oligomers from the brain. Antioxidants, docosahexaenoic acid (DHA), and vitamin D, have potential for suppressing microglial production of interleukin-1β, which potentiates the neurotoxicity of amyloid β. Epidemiology suggests that a health-promoting lifestyle, incorporating a prudent diet, regular vigorous exercise, and other feasible measures, can cut the high risk for AD among the elderly by up to 60%. Conceivably, complementing such lifestyle measures with long-term adherence to the sort of nutraceutical regimen outlined here may drive down risk for AD even further.
Collapse
Affiliation(s)
| | | | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer 5262000, Israel
| |
Collapse
|
18
|
Phytochromes and Cyanobacteriochromes: Photoreceptor Molecules Incorporating a Linear Tetrapyrrole Chromophore. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:167-187. [PMID: 33398813 DOI: 10.1007/978-981-15-8763-4_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this chapter, we summarize the molecular mechanisms of the linear tetrapyrrole-binding photoreceptors, phytochromes, and cyanobacteriochromes. We especially focus on the color-tuning mechanisms and conformational changes during the photoconversion process. Furthermore, we introduce current status of development of the optogenetic tools based on these molecules. Huge repertoire of these photoreceptors with diverse spectral properties would contribute to development of multiplex optogenetic regulation. Among them, the photoreceptors incorporating the biliverdin IXα chromophore is advantageous for in vivo optogenetics because this is intrinsic in the mammalian cells, and absorbs far-red light penetrating into deep mammalian tissues.
Collapse
|
19
|
Petit L, Vernès L, Cadoret JP. Docking and in silico toxicity assessment of Arthrospira compounds as potential antiviral agents against SARS-CoV-2. JOURNAL OF APPLIED PHYCOLOGY 2021; 33:1579-1602. [PMID: 33776210 PMCID: PMC7979453 DOI: 10.1007/s10811-021-02372-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/03/2021] [Accepted: 01/03/2021] [Indexed: 05/07/2023]
Abstract
UNLABELLED A race is currently being launched as a result of the international health situation. This race aims to find, by various means, weapons to counter the Covid-19 pandemic now widespread on all continents. The aquatic world and in particular that of photosynthetic organisms is regularly highlighted but paradoxically little exploited in view of the tremendous possibilities it offers. Computational tools allow not only to clear the existence and activity of many molecules but also to model their relationships with receptors identified in potential hosts. On a routine basis, our laboratory carries out a research activity on functionalities of molecules derived from algae using in silico tools. We have implemented our skills in algae biology and in modeling, as tests in order to identify molecules expressed by the genus Arthrospira showing an antiviral potential and more particularly anti-SARS-CoV-2. Using consensus docking and redocking with Autodock Vina and SwissDock, we were able to identify several promising molecules from Arthrospira: phycocyanobilin, phycoerythrobilin, phycourobilin, and folic acid. These four compounds showed reliable binding energies comprised between - 6.95 and - 7.45 kcal.mol-1 in Autodock Vina and between - 9.285 and - 10.35 kcal.mol-1 with SwissDock. Toxicity prediction as well as current regulations provided promising arguments for the inclusion of these compounds in further studies to assess their ability to compete with the SARS-CoV-2/ACE2 complex both in vitro and in vivo. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10811-021-02372-9.
Collapse
Affiliation(s)
- Léna Petit
- Algama, 81 rue Réaumur, 75002 Paris, France
| | - Léa Vernès
- Algama, 81 rue Réaumur, 75002 Paris, France
| | | |
Collapse
|
20
|
McCarty MF, Iloki Assanga SB, Lewis Luján L, O’Keefe JH, DiNicolantonio JJ. Nutraceutical Strategies for Suppressing NLRP3 Inflammasome Activation: Pertinence to the Management of COVID-19 and Beyond. Nutrients 2020; 13:E47. [PMID: 33375692 PMCID: PMC7823562 DOI: 10.3390/nu13010047] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 02/03/2023] Open
Abstract
Inflammasomes are intracellular protein complexes that form in response to a variety of stress signals and that serve to catalyze the proteolytic conversion of pro-interleukin-1β and pro-interleukin-18 to active interleukin-1β and interleukin-18, central mediators of the inflammatory response; inflammasomes can also promote a type of cell death known as pyroptosis. The NLRP3 inflammasome has received the most study and plays an important pathogenic role in a vast range of pathologies associated with inflammation-including atherosclerosis, myocardial infarction, the complications of diabetes, neurological and autoimmune disorders, dry macular degeneration, gout, and the cytokine storm phase of COVID-19. A consideration of the molecular biology underlying inflammasome priming and activation enables the prediction that a range of nutraceuticals may have clinical potential for suppressing inflammasome activity-antioxidants including phycocyanobilin, phase 2 inducers, melatonin, and N-acetylcysteine, the AMPK activator berberine, glucosamine, zinc, and various nutraceuticals that support generation of hydrogen sulfide. Complex nutraceuticals or functional foods featuring a number of these agents may find utility in the prevention and control of a wide range of medical disorders.
