1
|
Higdon AL, Won NH, Brar GA. Truncated protein isoforms generate diversity of protein localization and function in yeast. Cell Syst 2024; 15:388-408.e4. [PMID: 38636458 PMCID: PMC11075746 DOI: 10.1016/j.cels.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/21/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Genome-wide measurement of ribosome occupancy on mRNAs has enabled empirical identification of translated regions, but high-confidence detection of coding regions that overlap annotated coding regions has remained challenging. Here, we report a sensitive and robust algorithm that revealed the translation of 388 N-terminally truncated proteins in budding yeast-more than 30-fold more than previously known. We extensively experimentally validated them and defined two classes. The first class lacks large portions of the annotated protein and tends to be produced from a truncated transcript. We show that two such cases, Yap5truncation and Pus1truncation, have condition-specific regulation and distinct functions from their respective annotated isoforms. The second class of truncated protein isoforms lacks only a small region of the annotated protein and is less likely to be produced from an alternative transcript isoform. Many display different subcellular localizations than their annotated counterpart, representing a common strategy for dual localization of otherwise functionally identical proteins. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Andrea L Higdon
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nathan H Won
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gloria A Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
2
|
Yoshimoto H, Bogaki T. Mechanisms of production and control of acetate esters in yeasts. J Biosci Bioeng 2023; 136:261-269. [PMID: 37607842 DOI: 10.1016/j.jbiosc.2023.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 08/24/2023]
Abstract
Acetate esters, such as isoamyl acetate and ethyl acetate, are major aroma components of alcoholic beverages. They are produced through synthesis from acetyl CoA and the corresponding alcohol by alcohol acetyltransferase (AATase) with specific control of reaction factors, including unsaturated fatty acids and precursors, the percentage of nitrogen, and oxygen. However, the mechanisms by which these specific reaction factors affect acetate ester production remain largely unknown. The cellular mechanisms underlying the effects of these factors on acetate ester production were examined by purifying AATase from yeast, characterizing it, and cloning the ATF gene encoding AATase from sake yeast and bottom-fermenting yeast. Genetic and biochemical studies suggested that the decrease in acetate production with the addition of oxygen and unsaturated fatty acids was due to a decrease in enzyme synthesis resulting from transcriptional repression of the ATF1 gene, which is responsible for most of the AATase activity. Furthermore, these results suggest that expression of the ATF1 gene is intricately regulated by a number of transcriptional regulatory genes such as ROX1 and RAP1. Based on these results, the mechanism of ester regulation by oxygen, unsaturated fatty acids and precursors, and ratio of nitrogen source are becoming clearer from a molecular biological point of view. The physiological significance of ester production by yeast is then discussed. In this review, we summarize the studies on AATase, ATF gene, regulation of ester production, and physiological significance of acetate ester.
Collapse
Affiliation(s)
- Hiroyuki Yoshimoto
- Institute for Future Beverages, Research & Development Division, Kirin Holdings Company Limited, Technovilleage Center 3F, 1-17-1 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 236-8628, Japan.
| | - Takayuki Bogaki
- General Research Laboratory, Ozeki Corporation, 4-9 Imazu Dezaike-cho, Nishinomiya, Hyogo 663-8227, Japan
| |
Collapse
|
3
|
Higdon AL, Won NH, Brar GA. Truncated protein isoforms generate diversity of protein localization and function in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548938. [PMID: 37503254 PMCID: PMC10369987 DOI: 10.1101/2023.07.13.548938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Genome-wide measurements of ribosome occupancy on mRNA transcripts have enabled global empirical identification of translated regions. These approaches have revealed an unexpected diversity of protein products, but high-confidence identification of new coding regions that entirely overlap annotated coding regions - including those that encode truncated protein isoforms - has remained challenging. Here, we develop a sensitive and robust algorithm focused on identifying N-terminally truncated proteins genome-wide, identifying 388 truncated protein isoforms, a more than 30-fold increase in the number known in budding yeast. We perform extensive experimental validation of these truncated proteins and define two general classes. The first set lack large portions of the annotated protein sequence and tend to be produced from a truncated transcript. We show two such cases, Yap5 truncation and Pus1 truncation , to have condition-specific regulation and functions that appear distinct from their respective annotated isoforms. The second set of N-terminally truncated proteins lack only a small region of the annotated protein and are less likely to be regulated by an alternative transcript isoform. Many localize to different subcellular compartments than their annotated counterpart, representing a common strategy for achieving dual localization of otherwise functionally identical proteins.
Collapse
|
4
|
Vigueras-Meneses LG, Escalera-Fanjul X, El-Hafidi M, Montalvo-Arredondo J, Gomez-Hernandez N, Colón M, Granados E, Campero-Basaldua C, Riego-Ruiz L, Scazzocchio C, González A, Quezada H. Two alpha isopropylmalate synthase isozymes with similar kinetic properties are extant in the yeast Lachancea kluyveri. FEMS Yeast Res 2022; 22:6546212. [PMID: 35266531 DOI: 10.1093/femsyr/foac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
The first committed step in the leucine biosynthetic pathway is catalyzed by α-isopropylmalate synthase (α-IPMS, EC 2.3.3.13), which in the Saccaromycotina subphylum of Ascomycete yeasts is frequently encoded by duplicated genes. Following a gene duplication event, the two copies may be preserved presumably because the encoded proteins diverge in either functional properties and/or cellular localization. The genome of the petite-negative budding yeast Lachancea kluyveri includes two SAKL0E10472 (LkLEU4) and SAKL0F05170g (LKLEU4BIS) paralogous genes, which are homologous to other yeast α-IPMS sequences. Here, we investigate whether these paralogous genes encode functional α-IPMS isozymes and whether their functions have diverged. Molecular phylogeny suggested that the LkLeu4 isozyme is located in the mitochondria and LkLeu4BIS in the cytosol. Comparison of growth rates, leucine intracellular pools and mRNA levels, indicate that the LkLeu4 isozyme is the predominant α-IPMS enzyme during growth on glucose as carbon source. Determination of the kinetic parameters indicates that the isozymes have similar affinities for the substrates and for the feedback inhibitor leucine. Thus, the diversification of the physiological roles of the genes LkLEU4 and LKLEU4BIS involves preferential transcription of the LkLEU4 gene during growth on glucose and different subcellular localization, although ligand interactions have not diverged.
Collapse
Affiliation(s)
- Liliana Guadalupe Vigueras-Meneses
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ximena Escalera-Fanjul
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mohammed El-Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Javier Montalvo-Arredondo
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Nicolás Gomez-Hernandez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Maritrini Colón
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Estefany Granados
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Campero-Basaldua
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lina Riego-Ruiz
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Claudio Scazzocchio
- Department of Microbiology, Imperial College London, London, United Kingdom.,Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France
| | - Alicia González
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Héctor Quezada
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
5
|
An Internal Promoter Drives the Expression of a Truncated Form of CCC1 Capable of Protecting Yeast from Iron Toxicity. Microorganisms 2021; 9:microorganisms9061337. [PMID: 34203091 PMCID: PMC8235630 DOI: 10.3390/microorganisms9061337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
In yeast, iron storage and detoxification depend on the Ccc1 transporter that mediates iron accumulation in vacuoles. While deletion of the CCC1 gene renders cells unable to survive under iron overload conditions, the deletion of its previously identified regulators only partially affects survival, indicating that the mechanisms controlling iron storage and detoxification in yeast are still far from well understood. This work reveals that CCC1 is equipped with a complex transcriptional structure comprising several regulatory regions. One of these is located inside the coding sequence of the gene and drives the expression of a short transcript encoding an N-terminally truncated protein, designated as s-Ccc1. s-Ccc1, though less efficiently than Ccc1, is able to promote metal accumulation in the vacuole, protecting cells against iron toxicity. While the expression of the s-Ccc1 appears to be repressed in the normal genomic context, our current data clearly demonstrates that it is functional and has the capacity to play a role under iron overload conditions.
