1
|
Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR. Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:577-88. [PMID: 14742263 PMCID: PMC1602270 DOI: 10.1016/s0002-9440(10)63147-1] [Citation(s) in RCA: 372] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Commitment of the pulmonary epithelium to bronchial and bronchiolar airway lineages occurs during the transition from pseudoglandular to cannalicular phases of lung development, suggesting that regional differences exist with respect to the identity of stem and progenitor cells that contribute to epithelial maintenance in adulthood. We previously defined a critical role for Clara cell secretory protein-expressing (CE) cells in renewal of bronchiolar airway epithelium following injury. Even though CE cells are also the principal progenitor for maintenance of the bronchial airway epithelium, CE cell injury is resolved through a mechanism involving recruitment of a second progenitor cell population that we now identify as a GSI-B(4) reactive, cytokeratin-14-expressing basal cell. These cells exhibit multipotent differentiation capacity as assessed by analysis of cellular phenotype within clones of LacZ-tagged cells. Clones were derived from K14-expressing cells tagged in a cell-type-specific fashion by ligand-regulable Cre recombinase-mediated genomic rearrangement of the ROSA26 recombination substrate allele. We conclude that basal cells represent an alternative multipotent progenitor cell population of bronchial airways and that progenitor cell selection is dictated by the type of airway injury.
Collapse
Affiliation(s)
- Kyung U Hong
- Department of Environmental Medicine, University of Rochester, Rochester, New York, USA
| | | | | | | | | |
Collapse
|
2
|
Miliani de Marval PL, Gimenez-Conti IB, LaCava M, Martinez LA, Conti CJ, Rodriguez-Puebla ML. Transgenic expression of cyclin-dependent kinase 4 results in epidermal hyperplasia, hypertrophy, and severe dermal fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:369-79. [PMID: 11438484 PMCID: PMC1850398 DOI: 10.1016/s0002-9440(10)61703-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In a previous report we have described the effects of expression of D-type cyclins in epithelial tissues of transgenic mice. To study the involvement of the D-type cyclin partner cyclin-dependent kinase 4 (CDK4) in epithelial growth and differentiation, transgenic mice were generated carrying the CDK4 gene under the control of a keratin 5 promoter. As expected, transgenic mice showed expression of CDK4 in the epidermal basal-cell layer. Epidermal proliferation increased dramatically and basal cell hyperplasia and hypertrophy were observed. The hyperproliferative phenotype of these transgenic mice was independent of D-type cyclin expression because no overexpression of these proteins was detected. CDK4 and CDK2 kinase activities increased in transgenic animals and were associated with elevated binding of p27(Kip1) to CDK4. Expression of CDK4 in the epidermis results in an increased spinous layer compared with normal epidermis, and a mild hyperkeratosis in the cornified layer. In addition to epidermal changes, severe dermal fibrosis was observed and part of the subcutaneous adipose tissue was replaced by connective tissue. Also, abnormal expression of keratin 6 associated with the hyperproliferative phenotype was observed in transgenic epidermis. This model provides in vivo evidence for the role of CDK4 as a mediator of proliferation in epithelial cells independent of D-type cyclin expression.
Collapse
Affiliation(s)
- P L Miliani de Marval
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | | | | | | | | | | |
Collapse
|
3
|
Wawersik M, Coulombe PA. Forced expression of keratin 16 alters the adhesion, differentiation, and migration of mouse skin keratinocytes. Mol Biol Cell 2000; 11:3315-27. [PMID: 11029038 PMCID: PMC14994 DOI: 10.1091/mbc.11.10.3315] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Injury to the skin results in an induction of keratins K6, K16, and K17 concomitant with activation of keratinocytes for reepithelialization. Forced expression of human K16 in skin epithelia of transgenic mice causes a phenotype that mimics several aspects of keratinocyte activation. Two types of transgenic keratinocytes, with forced expression of either human K16 or a K16-C14 chimeric cDNA, were analyzed in primary culture to assess the impact of K16 expression at a cellular level. High K16-C14-expressing and low K16-expressing transgenic keratinocytes behave similar to wild type in all aspects tested. In contrast, high K16-expressing transgenic keratinocytes show alterations in plating efficiency and calcium-induced differentiation, but proliferate normally. Migration of keratinocytes is reduced in K16 transgenic skin explants compared with controls. Finally, a subset of high K16-expressing transgenic keratinocytes develops major changes in the organization of keratin filaments in a time- and calcium concentration-dependent manner. These changes coincide with alterations in keratin content while the steady-state levels of K16 protein remain stable. We conclude that forced expression of K16 in progenitor skin keratinocytes directly impacts properties such as adhesion, differentiation, and migration, and that these effects depend upon determinants contained within its carboxy terminus.
Collapse
Affiliation(s)
- M Wawersik
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
4
|
Longan L, Longnecker R. Epstein-Barr virus latent membrane protein 2A has no growth-altering effects when expressed in differentiating epithelia. J Gen Virol 2000; 81:2245-2252. [PMID: 10950982 DOI: 10.1099/0022-1317-81-9-2245] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies using transgenic mice with B-cell expression of LMP2A demonstrated that LMP2A drives B-cell development and survival signal in the absence of normal B-cell receptor (BCR) signal transduction. To determine if LMP2A may have similar effects in epithelial differentiation, six transgenic murine lines were constructed and analysed with LMP2A expression directed to the epidermis by a keratin 14 (K14) promoter cassette. LMP2A protein expression was verified by immunofluorescence and immunoprecipitation of skin samples using LMP2A-specific antibodies. To evaluate the effects of LMP2A expression on epidermal differentiation, immunofluorescence and histochemistry were performed on tongue and tail samples of transgenic mice and their wild-type littermate controls using differentially expressed keratins. The analysis indicated that LMP2A does not alter the normal epithelial differentiation program in the epithelia of K14-LMP2A transgenic mice.
Collapse
Affiliation(s)
- Luz Longan
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 E. Chicago Avenue, Chicago, IL 60611, USA1
| | - Richard Longnecker
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 E. Chicago Avenue, Chicago, IL 60611, USA1
| |
Collapse
|
5
|
Paladini RD, Coulombe PA. The functional diversity of epidermal keratins revealed by the partial rescue of the keratin 14 null phenotype by keratin 16. J Cell Biol 1999; 146:1185-201. [PMID: 10477769 PMCID: PMC2169494 DOI: 10.1083/jcb.146.5.1185] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/1999] [Accepted: 08/02/1999] [Indexed: 11/22/2022] Open
Abstract
The type I epidermal keratins K14 and K16 are remarkably similar at the primary sequence level. While a structural function has been clearly defined for K14, we have proposed that a function of K16 may be to play a role in the process of keratinocyte activation that occurs after acute injury to stratified epithelia. To compare directly the functions of the two keratins we have targeted the expression of the human K16 cDNA to the progenitor basal layer of the epidermis of K14 null mice. Mice null for K14 blister extensively and die approximately 2 d after birth (Lloyd, C., Q.C. Yu, J. Cheng, K. Turksen, L. Degenstein, E. Hutton, and E. Fuchs. 1995. J. Cell Biol. 129:1329-1344). The skin of mice expressing K16 in the absence of K14 developed normally without evidence of blistering. However, as the mice aged they featured extensive alopecia, chronic epidermal ulcers in areas of frequent physical contact, and alterations in other stratified epithelia. Mice expressing a control K16-C14 cDNA also rescue the blistering phenotype of the K14 null mice with only a small percentage exhibiting minor alopecia. While K16 is capable of rescuing the blistering, phenotypic complementation in the resulting skin is incomplete due to the multiple age dependent anomalies. Despite their high sequence similarity, K16 and K14 are not functionally equivalent in the epidermis and other stratified epithelia and it is primarily the carboxy-terminal approximately 105 amino acids of K16 that define these differences.