Collapse
Affiliation(s)
| | - Simon Bernard Iloki Assanga
- Department of Research and Postgraduate in Food, University of Sonora, Centro 83000, Mexico; (S.B.I.A.); (L.L.L.)
| | - Lidianys Lewis Luján
- Department of Research and Postgraduate in Food, University of Sonora, Centro 83000, Mexico; (S.B.I.A.); (L.L.L.)
| | | | | |
Collapse
|
21
|
Uda Y, Miura H, Goto Y, Yamamoto K, Mii Y, Kondo Y, Takada S, Aoki K. Improvement of Phycocyanobilin Synthesis for Genetically Encoded Phytochrome-Based Optogenetics. ACS Chem Biol 2020; 15:2896-2906. [PMID: 33164485 DOI: 10.1021/acschembio.0c00477] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Optogenetics is a powerful technique using photoresponsive proteins, and the light-inducible dimerization (LID) system, an optogenetic tool, allows to manipulate intracellular signaling pathways. One of the red/far-red responsive LID systems, phytochrome B (PhyB)-phytochrome interacting factor (PIF), has a unique property of controlling both association and dissociation by light on the second time scale, but PhyB requires a linear tetrapyrrole chromophore such as phycocyanobilin (PCB), and such chromophores are present only in higher plants and cyanobacteria. Here, we report that we further improved our previously developed PCB synthesis system (SynPCB) and successfully established a stable cell line containing a genetically encoded PhyB-PIF LID system. First, four genes responsible for PCB synthesis, namely, PcyA, HO1, Fd, and Fnr, were replaced with their counterparts derived from thermophilic cyanobacteria. Second, Fnr was truncated, followed by fusion with Fd to generate a chimeric protein, tFnr-Fd. Third, these genes were concatenated with P2A peptide cDNAs for polycistronic expression, resulting in an approximately 4-fold increase in PCB synthesis compared with the previous version. Finally, we incorporated the PhyB, PIF, and SynPCB system into drug inducible lentiviral and transposon vectors, which enabled us to induce PCB synthesis and the PhyB-PIF LID system by doxycycline treatment. These tools provide a new opportunity to advance our understanding of the causal relationship between intracellular signaling and cellular functions.
Collapse
Affiliation(s)
- Youichi Uda
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Haruko Miura
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Kei Yamamoto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yusuke Mii
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Shinji Takada
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
22
|
McCarty MF, Lerner A. Nutraceuticals Targeting Generation and Oxidant Activity of Peroxynitrite May Aid Prevention and Control of Parkinson's Disease. Int J Mol Sci 2020; 21:3624. [PMID: 32455532 PMCID: PMC7279222 DOI: 10.3390/ijms21103624] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a chronic low-grade inflammatory process in which activated microglia generate cytotoxic factors-most prominently peroxynitrite-which induce the death and dysfunction of neighboring dopaminergic neurons. Dying neurons then release damage-associated molecular pattern proteins such as high mobility group box 1 which act on microglia via a range of receptors to amplify microglial activation. Since peroxynitrite is a key mediator in this process, it is proposed that nutraceutical measures which either suppress microglial production of peroxynitrite, or which promote the scavenging of peroxynitrite-derived oxidants, should have value for the prevention and control of PD. Peroxynitrite production can be quelled by suppressing activation of microglial NADPH oxidase-the source of its precursor superoxide-or by down-regulating the signaling pathways that promote microglial expression of inducible nitric oxide synthase (iNOS). Phycocyanobilin of spirulina, ferulic acid, long-chain omega-3 fatty acids, good vitamin D status, promotion of hydrogen sulfide production with taurine and N-acetylcysteine, caffeine, epigallocatechin-gallate, butyrogenic dietary fiber, and probiotics may have potential for blunting microglial iNOS induction. Scavenging of peroxynitrite-derived radicals may be amplified with supplemental zinc or inosine. Astaxanthin has potential for protecting the mitochondrial respiratory chain from peroxynitrite and environmental mitochondrial toxins. Healthful programs of nutraceutical supplementation may prove to be useful and feasible in the primary prevention or slow progression of pre-existing PD. Since damage to the mitochondria in dopaminergic neurons by environmental toxins is suspected to play a role in triggering the self-sustaining inflammation that drives PD pathogenesis, there is also reason to suspect that plant-based diets of modest protein content, and possibly a corn-rich diet high in spermidine, might provide protection from PD by boosting protective mitophagy and thereby aiding efficient mitochondrial function. Low-protein diets can also promote a more even response to levodopa therapy.
Collapse
Affiliation(s)
| | - Aaron Lerner
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| |
Collapse
|
23
|
Abstract
Spirulina, a cyanobacteria commonly referred to as a blue-green algae, is one of the oldest lifeforms on Earth. Spirulina grows in both fresh and saltwater sources and is known for its high protein and micronutrient content. This review paper will cover the effects of spirulina on weight loss and blood lipids. The currently literature supports the benefits of spirulina for reducing body fat, waist circumference, body mass index and appetite and shows that spirulina has significant benefits for improving blood lipids.
Collapse
Affiliation(s)
| | - Anusha G Bhat
- Department of Internal Medicine, Baystate Medical Center, Springfield, Massachusetts, USA
- Department of Public Heath Practice, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, United States
| | - James OKeefe
- Saint Lukes Mid America Heart Institute, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
24
|
Zhang K, Mu Y, Li W, Shan X, Wang N, Feng H. Identification of two recessive etiolation genes (py1, py2) in pakchoi (Brassica rapa L. ssp. chinensis). BMC PLANT BIOLOGY 2020; 20:68. [PMID: 32041529 PMCID: PMC7011377 DOI: 10.1186/s12870-020-2271-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/29/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Leaf color is a major agronomic trait, which has a strong influence on crop yields. Isolating leaf color mutants can represent valuable materials for research in chlorophyll (Chl) biosynthesis and metabolism regulation. RESULTS In this study, we identified a stably inherited yellow leaf mutant derived from 'Huaguan' pakchoi variety via isolated microspore culture and designated as pylm. This mutant displayed yellow leaves after germination. Its etiolated phenotype was nonlethal and stable during the whole growth period. Its growth was weak and its hypocotyls were markedly elongated. Genetic analysis revealed that two recessive nuclear genes, named py1 and py2, are responsible for the etiolation phenotype. Bulked segregant RNA sequencing (BSR-Seq) showed that py1 and py2 were mapped on chromosomes A09 and A07, respectively. The genes were single Mendelian factors in F3:4 populations based on a 3:1 phenotypic segregation ratio. The py1 was localized to a 258.3-kb interval on a 34-gene genome. The differentially expressed gene BraA09004189 was detected in the py1 mapping region and regulated heme catabolism. One single-nucleotide polymorphism (SNP) of BraA09004189 occurred in pylm. A candidate gene-specific SNP marker in 1520 F3:4 yellow-colored individuals co-segregated with py1. For py2, 1860 recessive homozygous F3:4 individuals were investigated and localized py2 to a 4.4-kb interval. Of the five genes in this region, BraA07001774 was predicted as a candidate for py2. It encoded an embryo defective 1187 and a phosphotransferase related to chlorophyll deficiency and hypocotyl elongation. One SNP of BraA07001774 occurred in pylm. It caused a single amino acid mutation from Asp to Asn. According to quantitative real-time polymerase chain reaction (qRT-PCR), BraA07001774 was downregulated in pylm. CONCLUSIONS Our study identified a Chl deficiency mutant pylm in pakchoi. Two recessive nuclear genes named py1 and py2 had a significant effect on etiolation. Candidate genes regulating etiolation were identified as BraA09004189 and BraA07001774, respectively. These findings will elucidate chlorophyll metabolism and the molecular mechanisms of the gene interactions controlling pakchoi etiolation.