Collapse
|
6
|
Ma B, Shen J, Yindeeyoungyeon W, Ruan Y. A Novel Antibiotic Mechanism of l-Cyclopropylalanine Blocking the Biosynthetic Pathway of Essential Amino Acid l-Leucine. Molecules 2017; 22:molecules22122224. [PMID: 29240717 PMCID: PMC6149818 DOI: 10.3390/molecules22122224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022] Open
Abstract
The unusual amino acid l-cyclopropylalanine was isolated from the mushroom Amanita virgineoides after detection in an anti-fungal screening test. l-Cyclopropylalanine was found to exhibit broad-spectrum inhibition against fungi and bacteria. The anti-fungal activity was found to be abolished in the presence of the amino acid l-leucine, but not any other amino acids, indicating that l-cyclopropylalanine may block the biosynthesis of the essential amino acid l-leucine, thereby inhibiting fungal and bacteria growth. Further biochemical studies found l-cyclopropylalanine indeed inhibits α-isopropylmalate synthase (α-IMPS), the enzyme that catalyzes the rate-limiting step in the biosynthetic pathway of l-leucine. Inhibition of essential l-leucine synthesis in fungal and bacteria organisms, a pathway absent in host organisms such as humans, may represent a novel antibiotic mechanism to counter the ever-increasing problem of drug resistance to existing antibiotics.
Collapse
Affiliation(s)
- Bingji Ma
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Jinwen Shen
- Department of Microbiology, Henan Agricultural University, Zhengzhou 450002, China.
| | - Wandee Yindeeyoungyeon
- National Center for Genetic Engineering and Biotechnology, NSTDA, Pathum Thani 12120, Thailand.
| | - Yuan Ruan
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
7
|
Arribere JA, Gilbert WV. Roles for transcript leaders in translation and mRNA decay revealed by transcript leader sequencing. Genome Res 2013; 23:977-87. [PMID: 23580730 PMCID: PMC3668365 DOI: 10.1101/gr.150342.112] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transcript leaders (TLs) can have profound effects on mRNA translation and stability. To map TL boundaries genome-wide, we developed TL-sequencing (TL-seq), a technique combining enzymatic capture of m7G-capped mRNA 5′ ends with high-throughput sequencing. TL-seq identified mRNA start sites for the majority of yeast genes and revealed many examples of intragenic TL heterogeneity. Surprisingly, TL-seq identified transcription initiation sites within 6% of protein-coding regions, and these sites were concentrated near the 5′ ends of ORFs. Furthermore, ribosome density analysis showed these truncated mRNAs are translated. Translation-associated TL-seq (TATL-seq), which combines TL-seq with polysome fractionation, enabled annotation of TLs, and simultaneously assayed their function in translation. Using TATL-seq to address relationships between TL features and translation of the downstream ORF, we observed that upstream AUGs (uAUGs), and no other upstream codons, were associated with poor translation and nonsense-mediated mRNA decay (NMD). We also identified hundreds of genes with very short TLs, and demonstrated that short TLs were associated with poor translation initiation at the annotated start codon and increased initiation at downstream AUGs. This frequently resulted in out-of-frame translation and subsequent termination at premature termination codons, culminating in NMD of the transcript. Unlike previous approaches, our technique enabled observation of alternative TL variants for hundreds of genes and revealed significant differences in translation in genes with distinct TL isoforms. TL-seq and TATL-seq are useful tools for annotation and functional characterization of TLs, and can be applied to any eukaryotic system to investigate TL-mediated regulation of gene expression.
Collapse
Affiliation(s)
- Joshua A Arribere
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
8
|
Hood HM, Neafsey DE, Galagan J, Sachs MS. Evolutionary roles of upstream open reading frames in mediating gene regulation in fungi. Annu Rev Microbiol 2009; 63:385-409. [PMID: 19514854 DOI: 10.1146/annurev.micro.62.081307.162835] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Upstream open reading frames (uORFs) are frequently present in the 5'-leader regions of fungal mRNAs. They can affect translation by controlling the ability of ribosomes that scan from the mRNA 5' end to reach the downstream genic reading frame. The translation of uORFs can also affect mRNA stability. For several genes, including Saccharomyces cerevisiae GCN4, S. cerevisiae CPA1, and Neurospora crassa arg-2, regulation by uORFs controls expression in response to specific physiological signals. The roles of many uORFs that are identified by genome-level approaches, as have been initiated for Saccharomyces, Aspergillus, and Cryptococcus species, remain to be determined. Some uORFs may have regulatory roles, while others may exist to insulate the genic reading frame from the negative impacts of upstream translation start sites in the mRNA 5' leader.
Collapse
Affiliation(s)
- Heather M Hood
- Department of Science and Engineering, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | | | |
Collapse
|
9
|
Kovaleva GY, Bazykin GA, Brudno M, Gelfand MS. Comparative genomics of transcriptional regulation in yeasts and its application to identification of a candidate alpha-isopropylmalate transporter. J Bioinform Comput Biol 2007; 4:981-98. [PMID: 17099937 DOI: 10.1142/s0219720006002284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 05/17/2006] [Accepted: 06/21/2006] [Indexed: 01/14/2023]
Abstract
Conservation rates in non-protein-coding regions of five yeast genomes of the genus Saccharomyces were analyzed using multiple whole-genome alignments. This analysis confirmed previously shown decrease in conservation rates observed immediately upstream of the translation start point and downstream of the stop-codon. Further, there was a sharp conservation peak in the upstream regions likely related to the core promoter (-35 bp to +35 bp around TSS) and a conservation peak downstream of the stop-codon whose function is not yet clear. Regulation of leucine and methionine biosynthesis controlled by the global regulator Gcn4p and pathway-specific regulators was analyzed in detail. A candidate alpha-isopropylmalate carrier, YOR271cp, was identified based on conservation of Leu3p binding sites, analysis of ChIP-chip data, protein localization and sequence similarity.