Collapse
Affiliation(s)
- Rudolph D. Paladini
- Departments of Biological Chemistry and Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Pierre A. Coulombe
- Departments of Biological Chemistry and Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
6
|
Didierjean L, Sass JO, Carraux P, Grand D, Sorg O, Plum C, Nau H, Saurat JH. Topical 9-cis-retinaldehyde for delivery of 9-cis-retinoic acid in mouse skin. Exp Dermatol 1999; 8:199-203. [PMID: 10389637 DOI: 10.1111/j.1600-0625.1999.tb00371.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 9-cis-retinoic acid (9cRA) is an endogenous ligand of retinoid X nuclear receptors (RXRs). Although the epidermis contains five times more RXRs than RARs, little is known on the activity of topical 9cRA. In order to circumvent surface isomerization of topically applied 9cRA into all-trans-retinoic acid (atRA), we used topical 9-cis-retinaldehyde (9cRAL) as a precursor of 9cRA, hypothesizing that keratinocytes would metabolize 9cRAL into 9-cis-retinoic acid (9cRA). Retinoid content was determined by HPLC analysis of mouse tail skin that had been washed after the application of 9cRAL (0.05% for 14 days) to evaluate the metabolites produced within the epidermis. Biologic activities of 9cRAL and atRAL were analysed by assessing hyperplastic and metaplastic responses, by determining epidermal thickness and the levels of mRNAs encoding for specific keratins. atRAL and derived retinoids were found in skin treated with either atRAL or 9cRAL. The metabolite pattern obtained with 9cRAL was similar to that obtained with atRAL except the presence in 9cRAL samples of an unidentified nonpolar metabolite. However, treatment with 9cRAL yielded higher atRAL and lower retinyl ester concentrations. The biologic activities (hyperplastic and metaplastic responses) resulting from topical application of 9cRAL were lower than those induced by atRAL or atRA at similar concentrations. Taken together, these data show that topical 9cRAL does not deliver significant amounts of 9cRA and exerts less biologic activity than atRAL. Contrary to atRAL, 9cRAL does not appear therefore as a pertinent candidate for topical use in humans.
Collapse
Affiliation(s)
- L Didierjean
- Department of Dermatology, University Hospital, Geneva and DHURDV, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Deugnier MA, Faraldo MM, Rousselle P, Thiery JP, Glukhova MA. Cell-extracellular matrix interactions and EGF are important regulators of the basal mammary epithelial cell phenotype. J Cell Sci 1999; 112 ( Pt 7):1035-44. [PMID: 10198285 DOI: 10.1242/jcs.112.7.1035] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The mammary epithelium is composed of a luminal epithelium and a basal layer containing myoepithelial cells and undifferentiated precursors. Basal cells express specific protein markers, such as keratin 14 (K14) and P-cadherin. To study the factors that regulate the basal mammary epithelial cell phenotype, we have established two clonal derivatives of the mouse HC11 cell line, BC20 and BC44, expressing high levels of K14 and P-cadherin. Unlike the parental HC11 cells, these basal cells did not produce beta-casein in response to lactogenic hormone treatment; however their phenotype appeared to be plastic. Cultured in EGF-free medium, they exhibited enhanced cell-extracellular matrix adhesions and deficient cell-cell junctions, whereas long-term treatment with EGF induced a decrease of focal contact number and establishment of cell-cell junctions, resulting in downregulation of K14 and P-cadherin expression at the protein and mRNA levels. To determine whether cell-extracellular matrix interactions mediated by integrins have a role in the regulation of the expression of K14 and P-cadherin, the amounts of transcripts for the two proteins were analysed in the basal cells, which were plated on the function-blocking antibodies against beta1 and alpha6 integrin chains, on fibronectin and on laminin 5. The amount of P-cadherin transcript was 2- to 4-fold higher in cells plated on the function-blocking anti-integrin antibodies and on the extracellular matrix proteins, as compared to cells plated on poly-L-lysine, whereas the K14 transcript levels were not significantly modified in response to adhesion. The data demonstrate that integrin-mediated cell interaction with extracellular matrix is directly implicated in the control of P-cadherin expression, and that EGF and cell-extracellular matrix adhesion events are important regulators of the basal mammary epithelial cell phenotype.
Collapse
Affiliation(s)
- M A Deugnier
- UMR144, CNRS-Institut Curie, Section de Recherche, 75248-Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
8
|
Sato H, Koide T, Sagai T, Ishiguro SI, Tamai M, Saitou N, Shiroishi T. The genomic organization of type I keratin genes in mice. Genomics 1999; 56:303-9. [PMID: 10087197 DOI: 10.1006/geno.1998.5721] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We isolated two new keratin cDNAs by screening a cDNA library constructed from poly(A)+ RNA of the dorsal and abdominal skin of C57BL/10J mice with a probe of human KRT14. Due to its high sequence homology to human keratin 17 cDNA, one full-length cDNA is most likely to be mouse keratin 17 (Krt1-17) cDNA. The other is the putative full-length cDNA of a novel type I keratin gene, designated Krt1-c29. These two keratin genes were mapped to the distal portion of Chromosome 11, where the mouse keratin gene complex-1 (Krt1) is localized. To elucidate the genomic organization of Krt1 in mice, we carried out genetic and physical analyses of Krt1. A large-scale linkage analysis using intersubspecific backcrosses suggested that there are two major clusters in Krt1, one containing Krt1-c29, Krt1-10, and Krt1-12 and the other containing Krt1-14, -15, -17, and -19. Truncation experiments with two yeast artificial chromosome clones containing the two clusters above have revealed that the gene order of Krt1 is centromere-Krt1-c29-Krt1-10-Krt1-12-Krt1-13-K rt1-15-Krt1-19-Krt1-14-K rt1-17-telomere. Finally, we analyzed sequence divergence between the genes belonging to the Krt1 complex. The results clearly indicated that genes are classified into two major groups with respect to phylogenetic relationship. Each group consists of the respective gene cluster demonstrated by genetic and physical analyses in this study, suggesting that the physical organization of the Krt1 complex reflects the evolutionary process of gene duplication of this complex.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Blotting, Southern
- Chromosomes, Artificial, Yeast
- Electrophoresis, Gel, Pulsed-Field
- Gene Library
- Genetic Linkage
- Humans
- Keratins/genetics
- Keratins, Hair-Specific
- Keratins, Type I
- Mice
- Mice, Inbred C57BL
- Microsatellite Repeats
- Models, Genetic
- Molecular Sequence Data
- Phylogeny
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Skin/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- H Sato
- Department of Ophthalmology, Tohoku University School of Medicine, Seiryo-Machi 1-1, Sendai, 980-8574, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Porter RM, Hutcheson AM, Rugg EL, Quinlan RA, Lane EB. cDNA cloning, expression, and assembly characteristics of mouse keratin 16. J Biol Chem 1998; 273:32265-72. [PMID: 9822705 DOI: 10.1074/jbc.273.48.32265] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
There has been speculation as to the existence of the mouse equivalent of human type I keratin 16 (K16). The function of this keratin is particularly intriguing because, in normal epidermis, it is usually confined to hair follicles and only becomes expressed in the suprabasal intrafollicular regions when the epidermis is traumatized. Previous studies suggested that K16 is highly expressed in the skin of mice carrying a truncated K10 gene. We therefore used the skin of heterozygous and homozygous mice to create a cDNA library, and we report here the successful cloning and sequencing of mouse K16. Recent in vitro studies suggested that filaments formed by human K16 are shorter than those formed by other type I keratins. One hypothesis put forward was that a proline residue in the 1B subdomain of the helical domain was responsible. The data presented here demonstrate that this proline is not conserved between mouse and human, casting doubt on the proposed function of this proline residue in filament assembly. In vitro assembly studies showed that mouse K16 produced long filaments in vitro. Also, in contrast to previous observations, transfection studies of PtK2 cells showed that mouse K16 (without the proline) and also human K16 (with the proline) can incorporate into the endogenous K8/K18 network without detrimental effect. In addition, K16 from both species can form filaments de novo when transfected with human K5 into immortalized human lens epithelial cells, which do not express keratins. These results suggest that reduced assembly capabilities due to unusual sequence characteristics in helix 1B are not the key to the unique function of K16. Rather, these data implicate the tail domain of K16 as the more likely protein domain that determines the unique functions.