Collapse
Affiliation(s)
- Kun Zhang
- College of Life Sciences, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Yu Mu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Weijia Li
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Xiaofei Shan
- College of Life Sciences, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Nan Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
25
|
Abstract
Expression and purification of recombinant proteins are important for the structure-function study of phytochromes. However, it is difficult to purify phytochrome proteins from natural sources or using a bacterial expression system, due to the presence of multiple phytochrome species and low expression and solubility, respectively. Here we describe the expression of recombinant full-length plant phytochromes in the yeast Pichia pastoris, and the spectral analysis of chromophore-assembled phytochromes before and after the purification by streptavidin affinity chromatography.
Collapse
|
26
|
DiNicolantonio JJ, McCarty MF, O’Keefe JH. Antioxidant bilirubin works in multiple ways to reduce risk for obesity and its health complications. Open Heart 2018; 5:e000914. [PMID: 30364545 PMCID: PMC6196942 DOI: 10.1136/openhrt-2018-000914] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2018] [Indexed: 12/30/2022] Open
Affiliation(s)
- James J DiNicolantonio
- Department of Preventive Cardiology, Saint Luke’s Mid America Heart Institute, Kansas City, Missouri, USA
| | | | - James H O’Keefe
- Department of Preventive Cardiology, Saint Luke’s Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
27
|
Beneficial effects of phycobiliproteins from Spirulina maxima in a preeclampsia model. Life Sci 2018; 211:17-24. [DOI: 10.1016/j.lfs.2018.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 02/04/2023]
|
28
|
Memije-Lazaro IN, Blas-Valdivia V, Franco-Colín M, Cano-Europa E. Arthrospira maxima (Spirulina) and C-phycocyanin prevent the progression of chronic kidney disease and its cardiovascular complications. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
29
|
Beneficial effects of oral administration of C-Phycocyanin and Phycocyanobilin in rodent models of experimental autoimmune encephalomyelitis. Life Sci 2018; 194:130-138. [DOI: 10.1016/j.lfs.2017.12.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/20/2017] [Accepted: 12/23/2017] [Indexed: 01/03/2023]
|
30
|
Efficient synthesis of phycocyanobilin in mammalian cells for optogenetic control of cell signaling. Proc Natl Acad Sci U S A 2017; 114:11962-11967. [PMID: 29078307 DOI: 10.1073/pnas.1707190114] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Optogenetics is a powerful tool to precisely manipulate cell signaling in space and time. For example, protein activity can be regulated by several light-induced dimerization (LID) systems. Among them, the phytochrome B (PhyB)-phytochrome-interacting factor (PIF) system is the only available LID system controlled by red and far-red lights. However, the PhyB-PIF system requires phycocyanobilin (PCB) or phytochromobilin as a chromophore, which must be artificially added to mammalian cells. Here, we report an expression vector that coexpresses HO1 and PcyA with Ferredoxin and Ferredoxin-NADP+ reductase for the efficient synthesis of PCB in the mitochondria of mammalian cells. An even higher intracellular PCB concentration was achieved by the depletion of biliverdin reductase A, which degrades PCB. The PCB synthesis and PhyB-PIF systems allowed us to optogenetically regulate intracellular signaling without any external supply of chromophores. Thus, we have provided a practical method for developing a fully genetically encoded PhyB-PIF system, which paves the way for its application to a living animal.
Collapse
|
31
|
Takao H, Hirabayashi K, Nishigaya Y, Kouriki H, Nakaniwa T, Hagiwara Y, Harada J, Sato H, Yamazaki T, Sakakibara Y, Suiko M, Asada Y, Takahashi Y, Yamamoto K, Fukuyama K, Sugishima M, Wada K. A substrate-bound structure of cyanobacterial biliverdin reductase identifies stacked substrates as critical for activity. Nat Commun 2017; 8:14397. [PMID: 28169272 PMCID: PMC5309722 DOI: 10.1038/ncomms14397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/23/2016] [Indexed: 01/20/2023] Open
Abstract
Biliverdin reductase catalyses the last step in haem degradation and produces the major lipophilic antioxidant bilirubin via reduction of biliverdin, using NAD(P)H as a cofactor. Despite the importance of biliverdin reductase in maintaining the redox balance, the molecular details of the reaction it catalyses remain unknown. Here we present the crystal structure of biliverdin reductase in complex with biliverdin and NADP+. Unexpectedly, two biliverdin molecules, which we designated the proximal and distal biliverdins, bind with stacked geometry in the active site. The nicotinamide ring of the NADP+ is located close to the reaction site on the proximal biliverdin, supporting that the hydride directly attacks this position of the proximal biliverdin. The results of mutagenesis studies suggest that a conserved Arg185 is essential for the catalysis. The distal biliverdin probably acts as a conduit to deliver the proton from Arg185 to the proximal biliverdin, thus yielding bilirubin.