Collapse
Affiliation(s)
- Galina Yu Kovaleva
- Department of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia.
| | | | | | | |
Collapse
|
10
|
Aggarwal M, Mondal AK. Role of N-terminal hydrophobic region in modulating the subcellular localization and enzyme activity of the bisphosphate nucleotidase from Debaryomyces hansenii. EUKARYOTIC CELL 2006; 5:262-71. [PMID: 16467467 PMCID: PMC1405886 DOI: 10.1128/ec.5.2.262-271.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
3', 5'-Bisphosphate nucleotidase is a ubiquitous enzyme that converts 3'-phosphoadenosine-5'-phosphate to adenosine-5'-phosphate and inorganic phosphate. These enzymes are highly sensitive to sodium and lithium and, thus, perform a crucial rate-limiting metabolic step during salt stress in yeast. Recently, we have identified a bisphosphate nucleotidase gene (DHAL2) from the halotolerant yeast Debaryomyces hansenii. One of the unique features of Dhal2p is that it contains an N-terminal 54-amino-acid-residue hydrophobic extension. In this study, we have shown that Dhal2p exists as a cytosolic as well as a membrane-bound form and that salt stress markedly influences the accumulation of the latter form in the cell. We have demonstrated that the N-terminal hydrophobic region was necessary for the synthesis of the membrane-bound isoform. It appeared that an alternative translation initiation was the major mechanism for the synthesis of these two forms. Moreover, the two forms exhibit significant differences in their substrate specificity. Unlike the cytosolic form, the membrane-bound form showed very high activity against inositol-1,4-bisphosphate. Thus, the present study for the first time reports the existence of multiple forms of a bisphosphate nucleotidase in any organism.
Collapse
Affiliation(s)
- Monika Aggarwal
- Institute of Microbial Technology, Sector 39A, Chandigarh 160 036, India
| | | |
Collapse
|
11
|
Kohlhaw GB. Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol Mol Biol Rev 2003; 67:1-15, table of contents. [PMID: 12626680 PMCID: PMC150519 DOI: 10.1128/mmbr.67.1.1-15.2003] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After exploring evolutionary aspects of branched-chain amino acid biosynthesis, the review focuses on the extended leucine biosynthetic pathway as it operates in Saccharomyces cerevisiae. First, the genes and enzymes specific for the leucine pathway are considered: LEU4 and LEU9 (encoding the alpha-isopropylmalate synthase isoenzymes), LEU1 (isopropylmalate isomerase), and LEU2 (beta-isopropylmalate dehydrogenase). Emphasis is given to the unusual distribution of the branched-chain amino acid pathway enzymes between mitochondrial matrix and cytosol, on the newly defined role of Leu5p, and on regulatory mechanisms governing gene expression and enzyme activity, including new evidence for the metabolic importance of the regulation of alpha-isopropylmalate synthase by coenzyme A. Next, structure-function relationships of the transcriptional regulator Leu3p are addressed, defining its dual role as activator and repressor and discussing evidence in support of the self-masking model. Recent data pointing at a more extended Leu3p regulon are discussed. An overview of the layered controls of the extended leucine pathway is provided that includes a description of the newly recognized roles of Ilv5p and Bat1p in maintaining mitochondrial integrity. Finally, branched-chain amino acid biosynthesis and its regulation in other fungi are summarized, the question of leucine as metabolic signal is addressed, and possible directions of future research in this area are outlined.
Collapse
Affiliation(s)
- Gunter B Kohlhaw
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
12
|
Chanchaem W, Palittapongarnpim P. A variable number of tandem repeats result in polymorphic alpha -isopropylmalate synthase in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2002; 82:1-6. [PMID: 11914056 DOI: 10.1054/tube.2001.0314] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A locus of variable number of the tandem repeat, VNTR4155, resides in the putative leuA gene, encoding for alpha -isopropylmalate synthase (alpha -IPMS) of Mycobacterium tuberculosis, a repeat that is unique to the bacterium. The objective was to determine whether the polymorphic VNTR4155 was translated and resulted in a polymorphic protein. The putative leuA gene of the M. tuberculosis H37Rv strain was cloned by PCR and expressed in a His-tagged form in Escherichia coli. The enzymatic properties of the purified protein were studied. The protein was used as an antigen to immunize rabbits. Soluble proteins of several strains of M. tuberculosis were examined by Western blot analysis. The polymorphism of VNTR4155 was due to the presence of different copy number of the 57-bp tandem repeat. The putative alpha -IPMS of various strains of M. tuberculosis had different sizes, varying directly with the length of their VNTR4155.
Collapse
Affiliation(s)
- W Chanchaem
- Department of Microbiology, Faculty of Science, National Center for Genetic Engineering and Biotechnology, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | | |
Collapse
|
13
|
Casalone E, Barberio C, Cavalieri D, Polsinelli M. Identification by functional analysis of the gene encoding alpha-isopropylmalate synthase II (LEU9) in Saccharomyces cerevisiae. Yeast 2000; 16:539-45. [PMID: 10790691 DOI: 10.1002/(sici)1097-0061(200004)16:6<539::aid-yea547>3.0.co;2-k] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The function of the open reading frame (ORF) YOR108w of Saccharomyces cerevisiae has been analysed. The deletion of this ORF from chromosome XV did not give an identifiable phenotype. A mutant in which both ORF YOR108w and LEU4 gene have been deleted proved to be leucine auxotrophic and alpha-isopropylmalate synthase (alpha-IPMS)-negative. This mutant recovered alpha-IPMS activity and a Leu(+) phenotype when transformed with a plasmid copy of YOR108w. These data and the sequence homology indicated that YOR108w is the structural gene for alpha-IPMS II, responsible for the residual alpha-IPMS activity found in a leu4Delta strain. The leu4Delta strain appeared to be very sensitive to the leucine analogue trifluoroleucine. In the absence of leucine, its growth was not much impaired in glucose but more on non-fermentable carbon sources.
Collapse
Affiliation(s)
- E Casalone
- Dipartimento di Scienze Biomediche, Università di Chieti, via dei Vestini, I-66100 Chieti, Italy.
| | | | | | | |
Collapse
|
14
|
Abstract
Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5' untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling in these highly complex expression systems.
Collapse
Affiliation(s)
- J E McCarthy
- Posttranscriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), Manchester M60 1QD, United Kingdom.
| |
Collapse
|
15
|
Marathe S, Yu YG, Turner GE, Palmier C, Weiss RL. Multiple forms of arginase are differentially expressed from a single locus in Neurospora crassa. J Biol Chem 1998; 273:29776-85. [PMID: 9792692 DOI: 10.1074/jbc.273.45.29776] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Neurospora crassa catabolic enzyme, arginase (L-arginine amidinohydrolase, EC 3.5.3.1), exists in multiple forms. Multiple forms of arginase are found in many vertebrates, but this is the only reported example in a microbial organism. The two major forms are structurally similar with subunit sizes of 36 and 41 kDa, respectively. The larger form is produced by mycelia growing in arginine-supplemented medium. Both forms are localized in the cytosol. The structural gene for arginase, aga, has been cloned and sequenced; it contains a 358-codon open reading frame with three in-frame ATGs at the amino terminus. Mutagenesis of these ATGs revealed that the first ATG initiates the 41-kDa protein and the third ATG initiates the 36-kDa protein. Mutation of the second ATG has no effect on translation. Northern analysis demonstrated that a 1.4-kilobase (kb) transcript is synthesized in minimal medium and both a 1.4- and 1.7-kb transcript are produced in arginine-supplemented medium. Primer extension identified the 5' ends of each transcript and demonstrated that the first and third ATG of the open reading frame are the initial AUGs of the 1.7- and 1. 4-kb mRNA, respectively. The results suggest that a basal promoter produces the 1.4-kb transcript and an arginine "activated" promoter is responsible for the 1.7-kb transcript. Tandem promoters are rare in eukaryotic organisms, and they often regulate developmental or tissue-specific gene expression. The possibility that arginase has a role in differentiation in N. crassa is being investigated.