Collapse
Affiliation(s)
- R M Porter
- Cancer Research Campaign Cell Structure Research Group, Department of Anatomy and Physiology, Medical Sciences Institute/Wellcome Trust Building Complex, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom.
| | | | | | | | | |
Collapse
|
10
|
Whitbread LA, Powell BC. Expression of the intermediate filament keratin gene, K15, in the basal cell layers of epithelia and the hair follicle. Exp Cell Res 1998; 244:448-59. [PMID: 9806795 DOI: 10.1006/excr.1998.4217] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intermediate filament keratin, K15, is present in variable abundance in stratified epithelia. In this study we have isolated and characterized the sheep K15 gene, focusing on its expression in the follicles of sheep and mice. We show that K15 is expressed throughout the hair cycle in the basal layer of the outer root sheath that envelops the follicle. Strikingly, however, in large medullated wool follicles, a small group of basal outer root sheath cells located in the region thought to contain hair follicle stem cells are K15-negative. In the follicle bulb K15 is expressed in cells situated next to the dermal papilla but not in the inner bulb cells. Elsewhere, K15 is expressed at a low, variable level in the basal layer of the epidermis and sebaceous gland, often in a punctate pattern. In the esophagus of the sheep K15 expression is restricted to the basal layer, in contrast to human esophagus where it is expressed throughout the epithelium. Transgenic mouse lines established with a 15-kb sheep K15 gene construct exhibited faithful expression and showed no phenotypic consequences of K15 overexpression. An investigation of transgene expression showed that K15 is continuously expressed in outer root sheath cells during the hair cycle. Given its expression in the mitotically active basal cell layers of diverse epithelia and the follicle, K15 expression appears to signal an early stage in the pathway of keratinocyte differentiation that precedes the decision of a cell to become epidermal or hair-like.
Collapse
Affiliation(s)
- L A Whitbread
- John Curtin School of Medical Research, Australian National University, Acton, ACT, 0200, Australia
| | | |
Collapse
|
11
|
McGowan KM, Coulombe PA. Onset of keratin 17 expression coincides with the definition of major epithelial lineages during skin development. J Cell Biol 1998; 143:469-86. [PMID: 9786956 PMCID: PMC2132846 DOI: 10.1083/jcb.143.2.469] [Citation(s) in RCA: 266] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/1998] [Revised: 09/04/1998] [Indexed: 11/22/2022] Open
Abstract
The type I keratin 17 (K17) shows a peculiar localization in human epithelial appendages including hair follicles, which undergo a growth cycle throughout adult life. Additionally K17 is induced, along with K6 and K16, early after acute injury to human skin. To gain further insights into its potential function(s), we cloned the mouse K17 gene and investigated its expression during skin development. Synthesis of K17 protein first occurs in a subset of epithelial cells within the single-layered, undifferentiated ectoderm of embryonic day 10.5 mouse fetuses. In the ensuing 48 h, K17-expressing cells give rise to placodes, the precursors of ectoderm-derived appendages (hair, glands, and tooth), and to periderm. During early development, there is a spatial correspondence in the distribution of K17 and that of lymphoid-enhancer factor (lef-1), a DNA-bending protein involved in inductive epithelial-mesenchymal interactions. We demonstrate that ectopic lef-1 expression induces K17 protein in the skin of adult transgenic mice. The pattern of K17 gene expression during development has direct implications for the morphogenesis of skin epithelia, and points to the existence of a molecular relationship between development and wound repair.
Collapse
Affiliation(s)
- K M McGowan
- Department of Biological Chemistry and Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
12
|
Panteleyev AA, Paus R, Wanner R, Nürnberg W, Eichmüller S, Thiel R, Zhang J, Henz BM, Rosenbach T. Keratin 17 gene expression during the murine hair cycle. J Invest Dermatol 1997; 108:324-9. [PMID: 9036933 DOI: 10.1111/1523-1747.ep12286476] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Keratin 17 (K17) expression is currently considered to be associated with hyperplastic or malignant growth of epithelial cells. The functions of this keratin in normal skin physiology and the regulation of its gene expression, however, are still unclear. As one possible approach to further explore K17 functions, we have studied the differential patterns of mouse K17 (MK17) transcription during the murine hair cycle by means of in situ hybridization, using a digoxigenin-labeled riboprobe. Cycling hair follicles in the skin of C57BL/6 mice were found to be the only skin structures expressing MK17 under physiologic conditions. MK17 transcripts were constantly observed throughout all hair cycle stages in the suprainfundibular outer root sheath (ORS). The MK17 expression was also evident in the isthmus part of the ORS, where it was expressed weakly and was spatially restricted during telogen, with an increase in early anagen and stable expression during mid- and late anagen, localizing to the zone of so-called trichilemmal keratinization. In addition, in early anagen, a group of epithelial cells in or next to the bulge region stained weakly for MK17. With progressing anagen development, MK17 expression in this region increased and was consistently localized to keratinocytes at the advancing front of the emerging epithelial hair bulb. In mid- and late anagen, this zone of MK17 expression spread along the proximal ORS, with a maximal level of expression in the innermost cell layer of the ORS. Overall, these findings provide data on the MK17 expression profile of normal murine skin and demonstrate hair-cycle-dependent regulation of MK17 expression.
Collapse
Affiliation(s)
- A A Panteleyev
- Severtsov Institute of Ecology and Evolution, Russian Academy of Science, Moscow
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Panteleyev AA, Thiel R, Wanner R, Zhang J, Roumak VS, Paus R, Neubert D, Henz BM, Rosenbach T. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCCD) affects keratin 1 and keratin 17 gene expression and differentially induces keratinization in hairless mouse skin. J Invest Dermatol 1997; 108:330-5. [PMID: 9036934 DOI: 10.1111/1523-1747.ep12286478] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes chloracne in humans by mechanisms that are as yet poorly understood. Because TCDD is known to affect keratinocyte differentiation in vitro, we have studied TCDD-dependent morphologic changes and the expression of murine keratin 1 (MK1; differentiation associated) and keratin 17 (MK17; presumably hyperproliferation associated) in HRS/J hr/hr hairless mouse skin. TCDD (0.2 microg in acetone) applied topically to the dorsal skin caused epidermal acanthosis and hyperkeratosis of the dermal cysts as well as an involution of the utricles and the sebaceous glands. By means of in situ hybridization with digoxigenin-labeled riboprobes of sections from untreated and vehicle (control)-treated skin, we localized MK1 mRNA to the epidermal spinous cell compartment. MK17 transcripts were detected only in the derivatives of the hair follicle-utricle epithelium and dermal cysts. No spatial overlap was observed between MK1 and MK17 expression. After TCDD application, MK17 was newly expressed in the upper spinous cell layers of the interfollicular epidermis, although it was suppressed in the involuting utricles. In contrast, MK1 expression in the interfollicular epidermis was not affected by TCDD. Furthermore, MK1 expression was induced in the epithelium of the utricle remnants and in some dermal cysts. These data suggest that increased keratinization of the part of the follicular epithelium corresponding to the dermal cyst epithelium of hairless mice most probably explains the pathogenesis of TCDD-induced chloracne. The results demonstrate, furthermore, that TCDD can differentially affect keratinocyte differentiation in vivo as well as in vitro.
Collapse
Affiliation(s)
- A A Panteleyev
- Department of Dermatology, Virchow Clinic, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang DY, Xiang YY, Tanaka M, Shen Q, Sugimura H. Identification of cytokeratin subspecies altered in rat experimental esophageal tumors by subtractive cloning. Cancer Lett 1996; 108:119-127. [PMID: 8950218 DOI: 10.1016/s0304-3835(96)04403-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
By using the subtractive hybridization method, two complementary DNA clones differently expressed in rat normal esophageal epithelium and squamous cell carcinoma induced by administration of precursors of N-nitrososarcosine ethyl ester were isolated. A rat homologue of the human 50-kDa type I cytokeratin 14 was cloned for the first time and shown to be expressed preferentially in squamous cell papillomas and carcinomas, whereas it was weakly expressed or absent in normal squamous epithelial cells and in hyperplastic lesions. A rat homologue of the mouse 57-kDa type II cytokeratin showed strong expression in both normal and tumor tissues. These results are well consistent with the reported alteration of keratin subspecies in human esophageal cancers, therefore, encouraging us to use this experimental system as a model for human esophageal carcinogenesis.