Collapse
Affiliation(s)
- Haruna Takao
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-1692, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Kei Hirabayashi
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yuki Nishigaya
- Advanced Analysis Center, National Agriculture and Food Research Organization, Ibaraki 305-8602, Japan
| | - Haruna Kouriki
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Tetsuko Nakaniwa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Yoshinori Hagiwara
- Department of Biochemistry and Applied Chemistry, National Institute of Technology, Kurume College, Fukuoka 830-8555, Japan
| | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | - Hideaki Sato
- Department of Medical Biochemistry, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | - Toshimasa Yamazaki
- Advanced Analysis Center, National Agriculture and Food Research Organization, Ibaraki 305-8602, Japan
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Masahito Suiko
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yujiro Asada
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yasuhiro Takahashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | - Keiichi Fukuyama
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Masakazu Sugishima
- Department of Medical Biochemistry, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | - Kei Wada
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-1692, Japan
| |
Collapse
|
32
|
Radibratovic M, Minic S, Stanic-Vucinic D, Nikolic M, Milcic M, Cirkovic Velickovic T. Stabilization of Human Serum Albumin by the Binding of Phycocyanobilin, a Bioactive Chromophore of Blue-Green Alga Spirulina: Molecular Dynamics and Experimental Study. PLoS One 2016; 11:e0167973. [PMID: 27959940 PMCID: PMC5154526 DOI: 10.1371/journal.pone.0167973] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/24/2016] [Indexed: 11/18/2022] Open
Abstract
Phycocyanobilin (PCB) binds with high affinity (2.2 x 106 M-1 at 25°C) to human serum albumin (HSA) at sites located in IB and IIA subdomains. The aim of this study was to examine effects of PCB binding on protein conformation and stability. Using 300 ns molecular dynamics (MD) simulations, UV-VIS spectrophotometry, CD, FT-IR, spectrofluorimetry, thermal denaturation and susceptibility to trypsin digestion, we studied the effects of PCB binding on the stability and rigidity of HSA, as well as the conformational changes in PCB itself upon binding to the protein. MD simulation results demonstrated that HSA with PCB bound at any of the two sites showed greater rigidity and lower overall and individual domain flexibility compared to free HSA. Experimental data demonstrated an increase in the α-helical content of the protein and thermal and proteolytic stability upon ligand binding. PCB bound to HSA undergoes a conformational change to a more elongated conformation in the binding pockets of HSA. PCB binding to HSA stabilizes the structure of this flexible transport protein, making it more thermostable and resistant to proteolysis. The results from this work explain at molecular level, conformational changes and stabilization of HSA structure upon ligand binding. The resultant increased thermal and proteolytic stability of HSA may provide greater longevity to HSA in plasma.
Collapse
Affiliation(s)
- Milica Radibratovic
- Institute of Chemistry, Technology and Metallurgy - Center for Chemistry, University of Belgrade, Belgrade, Serbia
| | - Simeon Minic
- Center of Excellence for Molecular Food Sciences, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Dragana Stanic-Vucinic
- Center of Excellence for Molecular Food Sciences, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Milan Nikolic
- Center of Excellence for Molecular Food Sciences, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
- Department of Biochemistry, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Milos Milcic
- Department of Inorganic Chemistry, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
- Center for Computational Chemistry and Bioinformatics, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
- * E-mail: (TCV); (MM)
| | - Tanja Cirkovic Velickovic
- Center of Excellence for Molecular Food Sciences, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
- Ghent University Global Campus, Yeonsu-gu, Incheon, South Korea
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- * E-mail: (TCV); (MM)
| |
Collapse
|
33
|
Basdeo SA, Campbell NK, Sullivan LM, Flood B, Creagh EM, Mantle TJ, Fletcher JM, Dunne A. Suppression of human alloreactive T cells by linear tetrapyrroles; relevance for transplantation. Transl Res 2016; 178:81-94.e2. [PMID: 27497182 DOI: 10.1016/j.trsl.2016.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/16/2016] [Accepted: 07/13/2016] [Indexed: 12/15/2022]
Abstract
The main limitation to successful transplantation is the antigraft response developed by the recipient immune system, and the adverse side effects of immunosuppressive agents which are associated with significant toxicity and counter indications such as infection and cancer. Furthermore, immunosuppressants do little to prevent ischemia-reperfusion injury during the transplantation procedure itself hence there is a growing need to develop novel immunosuppressive drugs specifically aimed at prolonging graft survival. Linear tetrapyrroles derived from the breakdown of mammalian heme have been shown in numerous studies to play a protective role in allograft transplantation and ischemia-reperfusion injury; however, commercial sources of these products have not been approved for use in humans. Plants and algae produce equivalent linear tetrapyrroles called bilins that serve as chromophores in light-sensing. One such marine-derived tetrapyrrole, phycocyanobilin (PCB), shows significant structural similarity to mammalian biliverdin (BV) and may prove to be a safer alternative for use in the clinic if it can exert direct effects on human immune cells. Using a mixed lymphocyte reaction, we quantified the allogeneic responses of recipient cells to donor cells and found that PCB, like BV, effectively suppressed proliferation and proinflammatory cytokine production. In addition, we found that BV and PCB can directly downregulate the proinflammatory responses of both innate dendritic cells and adaptive T cells. We therefore propose that PCB may be an effective therapeutic drug in the clinical setting of transplantation and may also have wider applications in regulating inappropriate inflammation.