Collapse
Affiliation(s)
- S Marathe
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | | | | | | | | |
Collapse
|
16
|
DeMarini DJ, Adams AE, Fares H, De Virgilio C, Valle G, Chuang JS, Pringle JR. A septin-based hierarchy of proteins required for localized deposition of chitin in the Saccharomyces cerevisiae cell wall. J Cell Biol 1997; 139:75-93. [PMID: 9314530 PMCID: PMC2139831 DOI: 10.1083/jcb.139.1.75] [Citation(s) in RCA: 267] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/1997] [Revised: 06/17/1997] [Indexed: 02/05/2023] Open
Abstract
Just before bud emergence, a Saccharomyces cerevisiae cell forms a ring of chitin in its cell wall; this ring remains at the base of the bud as the bud grows and ultimately forms part of the bud scar marking the division site on the mother cell. The chitin ring seems to be formed largely or entirely by chitin synthase III, one of the three known chitin synthases in S. cerevisiae. The chitin ring does not form normally in temperature-sensitive mutants defective in any of four septins, a family of proteins that are constituents of the "neck filaments" that lie immediately subjacent to the plasma membrane in the mother-bud neck. In addition, a synthetic-lethal interaction was found between cdc12-5, a temperature-sensitive septin mutation, and a mutant allele of CHS4, which encodes an activator of chitin synthase III. Two-hybrid analysis revealed no direct interaction between the septins and Chs4p but identified a novel gene, BNI4, whose product interacts both with Chs4p and Cdc10p and with one of the septins, Cdc10p; this analysis also revealed an interaction between Chs4p and Chs3p, the catalytic subunit of chitin synthase III. Bni4p has no known homologues; it contains a predicted coiled-coil domain, but no other recognizable motifs. Deletion of BNI4 is not lethal, but causes delocalization of chitin deposition and aberrant cellular morphology. Overexpression of Bni4p also causes delocalization of chitin deposition and produces a cellular morphology similar to that of septin mutants. Immunolocalization experiments show that Bni4p localizes to a ring at the mother-bud neck that lies predominantly on the mother-cell side (corresponding to the predominant site of chitin deposition). This localization depends on the septins but not on Chs4p or Chs3p. A GFP-Chs4p fusion protein also localizes to a ring at the mother-bud neck on the mother-cell side. This localization is dependent on the septins, Bni4p, and Chs3p. Chs3p, whose normal localization is similar to that of Chs4p, does not localize properly in bni4, chs4, or septin mutant strains or in strains that accumulate excess Bni4p. In contrast, localization of the septins is essentially normal in bni4, chs4, and chs3 mutant strains and in strains that accumulate excess Bni4p. Taken together, these results suggest that the normal localization of chitin synthase III activity is achieved by assembly of a complex in which Chs3p is linked to the septins via Chs4p and Bni4p.
Collapse
Affiliation(s)
- D J DeMarini
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Tamura T, McMicken HW, Smith CV, Hansen TN. Gene structure for mouse glutathione reductase, including a putative mitochondrial targeting signal. Biochem Biophys Res Commun 1997; 237:419-22. [PMID: 9268726 DOI: 10.1006/bbrc.1997.7153] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glutathione reductase (GR) is an important component of cellular antioxidant defense functions. Although GR activities are found in mitochondria and cytoplasm, the sorting mechanisms of mammalian GR into mitochondria have not been elucidated. To identify the mouse GR gene structure, including a sequence for a potential mitochondrial targeting signal (MTS), we screened a mouse genomic library and isolated four contiguous clones that covered the entire coding region of the gene. The coding region is composed of 13 exons. Exon 1 has two in-frame start codons separated by a sequence for an arginine-rich peptide segment. Expression studies, in which Chinese hamster ovary cells were transiently transfected with a plasmid containing the first 78 bp of the mouse exon 1 attached 5' to the human GR cDNA, showed marked and selective increases in mitochondrial GR activities. The data indicate that this 78 bp sequence encodes a potential MTS for GR in mice.
Collapse
Affiliation(s)
- T Tamura
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | | | | | | |
Collapse
|
18
|
Saiz JE, Buitrago MJ, Soler-mira A, Del Rey F, Revuelta JL. The sequence of a 21·3kb DNA fragment from the left arm of yeast chromosome XIV revealsLEU4, MET4, POL1, RAS2, and six new open reading frames. Yeast 1996. [DOI: 10.1002/(sici)1097-0061(19960330)12:4<403::aid-yea923>3.0.co;2-h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
19
|
Saiz JE, Buitrago MJ, Soler-Mira A, Del Rey F, Revuelta JL. The sequence of a 21.3 kb DNA fragment from the left arm of yeast chromosome XIV reveals LEU4, MET4, POL1, RAS2, and six new open reading frames. Yeast 1996; 12:403-9. [PMID: 8701612 DOI: 10.1002/(sici)1097-0061(19960330)12:4%3c403::aid-yea923%3e3.0.co;2-h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The nucleotide sequence of a fragment of 21 308 bp from the left arm of Saccharomyces cerevisiae chromosome XIV has been determined. Analysis of the sequence revealed 13 open reading frames (ORFs) longer than 300 bp, four of which correspond to the previously identified genes LEU4, MET4, POL1 and RAS2. One putative protein, N2160, shares considerable homology (32% identity) with a hypothetical protein encoded by a gene located on chromosome XV as well as with human OCRL protein (36% identity), involved in Lowe's syndrome. N2185 contains ten predicted transmembrane segments and is similar to another putative protein (YKL146) from yeast.
Collapse
Affiliation(s)
- J E Saiz
- Departamento de Microbiologia y Genética, Universidad de Salamanca, Spain
| | | | | | | | | |
Collapse
|
20
|
Kasuya J, Goko H, Fujita-Yamaguchi Y. Multiple transcripts for the human cardiac form of the cGMP-inhibited cAMP phosphodiesterase. J Biol Chem 1995; 270:14305-12. [PMID: 7782288 DOI: 10.1074/jbc.270.24.14305] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
cDNAs for two distinct Type III cGMP-inhibited (cGI) cyclic nucleotide phosphodiesterases (PDE), designated cGIP1 and cGIP2, were previously cloned from rat adipose and human cardiac cDNA libraries, respectively. In this study, another cDNA (approximately 4.0 kilobase (kb)) encoding a cGI-PDE of 74 kDa (658 amino acids) was isolated from a human placental cDNA library. The nucleotide sequence of its open reading frame was virtually identical to a corresponding region in the 3' portion of the cardiac cGIP2 cDNA (approximately 7.6 kb) which encoded a approximately 125-kDa cGI-PDE (1141 amino acid). Northern blots and RNase protection assays revealed a prominent 4.4-kb transcript and a 7.6-kb transcript in human placenta. The transcription start site of the 4.4-kb transcript was assigned to cardiac cDNA nucleotide 1292, the putative beginning of exon 3 of the human cGIP2 gene, with a potential translation initiation site 183 bases downstream, as determined by RNase protection assay. The 5'-flanking region of the 4.4-kb transcript exhibited promoter activity in HeLa cells which expressed the 4.4-kb transcript, and contained a TATAA sequence 35 base pairs upstream from the tentative transcription start site. Recombinant cGI-PDEs, expressed in Sf9 cells from the 7.6- and 4.0-kb cDNA, exhibited differences in their subcellular localization and Km for cGMP. Thus, in human tissues, alternative transcription may contribute to generating at least two cGIP2 isoforms, cytosolic and membrane-associated cGI-PDEs with different Km values for cGMP.