Collapse
Affiliation(s)
- D Y Wang
- First Department of Pathology, Hamamatsu University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
15
|
Didierjean L, Carraux P, Grand D, Sass JO, Nau H, Saurat JH. Topical retinaldehyde increases skin content of retinoic acid and exerts biologic activity in mouse skin. J Invest Dermatol 1996; 107:714-9. [PMID: 8875955 DOI: 10.1111/1523-1747.ep12365603] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Retinaldehyde, a natural metabolite of beta-carotene and retinol, has been proposed recently for topical use in humans. Because retinaldehyde does not bind to retinoid nuclear receptors, its biologic activity should result from enzymatic transformation by epidermal keratinocytes into ligands for these receptors, such as all-trans retinoic acid and 9-cis-retinoic acid. In this study, we analyzed by high performance liquid chromatography the type and amounts of tissue retinoids as well as several biologic activities resulting from topical application of either retinaldehyde or all-trans retinoic acid on mouse tail skin. Biologic activities of all-trans retinoic acid and retinaldehyde were qualitatively identical in metaplastic parameters (induction of orthokeratosis, reduction of keratin 65-kDa mRNA, increase in filaggrin and loricrin mRNAs) and hyperplastic parameters (increase in epidermal thickness, increase in bromodeoxyuridine (BrdU)-positive cells, increase in keratin 50-kDa mRNA, and reduction in keratin 70-kDa mRNA). Some quantitative differences, not all in favor of all-trans retinoic acid, were found in several indices. Cellular retinoic acid-binding protein II and cellular retinol-binding protein I mRNAs were increased by both topical retinaldehyde and all-trans retinoic acid. Whereas all-trans retinoic acid, 9-cis-retinoic acid, and 13-cis-retinoic acid were not detectable (limit 5 ng/g) in vehicle-treated skin, 0.05% retinaldehyde-treated skin contained 13 +/- 6.9 ng/g wet tissue of all-trans retinoic acid (mean +/- SD), 12.6 +/- 5.9 ng/g 13-cis-retinoic acid, and no 9-cis-retinoic acid. In contrast, 9-cis-retinoic acid was detectable in 0.05% of all-trans retinoic acid-treated skin, which also contained 25-fold more all-trans retinoic acid and 5-fold more 13-cis-retinoic acid than retinaldehyde-treated skin. Our results show that topical retinaldehyde is transformed in vivo into all-trans retinoic acid by mouse epidermis. The small amounts of ligand for retinoic acid nuclear receptors thus produced are sufficient to induce biologic effects similar to those resulting from the topical application of the ligand itself in much higher concentration.
Collapse
Affiliation(s)
- L Didierjean
- Department of Dermatology, University Hospital, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
16
|
Coulombe PA, Bravo NS, Paladini RD, Nguyen D, Takahashi K. Overexpression of human keratin 16 produces a distinct skin phenotype in transgenic mouse skin. Biochem Cell Biol 1995; 73:611-8. [PMID: 8714680 DOI: 10.1139/o95-067] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Human cytokeratin 16 (K16; 48 kDa) is constitutively expressed in postmitotic keratinocytes in a variety of stratified epithelial tissues, but it is best known for the marked enhancement of its expression in stratified squamous epithelia showing hyperproliferation or abnormal differentiation. Of particular interest to us, K16 is strongly induced at the wound edge after injury to the epidermis, and its accumulation correlates spatially and temporally with the onset of reepithelialization. To examine the properties of K16 in its natural cellular context, we introduced a wild-type human K16 gene into the germ line of transgenic mice. Several transgenic lines were established and characterized. Under most conditions, the human K16 transgene is regulated tissue specifically in the skin of transgenic mice. Animals that feature low levels of transgene expression are indistinguishable from controls during the first 6-8 months of life. In contrast, transgenic animals expressing the transgene at higher levels develop skin lesions at 1 week after birth, coinciding with the emergence of fur. At a cellular level, alterations begin with the reorganization of keratin filaments and are first seen at the level of the hair follicle outer root sheath (ORS), where K16 expression is known to occur constitutively. The lesions then progressively spread to involve the proximal epidermis, with which the ORS is contiguous. Elevated transgene expression is associated with a marked thickening of these two epithelia, along with altered keratinocyte cytoarchitecture and aberrant keratinization but no keratinocyte lysis. The implications of this phenotype for epithelial differentiation, human genodermatoses, and wound healing in skin are discussed.
Collapse
Affiliation(s)
- P A Coulombe
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
17
|
Bisgaard HC, Ton PT, Nagy P, Thorgeirsson SS. Phenotypic modulation of keratins, vimentin, and alpha-fetoprotein in cultured rat liver epithelial cells after chemical, oncogene, and spontaneous transformation. J Cell Physiol 1994; 159:485-94. [PMID: 7514612 DOI: 10.1002/jcp.1041590313] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Several lines of evidence have indicated that rat liver epithelial (RLE) cell lines may be related to a dormant stem cell compartment in the liver in vivo. We have demonstrated that keratin 14 (K14) is expressed together with vimentin in undifferentiated RLE cells. However, upon spontaneous transformation and differentiation to hepatoblast-like progeny the expression of these intermediate filaments (IF) is abrogated, while expression of another set of genes, among others keratin 18 (K18) and alpha-fetoprotein (AFP), is induced (Bisgaard et al., 1994, J. Cell. Physiol., in press). To better understand the mechanisms underlying IF expression during transformation and differentiation of RLE cells we examined the expression and regulation of IFs in clonal cell lines of chemically, oncogene, and spontaneously transformed RLE cells and their resulting tumors. These clonal lines provided a wide variety of tumor phenotypes including trabecular, solid and tubular adenocarcinomas, undifferentiated carcinomas, and spindle cell carcinomas. Northern blot analysis of the cell lines confirmed the differential expression of IF mRNAs. While keratin 8 (K8) was expressed at similar steady-state levels in all cell lines, K14 and vimentin but not K18 were expressed in the majority of cell lines chemically transformed with aflatoxin B1 or by transduction of oncogenes. In contrast, cell lines transformed spontaneously by prolonged passage in vitro expressed K18, while K14 and vimentin were absent. The keratin expression pattern in vitro was retained in the majority of the resulting tumors. However, the keratins expressed in vitro did not accurately predict the tumor phenotype in vivo. In particular, in tumors typed morphologically as adenocarcinomas, the keratin pair typically expressed in chemically transformed tumor cells was K8/K14, whereas K8/K18 was expressed in the tumors derived from spontaneously transformed cell lines. Finally we showed by nuclear run-on and in vitro translation analyses that the expression of K14, K18, and vimentin in transformed RLE cell lines was regulated at the transcriptional level, whereas that of K8 appeared to be posttranslational. These findings suggest that events controlling the differential expression of IF genes are involved in the processes leading to transformation and differentiation of the RLE cell lines. We conclude that the transformed RLE cell lines provide a valuable model to further examine the regulatory mechanisms involved in hepatic differentiation of undifferentiated "progenitor-like" RLE cells.
Collapse
Affiliation(s)
- H C Bisgaard
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
18
|
Bisgaard HC, Nagy P, Ton PT, Hu Z, Thorgeirsson SS. Modulation of keratin 14 and alpha-fetoprotein expression during hepatic oval cell proliferation and liver regeneration. J Cell Physiol 1994; 159:475-84. [PMID: 7514611 DOI: 10.1002/jcp.1041590312] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Keratin 14 (K14) expression has recently been demonstrated in cell lines of non-parenchymal hepatic origin (Bisgaard et al., 1993, Mol. Carcinog., 7:60-66; Bisgaard et al., 1991, J. Cell. Physiol., 147:333-343). These cell lines are thought to represent a progeny of a dormant stem cell compartment present in the adult rat liver, which may participate in the restoration of the liver mass after experimental liver injury. Utilizing a combination of 2-acetylaminofluorene (2-AAF) administration and partial hepatectomy to activate liver regeneration by proliferation of oval cells, we examined the modulation of K14 as well as alpha-fetoprotein (AFP) expression in proliferating oval cells and lineages hypothesized to be derived herefrom. We showed by Northern blot and in situ hybridization analyses that K14 and AFP transcripts were initially accumulating in epithelial cells located in subsets of ductal structures in the portal areas. As oval cells infiltrated the liver parenchyma, K14 transcripts were detected in oval cells, in foci of small basophilic hepatocytes, and in structures resembling glandular intestinal-type epithelium. AFP was expressed in oval cells, and at low but detectable levels in foci of basophilic hepatocytes, but not in glandular intestinal-type epithelium. Neither K14 nor AFP transcripts were detected in bile ducts or mature hepatocytes at any time during oval cell proliferation and reconstitution of the liver mass. To further study the modulation of K14 and AFP expression we utilized an in vitro model in which spontaneous transformation of rat liver epithelial (RLE) cells appeared to mimic the process of early differentiation along the hepatic lineage in vivo. We demonstrated that undifferentiated RLE cells at a late passage expressed K14 and vimentin, whereas transformation and differentiation to hepatoblast-like progeny resulted in an abrogation of K14 and vimentin expression and an induction of K18 and AFP. We propose that K14 and AFP are sequentially modulated in subpopulations of oval cells involved in the ongoing reconstitution of the liver mass.