Collapse
Affiliation(s)
- Sharee A Basdeo
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Nicole K Campbell
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Louise M Sullivan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Brian Flood
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Emma M Creagh
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Timothy J Mantle
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Jean M Fletcher
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland; School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland; School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| |
Collapse
|
34
|
Suppression of NADPH Oxidase Activity May Slow the Expansion of Osteolytic Bone Metastases. Healthcare (Basel) 2016; 4:healthcare4030060. [PMID: 27571113 PMCID: PMC5041061 DOI: 10.3390/healthcare4030060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/11/2016] [Accepted: 08/22/2016] [Indexed: 12/28/2022] Open
Abstract
Lysophosphatidic acid (LPA), generated in the microenvironment of cancer cells, can drive the proliferation, invasion, and migration of cancer cells by activating G protein-coupled LPA receptors. Moreover, in cancer cells that have metastasized to bone, LPA signaling can promote osteolysis by inducing cancer cell production of cytokines, such as IL-6 and IL-8, which can stimulate osteoblasts to secrete RANKL, a key promoter of osteoclastogenesis. Indeed, in cancers prone to metastasize to bone, LPA appears to be a major driver of the expansion of osteolytic bone metastases. Activation of NADPH oxidase has been shown to play a mediating role in the signaling pathways by which LPA, as well as RANKL, promote osteolysis. In addition, there is reason to suspect that Nox4 activation is a mediator of the feed-forward mechanism whereby release of TGF-beta from bone matrix by osteolysis promotes expression of PTHrP in cancer cells, and thereby induces further osteolysis. Hence, measures which can down-regulate NADPH oxidase activity may have potential for slowing the expansion of osteolytic bone metastases in cancer patients. Phycocyanin and high-dose statins may have utility in this regard, and could be contemplated as complements to bisphosphonates or denosumab for the prevention and control of osteolytic lesions. Ingestion of omega-3-rich flaxseed or fish oil may also have potential for controlling osteolysis in cancer patients.
Collapse
|
35
|
Jensen GS, Drapeau C, Lenninger M, Benson KF. Clinical Safety of a High Dose of Phycocyanin-Enriched Aqueous Extract from Arthrospira (Spirulina) platensis: Results from a Randomized, Double-Blind, Placebo-Controlled Study with a Focus on Anticoagulant Activity and Platelet Activation. J Med Food 2016; 19:645-53. [PMID: 27362442 PMCID: PMC4948198 DOI: 10.1089/jmf.2015.0143] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The goal for this study was to evaluate safety regarding anticoagulant activity and platelet activation during daily consumption of an aqueous cyanophyta extract (ACE), containing a high dose of phycocyanin. Using a randomized, double-blind, placebo-controlled study design, 24 men and women were enrolled after informed consent, and consumed either ACE (2.3 g/day) or placebo daily for 2 weeks. The ACE dose was equivalent to ∼1 g phycocyanin per day, chosen based on the highest dose Generally Recognized as Safe (GRAS) by the U.S. Food and Drug Administration. Consuming ACE did not alter markers for platelet activation (P-selectin expression) or serum P-selectin levels. No changes were seen for activated partial thromboplastin time, thrombin clotting time, or fibrinogen activity. Serum levels of aspartate transaminase (AST) showed a significant reduction after 2 weeks of ACE consumption (P < .001), in contrast to placebo where no changes were seen; the difference in AST levels between the two groups was significant at 2 weeks (P < .02). Reduced levels of alanine transaminase (ALT) were also seen in the group consuming ACE (P < .08). Previous studies showed reduction of chronic pain when consuming 1 g ACE per day. The higher dose of 2.3 g/day in this study was associated with significant reduction of chronic pain at rest and when physically active (P < .05). Consumption of ACE showed safety regarding markers pertaining to anticoagulant activity and platelet activation status, in conjunction with rapid and robust relief of chronic pain. Reduction in AST and ALT suggested improvement in liver function and metabolism.
Collapse
|
36
|
McCarty MF. Practical prospects for boosting hepatic production of the "pro-longevity" hormone FGF21. Horm Mol Biol Clin Investig 2015; 30:/j/hmbci.ahead-of-print/hmbci-2015-0057/hmbci-2015-0057.xml. [PMID: 26741352 DOI: 10.1515/hmbci-2015-0057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 11/20/2015] [Indexed: 12/15/2022]
Abstract
Fibroblast growth factor-21 (FGF21), produced mainly in hepatocytes and adipocytes, promotes leanness, insulin sensitivity, and vascular health while down-regulating hepatic IGF-I production. Transgenic mice overexpressing FGF21 enjoy a marked increase in median and maximal longevity comparable to that evoked by calorie restriction - but without a reduction in food intake. Transcriptional factors which promote hepatic FGF21 expression include PPARα, ATF4, STAT5, and FXR; hence, fibrate drugs, elevated lipolysis, moderate-protein vegan diets, growth hormone, and bile acids may have potential to increase FGF21 synthesis. Sirt1 activity is required for optimal responsiveness of FGF21 to PPARα, and Sirt1 activators can boost FGF21 transcription. Conversely, histone deacetylase 3 (HDAC3) inhibits PPARα's transcriptional impact on FGF21, and type 1 deacetylase inhibitors such as butyrate therefore increase FGF21 expression. Glucagon-like peptide-1 (GLP-1) increases hepatic expression of both PPARα and Sirt1; acarbose, which increases intestinal GLP-1 secretion, also increases FGF21 and lifespan in mice. Glucagon stimulates hepatic production of FGF21 by increasing the expression of the Nur77 transcription factor; increased glucagon secretion can be evoked by supplemental glycine administered during post-absorptive metabolism. The aryl hydrocarbon receptor (AhR) has also been reported recently to promote FGF21 transcription. Bilirubin is known to be an agonist for this receptor, and this may rationalize a recent report that heme oxygenase-1 induction in the liver boosts FGF21 expression. There is reason to suspect that phycocyanorubin, a bilirubin homolog that is a metabolite of the major phycobilin in spirulina, may share bilirubin's agonist activity for AhR, and perhaps likewise promote FGF21 induction. In the future, regimens featuring a plant-based diet, nutraceuticals, and safe drugs may make it feasible to achieve physiologically significant increases in FGF21 that promote metabolic health, leanness, and longevity.