Collapse
Affiliation(s)
- J Kasuya
- Department of Molecular Genetics, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | |
Collapse
|
21
|
Abstract
The LEU4 gene of Saccharomyces cerevisiae and the enzyme encoded by LEU4, alpha-isopropylmalate synthase, occupy a special position in amino acid metabolism. alpha-Isopropylmalate synthase catalyzes the first committed step in leucine biosynthesis. However, the reaction product alpha-isopropylmalate is not only an intermediate in the leucine biosynthetic pathway, but also functions as co-activator of at least six genes, both within and outside of the leucine pathway. The metabolic importance of alpha-isopropylmalate appears to be reflected in the surprisingly multifaceted regulation of LEU4 expression. This report describes an analysis of functional cis elements in the LEU4 promoter. Five such elements were identified. Three distal elements, designated UASLEU, GCE-A, and GCE-B, are responsible for regulation by the regulatory proteins Leu3p and Gen4p, respectively. The incremental activation of LEU4 by these elements is additive and independent. In addition, two proximal elements were localized. One of these conforms to the TATA consensus sequence and exhibits high affinity for TATA binding protein. The other element shows strong sequence identity with the Bas2p binding site and appears to be involved in basal and phosphate-mediated regulation of LEU4.
Collapse
Affiliation(s)
- Y Hu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-1153
| | | |
Collapse
|
22
|
Agaphonov MO, Poznyakovski AI, Bogdanova AI, Ter-Avanesyan MD. Isolation and characterization of the LEU2 gene of Hansenula polymorpha. Yeast 1994; 10:509-13. [PMID: 7941737 DOI: 10.1002/yea.320100410] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A DNA fragment carrying the LEU2 gene of methylotrophic yeast Hansenula polymorpha was isolated by complementation of the leuB mutation of Escherichia coli. The nucleotide sequence of the isolated DNA fragment contains an open reading frame of 363 codons, coding for a protein 80% identical to the LEU2 gene product of Saccharomyces cerevisiae. Further downstream, there is a partial reading frame with no obvious similarity to known proteins. The LEU2 gene of H. polymorpha cannot complement the leu2 mutation of S. cerevisiae.
Collapse
Affiliation(s)
- M O Agaphonov
- Institute of Experimental Cardiology, Cardiology Research Center, Moscow, Russia
| | | | | | | |
Collapse
|
23
|
|
24
|
Mountain HA, Byström AS, Korch C. The general amino acid control regulates MET4, which encodes a methionine-pathway-specific transcriptional activator of Saccharomyces cerevisiae. Mol Microbiol 1993; 7:215-28. [PMID: 8446029 DOI: 10.1111/j.1365-2958.1993.tb01113.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A met4 mutant of Saccharomyces cerevisiae was unable to transcribe a number of genes encoding enzymes of the methionine biosynthetic pathway. The sequence of the cloned MET4 gene allowed the previously sequenced flanking LEU4 and POL1 genes to be linked to MET4 into a 10,327 bp contiguous region of chromosome XIV. From the sequence and mapping of the transcriptional start points, MET4 is predicted to encode a protein of 634 amino acids (as opposed to 666 amino acids published by others) with a leucine zipper domain at the C-terminus, preceded by both acidic and basic regions. Thus, MET4 belongs to the family of basic leucine zipper trans-activator proteins. Disruption of MET4 resulted in methionine auxotrophy with no other phenotype. Transcriptional studies showed that MET4 was regulated by the general amino acid control and hence by another bZIP protein encoded by GCN4. GCN4 binding sequences are present between the divergently transcribed MET4 and LEU4 genes. Over-expression of MET4 resulted in leaky expression from the otherwise tightly regulated MET3 promoter under its control. The presence of consensus sequences for other potential regulatory elements in the MET4 promoter suggests a complex regulation of this gene.
Collapse
Affiliation(s)
- H A Mountain
- Department of Microbiology, Umeå University, Sweden
| | | | | |
Collapse
|
25
|
Sze JY, Woontner M, Jaehning JA, Kohlhaw GB. In vitro transcriptional activation by a metabolic intermediate: activation by Leu3 depends on alpha-isopropylmalate. Science 1992; 258:1143-5. [PMID: 1439822 DOI: 10.1126/science.1439822] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the absence of the leucine biosynthetic precursor alpha-isopropylmalate (alpha-IPM), the yeast LEU3 protein (Leu3p) binds DNA and acts as a transcriptional repressor in an in vitro extract. Addition of alpha-IPM resulted in a dramatic increase in Leu3p-dependent transcription. The presence of alpha-IPM was also required for Leu3p to compete effectively with another transcriptional activator, GAL4/VP16, for limiting transcription factors. Therefore, the addition of alpha-IPM appears to convert a transcriptional repressor into an activator. This represents an example in eukaryotes of direct transcriptional regulation by a small effector molecule.
Collapse
Affiliation(s)
- J Y Sze
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907
| | | | | | | |
Collapse
|
26
|
Courchesne-Smith C, Jang SH, Shi Q, DeWille J, Sasaki G, Kolattukudy PE. Cytoplasmic accumulation of a normally mitochondrial malonyl-CoA decarboxylase by the use of an alternate transcription start site. Arch Biochem Biophys 1992; 298:576-86. [PMID: 1416987 DOI: 10.1016/0003-9861(92)90452-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Malonyl-CoA decarboxylase, a normally mitochondrial enzyme, accumulates in the cytoplasm of specialized glands to cause production of multiple methyl-branched fatty acids. Evidence was presented that a single copy of the decarboxylase gene present in the goose genome codes for both the mitochondrial form found in extremely low amounts in the liver and the cytosolic form found in large amounts in uropygial glands. To elucidate how a single gene encodes both forms, the malonyl-CoA decarboxylase gene and the cDNAs for both the mitochondrial (liver) and the cytoplasmic (gland) species were cloned and sequenced. The decarboxylase gene, found in a 21-kb segment of cloned genomic DNA, is composed of five exons of 0.521, 0.118, 0.156, 0.145, and 1.93 kb interrupted by 6.9, 1.5, 0.45, and 9.3-kb introns. Exon 1 revealed two ATGs in frame 150 bp apart. cDNA for the cytoplasmic form and mitochondrial form showed identical nucleotide sequence, except that the latter was longer than the former. The longest cDNA for the cytoplasmic form of the enzyme extended only 44 bp 5' to the second ATG and the position corresponded to the transcription initiation site of the cytoplasmic form revealed by primer extension and RNase protection. The cDNA for the mitochondrial form isolated from the library extended 19 bp further upstream. Primer extension and RNase protection indicated that transcripts for the mitochondrial form initiated upstream from the first ATG. The N-terminal segment of the open reading frame initiated at the first ATG showed an amphipathic signal sequence appropriate for mitochondrial import. A putative full length mRNA for the mitochondrial form of the enzyme when translated in vitro yielded a 55-kDa primary translation product which was processed by removal of about 5 kDa during uptake into goose liver mitochondria. These results strongly suggest that in most tissues transcription initiates 5'- to the first ATG, generating a transcript that would generate a protein with an N-terminal leader for transport into mitochondria. In the uropygial gland the use of an alternate promoter generates transcripts initiated between the two ATGs and the translation product accumulates in the cytoplasm since it lacks a mitochondrial targeting sequence.