Collapse
Affiliation(s)
- H C Bisgaard
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
19
|
Herzog F, Winter H, Schweizer J. The large type II 70-kDa keratin of mouse epidermis is the ortholog of human keratin K2e. J Invest Dermatol 1994; 102:165-70. [PMID: 7508961 DOI: 10.1111/1523-1747.ep12371757] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The basic keratin pattern of mammalian epidermis consists of the basal keratin pair K5/K14 and the differentiation-specific keratin pair K1/K10. Distinct skin sites of the adult mouse, i.e., ear, sole of the foot, and interscale regions of tail skin, express an additional, type II 70-kilodalton (kDa) keratin without a defined new type I partner in suprabasal epidermal cells. Until now, the question whether this large keratin is specific for the mouse (or related small rodents) or whether orthologous keratins exist in other species has not yet been answered. In the present study, we have determined the full-length amino acid sequence of the 70-kDa keratin. The keratin comprises 707 amino acid residues and has a calculated molecular weight of 70,976.70 Da. From the structural point of view, the 70-kDa keratin is remarkable in that more than half of both the V1 and V2 subdomains of its non alpha-helical head and tail portions consist of different glycine-rich peptide motifs that are configured consecutively at least two times and as much as seven times in tandem. By means of sequence comparisons and phylogenetic investigations, we show that the 70-kDa keratin represents the murine ortholog of the human 65-kDa keratin K2e, whose nature as a genuine keratin has recently been demonstrated. The unusually large size difference of 5 kDa between MK2e and HK2e is due mainly to a different duplication rate of the glycine-rich peptide motifs in the respective V subdomains of the orthologous keratins. We discuss the properties of these highly specialized keratins, which in both species define locally restricted epidermal keratin phenotypes, and compare them with other orthologous keratins that belong to the basic epidermal keratin pattern.
Collapse
Affiliation(s)
- F Herzog
- German Cancer Research Center, Research Program II, Heidelberg, F.R.G
| | | | | |
Collapse
|
20
|
Bisgaard HC, Parmelee DC, Dunsford HA, Sechi S, Thorgeirsson SS. Keratin 14 protein in cultured nonparenchymal rat hepatic epithelial cells: characterization of keratin 14 and keratin 19 as antigens for the commonly used mouse monoclonal antibody OV-6. Mol Carcinog 1993; 7:60-6. [PMID: 7679578 DOI: 10.1002/mc.2940070110] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have recently reported that cell lines of nonparenchymal origin isolated from rat liver and pancreas, which have been suggested to be the progeny of a facultative stem cell compartment in vivo, express an unusual combination of keratins (K). These cell lines express K8 and K14 but not K18 and K5, their normal partners in filament formation (Bisgaard HC, Thorgeirsson SS, J Cell Physiol 147:333-343, 1991). However, upon spontaneous transformation and differentiation toward a hepatoblastlike progeny, K14 expression is abrogated and replaced by expression of K18 (Wirth et al., Electrophoresis 13:305-332, 1992). In the study presented here, we confirmed by protein sequence analysis that K14 was a major component of the intermediate filaments in a nonparenchymal cell line of hepatic origin. Immunocytochemical analysis of the cells in monolayer demonstrated that K8 as well as K14 were incorporated in the cellular cytoskeleton. Further analysis by immunoprecipitation showed that filament complexes were formed between K8 and K14 as atypical partners. Thus, we concluded that in some nonparenchymal cell lines isolated from rat liver, K8 and K14 form a major intermediate filament network. Finally, we showed that an antibody widely used in studies of the cell lineages of hepatic and pancreatic tissues and their neoplasms, the mouse monoclonal antibody OV-6, recognizes a common epitope in K14 and K19.
Collapse
Affiliation(s)
- H C Bisgaard
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-0037
| | | | | | | | | |
Collapse
|
21
|
Tobiasch E, Winter H, Schweizer J. Structural features and sites of expression of a new murine 65 kD and 48 kD hair-related keratin pair, associated with a special type of parakeratotic epithelial differentiation. Differentiation 1992; 50:163-78. [PMID: 1385239 DOI: 10.1111/j.1432-0436.1992.tb00671.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the course of studies on local keratin phenotypes in the epidermis of the adult mouse, we have identified a new 65 kD and 48 kD keratin pair. In mouse skin, this keratin pair is only expressed in suprabasal cells of adult mouse tail scale epidermis which is characterized by the complete absence of a granular layer and the formation of a remarkably compact stratum corneum. A second site in which the 65 kD and 48 kD keratin pair is suprabasally expressed and whose morphology corresponds to that of tail scale epidermis is found in the posterior unit of the complex filiform papillae of mouse tongue. The causal relationship of the expression of the 65 kD and 48 kD keratins with this particular type of a non-pathological epithelial parakeratosis is emphasized by the suppression of the mRNA synthesis of the two keratins during retinoic acid mediated orthokeratotic conversion of tail scale epidermis. Apart from tail scale epidermis and the posterior unit of the filiform papillae, the 65 kD and 48 kD keratin pair is, however, also coexpressed with "hard" alpha keratins in suprabulbar cells of hair follicles and in suprabasal cells of the central core unit of the lingual filiform papillae. The non alpha-helical domains of the two new keratins are rich in cysteine and proline residues and lack the typical subdomains into which epithelial keratins of both types can be divided. This structural resemblance of the 65 kD and 48 kD keratins to "hard" alpha keratins is supported by comparative flexibility predictions for their non alpha-helical domains. Phylogenetic investigations then show that the 65 kD and 48 kD keratin pair has evolved together with hair keratins, but has diverged from these during evolution to constitute an independent branch of a pair of hair-related keratins. In view of this exceptional position of the 65 kD and 48 kD keratins within the keratin multigene family, their expression has apparently been adopted by rare anatomical sites in which an orthokeratinized stratum corneum would be too soft and a hard keratinized structure would be too rigid to meet the functional requirement of the respective epithelia.
Collapse
Affiliation(s)
- E Tobiasch
- Institute of Biochemistry, German Cancer Research Center, Heidelberg
| | | | | |
Collapse
|
22
|
Eichner R, Kahn M, Capetola RJ, Gendimenico GJ, Mezick JA. Effects of Topical Retinoids on Cytoskeletal Proteins: Implications for Retinoid Effects on Epidermal Differentiation. J Invest Dermatol 1992; 98:154-61. [PMID: 1370674 DOI: 10.1111/1523-1747.ep12555767] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In vivo effects of retinoids on epidermal differentiation were investigated by analyzing cytoskeletal proteins in rhino mice treated topically with all-trans-retinoic acid (RA) and other retinoids (13-cis-retinoic acid, etretinate, TTNPB). Non-disulfide-linked cytoskeletal proteins, including keratins from the epidermal "living layers," were first selectively extracted using 9.5 M urea; subsequently, keratins of the stratum corneum were isolated using 9.5 M urea plus a reducing agent. Gel electrophoresis and immunoblot analysis showed that urea extracts of epidermis from vehicle-treated skin were composed predominantly of four major keratins (analogous to human epidermal keratins K1, K5, K10, and K14), and the keratin filament-associated protein filaggrin. In contrast, extracts of epidermis from retinoid-treated skin contained additional keratins (K6, K16, and K17) and almost no detectable filaggrin. Furthermore, similar analysis of stratum corneum keratins demonstrated that extracts from RA-treated skin did not contain the partially proteolyzed keratins typically observed in stratum corneum extracts of control animals. Hyperplasia-inducing agents (salicylic acid, croton oil) caused an increase in keratins K6, K16, and K17, but they did not effect filaggrin or alter proteolysis of stratum corneum keratins. The result that RA induced expression of keratins K6, K16, and K17, as commonly expressed in hyperproliferative epidermis, is consistent with the notion that retinoids increase epidermal cell proliferation in the basal and/or lower spinous layers. The findings that topical RA decreased filaggrin expression and reduced proteolysis of stratum corneum keratins, despite increased size and number of granular cells and the presence of an anucleate stratum corneum, suggest that topical RA may also modulate a later stage of epidermal differentiation involved in stratum corneum formation.