Collapse
|
37
|
NADPH Oxidase Activity in Cerebral Arterioles Is a Key Mediator of Cerebral Small Vessel Disease-Implications for Prevention. Healthcare (Basel) 2015; 3:233-51. [PMID: 27417759 PMCID: PMC4939544 DOI: 10.3390/healthcare3020233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/21/2015] [Accepted: 04/08/2015] [Indexed: 02/05/2023] Open
Abstract
Cerebral small vessel disease (SVD), a common feature of brain aging, is characterized by lacunar infarcts, microbleeds, leukoaraiosis, and a leaky blood-brain barrier. Functionally, it is associated with cognitive decline, dementia, depression, gait abnormalities, and increased risk for stroke. Cerebral arterioles in this syndrome tend to hypertrophy and lose their capacity for adaptive vasodilation. Rodent studies strongly suggest that activation of Nox2-dependent NADPH oxidase activity is a crucial driver of these structural and functional derangements of cerebral arterioles, in part owing to impairment of endothelial nitric oxide synthase (eNOS) activity. This oxidative stress may also contribute to the breakdown of the blood-brain barrier seen in SVD. Hypertension, aging, metabolic syndrome, smoking, hyperglycemia, and elevated homocysteine may promote activation of NADPH oxidase in cerebral arterioles. Inhibition of NADPH oxidase with phycocyanobilin from spirulina, as well as high-dose statin therapy, may have potential for prevention and control of SVD, and high-potassium diets merit study in this regard. Measures which support effective eNOS activity in other ways-exercise training, supplemental citrulline, certain dietary flavonoids (as in cocoa and green tea), and capsaicin, may also improve the function of cerebral arterioles. Asian epidemiology suggests that increased protein intakes may decrease risk for SVD; conceivably, arginine and/or cysteine-which boosts tissue glutathione synthesis, and can be administered as N-acetylcysteine-mediate this benefit. Ameliorating the risk factors for SVD-including hypertension, metabolic syndrome, hyperglycemia, smoking, and elevated homocysteine-also may help to prevent and control this syndrome, although few clinical trials have addressed this issue to date.
Collapse
|
38
|
Overkamp KE, Langklotz S, Aras M, Helling S, Marcus K, Bandow JE, Hoef-Emden K, Frankenberg-Dinkel N. Chromophore composition of the phycobiliprotein Cr-PC577 from the cryptophyte Hemiselmis pacifica. PHOTOSYNTHESIS RESEARCH 2014; 122:293-304. [PMID: 25134685 DOI: 10.1007/s11120-014-0029-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/19/2014] [Indexed: 06/03/2023]
Abstract
The cryptophyte phycocyanin Cr-PC577 from Hemiselmis pacifica is a close relative of Cr-PC612 found in Hemiselmis virescens and Hemiselmis tepida. The two biliproteins differ in that Cr-PC577 lacks the major peak at around 612 nm in the absorption spectrum. Cr-PC577 was thus purified and characterized with respect to its bilin chromophore composition. Like other cryptophyte phycobiliproteins, Cr-PC577 is an (αβ)(α'β) heterodimer with phycocyanobilin (PCB) bound to the α-subunits. While one chromophore of the β-subunit is also PCB, mass spectrometry identified an additional chromophore with a mass of 585 Da at position β-Cys-158. This mass can be attributed to either a dihydrobiliverdin (DHBV), mesobiliverdin (MBV), or bilin584 chromophore. The doubly linked bilin at position β-Cys-50 and β-Cys-61 could not be identified unequivocally but shares spectral features with DHBV. We found that Cr-PC577 possesses a novel chromophore composition with at least two different chromophores bound to the β-subunit. Overall, our data contribute to a better understanding of cryptophyte phycobiliproteins and furthermore raise the question on the biosynthetic pathway of cryptophyte chromophores.
Collapse
Affiliation(s)
- Kristina E Overkamp
- Physiology of Microorganisms, Faculty for Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The NADPH oxidase (NOX) enzymes were identified as a family of seven isoforms contributing to the production of reactive oxygen species. During the past 15 years, this class of enzymes has increasingly gained interest from the academic and pharmaceutical laboratories. Extensive research efforts focused on the decryption of their mechanism of action has shown that Nox enzymes are the most important source of reactive oxygen species and key contributors in the pathogenesis of several diseases. Recent publications and patents suggest that NOX modulators may provide major opportunities in many diseases as novel therapeutics. This review covers application patents and current state-of-the-art on Nox modulators from 2005 to December 2013 and examines the different approaches patented to modulate the activity of Nox enzymes.
Collapse
|
40
|
Müller K, Engesser R, Timmer J, Nagy F, Zurbriggen MD, Weber W. Synthesis of phycocyanobilin in mammalian cells. Chem Commun (Camb) 2014; 49:8970-2. [PMID: 23963496 DOI: 10.1039/c3cc45065a] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The chromophore 3-Z phycocyanobilin (PCB, (2R,3Z)-8,12-bis(2-carboxyethyl)-18-ethyl-3-ethylidene-2,7,13,17-tetramethyl-2,3-dihydrobilin-1,19(21H,24H)-dione) mediates red and far-red light perception in natural and synthetic biological systems. Here we describe a PCB synthesis strategy in mammalian cells. We optimize the production by co-localizing the biocatalysts to the substrate source, by coordinating the availability of the biocatalysts and by reducing the degradation of the reaction product. We show that the resulting PCB levels of 2 μM are sufficient to sustain the functionality of red light-responsive optogenetic tools suitable for the light-inducible control of gene expression in mammalian cells.