Collapse
|
27
|
Godon JJ, Chopin MC, Ehrlich SD. Branched-chain amino acid biosynthesis genes in Lactococcus lactis subsp. lactis. J Bacteriol 1992; 174:6580-9. [PMID: 1400210 PMCID: PMC207629 DOI: 10.1128/jb.174.20.6580-6589.1992] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The genes for biosynthesis of the branched-chain amino acids leucine, isoleucine, and valine in Lactococcus lactis subsp. lactis NCDO2118 were characterized by cloning, complementation in Escherichia coli and Bacillus subtilis, and nucleotide sequence analysis. Nine structural genes are clustered on a 12-kb DNA fragment in the order leuABCD ilvDBNCA. Upstream of these genes, the nucleotide sequence suggests the existence of regulation by transcriptional attenuation. Between the leuD and ilvD genes is an unexpected gene, encoding a protein which belongs to the ATP-binding cassette protein superfamily.
Collapse
Affiliation(s)
- J J Godon
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | |
Collapse
|
28
|
Abstract
A DNA fragment that can complement the leu2 mutation of Saccharomyces cerevisiae was cloned from the genomic library of Kluyveromyces lactis. The nucleotide sequence revealed an open reading frame of 362 codons, 75% homologous to S. cerevisiae LEU2 gene. The upstream region contained a CCGGAACCGG sequence identical to the site of leucine-specific control of LEU2. Further upstream, there is a partial open reading frame homologous to rat ribosomal protein L7.
Collapse
Affiliation(s)
- Y P Zhang
- Institute of Genetics, Fudan University, Shanghai, People's Republic of China
| | | | | | | |
Collapse
|
29
|
Li W, Brandriss MC. Proline biosynthesis in Saccharomyces cerevisiae: molecular analysis of the PRO1 gene, which encodes gamma-glutamyl kinase. J Bacteriol 1992; 174:4148-56. [PMID: 1350780 PMCID: PMC206127 DOI: 10.1128/jb.174.12.4148-4156.1992] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PRO1 gene of Saccharomyces cerevisiae encodes the 428-amino-acid protein gamma-glutamyl kinase (ATP:L-glutamate 5-phosphotransferase, EC 2.7.2.11), which catalyzes the first step in proline biosynthesis. Amino acid sequence comparison revealed significant homology between the yeast and Escherichia coli gamma-glutamyl kinases throughout their lengths. Four close matches to the consensus sequence for GCN4 protein binding and one close match to the RAP1 protein-binding site were found in the PRO1 upstream region. The response of the PRO1 gene to changes in the growth medium was analyzed by measurement of steady-state mRNA levels and of beta-galactosidase activity encoded by a PRO1-lacZ gene fusion. PRO1 expression was not repressed by exogenous proline and was not induced by the presence of glutamate in the growth medium. Although expression of the PRO1 gene did not change in response to histidine starvation, both steady-state PRO1 mRNA levels and beta-galactosidase activities were elevated in a gcd1 strain and reduced in a gcn4 strain. In addition, a pro1 bradytrophic strain became completely auxotrophic for proline in a gcn4 strain background. These results indicate that PRO1 is regulated by the general amino acid control system.
Collapse
Affiliation(s)
- W Li
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark 07103
| | | |
Collapse
|
30
|
Harris SD, Cheng J, Pugh TA, Pringle JR. Molecular analysis of Saccharomyces cerevisiae chromosome I. On the number of genes and the identification of essential genes using temperature-sensitive-lethal mutations. J Mol Biol 1992; 225:53-65. [PMID: 1583694 DOI: 10.1016/0022-2836(92)91025-k] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previous analyses of Saccharomyces cerevisiae chromosome I have suggested that the majority (greater than 75%) of single-copy essential genes on this chromosome are difficult or impossible to identify using temperature-sensitive (Ts-) lethal mutations. To investigate whether this situation reflects intrinsic difficulties in generating temperature-sensitive proteins or constraints on mutagenesis in yeast, we subjected three cloned essential genes from chromosome I to mutagenesis in an Escherichia coli mutator strain and screened for Ts- lethal mutations in yeast using the "plasmid-shuffle" technique. We failed to obtain Ts- lethal mutations in two of the genes (FUN12 and FUN20), while the third gene yielded such mutations, but only at a low frequency. DNA sequence analysis of these mutant alleles and of the corresponding wild-type region revealed that each mutation was a single substitution not in the previously identified gene FUN19, but in the adjacent, newly identified essential gene FUN53. FUN19 itself proved to be non-essential. These results suggest that many essential proteins encoded by genes on chromosome I cannot be rendered thermolabile by single mutations. However, the results obtained with FUN53 suggest that there may also be significant constraints on mutagenesis in yeast. The 5046 base-pair interval sequenced contains the complete FUN19, FUN53 and FUN20 coding regions, as well as a portion of the adjacent non-essential FUN21 coding region. In all, 68 to 75% of this interval is open reading frame. None of the four predicted products shows significant homologies to known proteins in the available databases.
Collapse
Affiliation(s)
- S D Harris
- Department of Biology, University of Michigan, Ann Arbor 48109-1048
| | | | | | | |
Collapse
|
31
|
Evans DJ, Jones R, Woodley PR, Wilborn JR, Robson RL. Nucleotide sequence and genetic analysis of the Azotobacter chroococcum nifUSVWZM gene cluster, including a new gene (nifP) which encodes a serine acetyltransferase. J Bacteriol 1991; 173:5457-69. [PMID: 1885524 PMCID: PMC208258 DOI: 10.1128/jb.173.17.5457-5469.1991] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nucleotide sequence was obtained for a region of 7,099 bp spanning the nifU, nifS, nifV, nifW, nifZ, and nifM genes from Azotobacter chroococcum. Chromosomal mutations constructed at several sites within the locus confirmed a requirement for this region for expression of the molybdenum nitrogenase in this organism. The genes are tightly clustered and ordered as in Klebsiella pneumoniae except for two additional open reading frames (ORFs) between nifV and nifW. The arrangement of genes in A. chroococcum closely matches that described for Azotobacter vinelandii. The polypeptide encoded by ORF4 immediately downstream from nifV is 41% identical over 186 amino acids to the product of the cysE gene from Escherichia coli, which encodes serine acetyltransferase (SAT), a key enzyme in cysteine biosynthesis. Plasmids which potentially express ORF4 complemented E. coli JM39, a cysteine auxotroph which lacks SAT. SAT activity was detected in crude extracts of one such complemented strain. A strain of A. chroococcum carrying a chromosomal disruption of ORF4 grew normally with ammonium as the N source but more slowly than the parental strain when N2 was the sole N source. These data suggest that ORF4 encodes a nif-specific SAT required for optimizing expression of nitrogenase activity. ORF4 was assigned the name nifP. nifP may be required to boost rates of synthesis or intracellular concentrations of cysteine or methionine. Sequence identity between nifV and leuA gene products suggests that nifV may catalyze a condensation reaction analogous to that carried out by isopropylmalate synthase (LEUA) but in which acetyl coenzyme and alpha-ketoglutarate are substrates for the formation of homocitrate, the proposed product of NIFV activity.