Collapse
Affiliation(s)
- R Eichner
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | |
Collapse
|
23
|
Tobiasch E, Schweizer J, Winter H. Structure and site of expression of a murine type II hair keratin. Mol Biol Rep 1992; 16:39-47. [PMID: 1372089 DOI: 10.1007/bf00788752] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We present here a 1770 bp-long cDNA which encodes a murine type II keratin. Sequence comparisons of the keratin with those of various type II keratins expressed in mouse epidermis and internal stratified epithelia reveal that the new keratin is unrelated to epithelial keratins. Rather the structural organization of its amino- and carboxyterminal domains and the high content of cysteine and proline residues in these regions suggest that the keratin represents a murine type II hair keratin. This assumption was confirmed by in situ hybridization which localized the mRNA of the keratin in upper cells of the hair cortex and in suprabasal cells of the central core unit of filiform papillae of the tongue. Hybrid selection analyses revealed that the keratin has a molecular weight of 58 kD. It remains to be seen whether the keratin corresponds to MHb 3 or MHb 4.
Collapse
Affiliation(s)
- E Tobiasch
- Institute of Biochemistry, German Cancer Research Center, Heidelberg
| | | | | |
Collapse
|
24
|
Magnaldo T, Bernerd F, Asselineau D, Darmon M. Expression of loricrin is negatively controlled by retinoic acid in human epidermis reconstructed in vitro. Differentiation 1992; 49:39-46. [PMID: 1378029 DOI: 10.1111/j.1432-0436.1992.tb00767.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In epidermis, the last steps of keratinocyte differentiation are characterized by the covalent cross-linking of cornified envelope precursors such as involucrin and loricrin, a hydrophobic protein recently described in mouse and human epidermis. In situ hybridization of normal human skin sections with a human loricrin cRNA probe and immunolabeling with an antiserum directed against a synthetic peptide corresponding to the carboxyterminus of human loricrin revealed the presence of loricrin transcripts and protein in the granular layers of epidermis. In human epidermis reconstructed in vitro by growing keratinocytes on dermal equivalents, loricrin and loricrin mRNAs were also restricted to granular cells, but their amounts seemed higher than in epidermis from skin biopsies. The reactivities for both loricrin and loricrin mRNAs were abolished by a treatment of the cultures with a retinoic acid concentration (10(-6) M) provoking a complete inhibition of terminal epidermal differentiation (parakeratosis). Thus, the regulation of loricrin synthesis is different from that of another envelope precursor, involucrin, which does not seem to be significantly modulated by retinoic acid. Together with the well-documented inhibition of epidermal transglutaminase by retinoic acid, our results provide a molecular basis for the inhibition of cornified envelope formation by retinoic acid.
Collapse
Affiliation(s)
- T Magnaldo
- Cell Biology Department, Centre International de Recherches Dermatologiques Galderma (CIRD Galderma), Valbonne, France
| | | | | | | |
Collapse
|
25
|
Sutter C, Nischt R, Winter H, Schweizer J. Aberrant in vitro expression of keratin K13 induced by Ca2+ and vitamin A acid in mouse epidermal cell lines. Exp Cell Res 1991; 195:183-93. [PMID: 1711471 DOI: 10.1016/0014-4827(91)90515-v] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Normally the expression of the murine type I keratin K13 is restricted to differentiating cells of internal squamous epithelia which line the oral cavity and the upper digestive tract. Recently, however, we were able to show that K13 is aberrantly but constitutively expressed without its normal type II partner K4 also in differentiating parts of 7,12-dimethylbenz(a)anthracene (DMBA/TPA) 12-O-tetradecanoylphorbol-13-acetate-induced squamous cell carcinomas of mouse back skin, whereas its likewise suprabasal expression in papillomas is variable (Nischt et al., Mol. Carcinogenesis 1, 96-108, 1988). In an attempt to reproduce the aberrant expression of K13 in a mouse in vitro system, we have investigated eight established murine epidermal cell lines for their putative ability to express K13. The cell lines differed distinctly in their derivation and comprised cell lines originating from DMBA/TPA induced papillomas (line SP1) or DMBA-treated adult mouse epidermis (line 308) as well as cell lines derived from DMBA or DMBA/TPA-treated primary epidermal keratinocytes (lines PDV and MCA 3D) and cell lines which arose spontaneously by long-term culture of normal epidermal keratinocytes (lines HEL 30 degrees HEL 37 degrees, HELP I and HELP III). We show that, independent of their derivation, all cell lines possess the intrinsic property to aberrantly express K13. Invariably the K13 gene is not expressed when the lines are cultured under low Ca2+ conditions (0.05 mM) and thus prevented from differentiation. Its expression can, however, be induced either by increasing the extracellular Ca2+ concentration or by the addition of physiological concentrations of vitamin A acid to low Ca2+ medium. Whereas in the latter case, K13 expression occurs without concomitant induction of morphological differentiation of the cells, Ca2+ elevation in the culture medium induces squamous differentiation and K13 expression occurs only in differentiating cells, thus reflecting the situation observed in in vivo tumors. All cell lines exhibit a concentration optimum for the stimulatory agents; however, the degree of maximal K13 expression varies considerably among the individual cell lines and shows a striking correlation with the reported tumorigenicity of the lines after transplantation to animals. In contrast, a tentatively suggested correlation between the activation of the Ha-ras gene and the aberrant expression of K13 (Nischt et al., Mol. Carcinogenesis 1, 96-108, 1988) could not definitely be confirmed since we observed K13 expression also in three cell lines which did not carry a mutation in codon 61 of the Ha-ras gene.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C Sutter
- German Cancer Research Center, Institute of Biochemistry, Heidelberg
| | | | | | | |
Collapse
|
26
|
Vassar R, Fuchs E. Transgenic mice provide new insights into the role of TGF-alpha during epidermal development and differentiation. Genes Dev 1991; 5:714-27. [PMID: 1709129 DOI: 10.1101/gad.5.5.714] [Citation(s) in RCA: 322] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transforming growth factor-alpha (TGF-alpha) is thought to be the major autocrine factor controlling growth in epidermal cells. To explore further the role of TGF-alpha in epidermal growth and differentiation, we used a human keratin K14 promoter to target expression of rat TGF-alpha cDNA to the stratified squamous epithelia of transgenic mice. Unexpectedly, the only regions of epidermis especially responsive to TGF-alpha overexpression were those that were normally thick and where hair follicle density was typically low. This included most, if not all, body skin from 2-day- to 2-week-old mice, and ear, footpad, tail, and scrotum skin in adult mice. In these regions, excess TGF-alpha resulted in thicker epidermis and more stunted hair growth. Epidermal thickening was attributed both to cell hypertrophy and to a proportional increase in the number of basal, spinous, granular, and stratum corneum cells. During both postnatal development and epidermal differentiation, responsiveness to elevated TGF-alpha seemed to correlate with existing epidermal growth factor (EGF) receptor levels, and we saw no evidence for TGF-alpha-mediated control of EGF receptor (EGFR) expression. In adults, no squamous cell carcinomas were detected, but benign papillomas were common, developing primarily in regions of mechanical irritation or wounding. In addition, adult transgenic skin that was still both sensitive to TGF-alpha and subject to mild irritation displayed localized regions of leukocytic infiltration and granular layer loss, characteristics frequently seen in psoriasis in humans. These unusual regional and developmental effects of TGF-alpha suggest a natural role for the growth factor in (1) controlling epidermal thickness during development and differentiation, (2) involvement in papilloma formation, presumably in conjunction with TGF-beta, and (3) involvement in psoriasis, in conjunction with some as yet unidentified secondary stimulus stemming from mild mechanical irritation/bacterial infection.