Collapse
Affiliation(s)
- Konrad Müller
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Fernández-Rojas B, Medina-Campos ON, Hernández-Pando R, Negrette-Guzmán M, Huerta-Yepez S, Pedraza-Chaverri J. C-Phycocyanin prevents cisplatin-induced nephrotoxicity through inhibition of oxidative stress. Food Funct 2014; 5:480-90. [DOI: 10.1039/c3fo60501a] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to evaluate whether the antioxidant C-phycocyanin (C-PC, 5–30 mg kg−1 i.p.) was able to prevent cisplatin (CP, 18 mg kg−1 i.p.) induced nephrotoxicity by reducing oxidative stress in CD-1 mice.
Collapse
Affiliation(s)
| | | | - Rogelio Hernández-Pando
- Experimental Pathology Section
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
- México D.F. 14000, Mexico
| | - Mario Negrette-Guzmán
- Department of Biology
- Facultad de Química, UNAM
- Ciudad Universitaria
- México D.F. 04510, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas
- Hospital Infantil de México Federico Gómez
- México D.F. 06720, Mexico
| | - José Pedraza-Chaverri
- Department of Biology
- Facultad de Química, UNAM
- Ciudad Universitaria
- México D.F. 04510, Mexico
| |
Collapse
|
42
|
Marín-Prida J, Pavón-Fuentes N, Llópiz-Arzuaga A, Fernández-Massó JR, Delgado-Roche L, Mendoza-Marí Y, Santana SP, Cruz-Ramírez A, Valenzuela-Silva C, Nazábal-Gálvez M, Cintado-Benítez A, Pardo-Andreu GL, Polentarutti N, Riva F, Pentón-Arias E, Pentón-Rol G. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats. Toxicol Appl Pharmacol 2013; 272:49-60. [PMID: 23732081 DOI: 10.1016/j.taap.2013.05.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 01/23/2023]
Abstract
Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H2O2 and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed.
Collapse
Affiliation(s)
- Javier Marín-Prida
- Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana, Cuba
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zheng J, Inoguchi T, Sasaki S, Maeda Y, McCarty MF, Fujii M, Ikeda N, Kobayashi K, Sonoda N, Takayanagi R. Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. Am J Physiol Regul Integr Comp Physiol 2012; 304:R110-20. [PMID: 23115122 DOI: 10.1152/ajpregu.00648.2011] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We and other investigators have reported that bilirubin and its precursor biliverdin may have beneficial effects on diabetic vascular complications, including nephropathy, via its antioxidant effects. Here, we investigated whether phycocyanin derived from Spirulina platensis, a blue-green algae, and its chromophore phycocyanobilin, which has a chemical structure similar to that of biliverdin, protect against oxidative stress and renal dysfunction in db/db mice, a rodent model for Type 2 diabetes. Oral administration of phycocyanin (300 mg/kg) for 10 wk protected against albuminuria and renal mesangial expansion in db/db mice, and normalized tumor growth factor-β and fibronectin expression. Phycocyanin also normalized urinary and renal oxidative stress markers and the expression of NAD(P)H oxidase components. Similar antioxidant effects were observed following oral administration of phycocyanobilin (15 mg/kg) for 2 wk. Phycocyanobilin, bilirubin, and biliverdin also inhibited NADPH dependent superoxide production in cultured renal mesangial cells. In conclusion, oral administration of phycocyanin and phycocyanobilin may offer a novel and feasible therapeutic approach for preventing diabetic nephropathy.
Collapse
Affiliation(s)
- Jing Zheng
- Dept. of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyusyu Univ., Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Galvão RM, Li M, Kothadia SM, Haskel JD, Decker PV, Van Buskirk EK, Chen M. Photoactivated phytochromes interact with HEMERA and promote its accumulation to establish photomorphogenesis in Arabidopsis. Genes Dev 2012; 26:1851-63. [PMID: 22895253 DOI: 10.1101/gad.193219.112] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Plant development is profoundly regulated by ambient light cues through the red/far-red photoreceptors, the phytochromes. Early phytochrome signaling events include the translocation of phytochromes from the cytoplasm to subnuclear domains called photobodies and the degradation of antagonistically acting phytochrome-interacting factors (PIFs). We recently identified a key phytochrome signaling component, HEMERA (HMR), that is essential for both phytochrome B (phyB) localization to photobodies and PIF degradation. However, the signaling mechanism linking phytochromes and HMR is unknown. Here we show that phytochromes directly interact with HMR to promote HMR protein accumulation in the light. HMR binds more strongly to the active form of phytochromes. This interaction is mediated by the photosensory domains of phytochromes and two phytochrome-interacting regions in HMR. Missense mutations in either HMR or phyB that alter the phytochrome/HMR interaction can also change HMR levels and photomorphogenetic responses. HMR accumulation in a constitutively active phyB mutant (YHB) is required for YHB-dependent PIF3 degradation in the dark. Our genetic and biochemical studies strongly support a novel phytochrome signaling mechanism in which photoactivated phytochromes directly interact with HMR and promote HMR accumulation, which in turn mediates the formation of photobodies and the degradation of PIFs to establish photomorphogenesis.
Collapse
Affiliation(s)
- Rafaelo M Galvão
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Targeting microglia-mediated neurotoxicity: the potential of NOX2 inhibitors. Cell Mol Life Sci 2012; 69:2409-27. [PMID: 22581365 DOI: 10.1007/s00018-012-1015-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 12/24/2022]
Abstract
Microglia are key sentinels of central nervous system health, and their dysfunction has been widely implicated in the progressive nature of neurodegenerative diseases. While microglia can produce a host of factors that are toxic to neighboring neurons, NOX2 has been implicated as a common and essential mechanism of microglia-mediated neurotoxicity. Accumulating evidence indicates that activation of the NOX2 enzyme complex in microglia is neurotoxic, both through the production of extracellular reactive oxygen species that damage neighboring neurons as well as the initiation of redox signaling in microglia that amplifies the pro-inflammatory response. More specifically, evidence supports that NOX2 redox signaling enhances microglial sensitivity to pro-inflammatory stimuli, and amplifies the production of neurotoxic cytokines, to promote chronic and neurotoxic microglial activation. Here, we describe the evidence denoting the role of NOX2 in microglia-mediated neurotoxicity with an emphasis on Alzheimer's and Parkinson's disease, describe available inhibitors that have been tested, and detail evidence of the neuroprotective and therapeutic potential of targeting this enzyme complex to regulate microglia.