Collapse
Affiliation(s)
- D J Evans
- AFRC-IPSR Unit of Nitrogen Fixation, University of Sussex, Brighton, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Lopez L, Youakim A, Evans S, Shur B. Evidence for a molecular distinction between Golgi and cell surface forms of beta 1,4-galactosyltransferase. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98505-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
A suppressor of a yeast splicing mutation (prp8-1) encodes a putative ATP-dependent RNA helicase. Nature 1991; 349:715-7. [PMID: 1996139 DOI: 10.1038/349715a0] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Five small nuclear RNAs (snRNAs) are required for nuclear pre-messenger RNA splicing: U1, U2, U4, U5 and U6. The yeast U1 and U2 snRNAs base-pair to the 5' splice site and branch-point sequences of introns respectively. The role of the U5 and U4/U6 small nuclear ribonucleoprotein particles (snRNPs) in splicing is not clear, though a catalytic role for the U6 snRNA has been proposed. Less is known about yeast splicing factors, but the availability of genetic techniques in Saccharomyces cerevisiae has led to the identification of mutants deficient in nuclear pre-mRNA splicing (prp2-prp27). Several PRP genes have now been cloned and their protein products characterized. The PRP8 protein is a component of the U5 snRNP and associates with the U4/U6 snRNAs/snRNP to form a multi-snRNP particle believed to be important for spliceosome assembly. We have isolated extragenic suppressors of the prp8-1 mutation of S. cerevisiae and present here the preliminary characterization of one of these suppressors, spp81. The predicted amino-acid sequence of the SPP81 protein shows extensive similarity to a recently identified family of proteins thought to possess ATP-dependent RNA helicase activity. The possible role of this putative helicase in nuclear pre-mRNA splicing is discussed.
Collapse
|
34
|
Abstract
We describe a collection of nuclear respiratory-defective mutants (pet mutants) of Saccharomyces cerevisiae consisting of 215 complementation groups. This set of mutants probably represents a substantial fraction of the total genetic information of the nucleus required for the maintenance of functional mitochondria in S. cerevisiae. The biochemical lesions of mutants in approximately 50 complementation groups have been related to single enzymes or biosynthetic pathways, and the corresponding wild-type genes have been cloned and their structures have been determined. The genes defined by an additional 20 complementation groups were identified by allelism tests with mutants characterized in other laboratories. Mutants representative of the remaining complementation groups have been assigned to one of the following five phenotypic classes: (i) deficiency in cytochrome oxidase, (ii) deficiency in coenzyme QH2-cytochrome c reductase, (iii) deficiency in mitochondrial ATPase, (iv) absence of mitochondrial protein synthesis, and (v) normal composition of respiratory-chain complexes and of oligomycin-sensitive ATPase. In addition to the genes identified through biochemical and genetic analyses of the pet mutants, we have cataloged PET genes not matched to complementation groups in the mutant collection and other genes whose products function in the mitochondria but are not necessary for respiration. Together, this information provides an up-to-date list of the known genes coding for mitochondrial constituents and for proteins whose expression is vital for the respiratory competence of S. cerevisiae.
Collapse
Affiliation(s)
- A Tzagoloff
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | |
Collapse
|
35
|
Brisco PR, Kohlhaw GB. Regulation of yeast LEU2. Total deletion of regulatory gene LEU3 unmasks GCN4-dependent basal level expression of LEU2. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38449-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
L'Abbé D, Lang BF, Desjardins P, Morais R. Histidine tRNA from chicken mitochondria has an uncoded 5'-terminal guanylate residue. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39899-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Peters MH, Beltzer JP, Kohlhaw GB. Expression of the yeast LEU4 gene is subject to four different modes of control. Arch Biochem Biophys 1990; 276:294-8. [PMID: 2105081 DOI: 10.1016/0003-9861(90)90041-v] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A translational fusion of yeast LEU4 and Escherichia coli lacZ which contains 679 bp of the LEU4 5'-flanking region and the first two codons of LEU4 was used to study LEU4 expression. Eight recipient strains with different genetic backgrounds, transformed with a plasmid containing the fusion, were grown under a variety of conditions, and beta-galactosidase activity was measured. Evidence was obtained for at least four modes of expression of LEU4: general amino acid control, leucine-specific control, basal level expression, and branched-chain amino acid-mediated repression. Determination of steady-state levels of LEU4 mRNA suggested that LEU4 expression is regulated transcriptionally.
Collapse
Affiliation(s)
- M H Peters
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|
38
|
Hinnebusch AG. Transcriptional and translational regulation of gene expression in the general control of amino-acid biosynthesis in Saccharomyces cerevisiae. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1990; 38:195-240. [PMID: 2183294 DOI: 10.1016/s0079-6603(08)60712-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- A G Hinnebusch
- Unit on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
39
|
Roncero MI, Jepsen LP, Strøman P, van Heeswijck R. Characterization of a leuA gene and an ARS element from Mucor circinelloides. Gene X 1989; 84:335-43. [PMID: 2693214 DOI: 10.1016/0378-1119(89)90508-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A 4.4-kb PstI restriction endonuclease fragment of Mucor circinelloides DNA has previously been shown to both complement a leuA- mutation, and to enable the autonomous replication of plasmids within this organism. The complete nucleotide (nt) sequence of this fragment has been determined and an open reading frame of 1935 bp with no introns has been identified, which exhibits significant similarity (75% at the nt level) with 114 bp of the 5' coding region of the Saccharomyces cerevisiae LEU1 gene. Based on this and on the fact that the fragment weakly complements a leu1 auxotroph of S. cerevisiae, we concluded that the Mucor leu gene encodes alpha-isopropylmalate (alpha-IPM) isomerase and designated it leuA+ accordingly. Primer extension analysis of leuA mRNA and Northern-blot hybridization, indicated the leuA transcript to be approx. 2.3 kb in size, with 5'- and 3'-untranslated regions of 16-20 nt and approx. 450 nt, respectively. Specific Mucor ARS sequence(s) were not identified, although the general location of ARS was indicated by subcloning experiments. Nucleotide sequences are present within this region, which show some similarity with the core consensus of the S. cerevisiae ARS; however, any functional homology is doubtful, since insertion of the 4.4-kb PstI fragment into YIp5 did not increase the transformation frequency of S. cerevisiae with such a vector.