Collapse
Affiliation(s)
- R Vassar
- Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | | |
Collapse
|
27
|
Conway JF, Parry DA. Structural features in the heptad substructure and longer range repeats of two-stranded alpha-fibrous proteins. Int J Biol Macromol 1990; 12:328-34. [PMID: 2085501 DOI: 10.1016/0141-8130(90)90023-4] [Citation(s) in RCA: 137] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Considerable sequence data have been collected from the intermediate filament proteins and other alpha-fibrous proteins including myosin, tropomyosin, paramyosin, desmoplakin and M-protein. The data show that there is a clear preference for some amino acids to occur in specific positions within the heptad substructure that characterizes the sequences which form the coiled-coil rod domain in this class of proteins. The results also indicate that although there are major similarities between the various proteins there are also key differences. In all cases, however, significant regularities in the linear disposition of the acidic and the basic residues in the coiled-coil segments can be related to modes of chain and molecular aggregation. In particular a clear trend has been observed which relates the mode of molecular aggregation to the number of interchain ionic interactions per heptad pair.
Collapse
Affiliation(s)
- J F Conway
- Department of Physics and Biophysics, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
28
|
Wilson JB, Weinberg W, Johnson R, Yuspa S, Levine AJ. Expression of the BNLF-1 oncogene of Epstein-Barr virus in the skin of transgenic mice induces hyperplasia and aberrant expression of keratin 6. Cell 1990; 61:1315-27. [PMID: 1694724 DOI: 10.1016/0092-8674(90)90695-b] [Citation(s) in RCA: 183] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The BNLF-1 gene of Epstein-Barr virus (EBV) encodes the latent membrane protein (LMP), one of the putative oncogene products of the virus. This gene has been expressed from two different enhancer-promoter constructs in transgenic mice, to determine its biological activity and possible contribution to oncogenesis. While transgenic mice expressing LMP in many tissues demonstrated poor viability, expression of LMP specifically in the epidermis induces a phenotype of hyperplastic dermatosis. Concomitant with the expression of LMP in this tissue (and in the esophagus) is an induction of the expression of a hyperproliferative keratin, K6, at aberrant locations within the epidermis. The epithelial hyperplastic phenotype caused by the LMP-encoding transgenes implies that the LMP plays a role in the acanthotic condition of the tongue epithelium in the human EBV- and HIV-associated syndrome oral hairy leukoplakia, as well as possibly predisposing the nasopharyngeal epithelium to carcinogenesis.
Collapse
Affiliation(s)
- J B Wilson
- Department of Biology, Princeton University, New Jersey 08544
| | | | | | | | | |
Collapse
|
29
|
Mehrel T, Hohl D, Rothnagel JA, Longley MA, Bundman D, Cheng C, Lichti U, Bisher ME, Steven AC, Steinert PM. Identification of a major keratinocyte cell envelope protein, loricrin. Cell 1990; 61:1103-12. [PMID: 2190691 DOI: 10.1016/0092-8674(90)90073-n] [Citation(s) in RCA: 351] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During epidermal cell cornification, the deposition of a layer of covalently cross-linked protein on the cytoplasmic face of the plasma membrane forms the cell envelope. We have isolated and characterized cDNA clones encoding a major differentiation product of mouse epidermal cells, which has an amino acid composition similar to that of purified cell envelopes. Transcripts of this gene are restricted to the granular layer and are as abundant as the differentiation-specific keratins, K1 and K10. An antiserum against a C-terminal peptide localizes this protein in discrete granules in the stratum granulosum and subsequently at the periphery of stratum corneum cells. Immunofluorescence and immunoelectron microscopy detect this epitope only on the inner surface of purified cell envelopes. Taken together, these results suggest that it is a major component of cell envelopes. On the basis of its presumed function, this protein is named loricrin.
Collapse
Affiliation(s)
- T Mehrel
- Laboratory of Cellular Carcinogenesis, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Schulz P, Wachter E, Hochstrasser K, Wild AG, Mischke D. Sequence of a human keratin 13 specific cDNA encompassing coil 1B through the 3' end. Biochem Biophys Res Commun 1989; 162:1522-7. [PMID: 2475110 DOI: 10.1016/0006-291x(89)90847-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An expression library established in lambda gt11 with cDNA from squamous epithelium of the human upper digestive tract was screened with an antibody raised against keratin 13. A 1.2 kb fragment from the most strongly reacting plaque was sequenced and compared to known type I keratin sequences. The highest degree of homology was detected with the murine 47K type I keratin, which we consider to be the counterpart of human keratin 13. Tryptic peptides of keratin 13 were separated on a HPLC column and one peptide was sequenced. The amino acid sequence obtained supports the identity of the cDNA. An eight codon motif has been tandemly repeated in the C-domain of keratin 13. In spite of substantial divergence by point mutations and deletions, the remaining sequence homologies suggest that the C-domains of both the human keratin 13 and the orthologous murine protein have originated from a common ancestor.
Collapse
Affiliation(s)
- P Schulz
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenkranke, Universitätsklinikum Grosshadern, München, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
31
|
Stasiak PC, Purkis PE, Leigh IM, Lane EB. Keratin 19: predicted amino acid sequence and broad tissue distribution suggest it evolved from keratinocyte keratins. J Invest Dermatol 1989; 92:707-16. [PMID: 2469734 DOI: 10.1111/1523-1747.ep12721500] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The type I keratin 19 is unusual in its tissue distribution in that under normal circumstances it does not seem to be restricted, as the other keratins are, to expression in either stratified or simple epithelia. In addition to the previously reported distribution of keratin 19 in human tissues, we have observed keratin 19 in epidermal basal cells, in a defined region of the hair follicle, and in nipple epidermis. We noticed that expression of keratin 19 appears to be especially characteristic of regions of labile or variable cellular differentiation as indicated by the presence of multiple keratin phenotypes in close proximity to each other. Using a monoclonal antibody recognizing keratin 19 (LP2K) to screen a human placenta cDNA expression library, we have isolated, cloned, and sequenced cDNA coding for full-length human keratin 19, as confirmed by its reactivity with several other known anti-keratin 19 monoclonal antibodies and by the near identity of its sequence with that of the bovine keratin 19 homologue. This similarity extends to both proteins being truncated at the C-terminal end to only 13 amino acids beyond the rod domain. Although the amino acid homology over the N-terminal and helical rod domains is particularly high, the human and bovine proteins diverge substantially over the short C-terminal domain, which suggests that this region has no conserved function. Comparison with other type I keratins indicates that the closest evolutionary neighbors of keratin 19 are keratinocyte keratins, probably 13 and 14, and not the simple epithelial keratin 18. Assessing the histochemistry and sequence data together, we propose that the cell may use this apparently deficient keratin as a "neutral" keratin. While unimpaired in its ability to polymerize (keeping the cell integrated into the epithelial sheet via filament-desmosome networks), keratin 19 expression does not irrevocably commit a cell to any one of the local differentiation options. Such predicted differentiational flexibility may also imply vulnerability to transformation.