Collapse
|
46
|
Rockwell NC, Martin SS, Lagarias JC. Mechanistic Insight into the Photosensory Versatility of DXCF Cyanobacteriochromes. Biochemistry 2012; 51:3576-85. [DOI: 10.1021/bi300171s] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616,
United States
| | - Shelley S. Martin
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616,
United States
| | - J. Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616,
United States
| |
Collapse
|
47
|
Enomoto G, Hirose Y, Narikawa R, Ikeuchi M. Thiol-Based Photocycle of the Blue and Teal Light-Sensing Cyanobacteriochrome Tlr1999. Biochemistry 2012; 51:3050-8. [DOI: 10.1021/bi300020u] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Gen Enomoto
- Department of Life Sciences
(Biology), Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | - Yuu Hirose
- Electronics-Inspired Interdisciplinary
Research Institute (EIIRIS), Toyohashi University of Technology, Toyohashi, Aichi 441-8581, Japan
| | - Rei Narikawa
- Department of Life Sciences
(Biology), Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Japan Science and Technology Agency
(JST), PRESTO, 4-1-8 Honcho Kawaguchi,
Saitama 332-0012 Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences
(Biology), Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
48
|
Minimizing the cancer-promotional activity of cox-2 as a central strategy in cancer prevention. Med Hypotheses 2012; 78:45-57. [DOI: 10.1016/j.mehy.2011.09.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 09/19/2011] [Indexed: 02/06/2023]
|
49
|
McCarty MF. Clinical potential of phycocyanobilin for induction of T regulatory cells in the management of inflammatory disorders. Med Hypotheses 2011; 77:1031-3. [PMID: 21917385 DOI: 10.1016/j.mehy.2011.08.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/09/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
Abstract
Exposure of human mononuclear cells to phycocyanin in vitro is reported to promote generation of Treg cells. Induction of heme oxygenase-1 (HO-1) in lymphocytes has a similar effect, and it is not likely to be accidental that a key product of HO-1 activity, biliverdin, is homologous to the structure of phycocyanin's chromophore phycocyanobilin (PhyCB). Moreover, Treg induction is observed in mice injected with bilirubin, biliverdin's chief metabolite. These considerations suggest that bilirubin, generated within lymphocytes by HO-1 activation, may play a physiological role in the promotion of Treg immunomodulation. This effect of bilirubin is likely to be independent of NADPH oxidase inhibition, since the NAPDH oxidase activity of macrophages is necessary for Treg induction, possibly because it contributes to HO-1 induction in lymphocytes. In light of numerous reports that oral phycocyanin is beneficial in various rodent models of autoimmune disorders, it is reasonable to suspect that PhyCB-enriched spirulina extracts may have clinical potential for boosting Treg activity in human autoimmune or allergic syndromes, mimicking the physiological role of HO-1 induction in this regard.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Ave., Encinitas, CA 92024, United States.
| |
Collapse
|
50
|
Rockwell NC, Martin SS, Feoktistova K, Lagarias JC. Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes. Proc Natl Acad Sci U S A 2011; 108:11854-9. [PMID: 21712441 PMCID: PMC3141974 DOI: 10.1073/pnas.1107844108] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytochromes are well-known as photoactive red- and near IR-absorbing chromoproteins with cysteine-linked linear tetrapyrrole (bilin) prosthetic groups. Phytochrome photoswitching regulates adaptive responses to light in both photosynthetic and nonphotosynthetic organisms. Exclusively found in cyanobacteria, the related cyanobacteriochrome (CBCR) sensors extend the photosensory range of the phytochrome superfamily to shorter wavelengths of visible light. Blue/green light sensing by a well-studied subfamily of CBCRs proceeds via a photolabile thioether linkage to a second cysteine fully conserved in this subfamily. In the present study, we show that dual-cysteine photosensors have repeatedly evolved in cyanobacteria via insertion of a second cysteine at different positions within the bilin-binding GAF domain (cGMP-specific phosphodiesterases, cyanobacterial adenylate cyclases, and formate hydrogen lyase transcription activator FhlA) shared by CBCRs and phytochromes. Such sensors exhibit a diverse range of photocycles, yet all share ground-state absorbance of near-UV to blue light and a common mechanism of light perception: reversible photoisomerization of the bilin 15,16 double bond. Using site-directed mutagenesis, chemical modification and spectroscopy to characterize novel dual-cysteine photosensors from the cyanobacterium Nostoc punctiforme ATCC 29133, we establish that this spectral diversity can be tuned by varying the light-dependent stability of the second thioether linkage. We also show that such behavior can be engineered into the conventional phytochrome Cph1 from Synechocystis sp. PCC6803. Dual-cysteine photosensors thus allow the phytochrome superfamily in cyanobacteria to sense the full solar spectrum at the earth surface from near infrared to near ultraviolet.
Collapse
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular and Cell Biology, University of California, Davis, CA 95616
| | - Shelley S. Martin
- Department of Molecular and Cell Biology, University of California, Davis, CA 95616
| | - Kateryna Feoktistova
- Department of Molecular and Cell Biology, University of California, Davis, CA 95616
| | - J. Clark Lagarias
- Department of Molecular and Cell Biology, University of California, Davis, CA 95616
| |
Collapse
|