Collapse
Affiliation(s)
- M I Roncero
- Department of Physiology, Carlsberg Laboratory, Copenhagen, Denmark
| | | | | | | |
Collapse
|
40
|
Hartl FU, Pfanner N, Nicholson DW, Neupert W. Mitochondrial protein import. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 988:1-45. [PMID: 2642391 DOI: 10.1016/0304-4157(89)90002-6] [Citation(s) in RCA: 531] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Most mitochondrial proteins are synthesized as precursor proteins on cytosolic polysomes and are subsequently imported into mitochondria. Many precursors carry amino-terminal presequences which contain information for their targeting to mitochondria. In several cases, targeting and sorting information is also contained in non-amino-terminal portions of the precursor protein. Nucleoside triphosphates are required to keep precursors in an import-competent (unfolded) conformation. The precursors bind to specific receptor proteins on the mitochondrial surface and interact with a general insertion protein (GIP) in the outer membrane. The initial interaction of the precursor with the inner membrane requires the mitochondrial membrane potential (delta psi) and occurs at contact sites between outer and inner membranes. Completion of translocation into the inner membrane or matrix is independent of delta psi. The presequences are cleaved off by the processing peptidase in the mitochondrial matrix. In several cases, a second proteolytic processing event is performed in either the matrix or in the intermembrane space. Other modifications can occur such as the addition of prosthetic groups (e.g., heme or Fe/S clusters). Some precursors of proteins of the intermembrane space or the outer surface of the inner membrane are retranslocated from the matrix space across the inner membrane to their functional destination ('conservative sorting'). Finally, many proteins are assembled in multi-subunit complexes. Exceptions to this general import pathway are known. Precursors of outer membrane proteins are transported directly into the outer membrane in a receptor-dependent manner. The precursor of cytochrome c is directly translocated across the outer membrane and thereby reaches the intermembrane space. In addition to the general sequence of events which occurs during mitochondrial protein import, current research focuses on the molecules themselves that are involved in these processes.
Collapse
Affiliation(s)
- F U Hartl
- Institut für Physiologische Chemie, Universität München, F.R.G
| | | | | | | |
Collapse
|
41
|
Shaper NL, Hollis GF, Douglas JG, Kirsch IR, Shaper JH. Characterization of the full length cDNA for murine beta-1,4-galactosyltransferase. Novel features at the 5′-end predict two translational start sites at two in-frame AUGs. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)81533-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Hinnebusch AG. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev 1988; 52:248-73. [PMID: 3045517 PMCID: PMC373138 DOI: 10.1128/mr.52.2.248-273.1988] [Citation(s) in RCA: 301] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Holmberg S, Petersen JG. Regulation of isoleucine-valine biosynthesis in Saccharomyces cerevisiae. Curr Genet 1988; 13:207-17. [PMID: 3289762 DOI: 10.1007/bf00387766] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The threonine deaminase gene (ILV1) of Saccharomyces cerevisiae has been designated "multifunctional" since Bollon (1974) indicated its involvement both in the catalysis of the first step in isoleucine biosynthesis and in the regulation of the isoleucine-valine pathway. Its role in regulation is characterized by a decrease in the activity of the five isoleucine-valine enzymes when cells are grown in the presence of the three branched-chain amino acids, isoleucine, valine and leucine (multivalent repression). We have demonstrated that the regulation of AHA reductoisomerase (encoded by ILV5) and branched-chain amino acid transaminase is unaffected by the deletion of ILV1, subsequently revealing that the two enzymes can be regulated in the absence of threonine deaminase. Both threonine deaminase activity and ILV1 mRNA levels increase in mutants (gcd2 and gcd3) having constitutively depressed levels of enzymes under the general control of amino acid biosynthesis, as well as in response to starvation for tryptophan and branched-chain amino acid imbalance. Thus, the ILV1 gene is under general amino acid control, as is the case for both the ILV5 and the transaminase gene. Multivalent repression of reductoisomerase and transaminase can be observed in mutants defective in general control (gcn and gcd), whereas this is not the case for threonine deaminase. Our analysis suggests that repression effected by general control is not complete in minimal medium. Amino acid dependent regulation of threonine deaminase is only through general control, while the branched-chain amino acid repression of AHA reducto isomerase and the transaminase is caused both by general control and an amino acid-specific regulation.
Collapse
Affiliation(s)
- S Holmberg
- Department of Physiology, Carlsberg Laboratory, Copenhagen, Valby, Denmark
| | | |
Collapse
|
44
|
|
45
|
Takagi M, Uchino S, Sugimoto M, Kawai S, Hikiji T, Yano K. Construction of promoter-probe vectors for Candida maltosa, a n-alkane-assimilating yeast, using the LEU2 gene of Saccharomyces cerevisiae. J Basic Microbiol 1988; 28:335-42. [PMID: 3068352 DOI: 10.1002/jobm.3620280508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
For the purpose of isolation of promoter regions which are regulated by a carbon source in the medium in an n-alkane-assimilating yeast, Candida maltosa, two promoter-probe vectors were constructed. Each of them consists of the LEU2 gene of Saccharomyces cerevisiae whose 5'-noncoding region was trimmed with BAL31, an autonomously replicating sequence isolated from C. maltosa genome (the TRA region) which we have previously isolated, and the pBR322 sequence. One of them, pPLC2, having the TATA box, lacks the regulatory sequence ("sequence L") of the LEU2 gene, and the other, pPLC1, lacks both the TATA box and sequence L. Using pPLC1 as a short-gun cloning vector in C. maltosa, many promoter regions which were active when glucose was present in the medium as a carbon source were obtained from the genome of C. maltosa. The sizes of the inserted fragments of two of them were determined. (In this paper, a promoter region refers to a promoter which includes a TATA box, plus a regulatory sequence such as an UAS (upstream activating sequence)-like sequence).
Collapse
Affiliation(s)
- M Takagi
- Department of Agricultural Chemistry, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Yeast LEU4 encodes mitochondrial and nonmitochondrial forms of alpha-isopropylmalate synthase. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)57402-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Mitochondrial and cytoplasmic fumarases in Saccharomyces cerevisiae are encoded by a single nuclear gene FUM1. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)45347-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
Construction and analysis of deletions in the amino-terminal extension of glutamine tRNA synthetase of Saccharomyces cerevisiae. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61035-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
49
|
Mowbray SL, Koshland DE. Additive and independent responses in a single receptor: aspartate and maltose stimuli on the tar protein. Cell 1987; 50:171-80. [PMID: 3297352 DOI: 10.1016/0092-8674(87)90213-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The aspartate and maltose responses of E. coli are mediated through a single membrane receptor, yet the responses are independent and additive. Both stimuli cause methylation of the same 4 glutamic acid residues. More extensive methylation occurs when a cell that has adapted to one stimulus is exposed to the second, or when both stimuli are added simultaneously. The degree of methylation, as well as receptor migration on two-dimensional gels, demonstrates that only one type of protein is involved, rather than two different receptors arising from differential processing of a single gene. A conformational "push-pull" mechanism in which binding of stimulus and covalent modification, producing opposing stresses, can explain these diverse results.
Collapse
|
50
|
|