Collapse
Affiliation(s)
- P C Stasiak
- Cell Structure Laboratory, Imperial Cancer Research Fund, Hertfordshire, U.K
| | | | | | | |
Collapse
|
32
|
Willhite CC, Wier PJ, Berry DL. Dose response and structure-activity considerations in retinoid-induced dysmorphogenesis. Crit Rev Toxicol 1989; 20:113-35. [PMID: 2686694 DOI: 10.3109/10408448909017906] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- C C Willhite
- Department of Health, Services, State of California, Emeryville
| | | | | |
Collapse
|
33
|
Abstract
Evolutionary trees were derived from the keratin protein sequences using the Phylogeny Analysis Using Parsimony (PAUP) set of programs. Three major unexpected conclusions were derived from the analysis: The smallest keratin protein subunit, K#19 (Moll et al. 1982), is not the most primitive one, but has evolved to fulfill a highly specialized function, presumably to redress the unbalanced synthesis of keratin subunits. Second, the ancestors of keratins expressed in the early embryonic stages, K#8 and K#18, were the first to diverge from the ancestors of all the other keratins. The branches leading to these two keratins are relatively short, indicating a comparatively strong selection against changes in the sequences of these two proteins. Third, the two keratin families show extraordinary parallelism in their patterns of gene duplications. In both families the genes expressed in embryos diverged first, later bursts of gene duplications created the subfamilies expressed in various differentiated cells, and relatively recent gene duplications gave rise to the hair keratin genes and separated the basal cell-specific keratin from those expressed under hyperproliferative conditions. The parallelism of gene duplications in the two keratin gene families implies a mechanism in which duplications in one family influence duplication events in the other family.
Collapse
Affiliation(s)
- M Blumenberg
- Department of Dermatology, N.Y.U. Medical Center, New York 10016
| |
Collapse
|
34
|
Conway JF, Parry DA. Intermediate filament structure: 3. Analysis of sequence homologies. Int J Biol Macromol 1988. [DOI: 10.1016/0141-8130(88)90015-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Nischt R, Roop DR, Mehrel T, Yuspa SH, Rentrop M, Winter H, Schweizer J. Aberrant expression during two-stage mouse skin carcinogenesis of a type I 47-kDa keratin, K13, normally associated with terminal differentiation of internal stratified epithelia. Mol Carcinog 1988; 1:96-108. [PMID: 3076454 DOI: 10.1002/mc.2940010205] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Specific keratin cDNA probes and monospecific antikeratin antisera were used to analyze mouse epidermis and epidermal tumors for the expression of a type I 47-kDa keratin, K13, normally associated with terminal differentiation of internal stratified epithelia. We demonstrated that this keratin was virtually absent from the entire body epidermis at various stages of development. Also, it was not detected in various forms of acute and chronic epidermal hyperproliferation or in epidermal cells cultured under conditions that favored either cell proliferation or in vitro differentiation. In contrast, K13 was consistently expressed in squamous cell carcinomas of the skin induced by 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate (TPA), whereas papillomas obtained by the same two-stage protocol were distinctly heterogeneous with regard to the expression of this keratin. These findings were true for two different strains of mice (NMRI and Sencar). Papillomas collected from Sencar mice after 12 wk or from NMRI mice after 15 wk of promotion with TPA were either negative for K13 or elicited variable amounts of this keratin. In all cases of positive expression of K13 in tumors, as in normal stratified internal epithelia, both the keratin protein and its mRNA invariably occurred in the differentiating cell compartments. In contrast to what we found in internal stratified epithelia, however, K13 was expressed without its commonly encountered type II 57-kDa partner, K4. Papillomas negative for the K13 protein were also devoid of K13 transcripts. This indicates that the aberrant K13 expression in tumors is regulated at the level of transcription. Our results suggest that K13 may provide a marker for malignant conversion in the mouse two-stage skin carcinogenesis model and may be especially suited for studies of gene expression regulation.
Collapse
Affiliation(s)
- R Nischt
- Institute of Experimental Pathology, German Cancer Research Center, Heidelberg
| | | | | | | | | | | | | |
Collapse
|
36
|
Schweizer J, Fürstenberger G, Winter H. Selective suppression of two postnatally acquired 70 kD and 65 kD keratin proteins during continuous treatment of adult mouse tail epidermis with vitamin A. J Invest Dermatol 1987; 89:125-31. [PMID: 2439609 DOI: 10.1111/1523-1747.ep12470544] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Using mouse tail epidermis as a model system we have studied the morphologic and biochemical effects of continuous topical treatment with vitamin A acid. Normal tail epidermis shows a regular pattern of parakeratotic scale regions and orthokeratotic interscale regions which arise postnatally from a uniformly orthokeratinizing neonatal epidermis. Daily treatment of tail epidermis with vitamin A acid for 14 days results in the induction of hyperplasia and the orthokeratotic conversion of the scale regions. The degree of these alterations is dose-dependent and maximally brought about by repetitive 30-microgram doses of the vitamin. To correlate morphologic with biochemical alterations, we have analyzed the keratin patterns of normal and vitamin A acid-treated epidermis by one- and two-dimensional gel electrophoresis. The results indicate that repetitive vitamin A treatment leads to the selective suppression of two postnatally acquired 70 kD and 65 kD type II keratin proteins. Again the minimum repetitive dose required for their complete suppression is 30 micrograms vitamin A acid. Kinetic studies reveal an initial lag phase of 6 days of apparent nonresponsiveness, followed by a 5-day period during which the adult pattern is gradually replaced by the neonatal pattern. Repetitive treatment of tail epidermis with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate leads to a strong hyperplasia; however, it strictly maintains the scale parakeratosis. Under these conditions only the 70 kD keratin subunit is suppressed. This indicates that the suppression of the 70 kD keratin is generally linked to the induction of hyperproliferation, whereas the suppression of the scale-associated 65 kD subunit is due to the metaplastic potency of vitamin A. We provide evidence that this vitamin A-specific in vivo effect can be used to determine the biologic activity of synthetic retinoids relative to vitamin A acid.
Collapse
|
37
|
Rentrop M, Nischt R, Knapp B, Schweizer J, Winter H. An unusual type-II 70-kilodalton keratin protein of mouse epidermis exhibiting postnatal body-site specificity and sensitivity to hyperproliferation. Differentiation 1987; 34:189-200. [PMID: 2448177 DOI: 10.1111/j.1432-0436.1987.tb00066.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Keratin extracts from the epidermis of adult mouse ears, footpads, and tail contain large amounts of a 70-kilodalton (kDa) protein which has not been detected in any other body site of the adult mouse or in the epidermis of neonatal mice. Two-dimensional immunoblotting using an antiserum which recognizes both type-I and type-II murine keratins revealed that the 70-kDa protein is indeed a keratin belonging to the type-II subfamily. Its postnatal induction occurs during the first 2 weeks after birth, being first observed in tail epidermis, then in footpad epidermis, and only rather late in ear epidermis. Although in vitro translation experiments with polyA+-RNA from adult tail and footpad epidermis consistently failed to reveal the 70-kDa protein among the translation products, we obtained evidence using a specific cDNA clone that, in vivo, the protein is encoded by a discrete mRNA. This clone, termed pke70, was isolated from a cDNA library of footpad epidermal mRNA. Homology comparisons with a variety of known keratin cDNAs indicated that pke70 contains sequence information for a type-II keratin that is substantially larger than the mouse 67-kDa keratin protein. Northern-blot analysis with a specific 3'-fragment of pke70 demonstrated a single 2.8 +/- 0.1 kb mRNA species exclusively in adult ear, footpad, and tail epidermis. In situ hybridization with the same fragment revealed the presence of the pke70-hybridizing mRNA in both basal and suprabasal cells of ear and footpad epidermis as well as in the orthokeratinizing parts of the tail epidermis; however in the epidermis covering the balls of the feet, labeling was restricted to suprabasal cells at the base of these nodular elevations. Continuous treatment of adult tail or ear epidermis with hyperplasiogenic agents, e.g., vitamin A acid and the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA), leads to a gradual disappearance of the 70-kDa protein. We obtained evidence using in situ hybridization that the loss of the 70-kDa keratin is preceded by a specific suppression of the transcription of its putative mRNA in basal cells, whereas initially suprabasal cells are apparently still able to complete their original commitment. The particular properties of the 70-kDa keratin protein, i.e., its topological restriction, its postnatal and time-dependent acquisition, and its pronounced sensitivity to hyperplasiogenic stimuli, make this keratin subunit an especially suitable candidate for studies concerning the regulation of keratin expression and morphogenesis in general, as well as for studies of the factors that control its expression so specifically.
Collapse
Affiliation(s)
- M Rentrop
- German Cancer Research Center, Institute of Experimental Pathology, Heidelberg
| | | | | | | | | |
Collapse
|